NightView User’s Guide

@ CONCURRENT 0890395-210
GRPORATIC August 2000

CORPORATION"

Copyright 2000 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end-users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the enveddmntion: Publications Department.”

This publication may not be reproduced for any other reason in any form without written permission of the publisher.

The license management portion of this product is based on:

Elan License Manager
Copyright 1989-1993 Elan Computer Group, Inc.
All rights reserved.

Elan License Manager is a trademark of Elan Computer Group, Inc.
gdb is a trademark of the Free Software Foundation.

NightHawk is a registered trademark and NightSim, NightStar, NightTrace, NightView, and PowerMAX OS are trademarks of Concurrent Com-
puter Corporation.

NFS is a trademark of Sun Microsystems, Inc.

OSF/Moatif is a registered trademark of The Open Group.

PowerPC is a registered trademark of IBM Corp. and PowerPC 604 is a trademark of IBM Corp.
UNIX is a registered trademark licensed exclusively by the X/Open Company Ltd.

X Window System and X are trademarks of The Open Group.

HyperHelp is a trademark of Brisol Technology Inc.

Printed in U. S. A.

Revision History: Level: Effective With:
Original Release -- July 1992 010 NightView 1.1
Previous Release -- January 2000 200 NightView 5.1

Current Release -- August 2000 210 NightView 5.2

General Information

Scope of Manual

Structure of Manual

Preface

NightView is a general purpose source-level program debugger. Some of the features
make it useful for debugging systems of real-time programs, but it can also be used to
debug a single ordinary program.

NightView can debug programs written in multiple languages. Ada, C, C++ and Fortran
are supported.

NightView can debug multiple processes on the local system or on different hosts.

NightView has been designed to be as flexible as possible. The NightView command
interpreter includes macro processing so that you can write your own NightView com-
mands.

You communicate with NightView with one of three user interfaces. The command-line
interface is useful when no advanced terminal capabilities are present. A simple full-
screen interface is available fasci terminals. The graphical user interface provides the
most functionality.

NightView is supported on systems running PowerMAX™®SSee the Hardware Prereg-
uisites section of thélightView Release Notessociated with your particular version for a
list of supported systems.

This document is the user manual for the NightView debugger. It is intended for anyone
using NightView, regardless of their previous level of experience with debuggers. This
manual describes how to use NightView, by way of tutorial and reference guide. There is
also material for system administrators.

The manual begins with the short tutorials, Chapter 1 [A Quick Start] on page 1-1 and
Chapter 2 [A Quick Start - GUI] on page 2-1, giving you just enough information to get
you started. For more complete tutorials, see Chapter 4 [Tutorial] on page 4-1 and
Chapter 5 [Tutorial - GUI] on page 5-1.

The next section describes the major concepts you will need to understand in order to get
the best use out of NightView. See Chapter 3 [Concepts] on page 3-1.

More detailed information about the NightView commands is found in Chapter 7 [Com-
mand-Line Interface] on page 7-1.

NightView Reference Manual

The next chapter describes a simple full-screen interface to NightView. See Chapter 8
[Simple Full-Screen Interface] on page 8-1.

The next chapter describes the graphical user interface for NightView. See Chapter 9
[Graphical User Interface] on page 9-1.

This manual also contains several appendixes that may not be of interest to all users, such

as an implementation overview. A glossary of terms related to NightView and a quick ref-
erence guide are also provided.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify appear
in italic type. Special terms and comments in code may also appear
in italic.

list bold User input appears ilist bold type and must be entered exactly

as shown. Names of directories, files, commands, options and man
page references also appealigh bold type.

list Operating system and program output such as prompts and messages
and listings of files and programs appeardigh type. Keywords
also appear ifist type.

emphasis Words or phrases that require extra emphasisogghasigype.

window Keyboard sequences and window features such as push buttons,
radio buttons, menu items, labels, and titles appearimdow type.

[1] Brackets enclose command options and arguments that are optional.
Mutually exclusive choices are separated by the p|pecharacter.
You do not type the brackets (or the pipe character) if you choose to
specify such options or arguments.

{ } Braces enclose mutually exclusive choices separated by the|pipe (
character, where one choice must be selected. You do not type the
braces or the pipe character with the choice.

An ellipsis follows an item that can be repeated.

= This symbol meanis defined asn Backus-Naur Form (BNF).

Related Publications

0800032 PowerPC Microprocessor Family: The Programming Environments
0890161 The C Programming Language

0890240 Hf77 FORTRAN Reference Manual

0890288 HAPSE Reference Manual

0890300 X Window System User's Guide

0890380 OSF/Motif Documentation Set

0890382
0890398
0890429
0890460
0890475
0890497
0890516
0891019
0891055

Preface

UNIX® System V AT&T C++ Language System Release 2.1
NightTrace Manual

System Administration Volume 1

Compilation Systems Volume 2 (Concepts)

NightView Pocket Reference

C++ Reference Manual

MAXAda Reference Manual

Harris C Reference Manual

Elan License Managé¥ Release Notes

NightView Reference Manual

vi

Chapter 1 A Quick Start

Sample Program
StartingUp. i
GettingHelp L.
Setting a Breakpoint
Finishingup..........

Chapter 2 A Quick Start - GUI

Chapter 3 Concepts

Sample Program - GUI

StartingUp-GUI
GettingHelp-GUI
Setting a Breakpoint - GUI
Finishingup-GUI......................

Debugging.
AccessingFiles
Programs and Processes

Multiple Processes

Families
Attaching
Detaching
CoreFiles..........
Qualifiers i
Dialogues
Dialogue l/O.........
Real-Time Debugging

Remote Dialogues

ReadyToDebug....................
Finding Your Program
Controlling Your Program

Eventpoints.

Breakpoints
Monitorpoints
Patching......................
Tracing.
Agentpoints L

Signals

Restartinga Program

Restart Mechanism

Contents

Contents

.............................. 2-1
............................. 2-2

.. 2-5
............................. 2-6

Vii

NightView User’s Guide

Chapter 4 Tutorial

viii

Restart Information 3-13
ReStart MacrosS.ot 3-13
Exited and Terminated Processest 3-14
PrOCESS StaleS. . . oo 3-14
Debugger Mechanisms. 3-15
JPTOC . o 3-15
Debug AgeNnt. . .o 3-15
Operations While the Process IsExecuting 3-16
Using /proc and the Debug Agent Together 3-17
Examining Your Program.t 3-18
Expression Evaluation 3-18
Ada EXPressioNns 3-18
C EXPIreSSIONS . ..ttt e e 3-20
CHH EXPressionso 3-20
Fortran EXPresSionsSottt 3-20
overloading. oo 3-21
Program COUNTer.ottt e 3-22
L] 11> 3-22
SO e 3-22
StACK . o e 3-22
CUrrent Frame. 3-23
REgISIErS . . o 3-23
Inline SUDPrograms e 3-24
Interesting Subprograms. 3-24
Monitor WINAOW oo 3-25
0] £ 3-26
Command StreamMS 3-27
Interrupting the Debugger 3-28
/= T o 3-28
Convenience Variables. 3-29
o o 1T 3-29
Value History 3-30
Command HiStory 3-30
Initialization Files e 3-30
OptiMIzZation. 3-30
Debugging Ada Programs.u it e 3-31
Packages 3-31
Exception Handling 3-31
Multithreaded Programs. 3-32
Using NightView with Other TooIs i 3-32
Limitations and Warnings i 3-33
Setuid Programs 3-33
Attach PermissSionsot 3-33
Frequency-Based Scheduler 3-33
NightTrace Monitor e 3-34
Memory Mapped /O 3-34
Blocking INterruptso 3-34
User-Level INterruptsot e 3-34
Debugging with Shared Libraries. 3-35
Aboutthe Tutorial 4-1

Contents

Creating a Program 4-2
Starting NightView 4-3
Getting Generaland ErrorHelp.o o 4-5
Starting Your Program 4-6
Debugging All Child Processes. e 4-7
Handling Signals 4-7
Listingthe SoUrce 4-8
Setting the First Breakpoints 4-9
Listing a Breakpoint 4-10
Continuing EXECULION 4-10
Not Entering FUNCHIONSo o e e 4-11
Entering INpuUt — 4-11
Creating Families. 4-12
Continuing Execution Again 4-13
Creating Families Again 4-14
Catching up the Child Process. e 4-15
Verifying Data Values 4-16
Entering FUNCHIONS. o e 4-16
Examining the Stack Frames 4-18
Movinginthe Stack Frames 4-19
Verifying Data Values in Other Stack Frames. 4-20
ReturningtoaStack Frame 4-20
Resuming EXECULiONo 4-21
Setting the Default Qualifier 4-22
Removing a Breakpoint 4-22
Setting Conditional Breakpoints 4-23
Attaching an Ignore Countto a Breakpoint.. 4-23
Attaching Commands to aBreakpoint. 4-24
Automatically Printing Variables. 4-25
Watching Inter-Process Communication., 4-26
Patching Your Program 4-27
Disabling a Breakpoint 4-28
Examining EVEeNntpoints 4-28
Continuingto Completion. 4-31
Leavingthe Debugger 4-32

Chapter 5 Tutorial - GUI

About the Tutorial - GUI. 5-1
Creatinga Program - GUI 5-2
Starting NightView - GUI 5-4
Getting Generaland ErrorHelp -GUI i 5-4
Starting Your Program - GUI. 5-6
Debugging All Child Processes-GUI. 5-8
Handling Signals - GUI. 5-9
Setting the First Breakpoints - GUI. 5-9
Continuing Execution - GUI 5-10
Not Entering Functions-GUI. 5-11
Entering Input - GUI o 5-12
Continuing Execution Again - GUI. 5-12
Catching up the Child Process - GUI i 5-14
Verifying Data Values - GUI 5-15
Listingthe Source - GUI 5-15

NightView User’s Guide

Entering Functions - GUIL. 5-16
Examining the Stack Frames - GUI. i 5-18
Moving inthe Stack Frames-GUI 5-19
Verifying Data Values in Other Stack Frames-GUI......................... 5-20
ReturningtoaStack Frame - GUI. 5-21
Resuming Execution - GUI 5-22
Removing a Breakpoint- GUL.. 5-23
Setting Conditional Breakpoints - GUI 5-24
Attaching an Ignore Count to a Breakpoint-GUl...... 5-25
Attaching Commands to a Breakpoint-GUI. 5-26
Automatically Printing Variables-GUI. i i 5-27
Watching Inter-Process Communication-GUI. 5-28
Patching Your Program - GUI 5-29
Disabling a Breakpoint- GUI 5-30
Examining Eventpoints - GUI 5-31
Continuing to Completion - GUI. 5-33
Leavingthe Debugger-GUI 5-34
Chapter 6 Invoking NightView
Chapter 7 Command-Line Interface
Command SYNEAX.ottt 7-1
Selecting Overloaded Entities. o 7-2
Special EXpression Syntax 7-4
Predefined Convenience Variables 7-6
PowerPC RegiSters 7-7
Location Specifiers. 7-9
Qualifier Specifiers. 7-10
Eventpoint Specifiers 7-12
Regular EXPressioNnsottt e 7-12
Wildcard Patterns 7-14
Repeating Commands e 7-15
Replying to Debugger QUestions 7-16
Controllingthe Debugger.t e 7-16
Quitting NightView. 7-17
QUL o e e e e 7-17
Managing Dialogues. 7-18
IOgIN . . 7-18
debug 7-20
NOAEDUQo 7-20
translate-object-file 7-21
[OQOUL. .. . 7-23
ondialogue 7-23
applyondialogue. 7-25
Dialogue Inputand Output. 7-27
P 7-27
SEt-ShOW . . . o 7-28
SOW . o 7-29
Managing ProCeSSESottt 7-30
TUN e e e e e 7-30
Set-Notify 7-30
Oty . . 7-31

Contents

attach 7-32
detach 7-32
Kill 7-33
symbol-file 7-33
core-file 7-34
exec-file. . .. 7-35
(o 0 N o] 0o | = o ¢ [7-36
apply on program 7-38
ON TESTANT . o et e 7-38
Checkpoint 7-39
family ... 7-40
set-children 7-41
St BXIt . . 7-42
MEESEIVE . o ottt et e et e e e e e e e e e e 7-43
Setting Modes.o 7-44
Set-l0g 7-44
set-language. 7-44
set-qualifier o 7-46
set-history 7-46
set-limits . .. 7-46
Sl PrOMPE . . e 7-47
Set-terminator 7-48
Set-safety . .. 7-49
Sel-TES A . . . 7-49
set-local 7-50
set-patch-area-size. 7-50
QY (=T 1= 7-51
set-auto-frame 7-54
set-overload. 7-54
set-search. 7-54
Set-editor 7-55
Debugger EnvironmentControl 7-56
oo 7-56
PWA . 7-56
SoUrCe FileS . . o 7-57
Viewing Source Files 7-58
S 7-58
AIrECtOrY . .ot 7-60
Searching 7-61
forward-search. 7-61
FEVEISE-SEarCh 7-61
Source Line Decorationsot 7-62
Examining and Modifying. 7-64
backtrace. 7-64
PIIN e 7-65
Sl 7-66
G 7-67
OULPUL . . o et e 7-70
BCNO. . . 7-70
AiSplay . ..o 7-71
UNAISPIaY . .. 7-72
redisplayo 7-73
DIt L e 7-73
l0ad 7-74

Xi

NightView User’s Guide

VEC OIS . . oo 7-75
Manipulating Eventpoints 7-76
Eventpoint Modifiers 7-77
DB . . et 7-77
breakpoint. o 7-78
patchpoint 7-79
ST ACE . . . ot 7-81
HraCEPOINt . .. 7-82
MONITOIPOINT . . . o 7-83
MCONTIOl . . o 7-85
AgENTPOINE 7-86
Clear. . 7-87
COMMANAS . . . ottt e e e e 7-88
CONAItION . . oo 7-88
delete. . .. 7-89
disable 7-90
enable 7-91
[0 T} = S 7-91
toreak . . 7-92
tPAtCN. . 7-93
Controlling EXeCULiONo 7-94
CONtINUE. . ot e 7-94
FESUMIE . & . e ettt et e e e e e e et e e 7-95
L] (=T o 7-96
DX . e 7-97
] (] 7-98
NEXEI. o vt 7-99
fiNiSh . L 7-100
] (0] o P 7-100
JUIID e e e e 7-101
SigNAl. ..o 7-101
handle 7-102
Selecting Context.o 7-105
frame . . 7-105
B o 7-106
JOWN .« 7-107
SeleCt-CoNteXt oo 7-107
Miscellaneous Commands 7-108
help .. 7-108
refresSh . . 7-109
Shell. .o 7-110
ST B o = 7-110
delay 7-111
INfo Commands e 7-111
Status Information. 7-112
INFO10g. . . .o 7-112
info eventpoint. 7-112
info breakpoint. 7-113
infotracepoint 7-114
info patchpoint. 7-115
info monitorpoint. 7-116
infoagentpoint. 7-117
infoframe 7-118
iNnfo directories. 7-119

xii

Contents

iNnfoconvenience 7-119
infodisplay 7-120
iINfo hiStory 7-120
INfO lIMILS . ..o 7-120
iNforegisters 7-120
infosignal 7-121
INFO PrOCESS . . o o 7-122
INfomemory 7-122
infodialogue 7-123
infofamily. 7-123
INfo name. 7-123
infoondialogue. 7-124
iNfo on program. 7-124
iNfoonrestart 7-124
iINfo eXCepLion 7-125
Symbol Table Information 7-126
INfO ArgS. . o oo 7-126
infolocals 7-126
infovariables. 7-126
iNfoaddress 7-127
INfO SOUICES . . . oo 7-127
iNfo fUNCLIONS.o 7-127
INfO tYPES . . e 7-128
iNfowhatis. 7-128
inforepresentation. 7-128
infodeclaration 7-129
iINfofiles. ... 7-129
INfo liNe . . 7-129
Defining and Using Macros.ttt e e 7-130
define ... o 7-130
Referencing Macrosot 7-133
INFOMACIOS oo 7-135
Chapter 8 Simple Full-Screen Interface
Using the Simple Full-Screen Interface. 8-1
Editing Commands in the Simple Full-Screen Interface. 8-2
Monitor Window - Simple Full-Screen. 8-2
Chapter 9 Graphical User Interface
NightView GUI CONCEPLSot e 9-1
GUIOVEIVIEW . .ot e e 9-1
GUIONINe Help 9-2
Context-Sensitive Help 9-3
Help Menu. 9-3
Help BUttONS 9-4
HelpCommand e 9-5
GUI COmMPONENtS . . .ot e e e e 9-5
TeXt INPUEATEAS e 9-5
COMBDO BOXES . . ottt 9-6
MESSAge ArCaS. . . . ottt 9-6
File Selection Dialog BoX o 9-7

xii

NightView User’s Guide

Xiv

List Selection Policies 9-9
Dialogues and DialogBoxes 9-10
Keyboard FOCUS o 9-10
KBS . o 9-10
SaASheS . 9-11
Toggle BUttons. 9-12
GUI Command History. o 9-12
Understanding the Debug Window. 9-12
Debug Window Behavior. 9-12
Single ProcessMode 9-13
Group ProcessMode 9-14
Confirm EXit Dialog BOX . . .« oot 9-14
Warning and Error Dialog BOXeSot 9-15
Warning Dialog BOX 9-15
Error Dialog BoXo o 9-16
Dialogue WIndow. 9-16
Dialogue Menu Bar. 9-16
Dialogue NightView Menu 9-16
Dialogue Menu. e 9-16
Dialogue HelpMenu o 9-17
Dialogue ldentification Area 9-17
Dialogue Message Areaot 9-17
Dialogue 1/O Area.o e 9-17
Dialogue Interrupt Button... 9-18
Dialogue Qualifier Areat 9-18
Dialogue Command Ar€attt e 9-18
Process SUMMArY o e e 9-18
Dialogue Window Dialog BOX€S oo oo 9-19
Program Arguments Dialog Box. i i 9-19
Debug WINAOW.o 9-20
Debug Menu Bar. 9-20
Debug NightView Menu 9-20
Debug Process Menu e 9-21
Debug Source MEeNUot 9-22
Debug EventpointMenu 9-24
Debug View Menu.o 9-26
DebugHelpMenu 9-27
Debug MeSSage Ar€aottt 9-28
Debug ldentification Area. 9-28
Debug Source Lock Button. 9-28
Debug Source File Name 9-29
Debug Status Areao 9-29
Debug Source Displayt 9-30
Debug Command BULtONS. 9-32
Debug Interrupt Button. 9-34
Debug Qualifier Areaot 9-34
Debug Command Ar€attt 9-34
Debug GroUP AFBat ittt et e e 9-35
Debug Dialog BOXES oottt 9-36
Debug Group Selection DialogBoxX L. 9-36
Debug Source Selection Dialog BOXot 9-36
Debug File Selection Dialog BOX i, 9-37
Debug Eventpoint Dialog BOXeSo oo i i 9-38
Debug Eventpoint Summarize/Change Dialog Box 9-41

Contents

Remote Login Dialog BOXt 9-44
Monitor Window - GUI. 9-47
Global WINdoWw 9-47

Global Menu Bar 9-47
Global NightView Menu. 9-47
GlobalHelp Menu. 9-48

Global OUtPUL Areao 9-48

Global Interrupt Button 9-48

Global Qualifier Area. e 9-48

Global Command Area.ot 9-49

Help WINdow 9-49

Appendix A System Resource Requirements

Appendix B Summary of Commands

Appendix C Quick Reference Guide

Invoking NightView C-1
Controlling the Debuggero C-1
Quitting NightView C-1
Managing Dialogues. C-1
Dialogue Inputand Output. e C-2
Managing ProCeSSESottt C-2
Setting Modes.o C-3
Debugger EnvironmentControl C-4
SoUrCE FileS . o o C-4
Viewing Source Files C-14
Searching Cc-4
Examining and Modifying. C-4
Manipulating Eventpoints C-5
Controlling EXeCULIONt C-6
Selecting Context. C-7
Miscellaneous Commands.ttt C-8
INfO CoMMANASo C-8
Status Information C-8
Symbol Table Information C-9
Defining and Using Macros.ttt e e C-10

Appendix D GUI Customization

Application RESOUICES.ot e e e D-1
NightStar ReSOUrCeSo D-1
Using NightStar Resourcest D-2
NightStar FONt ReSOUrces i D-3
NightStar Color Resources ...t D-4
NightView ReSOUICES it e e D-5
Font Selection D-6
Color SEIeCtioNot D-6
Monochrome Display oot D-7
Color Display . . .o vt D-7
WINAOW GEOMEBLIY. . ..ot e e e D-7

XV

NightView User’s Guide

Widget Hierarchy D-7

Appendix E Implementation Overview

Appendix F Performance Notes

Debug Agent Performance. F-1

Appendix G Tutorial Files

C RIS, o G-1
MSG.h o G-1
AN C ottt G-1
PArENE.C . ot e G-2
Child.C .. G-2

Fortran Files G-3
010 G-3
MaiN. . e G-3
parent.f. . G-4
Child.f. . G-4

Ada Files. . .. G-5
AN A ..ttt e G-5
PArENE.A . ..ot G-6
child.a G-7

Appendix H Reporting Bugs

Glossary

Index

Tables
Table 7-1. Special '$ CONStrUCtS\t i 7-4
Table 7-2. Predefined Convenience Variables. 7-6
Table 7-3. POwerPC RegiSters.ot e 7-7
Table 7-4. Regular EXpressions.ot 7-12
Table 7-5. Wildcard Patterns. 7-14
Table 7-6. Source Line Decorations oo, 7-62
Table 7-7. EventpointCommands.t 7-76

A Quick Start

1
A Quick Start

This chapter is for people who want to start using the command-line version of the
debugger before reading the whole manual. You may also be interested in the graphical-
user-interface (GUI) version of this chapter in Chapter 2 [A Quick Start - GUI] on page
2-1. There is a more thorough tutorial in Chapter 4 [Tutorial] on page 4-1.

If you are familiar with the GNU debugger, gith you should have very few problems
with NightView. The commands are almost all identical. The biggest difference
between NightView and other debuggers is how you tell NightView what program to
debug and how you start that program.

If you get any errors, the error message tells which section of the manual can help you
determine what went wrong. At any time, you can ask the debugger to display help on an
error message by mentioning that section's name as the argumenthtelphecommand

(see “help” on page 7-108).

The rest of this chapter goes through a sample debug session on a small program. Feel
free to dive right into the debugger. If you get into trouble, usehlpp command to
get out of it.

Sample Program

This section lists the program used as an example through the remainder of the chapter.
The program does not have any bugs in it; it will be used to show how to run a program,
set breakpoints, look at variables, etc. You can copy this file frsr/lib/
NightView/fact.c into your own directory. The following program is in the file
fact.c

11

NightView User’s Guide

1 #include <stdio.h>

2

3 static int factorial(x)

4 int x;

5

6 if (x <= 1) {

7 return 1,

8 } else {

9 return x * factorial(x-1);
10 }

11}

12

13 void

14 main(argc, argv)

15 int argc;

16 char ** argyv;

17 |

18 int i, errors;

19 for (i = 1; i < argc; ++i) {
20 long xl;

21 int x;

22 int answer;

23 char * ends = NULL;
24 xlI = strtol(argv[i], &ends, 10);
25 x = (int)xl;

26 answer = factorial(x);
27 printf(“factorial(%d) == %d\n", X, answer);
28 }

29 exit(0);

30 }

The remainder of this chapter assumes that you comfélete and put the resulting
executable ifact

cc -g -o fact fact.c

Starting Up

You can start NightView with or without a program name. If you start it with a program
name, NightView offers you the chance to debug the program in a dialogue shell (see
“Dialogues” on page 3-4). If you start NightView without a program name or you want to
debug another program, you must execute the program wittuthecommand (see “run”

on page 7-30) in a dialogue shell.

Below is an example of starting up the debugger with a program name. Note that
throughout the quick start, the version and the link time might not match exactly for your
version of NightView. Also, some of the shell output and other messages may not come
out exactly as shown. Some messages might not appear, or additional messages might
appear, depending on your environment.

1-2

Getting Help

A Quick Start

$ nview -nogui .ffact
NightView debugger - Version 5.1, linked Thu Jan 13 10:24:51 EST 2000
Copyright (C) 2000, Concurrent Computer Corporation

In case of confusion, type "help"

Note that you invoked NightView with a program name arguméatct . NightView
responded with information about the debugger.

Now NightView will prompt you for information about running the program.

Do you want to debug program './fact'?

Type in the arguments you want to supply to program '/fact'.
Arguments: 7

New process: local:2347 parent pid: 2340
Process local:2347 is executing /users/bob/fact.
Reading symbols from /users/bob/fact...done
Executable file set to /users/bob/fact
Jusr/lib/NightView/ReadyToDebug

$ /usr/lib/NightView /ReadyToDebug

$./ffact 7

(local)

NightView requested information about the program and its arguments and you
complied.

NightView always runs a special prografsr/lib/NightView/ReadyToDebug .

This program helps NightView synchronize with the shell. That's why you see that line
in the output. You might see only one echo disr/lib/NightView/
ReadyToDebug, depending on how quickly the dialogue shell starts. The dollar signs
("$") are prompts from the shell.

NightView automatically created a dialogue namledal ; it also displayed the string
local as the prompt, showing that by default, commands apply to that dialogue (or the
processes running in that dialogue).

The debugger waited for the new program to get started. Because sending input to a
dialogue is just like typing commands to a shell (the dialogue is really running the same
shell program you normally use), this caused fhet program to be executed with the
single argument.

If the fact program had required input, you would have used!'ttemmand to send the
input to the program. See “!I" on page 7-27.

When the dialogue executed the program, NightView got control and informed you that a
new process was just started in dialogoeal and told you that the process id was
2347.

Because this is the only program running in dialodoeal , you do not have to do
anything special to cause any commands you type to refer to this process; the default
qualifier is already set tdocal , so commands will automatically apply to the one
process running there.

Next you will enter a bogus command. Note that throughout this section, the help text
and display size may not exactly match your NightView session.

1-3

NightView User’s Guide

(local) foo
Error: Unrecognizable command "foo". [E-command_proc003]

NightView responded to the bogus command with an error message and an error code
([E-command_proc003]).

Now get NightView to tell you more about the error message.

(local) help
E-command_proc003:
Unrecognizable command "string".

STRING is not a valid NightView command. See "Summary of
Commands".

You typed help without any arguments to see more information about the error
message. NightView showed the extended error information.

In the command-line and and simple screen interfaces, online help is available only for
error messages. Consult a printed manual or view the online help with NightView's
graphical user interface or witlhelp(1)

If you are familiar withgdb, the remainder of this chapter will be fairly boring because
(once you get the program started) NightView ayath look very much alike (at least for
all the commands demonstrated in this simple example).

Setting a Breakpoint

1-4

You will now use thdist command to look at the source.

(local) 1

1 | #include <stdio.h>
2 I

3 | static int factorial(x)
4 | int x;

5 | {

6 *| if (x <= 1) {

7 % return 1,

8 | } else {

9 *| return x * factorial(x-1);}
10 | }

(local)

You told thelist command (abbreviated toin this example) to list at line 1.

You now decide where you want to set a breakpoint. An interesting spot in this program
is thereturn statement in the recursive routifi@ctorial where it is about to start
backing out of the recursive calls.

(local) b 7
local:2347 Breakpoint 1 set at fact.c:7
(local)

A Quick Start

Thereturn was on line 7, so you used theeakpoint command (abbreviated tm)
to set a breakpoint on line 7.

Complete descriptions of the commands you used here appear in “list” on page 7-58 and
“breakpoint” on page 7-78.

Finishing up

Now run the program until it reaches the breakpoint.

(local) c

local:2347: at Breakpoint 1, 0x100026fc in factorial(int
x = 1) at fact.c line 7

7 Be return 1,

(local)

You used theontinue command (abbreviated) without any arguments. This told
the program to start running. It ran until it hit the breakpoint that you had set on line 7.
Note that your process ID and addresses will differ.

Now look at the call stack.

(local) bt

#0 0x100026fc in factorial(int x = 1) at fact.c line 7

#1 0x1000271c in factorial(int x = 2) at fact.c line 9

#2 0x1000271c in factorial(int 3) at fact.c line 9

#3 0x1000271c in factorial(int x = 4) at fact.c line 9
9
9
9

#4 0x1000271c in factorial(int x = 5) at fact.c line
#5 0x1000271c in factorial(int x = 6) at fact.c line
#6 0x1000271c in factorial(int x = 7) at fact.c line
#7 0x10002784 in main(int argc = 2, char **argv =
Ox2ff7eaec)

X X X X X X

at fact.c line 26
(local)

You used thebt (backtrace) command to display the call stack. You saw all the
expected recursive calls (see “backtrace” on page 7-64).

Now look at the value of the variabte
(local) p x
$1: x = 1

(local)

You used thep (print) command to print the variabbe, verifying that it was equal to
1.

Now finish running the program.
(local) c

factorial(7) == 5040
Process local:2347 is about to exit normally

1-5

NightView User’s Guide

#0 0x100027ac in main(int argc = 2, unsigned char
*argv = Ox2ff7eaec)
at fact.c line 29
29 <> exit(0);
(local)

You used the (continue) command to allow the process to run to completion.
Exit from NightView.

(local) q

Kill all processes being debugged? y
You are now leaving NightView...

Process local:2347 exited normally

Dialogue local has exited.

$

Finally you typedg (quit) to leave the debugger. THact program had not fully
exited, so NightView prompted, asking if the program should be killed. You responded
with y, and the sample session ended. The commands used in this section appear in
“continue” on page 7-94, “backtrace” on page 7-64, “print” on page 7-65, and “quit” on
page 7-17.

1-6

A Quick Start - GU

2
A Quick Start - GUI

This chapter is for people who want to start using the graphical-user-interface (GUI)
version of the debugger before reading the whole manual. You may also be interested in
the command-line version of this chapter in Chapter 1 [A Quick Start] on page 1-1. There
is a more thorough tutorial in Chapter 5 [Tutorial - GUI] on page 5-1.

In this manual, the words click, drag, press, and select always refer to mouse button 1.

This entire manual is available through the online help system built into the debugger. If
you get any errors, the error message tells which section of the manual can help you
determine what went wrong. At any time, you can ask the debugger to display any
section of the manual by clicking on théelp menu or using théed mnemonic. See
“Help Menu” on page 9-3. Click on th@éable of Contents menu item or use the
mnemonic. NightView puts up a Help Window that displays the table of contents for the
manual. See “Help Window” on page 9-49. You can read this manual section by
clicking onA Quick Start - GUI.

The rest of this chapter goes through a sample debug session on a small program. Feel
free to dive right into the debugger. If you get into trouble, useHleép menu to get out
of it.

Sample Program - GUI

This section lists the program used as an example through the remainder of the chapter.
The program does not have any bugs in it; it will be used to show how to run a program,
set breakpoints, look at variables, etc. You can copy this file frsr/lib/
NightView/fact.c into your own directory. The following program is in the file
fact.c

2-1

NightView User’s Guide

1 #include <stdio.h>

2

3 static int factorial(x)

4 int x;

5

6 if (x <= 1) {

7 return 1,

8 } else {

9 return x * factorial(x-1);
10 }

11}

12

13 void

14 main(argc, argv)

15 int argc;

16 char ** argyv;

17 |

18 int i, errors;

19 for (i = 1; i < argc; ++i) {
20 long xl;

21 int x;

22 int answer;

23 char * ends = NULL;
24 xlI = strtol(argv[i], &ends, 10);
25 x = (int)xl;

26 answer = factorial(x);
27 printf(“factorial(%d) == %d\n", X, answer);
28 }

29 exit(0);

30 }

The remainder of this chapter assumes that you comféletc and put the resulting
executable ifact

cc -g -o fact fact.c

Starting Up - GUI

You can start NightView with or without a program name. If you start it with a program
name, NightView offers you the chance to debug the program in a dialogue shell (see
“Dialogues” on page 3-4). If you start NightView without a program name or you want to
debug another program, you must execute the program in the dialogue 1/O area (see
“Dialogue I/O Area” on page 9-17). (The dialogue 1/O area is labé&edlogue 1/O:

Run your programs in this shell.)

Below is an example of starting up the debugger with a program name. Note that
throughout the quick start, the version and the link time might not match exactly for your
version of NightView. Also, some of the messages might not come out exactly as shown.
Some messages might not appear, or additional messages might appear, depending on
your environment.

2-2

A Quick Start - GU

$ nview .ffact

NightView displays the Dialogue Window and a dialog box. See “Dialogue Window” on
page 9-16 and “Program Arguments Dialog Box” on page 9-19. The dialog box says the
following:

To debug program '/fact', enter any command-line
arguments you want to supply to the program and press OK.

Press Cancel if you do not want to debug program
"[fact'.

Enter the numbe¥ as an argument and click on tl button.

The dialogue 1/O area displays the following information:

{usr/lib/NightView- releaséReadyToDebug
$ /usr/lib/NightView- releaséReadyToDebug
$.ffact 7
NightView always runs a special programfust/lib/NightView- release

ReadyToDebug (releaseis the NightView release level). This program helps NightView
synchronize with the shell. That's why you see that line in the output. You might see
only one echo off/ust/lib/NightView- releaséReadyToDebug , depending on
how quickly the dialogue shell starts. The dollar signs ("*$ ") are prompts from the shell.

When NightView started, it automatically created a dialogue naroedl ; it also
displayed the strindocal as the qualifier, showing that by default, commands apply to
that dialogue (or the processes running in that dialogue).

Your answers to the dialog box sent the lidfact 7 to thelocal dialogue and caused

the debugger to wait for the new program to get started. Because sending input to a
dialogue is just like typing commands to a shell (the dialogue is really running the same
shell program you normally use), this caused fhet program to be executed with the
single argument .

If the fact program had required input, you would have typed the input into the
dialogue I/O area.

NightView puts up a Debug Window (see “Debug Window” on page 9-20). The debug
message area (see “Debug Message Area’ on page 9-28) contains a message like the
following:

New process: local:2347 parent pid: 2340
Process local:2347 is executing /users/bob/fact.
Reading symbols from /users/bob/fact...done
Executable file set to

/users/bob/fact

Switched to process local:2347.

When the dialogue executed the program, NightView got control and informed you that a
new process was just started in dialogoeal and told you that the process id was
2347.

The debug identification area displays the program nfane . See “Debug Identifica-
tion Area” on page 9-28. The debug source file namfatd.c . See “Debug Source

2-3

NightView User’s Guide

File Name” on page 9-29. The debug status area siStagped for exec. See “Debug
Status Area” on page 9-29. The source code fromfilet.c appears in the debug
source display, centered aroum@in . See “Debug Source Display” on page 9-30.

Getting Help - GUI

2-4

Next you will enter a bogus command. Note that throughout this section, the help text
and display size may not exactly match your NightView session.

The debug command area is labef@dmmand:. Click in the debug command area (see
“Debug Command Area” on page 9-34) and issue the following command:

foo

PressReturn to enter the command.

NightView responded to the bogus command with the following message and error code:
Error: Unrecognizable command "foo". [E-command_proc003]

Now get NightView to tell you more about the error message. Click orHtbg menu or
use theH mnemonic. See “Help Menu” on page 9-3. Click on @@ Last Error
menu item or use thE mnemonic. NightView puts up a Help Window that displays the
following extended error information:

E-command_proc003
MESSAGE

ERROR:_Unrecognizable commanstting”.

EXPLANATION

stringis not a valid NightView command. See Summary of Commands

Next, dismiss the Help Window by selectirigxit from the File menu. See “Help
Window” on page 9-49.

Next you will read about théist command. Click on thédelp menu or use théd
mnemonic. See “Help Menu” on page 9-3. Click on e Commands menu item or
use them mnemonic. NightView puts up the following Help Window with a menu of
NightView commands.

Summary of Commands

This section gives a summary of all the commands in NightView. The table is
organized alphabetically by command. The abbreviations for the commands are
included with the corresponding commands, rather than alphabetically.

A Quick Start - GU

Also, remember that you can abbreviate commands by using a unique prefix.

Pass input to a dialogue.
agentpoint

Insert a call to a debug agent at a given location.
(etc.)

Most of the information would not fit on your display. The Help Window showed this by
having only a small thumb or slider on the vertical scroll bar. Scroll down tdighe
command by moving the thumb or by clicking on the arrow heads of the vertical scroll
bar. Click on thelist command. NightView displayed the following Help Window
with information about théist command.

list

List a source file. This command has many forms, which are summarized below.
list where-spec

List ten lines centered on the line specifiedwlyere-spec

list where-speclwhere-spec?2

List the lines beginning withivhere-speclip to and including thevhere-specfine.
(etc.)

To see more about tHesst command, you could move the thumb or click on the arrow
heads of the vertical scroll bar. However, rather than reading more, you make the Help
Window go away by selectingxit from theFile menu.

Setting a Breakpoint - GUI

You now decide where you want to set a breakpoint. An interesting spot in this program
is thereturn statement in the recursive routifctorial where it is about to start
backing out of the recursive calls.

Click on the line with the return statement (line 7) in the debug source display. Then
click on theBreakpoint debug command button.

Thereturn was on line 7, so you clicked on that line, then clicked onBineakpoint

debug command button to set a breakpoint on that line. The source line decoration beside
line 7 is now aB for breakpoint. See “breakpoint” on page 7-78 and “Source Line
Decorations” on page 7-62.

NightView responds with:

local:2347 Breakpoint 1 set at fact.c:7

2-5

NightView User’s Guide

Finishing up - GUI

2-6

Now you want to run the program until it reaches the breakpoint. Click oiRén@ume
button. See “Debug Command Buttons” on page 9-32.

Clicking on Resume told the program to start running. It ran until it hit the breakpoint
that you had set on line 7. The source line decoration beside line 7 is Bsw a

NightView responds with:

local:2347: at Breakpoint 1, 0x100026fc in factorial(int
x = 1) at fact.c line 7

Note that your process ID and addresses will differ. Now look at the call stack. Click in
the debug command area and issue the following command:

bt

You used thebt (backtrace) command to display the call stack. See “backtrace” on
page 7-64. You saw all the following expected recursive calls in the debug message area.
See “Debug Message Area” on page 9-28. Note that the output may scroll in the debug
message area.

#0 0x100026fc in factorial(int x = 1) at fact.c line 7
#1 0x1000271c in factorial(int x = 2) at fact.c line
#2 0x1000271c in factorial(int x = 3) at fact.c line
#3 0x1000271c in factorial(int x = 4) at fact.c line
#4 0x1000271c in factorial(int x = 5) at fact.c line
#5 0x1000271c in factorial(int x = 6) at fact.c line
#6 0x1000271c in factorial(int x = 7) at fact.c line
#7 0x10002784 in main(int argc = 2, unsigned char **
argv = Ox2fffeaec) at fact.c line 26

X X X X X X
© O O O oo

Now look at the value of the variable. Drag the mouse pointer over the variabe
anywhere it appears in the source display. Click on Brént button. See “Debug
Command Buttons” on page 9-32.

NightView showed that the value of was equal to 1. You saw the following output in
the debug message area.

$1: x = 1

Now finish running the program. Click on ttResume button. See “Debug Command
Buttons” on page 9-32.

This allowed the process to run to completion. NightView showed the cakit0)
in the debug source display and displayed the following message in the debug message
area.

Process local:2347 is about to exit normally

NightView displays the following message in the dialogue I/O area. See “Dialogue I/O
Area” on page 9-17.

factorial(7) == 5040

A Quick Start - GU

Exit from NightView by selecting the dialogue NightView menu or debug NightView
menu. See “Dialogue NightView Menu” on page 9-16 or “Debug NightView Menu” on
page 9-20. Click orNightView or use theN mnemonic. Click on theExit (Quit
NightView) menu item or use th¥ mnemonic.

NightView responds with a warning dialog box. The warning dialog box says:
Kill all processes being debugged?

Finally you click on theOK button to leave the debugger. Thect program had not
fully exited, so NightView prompted, asking if the program should be killed. You
responded by clickin@K, and the sample session ended.

2-7

NightView User’s Guide

2-8

Concepts

3
Concepts

This section describes concepts you will need to understand in order to use the debugger
effectively.

Many of the concepts described in this section are also defined in the glossary. The
glossary is an alphabetical list of the concepts — the description here is organized
hierarchically.

Debugging

The termdebuggelis actually a misnomer. A debugger does not remove bugs from your
program. Instead, it is a tool to help you monitor and examine your program so that you
can find the bugs and remove them yourself.

A debugger primarily lets you do two things:

1. start and stop the execution of your program; and,

2. examine and alter the contents of the program's memory.

There are many ways to do these things, so there are lots of debugger commands. Also,
some of the commands control the debugger itself.

NightView is a symbolic debugger. That means that you can talk about your program
using the same high-level language constructs that you use when you write programs.
You can refer to variables, expressions and procedures as they appear in your program
source. You can also refer to source files and line numbers within those files. For
example, you can tell your program to stop at a particular line. In order to use the
symbolic capabilities of the debugger, you must compile and link your program with
options that tell the compiler and linker to save the symbolic information along with your
program.

Sometimes, you want to be able to debug at a lower level, referring to machine language
instructions and registers. NightView lets you do that, too.

Accessing Files

During the course of debugging, NightView will likely have to access a number of files:
executable files for programs being debugged, source files for those programs, and
possibly object and library files. Those files must all reside, or be accessible from, the
system on which NightView is executing.

3-1

NightView User’s Guide

If you are debugging processes running on some other system, you will probably want to
have some of that system'’s files mounted via R8n the system running NightView.
Furthermore, your debugging will probably go much easier if the pathnames to those files
(especially the executables) are the same on both systems. This will allow NightView to
find the executable files automatically most of the time. See “Finding Your Program” on
page 3-8. |If the pathnames of the executable files are different, you can use the
translate-object-file command to tell how to translate the names. See
“translate-object-file” on page 7-21.

Programs and Processes

It is necessary to distinguish betweepragramand aprocess A programis something
that you write, compile and link to form a program file. pgrocessis an instance of
execution of a program. There may be several processes running the same program.

Multiple Processes

Families

3-2

The most typical use for NightView is debugging a single program running as a single
process, but NightView can also be used to debuggplication consisting of multiple
processes, so the debugger has ways to describe multiple processes. If you come to a
section of the manual that describes multiple processes, and you are only debugging one
process, you can usually just ignore the parts about multiple processes.

You may inadvertently create multiple processes, even though you only want to debug
one. This may happen if your prograforks For example, your program may call
system . This call works by using théork service to create another process, which
then runs a shell. A process created this way is calledhiédd process Because
NightView has the capability of debugging child processes, you are notified when this
happens. If you don't want to debug the child process, then you sketdadh from it,

which allows it to run without further interference from the debugger. See “detach” on
page 7-32. If you know in advance that you don't want to debug any child processes, you
can use thaet-children command to specify this. See “set-children” on page 7-41.

If you use pipelines in the dialogue shell, or invoke shell scripts which call many other
programs, you are likely to get multiple processes which you are not interested in
debugging. (Dialogues are described in a later section, see “Dialogues” on page 3-4.)
Again, if you don't want to debug those other processes, you should detach from them.

Another way to determine which processes are debugged is tebsig andnodebug ,
which let you describe which processes you want to debug by their program names. See
“nodebug” on page 7-20.

One of the handy things NightView lets you do is group processes togethdaitles
You do this by giving the family a name and telling the debugger what processes are in

Attaching

Detaching

Concepts

that family. For example, you might have several processes executing the same program,
and you might want to set a breakpoint at the same source line in all of them. You could
define a family containing all of the processes and then use that family name with the
breakpoint command. See “family” on page 7-40.

Sometimes you want to debug a process that is already running, rather than starting up a
new process running the same program. You can do this wittattaeh command
(see “attach” on page 7-32).

In order to attach to a process, you must know its process identifiengpr You can get

a list of running processes and theibs by running theps(1l) program. You can use
theshell command (see “shell” on page 7-110) to nos(1) . If you want to attach to

a process running on another machine, you may have to use the remote shell cothmand (
usrfucb/rsh) torunps(l) on the right machine.

Once you have attached to a process, you can debug it in the same way you would debug
a process started normally from a dialogue. An attached process is debugged using
proc (see “Debugger Mechanisms” on page 3-15).

For the security restrictions aattach , see “Attach Permissions” on page 3-33.

If the process to which you attach is stopped@«TROL Z> stops a foreground process in
most shells), then the attach will not take effect until the process is continued from the
shell.

Detaching a process is the inverse of attaching one. When you detach a process it starts
running independently of the debugger. Nothing it does will get the debugger's attention.
Any children it forks will also be ignored by the debugger. You have to explicitly attach

to the process again to make the debugger notice it.

Detaching from an exited or terminated process completely removes the process from the
system. See “Exited and Terminated Processes” on page 3-14. Detaching from or killing
a pseudo-process associated with a core file (see “Core Files” on page 3-4) is the only
way to make that pseudo-process go away.

Detaching from a process causes NightView to forget all the eventpoint settings and other
information it remembers about the process.

NightView typically uses some memory in the debugged process. If you detach and re-
attach repeatedly, NightView will eventually be unable to find memory where it needs it in
the process. See Appendix E [Implementation Overview] on page E-1. See also “set-
patch-area-size” on page 7-50.

3-3

NightView User’s Guide

Core Files

Qualifiers

Dialogues

3-4

A core file is a snapshot image of a process created by the system when the process
aborts (typical reasons for creating a core file include referencing an address outside the
memory allocated to the process, dividing by zero, floating-point exceptions, etc).
NightView allows you to debug core files as well as processes (see “core-file” on page
7-34). Since a core file is not actually a running process, all you can do is look at it. None
of the commands which require a running process will work on core files (for example,
you cannotcontinue a core file and you cannot evaluate any expression containing a
function call).

If a core file is from a process that used dynamic linking, the core file must be debugged
on the same system where the process was running, otherwise information from the
libraries may not match the core file.

If you are not debugging multiple processes, you will probably never need to worry about
command qualifiers, but for multiprocess debugging, they are essential. A qualifier is
used to restrict a command so it operates only on specific processes. There is always a
default qualifier in effect, but any command may be given an explicit qualifier.

Most qualified commands act as though the command was specified once for each
process (for instance, th@meakpoint command sets a separate breakpoint in each of
the processes specified in its qualifier).

Some commands treat the qualifier in special ways, and other commands ignore the
qualifier. Any special treatment is described in the section on each command.

Qualifiers are specified as a prefix on the command. The complete description may be
found in “Command Syntax” on page 7-1 and “Qualifier Specifiers” on page 7-10.

Dialogues are one of the most important (and unique) concepts in NightView.
Essentially, adialogueis just an ordinary shell where you run commands as you would
normally run them in the shell (in fact, you are running your normal shell), but in a
dialogue, you have the opportunity to debug any or all of the programs you run in the
dialogue shell. Most debuggers have special commands to tell the debugger which
program to debug and what arguments to give it. In NightView, the way to debug a
program is to run it within a dialogue shell. This means you can debug a program that is a
member of a pipe, or is invoked by some other program, and you can run the program in
the debugger using the exact same invocation you would normally use outside the
debugger. For instance, if your programs run under the control of the Frequency-Based
Scheduler, you could invokeutil or NightSim™ from your dialogue.

The environment variabl®IGHTVIEW_ENVis set to1 within a dialogue shell. This
allows you to alter the behavior of programs and scripts running in the dialogue shell.

Dialogue 1/0

Concepts

For example, you may wish to avoid running some programs in a shell initialization file
when the shell is a dialogue shell.

Once the shell is started, you can change directory, set environment variables, or set
ulimit(2) parameters just like a normal shell. Any processes you start in the dialogue
will automatically be debugged, except for programs in the standard directories stch as
bin . You may alter this default behavior using tdebug and nodebug commands.

See “debug” on page 7-20 and “nodebug” on page 7-20.

When you start a program in a dialogue shell, the debugger prints a message describing
the new process that just started in the dialogue. The information printed includes the
program name, the arguments it received on startup and the process idemitifjefl fis

new process is stopped immediately prior to executing any code. At this point you can
decide what to do with the process (set breakpoints, etc.) and tell it to continue, or detach
from it and let it run without being debugged.

At startup, NightView provides an initial dialogue namiettal . This initial dialogue
shell inherits the current working directory and environment variables in existence at the
time you started the debugger.

You may create additional dialogues at any time (see “login” on page 7-18). Multiple
dialogues allow you to debug distributed systems of processes running on different
computers. Each dialogue has a name. Unless you specify otherwise, the name of a
dialogue is the host name of the system to which it is connected. You may use dialogue
names in command qualifiers to tell NightView to which system you wish to talk, such
as, when you want to run a command in a particular dialogue.

You send input to a dialogue shell or to a program you are debugging in the dialogue by
using the! command (see “!” on page 7-27) or then command (see “run” on page
7-30). The qualifier on the command determines which dialogue receives the input data.
In the graphical user interface, you can send input to a dialogue with the dialogue 1/0
area (see “Dialogue I/0 Area” on page 9-17) for that dialogue.

Since each dialogue is a separate shell, the programs running in separate dialogues may
generate output at any time. In the command-line interface, it would be confusing to
have these print at any time. Instead, all the output generated by each dialogue shell and
the programs running in it is logged by NightView. You can control this log using the
set-show command (see “set-show” on page 7-28), and you can review the log with
the show command (see “show” on page 7-29). In the graphical user interface, dialogue
output goes to the dialogue I/O area for that dialogue.

Real-Time Debugging

By running NightView on a development system and starting a dialogue on a real-time
system you are debugging, you can minimize the impact of the debugger on the real-time
system. Most of the debugger runs on the development system, and only a NightView
control program and the dialogue shell run on the real-time system. You can also control
the CPU, memory, and other resource allocations of debugger processes to help minimize

3-5

NightView User’s Guide

the impact of the debugger on critical resources. See “Remote Dialogues” on page 3-6.

Monitorpoints provide a means of monitoring the value of variables in your program
without stopping it. See “Monitorpoints” on page 3-9.

You may also want to use the debug agent mechanism in additidpréc . See
“Debugger Mechanisms” on page 3-15. The debug agent allows you to manipulate your
process while it is running.

NightTracé™ is another tool you may find useful in debugging real-time programs. It
allows you to gather performance information and record limited amounts of data with
minimal overhead. NightView provides facilities for using NightTrace from within the
debugger; see “Tracing” on page 3-10.

Remote Dialogues

3-6

A remote dialogués a shell, controlled by NightView, running on a system other than the
one on which NightView was initially invoked. We refer to the system where NightView
was invoked as the "local system", while the system where the remote dialogue shell is
running is referred to as the "target" or "remote system".

You may need to use a remote dialogue if:

* you need to debug programs running on multiple target systems simulta-
neously;

¢ your application uses most of the system's CPU or memory resources, leav-
ing insufficient resources for NightView;

¢ the source files for your programs are not accessible on the target system;

¢ you do not wish to install all of NightView on the target system, perhaps to
conserve disk space on the target;

* you need to reduce network traffic on the target system by eliminating
NightView's GUI overhead;

¢ you need to reduce disk loading on the target system by eliminating Night-
View's reading of source and object files.

When you use a remote dialogue, the NightView user interface runs on the local system,
while another process, named NightView.p, runs on the remote system to access and
control the processes you are debugging. The following activities are performed on the
local system in this case:

¢ all user interaction, including command input/output and window manipu-
lation and updating;

¢ reading source and object files, including reading and interpreting debug
information in your program;

¢ evaluation of expressions in commands suclprad® andx, except that
retrieving data from a debugged process (such as variable values) is per-
formed on the remote system.

ReadyToDebug

Concepts

The activities performed on the remote system are limited to storing and retrieving data to
and from a debugged process, controlling execution of a debugged process, and
supplying target-dependent information to the local system portion of NightView.
Additionally, NightView sometimes runs the C compiler on the target system to generate
code for eventpoints. See “Eventpoints” on page 3-8.

You may wish to control how the target system allocates resources to NightView.p and
the dialogue shell, both to prevent them from interfering with your application and to
ensure that they get sufficient resources to give adequate response in NightView. You
can control the allocation of CPU and memory resources as well as the scheduling policy
and priority through either thiegin command or the remote login dialog. See “login”

on page 7-18. See “Remote Login Dialog Box” on page 9-44.

Note that the parameters you specify for the remote dialogue will be inherited by
processes you execute within that dialogue shell. You may wish to usanf®) shell
command when you run your application in the dialogue shell.

There are some things you need to be aware of when you use a remote dialogue. Because
source files and debug information are read on the local system, those files (or copies of
them) need to be accessible on the local system. This is particularly true of the
executable program file, because that is where the debug information resides. When a
debugged processxec s a new program, NightView attempts to determine the location

of the executable program file. See “Finding Your Program” on page 3-8. With a remote
dialogue, NightView assumes that the pathname of the executable program file is the
same (or locates identical files) on both systems. If this is not true, then NightView is not
able to read debug information for that program until you specify the correct pathname
with the symbol-file command or use object filename translations. See “symbol-
file” on page 7-33. Also, see “translate-object-file” on page 7-21.

You may need to configure your local and remote systems to be able to use NightView
remote dialogues. See Appendix A [System Resource Requirements] on page A-1 for
more information about configuring systems for NightView.

Creating a new dialogue involves logging into a system (see “login” on page 7-18). You
may login again as yourself, or as another user (subject to a password check). When a
dialogue is created, it executes your login shell (or, more accurately, the login shell of the
user whom you logged in as).

Logging in runs your.profile or other initialization file appropriate to your normal
login shell. The environment variabMIGHTVIEW_ENMs set to the name of the local
system (that is, the one you are loggingfiom) during the shell initialization. Your
.profile should avoid reading from the standard inpuNiGHTVIEW_ENVhas a non-
empty value.

The program /ust/lib/NightView-release/ReadyToDebug is a special
program used by NightView to synchronize with the dialogue shedleéseis the
NightView release level). You will probably see this program name echoed when a
dialogue shell starts up. When NightView sees this program run, it knows that the shell
is through with any initialization. NightView then considers any new processes that run
in the shell to be candidates for debugging. This allows the initialization to take place

3-7

NightView User’s Guide

without debugging the programs that might run during that time.

Finding Your Program

When a program is started up from a dialogue, NightView is notified that a new program
is executing, but there is currently no way for NightView to find out exactly what
program is running.

NightView tries to guess the name of your program by looking at the arguments, the
current working directory, and theaTH environment variable of the program. Usually,
these correctly identify the program name, but not always. Then NightView can't tell
what the program name is. Also, sometimes NightView may guess wrong.

NightView prints a message with the name of the program when the program starts up. If
this name is wrong, then you will need to tell NightView the name of the program by
using theexec-file command. See “exec-file” on page 7-35.

Most shells already do this correctly, so you will rarely need to worry about it. The
problem sometimes occurs in programs that run other programs.

Controlling Your Program

Eventpoints

3-8

NightView provides many ways to control the execution of a program you are debugging.

An eventpoint is a generic term which includes breakpoints, patchpoints, monitorpoints,
agentpoints, and tracepoints. All of these are different ways to debug or modify the
behavior of your program, and all of them are assigned unique numbers by the debugger
when you create them. These numbers are unigque across all processes. For example, if
you use a command qualifier to set a breakpoint in many processes at once, each
breakpoint in each process is assigned a unique eventpoint number.

NightView also allows you to set conditional eventpoints, so the action associated with
the eventpoint is taken only if the condition is satisfied. The condition is an arbitrary
expression in the language of the routine where the eventpoint is set (in other words, if
you set a conditional eventpoint in a Fortran subroutine, you would write the conditional
expression in Fortran). NightView actually compiles the conditional expressions and
patches them into the program, so evaluating the condition does not require the debugger
to take control. This means that setting a conditional eventpoint only adds the overhead
required to evaluate the condition and the program will run at almost full speed until the
condition is satisfied. See “condition” on page 7-88.

You can also specify an ignore count for an eventpoint. This means you must execute
past the eventpoint a certain number of times before it might be taken. The ignore count

Breakpoints

Monitorpoints

Patching

Concepts

is checked prior to the condition, so if you have both ignore counts and conditions, the
condition will not be checked until the ignore count is down to zero. See “ignore” on
page 7-91. Like conditions, the code to implement ignore counts is patched into the
program, so the program will execute at nearly full speed until the ignore count reaches
zero.

There are several commands to manipulate eventpoints, but not every type of
manipulation makes sense for every type of eventpoint. Deleting, disabling, enabling, and
attaching ignore counts and conditions works for all types of eventpoints. See
“Manipulating Eventpoints” on page 7-76.

A breakpoint is one of the most frequently used features of a debugger. You can set a
breakpoint at any place in a program you are debugging, and when execution reaches that
point, the program will stop. You may then use the debugger to examine the current
values of variables, set additional breakpoints, etc. See “breakpoint” on page 7-78.

You may also specify an arbitrary set of debugger commands to execute each time a
breakpoint is hit (if it is a conditional breakpoint, that means only when the condition is
satisfied). See “commands” on page 7-88.

If you are debugging a real-time program, you may wish to monitor the value of one or
more variables without interrupting the execution of your program. Monitorpoints allow
you to do this. A monitorpoint is code inserted at a specified location by the debugger
that will save the value of one or more expressions, which you specify. The saved values
are then periodically displayed by NightView in a Monitor Window (see “Monitor
Window” on page 3-25). You can set a monitorpoint using thenitorpoint
command. See “monitorpoint” on page 7-83.

Note that the expressions you specify are evaluaeery timeexecution passes the
location of the monitorpoint (unless the monitorpoint is disabled or has a condition or an
ignore count). However, NightView may not display every value saved by the
monitorpoint. If the monitorpoint location is executed more frequently than NightView
can update the Monitor Window, you will miss seeing some of the values evaluated by
the monitorpoint.

Note that there may be some delay between the time that NightView reads the values
saved by a monitorpoint and the time the values appear on your display. Therefore,
values sampled bdifferentmonitorpoints cannot reliably be related in time. However,
you may be sure that all the values sampled Isinglemonitorpoint were all evaluated at

the same time.

During the course of debugging, you may find a small error you would like to fix, but
you would also like to continue debugging the program without recompiling and
relinking. Thepatchpoint command (see “patchpoint” on page 7-79) allows you to
patch in a change to the memory image of the process and continue running. (Note that it

3-9

NightView User’s Guide

Tracing

Agentpoints

Signals

3-10

doesnot change the disk copy of the program file; recompiling and relinking is the only
way to make a permanent change.)

A patchpoint can cause an expression (including function calls) to be evaluated, modify a
variable, or cause the program to branch to a new location.

Theload command (see “load” on page 7-74) provides the ability to make larger scale

changes by loading in whole object files. This feature may be used to replace defective
routines, or to load custom designed debugging routines that can do things like verify
complex data structures, or search through linked lists.

The manual for the NightTrace tool describes a library that may be used to generate trace
records by calling trace routines in your program. If you didn't initially build a program
with trace calls, (or you did, but decided later additional trace calls were necessary) the
tracepoint command (see “tracepoint” on page 7-82) may be used to patch in
tracepoints. The values traced may then be examined witinttaee tool. For more
information on NightTrace, segrace(1)

Because the program runs at full speed through a tracepoint, you can use tracepoints in
real-time applications where breakpoints are unacceptable.

One significant difference between a tracepoint and a monitorpoint is that values
recorded by a tracepoint are all available for later analysis; values will not be "lost"

because of delays in displaying, as they may with a monitorpoint. Another difference is
that tracepoints provide a reliable means of relating values of expressions at different
points of execution to the times those values were evaluated. Monitorpoints do not.
However, monitorpoints have the advantage of displaying information as it is happening,
whereas tracepoint data may be analyzed only after execution is finished.

NightView allows you to debug a program while it is running, if you modify the program
slightly to insert calls to a special Debug Agent (see “Debug Agent” on page 3-15).
NightView can insert the necessary code in your process for you, using the
agentpoint command. See “agentpoint” on page 7-86. These inserted calls are called
agentpoints.

Usually, your process is stopped and the debugger gets control if the process receives a
signal. Signals may be generated by error conditions (such as dividing by zero or trying
to write to a write-protected location). Other signals may be generated under program
control (the program can request the system to senditca.rRM periodically, or another
program may explicitly send a signal with tkil(2) system service).

Several ways in which to handle a signal are described inhdrelle command (see
“handle” on page 7-102).

Concepts

In addition, you may use the debugger to explicitly send a signal to a process (see
“signal” on page 7-101). This is useful if you need to test the signal handler code in a
program (however, the debugger itself usesTRAP, so it should not be used in any of
your code).

If you specifynostop , noprint , andpass for a signal, then the system will deliver
the signal to the process normally and bypass the debugger. This avoids any performance
penalty to your program if it makes frequent use of signals.

Signals may cause somewhat different behavior when you are single-stepping your
program (see “Controlling Execution” on page 7-94). If a signal occurs while you are
single-stepping, NightView's reaction depends on whether you specsiied or
nostop andpass or nopass in thehandle command (see “handle” on page 7-102).
The four possible combinations are explained below.

nostop , pass

The single-step operation continues, but the signal will be passed to the program. If
you have a signal handler in your program, it will be executétthout single-step-

ping. When the handler finishes executing, single-stepping will be resumed until it
is complete or another signal occurs.

nostop , nopass

The signal has no effect (other than temporarily interrupting execution). The single-
step operation continues until it is completed or another signal occurs.

stop , pass

The single-step operation is terminated and the process is stopped. If you issue
another single-step command ocentinue command, or aesume command
with no argument, the signal is passed on to the process when it resumes execution.

stop , nopass

The single-step operation is terminated and the process is stopped. The signal is dis-
carded.

Some signals can have additional information passed to the signal handler via
siginfo(5) . However, NightView has no mechanism for the user to specify this
information, so signals sent to the process usingstgeal orresume commands will

have no associategiginfo(5) information.

If a process stops with a signal that has associaigihfo(5) information, that
information is preserved by NightView whenever possible. If you specigess for that
signal and you continue execution using thentinue command or theresume
command with no argument, th&ginfo(5) information will be delivered to the
process along with the signal. However, siginfo(5) information is ever delivered
if you explicitly specify a signal number on tlsgnal orresume commands.

Restarting a Program

Restarting execution of a program under NightView is different than in many other

3-11

NightView User’s Guide

Restart Mechanism

3-12

debuggers, because instead of being executed directly by the debugger, programs are
executed from a dialogue shell, or by other programs. The typical way you restart a
program is to invoke it again in the dialogue shell. See “run” on page 7-30.

When NightView recognizes that a program is being run again, it automatically applies
the same eventpoints, and other information, to the new instance of the program.
NightView considers two programs to be the same if they have the same full pathname.

This method of restarting programs was chosen because of NightView's multi-process

nature. You may actually want to debug multiple copies of the same program, and in that

case you may or may not want to have the same eventpoints set in each copy. However,
if you are debugging just one instance of one program, you can easily restart its execution
without having to manually duplicate your eventpoint settings.

Occasionally you may wish to run a program again and again without stopping when it
exec s or when it exits. For instance, if a program sometimes dies with a signal, you
could run it repeatedly until the signal occurs and then examine where it occurred. To
avoid having the process stop whemxtec s, put aresume command (see “resume” on
page 7-95) inside aon program command (see “on program” on page 7-36), like this:

on program yourprogram do
resume
end on program

The resume command will not actually take effect until after the process has been
initialized, soon program andon restart commands that set eventpoints and
otherwise modify the process work as expected. Note that the process does actually stop
when it exec s, but theresume command tells it to start running again as soon as
NightView is finished initializing it.

To avoid having the process stop when it exits, usestiteexit =~ command. See “set-
exit’ on page 7-42. These two mechanisms, in combination, allow you to run a program
repeatedly and only stop it if it hits a breakpoint or gets a signal.

The following sections describe the details of how restarting works. Most users will not
need to know these details. The normal automatic mechanism handles most situations.

At certain times in the execution of a program, NightView takeshackpointon that
program. A checkpoint saves information about the eventpoints, signal disposition, etc.
This information is called theestart information Each checkpoint replaces the previous
restart information.

The restart information is stored as a sequence of commands associated with your
program name via aon restart command. See “on restart” on page 7-38. The
commands restore the eventpoints and other information in the new program.

Each time you execute a program, NightView checks to see ifblan restart
command matches your program. If one matches, NightView executes the sequence of
commands associated with your program.

NightView takes a checkpoint on a process when:

Restart Information

Restart Macros

Concepts

It is about to exit, terminate with a signal, or be killed by NightView.

It is about toexec a new program.

* You enter a&heckpoint command. See “checkpoint” on page 7-39.

It is not possible to turn off checkpoints. However, you can control whether restart
information is applied. See “set-restart” on page 7-49.

Note that if you have a program that has not yet taken a checkpoint and you start a new
instance of that program, then no restart information is applied to the new instance
because there is none for that program.

You can save restart information to a file. See “info on restart” on page 7-124. This
allows you to save the information across debug sessions. Or, you can edit the file to
change the restart information. In either case, you would swemce the file to restore

the restart information. See “source” on page 7-110.

This section describes the restart information saved during a checkpoint.

* Any memory reservations made with trgeserve command. See “mre-
serve” on page 7-43.

¢ Eventpoints, including any names, conditions, ignore counts and com-
mands associated with each eventpoint. See “Eventpoints” on page 3-8.

¢ Directory search path. See “directory” on page 7-60.

¢ Child disposition. See “set-children” on page 7-41.

¢ Signal and exception disposition. See “handle” on page 7-102.
¢ Display list. See “display” on page 7-71.

¢ Symbol file. See “symbol-file” on page 7-33.

¢ Default language. See “set-language” on page 7-44.

* Whether or not the process will stop before exiting. See “set-exit” on page
7-42.

* The interest level threshold, the interest level fidine | justlines .
andnodebug , and any explicit interest levels for subprograms. See
“interest” on page 7-51.

Ifanon restart command is created by a checkpoint, then in addition to commands
to restore eventpoints and other program information, there are two macros:
restart_begin_hook , at the beginning of the commands, and
restart_end_hook at the end of the commands. Both macros are called with the
name of the program being restarted as an argument.

These macros let you customize restart processing. The initial definition of these macros

3-13

NightView User’s Guide

define restart_begin_hook(program_name) apply on program
define restart_end_hook(program_name) echo

This means thabn program commands will be applied before any restart processing,
and nothing will be done afterwardseétart_end_hook is defined asecho because
there is no way to make an empty macro.)

You can define these macros to be anything you wish. See “Defining and Using Macros”
on page 7-130. For example, you could defimstart_begin_hook to beecho to
disable theon program processing. See “on program” on page 7-36.

Exited and Terminated Processes

Process States

3-14

When a process terminates normally, it flushes/isbuffers, closes any open files, then
calls the exit service. By default, NightView automatically arranges for a process to stop
when it calls theexit system service. (You may alter this behavior with seé-exit
command. See “set-exit” on page 7-42.) When a process terminates abnormally, it
receives a signal, which causes the process to stop and NightView to get control. Thus,
you may always examine a program that is about to exit or terminate abnormally. The
process will still exist, so you can examine memory and registers.

If you continue execution of a process in one of these states, the process will cease to
exist and NightView will forget about all the eventpoints set in that process. Pithéor

that process will be removed from all families (see “Families” on page 3-2) in which it
appears. Detaching from such a process has the same effect (see “Detaching” on page
3-3).

A process is normally in one of two states; it is eithenning, or it is stopped A process

is said to be stopped when it gets a signal (and it is being debugged) or it hits a
breakpoint (meaning that the point of execution reached the breakpoint, and all the
conditions on the breakpoint were satisfied). When it is stopped, the debugger has
control. The debugger may continue to execute commands attached to that breakpoint,
but once the debugger initially gets control, the process is considered to be stopped.
(This is not the same type of stop as job control in the C shell or the Korn shell.)

Some debugger commands require the process to be stopped. It is meaningful to examine
or modify stack locations or variables only if the process is stopped. Monitorpoints and
tracepoints provide ways to examine variables without stopping a process. See
“Monitorpoints” on page 3-9. See “Tracing” on page 3-10. The first eventpoint in a
process must be set while the process is stopped. See “Eventpoints” on page 3-8.

In addition to being stopped or running, a process may be exiting or terminated, or it may
be a pseudo-process associated with a core file. A pseudo-process cannot be continued.
Continuing an exiting or terminated process causes the process to cease existence.

Concepts
Debugger Mechanisms

NightView has two mechanisms it uses to interact with and control your program: /proc
and the debug agent. These are described in subsections below.

/proc

The primary debugger mechanism is callptbc (or procf9, which is a file system that
allows one program (such as NightView) to control the execution of another program.
NightView usedproc whenever you start up a program in a Dialogue (see “Dialogues”
on page 3-4) or attach to a running process (see “Attaching” on page 3-3).

The /proc mechanism provides for comprehensive control of a process, including
control over what happens when your program is about to get a sigmac can read

and write static variables while the process is executing, but it cannot read or modify
stack variables or registers unless the process is stopped. See “Operations While the
Process Is Executing” on page 3-16.

Debug Agent

Another mechanism NightView can use is calledebug agent A debug agent is a code
subsystem that executes as part of your process and communicates with NightView
through shared memory. The debug agent contains a subroutine that, when called,
performs an operation on behalf of NightView. When NightView needs to perform an
operation using the debug agent, it sends a message to the agent and waits for the agent to

reply.

The debug agent mechanism allows NightView to examine and control your program
while it is running. Because you control where in your program the debug agent is
called, it can be a less intrusive means of debugging your program. However, the debug
agent, by itself, does not provide comprehensive control of your program; you cannot get
control when your program gets a signal, for example.

The advantages of using the debug agent are much smaller bépearse gives you the
ability to read and modify memory while the process is running. The only advantages of
using the debug agent are: 1) the program has greater control of exactly when the
overhead of performing debugger operations occurs, and 2) there is no restriction on how
the first eventpoint must be set. See “Operations While the Process Is Executing” on
page 3-16.

NightView allows you to use multiple mechanisms when debugging a single process, by
allowing you to add a debug agent to your program while you are debugging it/with
proc . This gives you the advantages of both methods: comprehensive control over your
program, along with access to data and code while the program is running. See “Using /
proc and the Debug Agent Together” on page 3-17.

You control where the call to the debug agent is placed in your application, by placing an
agentpoint in your process. See “Using /proc and the Debug Agent Together” on page

3-15

NightView User’s Guide

3-17.. To effectively use the debug agent, you will need to choose this location carefully;
the guidelines that follow will help you do this.

First, the debug agent executes as part of your process, so it has some effect on the
performance of your application. The debug agent is very fast and efficient, though, so
the impact should be minimal. Nevertheless, we recommend you avoid placing the debug
agent call in a time-critical location. See “Debug Agent Performance” on page F-1 for
information about the performance of the debug agent.

Second, the debug agent call must occur fairly frequently, at least a few times a second,
to ensure reasonable response time from NightView. Each debug agent call does at most
one NightView operation (such as read or write a memory location), to keep the overhead
per debug-agent call as small as possible. A given NightView command may require
several such operations, each of which requires that the debug agent be called. If your
application uses the Frequency-Based Scheduler, a good place to call the agent is usually
right before the call tdbswait . You may include multiple calls to the debug agent in a
program, if you wish.

Operations While the Process Is Executing

This section lists what you can do with eithgroc or the debug agent while the
process is executing (i.e., running).

¢ Examine and modify statically-allocated variables. This inclustatc
and global variables in C, andOMMOWariables and variables with the
SAVEattribute in Fortran. It does not include variables allocated to regis-
ters or the stack.

¢ Examine and modify absolute memory locations. This includes accessing
memory referenced by a pointer variable, if the pointer variable is accessi-
ble as noted above.

¢ Evaluate expressions involving the above items. See “Expression Evalua-
tion” on page 3-18. Note that a function call is not allowed.

For the purposes of establishing the scope and meaning of variable names,
and also the language for the expression, NightView uses the location
where the process was last stopped to determine the context of the expres-
sion (see “Context” on page 3-22). You can use the special forms Night-
View provides to change this context, if you want to access variables local
to a procedure, for instance. See “Special Expression Syntax” on page 7-4.
However, note that the forms that refer to specific stack frames are not
allowed while the process is running, because the state of the stack is inde-
terminate.

* Examine, modify, and disassemble executable code.

¢ Create, manipulate, and destroy any type of eventpoint. See “Eventpoints”
on page 3-8. You may enable and disable eventpoints, add to or remove
conditions from eventpoints, and modify ignore counts. You may also get
information about eventpoints. See “Manipulating Eventpoints” on page
7-76.

3-16

Concepts

There are two rules about manipulating eventpoints while your process is running
with /proc

- Thefirst eventpoint within a text region must be set while the process
is stopped. A text region is either your program or the dynamic
libraries it references.

- The first monitorpoint must be set while the process is stopped,
regardless of whether other eventpoints have been set in that region.
See “Monitorpoints” on page 3-9.

This is necessary because NightView needs to do special processing when the first
eventpoint is created within a text region, or when the first monitorpoint is created.
That special processing requires the process to be stopped.

These restrictions do not apply to the debug agent, which handles the special pro-
cessing in a different way.

While the process is executing, you may not use forms of commands that depend on
knowing the program counter or the value of any machine register. See “Predefined
Convenience Variables” on page 7-6.

Note that monitorpoints and tracepoints also provide ways of monitoring your program
without stopping it. See “Real-Time Debugging” on page 3-5.

Using /proc and the Debug Agent Together

Using the debug agent together wihroc is easy. To debug a program this way, you
first get control of it with/proc , by either running the program in a dialogue shell or
using theattach command. See “Dialogues” on page 3-4, “Attaching” on page 3-3, and
“attach” on page 7-32.

Once you have control of your process, you can usat@ntpoint command to insert

the call to the debug agent in your program. Agentpointis a type of eventpoint (see
“Eventpoints” on page 3-8). You can create multiple agentpoints in your process; you
might want to do this if you cannot find one single place that will be executed sufficiently
frequently.

For a description of the operations you can do using the debug agent, see “Operations
While the Process Is Executing” on page 3-16.

While your process is executing, NightView uses the debug agent for reading and writing

memory. If the process stops, either because you ask NightView to stop it, or because of
a breakpoint or a signal, NightView automatically switches to ugimgc for all access

to the process. When you resume execution again, NightView automatically switches

back to using the debug agent.

3-17

NightView User’s Guide

Examining Your Program

If you specify running processes in the qualifier of a command which requires stopped
processes, you get a warning message about each running process, but the command
executes normally on any of the stopped processes in the qualifier.

Expression Evaluation

Ada Expressions

3-18

Because NightView is a symbolic debugger supporting multiple languages, you are
allowed to evaluate expressions written in different languages, but this does not mean you
have access to all the features of each language. (Specific language syntax is not
described here; consult the reference manuals for the language for that information.)

One important point to note is that the debugger may not always precisely follow the
language semantics when evaluating an expression. In particular, the results of a floating-
point expression evaluated by the debugger may not be bit for bit identical to the results
the same expression would give if it were compiled and executed in your program. See
“Special Expression Syntax” on page 7-4.

A program written in multiple languages may define identical names for different global
objects. NightView looks first for the name as defined in the language of the current
context (see “Context” on page 3-22). If there is no current context, it uses the current
language setting to determine which symbols to look at first (see “set-language” on page
7-44).

The debugger can evaluate arithmetic or logical expressions (essentially anything that
may appear on the right hand side of an assignment). The debugger cannot declare new
variables.

In general, the debugger cannot execute statements, it can only evaluate expressions.
However, for Ada and Fortran, the concept of an expression is extended to assignment.

In some ways the debugger is more flexible than the compiler. The debugger usually
allows you to evaluate expressions or assign new values to variables without the type
checking done by the compiler. Unless the expression simply makes no sense, the
debugger will evaluate it.

Remember that the debugger handles expressions (plus assignment and procedure calls),
not executable statements. You must leave off the trailing semicolon for an Ada
assignment or procedure call.

Most Ada expression forms are supported, but there are some restrictions and limitations,
summarized in the list below.

¢ Data types

All data types are supported, with a few exceptions:

Concepts

- Task types are not fully supported as a data type. They are treated
simply as an address.

- Access to subprogram is not supported.

* Type conversions are supported as defined for the Ada language, and using
the same syntax as that of the language tyjge_mark expressioh), with
certain exceptions and additions. As defined by the language, conversions
involving numeric types convert the value of the expression, not the repre-
sentation. For exampldépat(1) would return1.0 . NightView allows
conversions from a value of any type to any target type, not just those cases
allowed by the Ada language. Note that NightView doesperform rep-
resentation changes when converting to or from derived or convertible
array types with differing representations. Conversions involving non-
numeric types are performed by simply interpreting the left justified bit
pattern of the value as the value of the target type with the corresponding
left justified bit pattern. Note that, if the target type is smaller than the
source value, the rightmost bits of the converted value are indeterminate.

* NightView treats user-defined character types (i.e., enumerations which
have character literals as enumeration values) strictly as enumerations, not
as a character type. The chief effect of this is that you cannot use string-lit-
eral notation (e.g.;abc") to form arrays of these types. In NightView,
string literals are always interpreted as arrays of the built-in tjzeac-
ter .

* Aggregate values, such és => 1, b => 2) , are notsupported. Other
expressions that yield aggregate values are allowed.

* Subprogram calls

A NightView expression can contain subprogram calls (either functions or proce-
dures), provided that the arguments are either scalar types, statically-sized record
types, or arrays. Note that this excludes subprograms with a formal argument that is
an unconstrained record with discriminants, but unconstrained arrays are supported.
Functions that return arrays or records are supported.

Overloaded operators and functions are supported in NightView with help from the
user to select the correct function. See “Overloading” on page 3-21.

e Attributes
Subprograms that rename attributes are not supported.

The following attributes are not supportédallable ,'count |, 'key ,'lock ,
'shm_id ,'terminated , and'unlock

The'fore and'aft attributes of fixed-point types may not give correct results.

Other attributes are supported in such commandwias andset , but they can-
not be used in monitorpoint, patchpoint, or tracepoint expressions, nor in an event-
point conditional expression.

One attribute;self , is supported as a language addition in the debugger. When
used on a tagged type object or access to a tagged type objedelfhe attribute
returns the same object with the type set to the actual type of the real object as deter-
mined from the run time type information provided by the compiler.

3-19

NightView User’s Guide

C Expressions

C++ Expressions

Fortran Expressions

3-20

* The catenation operataf, is not implemented.
¢ Logical operations (e.g., thend operator) on arrays are not supported.

* Relational operations that require ordering (es9.are not supported for
all arrays; they are supported only for arrays of character. Equality opera-
tions (= and/=) are supported for all arrays.

&variablemay be used as a synonym fariableaddress

Any exceptions raised in a monitorpoint, a patchpoint, or a tracepoint, or in an eventpoint
conditional expression are propagated to the program.

All C expressions are supported.
The debugger supports array slices in expressions using the following syntax:
array_namél..u]

wherel is the lower bound andi is the upper bound. Tharray_namemay be any
expression that denotes either an array object or a pointer. The type of an array slice is an
array whose bounds are the value$ ahdu, respectively.

Most C++ expressions are supported, with a few exceptions noted below.
The debugger supports array slices in C++. See also “C Expressions” on page 3-20.

In function calls and assignments, the debugger copies an object by copying the bytes of
the object. No copy constructor or user-defined assignment operator is called.

These C++ features are not supported:
* Exceptions.
* Templates.

Operator and function overloading is supported with additional input from the user used
to select the desired function. See “Overloading” on page 3-21.

A special case form of thdynamic_cast<> function is supported. You may use
dynamic_cast<> , spelled exactly this way (with no type name given as a template
argument inside the>). This form of dynamic casting will cast an object or a pointer to
the actual type of that object as determined by run time type information provided by the
compiler.

All Fortran expressions are supported.

Overloading

Concepts

Fortran subroutines are treated as if they were functions with no return value. Fortran
assignments are supported except for Concurrent Fortran array assignments.

The debugger cannot execute statements of any kind (except assignments and procedure
calls), including Fortram/o statements.

Overloading of functions, procedures, and operators is allowed in location specifiers and
expressions in the Ada and C++ language modes. See “set-language” on page 7-44.
Overloading means that more than one entity with the same name is visible at the same
point in the program. NightView will call the appropriate routine if it has enough context

to determine there is only one choice, otherwise you will need to provide NightView with
additional information in the form of special syntax added to the expression or location
specifier where the overloaded name is used.

This is typically a two step process. You run the command once and get an error which
displays the possible choices. Then you run the command again with additional syntax to
request the specific candidate number from that list.

The special syntax used to request candidates from the list is described in “Selecting
Overloaded Entities” on page 7-2. Overloaded names are supported in language
expressions (see “Expression Evaluation” on page 3-18) and location specifiers (see
“Location Specifiers” on page 7-9), and the same syntax is used for both.

The set-overload command (see “set-overload” on page 7-54) may also be used to
make NightView automatically generate overload candidate lists by turning on either of
the two separate overload modes for routine names and language operators. This
automates the first step of the two step process. The special syntax may be used to
request overload candidate information for a single function or operator even when the
corresponding overload mode is off.

If overloading is on, NightView interprets overloaded entities according to the current
language. If overloading is off, NightView uses the built-in meaning of all operators, if
possible, and interprets all function and procedure calls as referring to one function or
procedure it arbitrarily picks from the list of candidates. If operator overloading is off
and the built-in operator does not make sense in the context in which it is used,
NightView gives an error.

If overloading is on, but a unique meaning for an overloaded operator or routine cannot
be determined, NightView gives an error that includes the list of the possible overload
candidates. You may then run the command again, adding the syntax to select the correct
candidate.

The numbers assigned to the choices are unique for the specific context (see “Context” on
page 3-22) where the expression or location specifier appears. If, for example the 5th
item in a list of choices refers to a particular instance of the overloaded function
funcname when you are stopped at one point in your program, you may not assume the
5th item will refer to that same instance when you are stopped at a different location.

The one number you can rely on is 1 for overloaded operators. The built in language
operator is always number 1, and any user or library defined operators have numbers
greater than 1.

3-21

NightView User’s Guide

Program Counter

Context

Scope

Stack

3-22

When a process is stopped, it has stopped at one specific place in the program, which is
the address of the next instruction to be executed. This place is where the program counter
points. Different machines have different sets of registers, but the program counter is
always referred to a$pc.

If the currently selected frame is not the most recently called frame, thetfiee register
points to the instruction that made the call and $ipe register points to the place where
execution will return after the call. Inthe most recently called frafiopc and$pc point

to the same place.

The location pointed to b$cpc implies a specific context for evaluating expressions.
$cpc is located in some procedure (or routine, or function — the terms are used inter-
changeably throughout this document). This procedure was coded in some language (Ada,
C, C++, Fortran, or assembler). By default, the language of the routine containing the
$cpc is the language used to evaluate any expressions.

Another component of the context is the current stack frame (see “Current Frame” on
page 3-23). It establishes which instance of a given local variable you are actually
referring to in an expression. NightView provides special syntax (see “Special
Expression Syntax” on page 7-4) for referencing variables in other contexts besides the
current one.

Most languages have scoping rules, with local variables visible only in inner blocks and
more widely visible variables in outer blocks. Often the same name is used for different
variables in different scopes. Just as $iopc is located in a particular routine, it is also
located in a particular block of the routine. The variables that are directly visible to the
debugger are determined by the language rules and current block nesting structure of the
program at that point.

When debugging, you may need to look at other variables which would normally not be
visible by the strict language rules. NightView makes every effort to make any additional
variables visible for use in expressions (as long as the names do not conflict). If you
cannot reference a variable due to a naming conflict, NightView provides special syntax
(see “Special Expression Syntax” on page 7-4) for referencing variables visible in other
scopes.

When a process stops, it not only stops at a particular program counter, but it also has a
current stack. The stack is used to hold local variables and return address information for

Current Frame

Registers

Concepts

each routine. As a routine calls another routine, new entries (ciifaxde3 are made on
the stack. The stack can be examined to show the routines which were called to get to the
current routine using theacktrace command (see “backtrace” on page 7-64).

The debugger assigns numbers to each frame. The most recent frame is always frame
zero.

In a program with multiple threads or Ada tasks, each thread or task has its own stack. See
“select-context” on page 7-107.

Frames corresponding to uninteresting subprograms are not numbered and they are not
shown in a backtrace. See “Interesting Subprograms” on page 3-24.

When a process stops, the current frame is initially the stack frame associated with the
most recently called routine (whe$epc points). This frame contains the local variables

for that routine, and these variables may be referenced in expressions you evaluate. Each
frame also contains the return address indicating the specific point in the older routine
where thebpc will be located when the current frame returns.

You may wish to examine the variables in one of the routines that called the current rou-
tine. To do that, you may use thgy command (“up” on page 7-106) or tfimme com-

mand (“frame” on page 7-105) to change the current frame. As you move up the stack
(towards older routines, or in the same direction a return will go), the new stack frame
becomes theurrent frame Any variables referenced are now evaluated in the context of
this new frame and newcpc indicated by the called frame.

NightView also provides special syntax in expressions as an alternative to using tre
frame commands. See “Special Expression Syntax” on page 7-4.

Each stack frame also contains locations where registers are saved while in one routine so
they can be restored when returning to the calling routine. As the current frame is moved,
the debugger notices which registers will be saved and restored. If you look at registers
using theinfo registers command, or examine local variables which are being kept

in registers, you see the values as they will be restored when the process finally returns to
that frame. Referencing a specific register using the predefined convenience variable also
refers to the register relative to the current frame.

When examining a variable allocated to a register, you must be aware that the variable
may exist in that register for only a short time. Therefore, the contents of the register

may not accurately reflect the value of the variable. See “Optimization” on page 3-30 for

more information.

3-23

NightView User’s Guide

Inline Subprograms

Ada and C++ programs can have inline subprograms. The code for these subprograms is
expanded directly into the calling program rather than being called with a transfer of con-
trol. There is usually a time savings, sometimes at a cost in the size of the code.

NightView generally treats inline subprogram calls the same as non-inline calls. Although

an inline call does not create a stack frame, NightView creates a frame for it to match the
semantics of the language and to simplify the model of debugging. You can use the usual
commands to move up and down the stack frames and view variables within each frame.
See “Current Frame” on page 3-23.

You can use single step commands to step into inline subprograms, to step over them, or to
finish them. See “step” on page 7-96, “next” on page 7-97, and “finish” on page 7-100.

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
the call.

If you set an eventpoint within an inline subprogram, NightView modifies each instance of
the subprogram. If there are a lot of calls to the subprogram, this may take a long time. If
execution is stopped in an inline subprogram and you set an eventpoint using the default
location specifier (which corresponds $pc), the location specifier refers only that
particular instanceof the inline subprogram as opposed to all instances. See “Location
Specifiers” on page 7-9.

You can set an interest level for individual inline subprograms. The interest level applies
to all instances of an inline. You can also set an interest level to avoid seeing any inline
subprograms. See “Interesting Subprograms” on page 3-24. This may be desirable
depending on how your program uses inline subprograms.

You may not call an inline subprogram in an expression, unless the compiler has created
an out-of-line instance of the subprogram. See “Expression Evaluation” on page 3-18.

Interesting Subprograms

3-24

NightView considers some subprograms toiterestingand the rest to baninteresting
NightView avoids showing you uninteresting subprograms. Single-step commands do not
normally stop in an uninteresting subprogram. See “step” on page 7-96. A stack walk-
back does not display frames corresponding to uninteresting subprograms. See “Stack” on
page 3-22.

Concepts

In general, subprograms compiled with debug information are usually interesting and the
rest are usually uninteresting. NightView gives you control over which subprograms are
considered interesting by using tmterest command. See “interest” on page 7-51.

Each process has a currénterest level thresholdThe default threshold i8. NightView

uses rules to decide on the interest level of a subprogram. If the interest level of the sub-
program is greater than or equal to the interest level threshold, then the subprogram is con-
sidered to be interesting.

NightView uses these rules, in order, to determine the interest level for a subprogram:

1. The interest level may be specified for that subprogram withirttes-
est command.

2. If the subprogram is an inline subprogram, the value ofiritiee inter-
est level is compared to the interest level threshold. Ifitliee interest
level is less than the interest level threshold, then the interest level for the
subprogram is the minimum value. Otherwise, continue with the next rule.

3. The interest level may be recorded in the debug information for that sub-
program by the compiler. Some compilers have a way of designating an
interest level in the source.

4. If the subprogram has debug information, but no explicit interest level, the
interest level i9.

5. If the subprogram has line number information, but no other debug infor-
mation, the interest level is the value of tjustlines interest level for
that process.

6. If the subprogram has no debug information at all, the interest level is the
value of thenodebug interest level for that process.

In some situations there may be no interesting subprograms on the stack. In that case, the
most recently called subprogram is considered interesting.

You can make all subprograms interesting by setting the interest level threshold to the
minimum value.

Monitor Window

The Monitor Window shows the values of expressions being monitored by monitorpoints
(see “Monitorpoints” on page 3-9). When you set a monitorpoint (see “monitorpoint” on
page 7-83), the Monitor Window is created if it does not already exist, and the
expressions associated with that monitorpoint are automatically displayed in the Monitor
Window. The values in the window are updated approximately once a second to show
the values computed the last time each monitorpoint was executed.

The mcontrol command (see “mcontrol” on page 7-85) controls the monitorpoint
display. You can remove monitorpoint items from the display window (and add them
back in later). You can change the rate at which the window updates take place, and you
can stop updates completely, then start them again later. You can also turn the Monitor
Window off to remove it from your screen, then restore it later.

3-25

NightView User’s Guide

Errors

3-26

Note that interrupting the debugger implicitly causes the Monitor Window to stop
updating. See “Interrupting the Debugger” on page 3-28.

The Monitor Window is not available in the command-line interface of the debugger.
You must use either the simple full-screen interface (see Chapter 8 [Simple Full-Screen
Interface] on page 8-1) or the graphical user interface (see Chapter 9 [Graphical User
Interface] on page 9-1) in order to take advantage of monitorpoints.

The monitored items are displayed in the Monitor Window using built-in information
about the precision of the data type to decide how many columns to use for the value.
You have some control over this by using the format codes on the print command.

You also have some control over the layout of the items in the window. New items are
added across a line, from left to right, until there is not enough space remaining on the
line to add the current item. Then a new line is started. If you remove some items (by
usingmcontrol nodisplay or by removing the monitorpoints), the remaining items
are shifted left and up to pack the display. If you then add the items back, they are added
at the end of the display6tin their original positions).

By default, each item is displayed with an identification stringtade data indicatorthen
the value itself laid out left to right. The stale data indicator can be turned on and off via
mcontrol . There are 3 possible states that this indicator can denote:

Updated

The monitorpoint location was executed and values were saved since the last time
NightView updated the display. Note that the location may have been executed
many times in between successive display updates. The displayed value represents
the value as it existed the last time the monitorpoint location was executed.

Not executed

Execution has not reached the monitorpoint location since the last time NightView
updated the display. This may happen if that location is executed infrequently, if the
process gets suspended for some reason, or if the process is stopped by a signal or
breakpoint. The displayed value still represents the value as it existed the last time
the monitorpoint location was executed.

Executed but not sampled

Execution reached the monitorpoint location, but no values were saved because of
an ignore count or unsatisfied condition. In this case, the displayed value is not nec-
essarily the same as the value of the expression the last time the monitorpoint loca-
tion was executed.

The actual form of the stale data indicator depends on the interface being used. See
“Monitor Window - Simple Full-Screen” on page 8-2. See “Monitor Window - GUI” on
page 9-47.

NightView error messages always have this format:

Concepts

severity text[error-message-i
The severitycan be one of:
Caution
Usually just an informational message. Itis not serious.
Warning

A little more serious, but NightView tries to finish the current command as
you requested.

Error

A serious error. This level of error terminates the current command. It also
terminates a command stream. See “Command Streams” on page 3-27.

Abort

So serious that NightView cannot continue running. This does not usually
indicate that you have done something wrong; either there is a system problem
or there is a bug in NightView.

Thetextis a brief explanation of the problem.

The error-message-ids a section name you can use with thedp command to find out
more about the error and possibly how to fix it. &rror-message-itbegins withE-.

NOTE

Some libraries used by NightView, such as the X Window Sys-
tem'™, issue their own error messages in certain circumstances.
These error messagéds notfollow the format described above.

You can recognize these messages because they do not have the
[error-message-idappended to the message.

Command Streams

A command stream is a set of commands that the debugger executes sequentially. There
are three kinds of command streams:

* Interactive command streams. These are commands entered directly by the
user.

* A file of commands being read by treource command is also a com-
mand stream. Execution of tlurce command suspends execution of
the command stream it appears in and creates a hew one that endures until
the file is exhausted.

¢ Event-driven command streams. For example, commands attached to a
breakpoint are an event-driven command stream. Each instance of hitting a

3-27

NightView User’s Guide

breakpoint creates a new command stream; the stream terminates when the
commands attached to the breakpoint are finished. These non-interactive
command streams always operate with safety level sahtafe (see
“set-safety” on page 7-49).

The debugger may interleave the execution of two or more command streams. For
instance, it may execute some of the commands attached to one breakpoint, then execute
some of the commands attached to a different breakpoint (on behalf of a different
process), then execute more of the commands attached to the first breakpoint.

The debugger stops executing a command stream if it encounters a serious error (such as
an unknown command, or a badly formed command). A less severe error (such as a
warning about a process not being stopped) simply generates an error message, but the
debugger continues to execute the remaining commands. If a serious error terminates a
command stream, and that command stream was created by another command stream,
then the older command stream is also terminated. This goes on until the interactive
command stream is reached. The interactive command stream is not terminated.

Interrupting the Debugger

Macros

3-28

The shell interrupt character (normally}ceNTROL) does not terminate NightView.
Instead, it terminates whatever command is currently executing, if any. You may wish to
use it if you accidentally ask NightView to print a large quantity of information you don't
want. To type €ONTROL C, press the key while holding down the control key.

In the graphical user interface, you can interrupt the debugger by clickintteerupt
button in any of the major windows. See Chapter 9 [Graphical User Interface] on page
9-1. See “Debug Interrupt Button” on page 9-34.

If you interrupt the debugger, all command streams except the standard input stream are
terminated. The standard input stream is interrupted, but not terminated, so it will prompt
for the next command immediately.

Furthermore, any output from debugged processes is temporarily halted (it is still
buffered, but not displayed) until after you enter the next debugger command. This gives
you a chance to type a command without interference from the debugger or the debugged
processes. See “Dialogue I/O” on page 3-5 for more information about controlling the
output from debugged processes.

Interrupting the debugger stops the Monitor Window from updating. See “Monitor
Window” on page 3-25.

A macrois a hamed set of text, possibly with arguments, that can be substituted later in
any NightView command. When you define a macro, you specify its name, the names of
the formal arguments, and the text to be substituted. The text to be substituted is called
thebodyof the macro.

Concepts

When you reference the macro in a NightView command, you again specify its name,
along with the actual arguments. Actual arguments are the text you want substituted for
the references to the formal arguments in the macro body. See “Defining and Using
Macros” on page 7-130 for details on how to define and reference macros.

Macro expansion, the process of replacing the reference to a macro with its body, is
simply a textual substitution. Very little analysis is performed on the substituted text, so

macros can be a very powerful facility. Furthermore, a macro reference is expanded only
when it is needed.

Macros provide a way for you to extend the set of NightView commands. They also
provide a way to define shortcuts for things frequently used in commands or expressions.

Convenience Variables

Logging

NightView provides an unlimited number of convenience variables. These are variables

you can assign values and reference in expressions, but they are managed by the
debugger, not stored in your program. You don't have to declare these variables, just
assign to them. They remember the data type and value last assigned to them.

There are two kinds of convenience variables — global and process local. Variables are
global by default, but by using theet-local command (“set-local” on page 7-50) you

can make a variable local to a process. Once you declare a variable name process local,
each process maintains a separate copy of that convenience variable (a variable cannot be
local in one process, but shared among all other processes). It is possible to imagine
other types of scoping for convenience variables (such as breakpoint local or dialogue
local), but process local and global are the only kinds currently implemented.

Because eventpoint conditions and other expressions associated with eventpoints are
compiled code executed in the process being debugged, references to convenience
variables in these expressions always treat the convenience variable as a constant, using
the value the variable had at the time the expression was defined. On the other hand, the
commands associated with a breakpoint are always executed by the debugger, so a
convenience variable referenced in a command gets the value at the time the command is
executed.

Each dialogue retains a buffer showing the output generated by the programs run in that
dialogue shell. This output may also be logged to a file (see “set-show” on page 7-28).

In addition to the output log for each dialogue, you may log the commands you type, or
the entire debug session (see “set-log” on page 7-44).

3-29

NightView User’s Guide

Value History

NightView keeps the results of therint command (see “print” on page 7-65) on a
value history list. There is only one list for all the processes, and all printed values go on
this list regardless of the process. You can review this history (see “info history” on page
7-120), or use previous history values in new expressions (see “Special Expression
Syntax” on page 7-4).

Command History

NightView keeps a record of the commands you enter during a debugging session. There
are mechanisms in the simple full-screen interface and in the graphical user interface to
retrieve any of these commands, edit them, and re-enter them if desired. See “Editing
Commands in the Simple Full-Screen Interface” on page 8-2. See “GUI Command His-
tory” on page 9-12.

NightView does not add a command to the command history if it is the same as the previ-
ous command. Empty lines are never added. Commands are added only from interactive
command streams. See “Command Streams” on page 3-27.

Initialization Files

Optimization

3-30

When the debugger starts up, it looks for a file namiajhtViewrc in the current
working directory. If it can not find one there, it looks f§home/.NightViewrc . The

file, if found, is then automatically executed as though it appeared as an argument to the
source command (see “source” on page 7-110).

You can specify other initialization files, and you may disable the automatic execution of
the default initialization files, using options on the NightView command line. See
Chapter 6 [Invoking NightView] on page 6-1.

The problems of debugging optimized code are describedCampilation Systems
Volume 2 (Concepts)

These are the most common problems, but there are others:

* Machine language code may be moved around so that it does not corre-
spond line for line to the source code in your program.

Concepts

* Variables may not have the values you expect. The most common reason
for this is that the value of the variable is not needed at the current location
in your program and the register storing the value of the variable has been
reused for another value.

In general, you must be alert to the possibility that the compiler has changed things in
your program.

Concurrent compilers generate debugging information at high optimization levels

because it is more useful than to have nothing; however, the debug information is often
inadequate to describe an optimized program. (Future compilers may generate more
accurate debug information.) So, be careful and consult the appropriate manual for
details.

Debugging Ada Programs

Ada programs employ several concepts that are different from C, C++ and Fortran
programs. NightView provides methods to assist in debugging programs that utilize these
concepts.

Packages

Ada packages come in two parts: the specification, which gives the visible interface, and
the body, which contains the details. NightView knows what source file to display
depending on the execution context. For the Ada user, what is displayed is the body. If
the unit specification is of interest thisst command with the'specification

modifier on the unit name may be used. (The modifier may be abbreviated.) See “list” on
page 7-58.

An Ada unit name may be used to specify a location for those NightView commands that
need a location specifier. See “Location Specifiers” on page 7-9. For example, locations
are required for commands that manage eventpoints antisthe command. All Ada

unit names recorded in the debug table may be listed withitfee functions

command.

With Ada programs, declarations are elaborated in linear order. The elaboration of a dec-
laration brings the item into existence, then evaluates and assigns any initial value to it.
Elaboration occurs before any statements are executed. If the program has just started,
you can step into the elaboration code of library-level units withstke command. See

“step” on page 7-96.

Exception Handling

Ada exception handling provides a method to catch and handle program errors. Each unit
may have exception handlers. Exceptions which occur in a unit without appropriate
handling code are propagated to the invoking unit. The unwinding process may be

3-31

NightView User’s Guide

complex, therefore NightView provides several mechanisms to assist in debugging. The
handle /exception command specifies whether to stop execution and notify the user
that an exception has occurred. See “handle” on page 7-102.

Multithreaded Programs

NightView gives you facilities for debugging threads, Ada tasks, and Lightweight Pro-
cesses. Alightweight Procesfwp) is a distinct thread of control managed by the operat-

ing system. Ada tasks are servicedlwrs, as are threads created by the threads library.
See “Programming with the Threads Library” in tRewerMAX OS Programming Guide

When a process containing multiple Ada tasks, threads,wms stops, the operating
system will choose onewpr to represent the process. This is the execution state that
NightView will present to you by default. Whatever task or thread was being serviced by
thatLwp is the task or thread you will be viewing. To see other tasks, threadsyres,

use the select-context command (see “select-context” on page 7-107). This
command allows you to select the Ada task, thread,ver whose context you wish to
view.

The select-context command allows you to view the context of an Ada task or
thread whether or not it is currently being serviced byLarp. If the task or thread is
currently being executed by arwp, the select-context command automatically
selects the context of thatwvp.

It is important to note that NightView doew®ot allow you to control the execution of a
task, thread, orwp independently of the others in that process. When you resume
execution (see “resume” on page 7-95), 1allrs are allowed to execute, and they may
service any of the threads or Ada tasks that are available to run. If you issue a single-step
command (see “step” on page 7-96), the selected task, threadyrowill be stepped
according to the command, but the oth@rrs may also execute one or more instructions

— they are not restricted to stepping the current line or instruction.

Each time your process stops, NightView automatically sets the current context to the
context of theLwp that caused the process to stop. You may then useselest-
context command to change the context.

Note that an.wp attached to a user-level interrupt cannot be stopped and continues to run
when the otherwps are stopped. See “User-Level Interrupts” on page 3-34.

Using NightView with Other Tools

NightView normally communicates with other programs via KoalaTalk. For example,
other tools can start a debug session for a program, using NightView as a debug server.

This functionality is available only in the graphical user interface.

3-32

Concepts

If you want to disable this mode, useoktalk (see Chapter 6 [Invoking NightView] on
page 6-1 or set theseKoalaTalk resource td-alse . (See Appendix D [GUI Custom-
ization] on page D-1.)

Limitations and Warnings

Setuid Programs

Setuid and setgid programs can be run in a dialogue shell. If you are the superuser or the
owner of the setuid program, you may also debug the program. Otherwise, NightView
issues a warning message telling you that it has automatically detached from the process
and the program runs without being debugged. In this case, you also cannot debug any
child processes of such a program.

One or more privileges may be associated with a program. These behave in a manner
similar to setuid programs. If you run NightView with a privilege set that includes the
privileges associated with the program you are attempting to debug, NightView is able to
debug it. Otherwise, NightView automatically detaches from the process and the program
runs without being debugged.

Note that programs run using tlsdell command (see “shell” on page 7-110) are not
controlled by the debugger and so may run setuid.

Attach Permissions

You are only allowed to attach to processes running as the same user as the dialogue
specified on theattach command. More precisely, the dialogue's effective must be

the same as the real and sawed of the process you want to attach, and the dialogue's
effective GID must be the same as the real and sagad of the process you want to
attach.

An exception to the above rule is made for the superuser or userPwiACREARNd
P_DACWRITHrivileges.. These users are allowed to attach to any process.

Frequency-Based Scheduler

When a process running under control of the Frequency-Based Schedgdhits a
breakpoint, therBs stops running. This means that other processes under control of the
samerBs will no longer be scheduled. Any other processes that are currently running will
continue to run, but once they do &#rswait(2) call, they will not start running again
until theFesis restarted (it is as if the clock running the scheduler was stopped).

If you continue the breakpointed process, it will resume running, but once it executes an

fbswait(2) call, it will also go to sleep and not wake up until the scheduler is
restarted.

3-33

NightView User’s Guide

It is your responsibility to start the scheduler running again. This can be done via the
resume command of thertcp(1) program (perhaps using NightView'shell
command), from thetutil(1) program, or by clickinfiResume in NightSim.

NightTrace Monitor

The tracepoint command (see “tracepoint” on page 7-82) can be used to trace
variables in a process. Tracing only works if theaceud(1) monitor program has
been started prior to adding tracepoints to the process. It is the responsibility of the user
to make sure that the monitor is started (it may be started from within NightView using
theshell command, see “shell” on page 7-110).

Memory Mapped 1/0O

Special purpose programs often attach to regions of memory mappéul ¢pace. This
memory is sometimes very sensitive to the size of reads and writes (often requiring an 8-
bit or 16-bit reference). With théproc or debug agent mechanisms, the debugger may
access memory using 8-bit, 16-bit, or 32-bit references. See “/proc” on page 3-15. See
also “Debug Agent” on page 3-15. This means you should probably avoid referahcing

o mapped memory unless the size of access does not matter.

Be especially careful of printing pointers to strings (e.g., variables declared to be (char *)
in C or C++), because the debugger automatically dereferences these variables to print
the referenced string.

Note that accesses made by tracepoints, monitorpoints, and patchpoints will be made
according to the natural data type of the variable accessed, so those accesses should
normally work correctly.

Blocking Interrupts

If you are debugging a program containing sections of code that raisand block
interrupts, you can easily get a CPU hung or crash the system by attempting to single step
through this code (or by hitting a breakpoint in a section of code which executesrwith
raised). In particular, the trace library routines do this, so do not try to single step through
them.

User-Level Interrupts

Debugging a process that attaches to a user-level interrupt requires special care. There
are certain restrictions you must obey and certain actions you must take to ensure correct
operation. Note that this refers to user-level code attached directly to a hardware
interrupt, not an ordinary signal handler, which requires no special treatment to debug.

You must never set a breakpoint or an agentpoint in any code that might be executed by

3-34

Concepts

the interrupt routine. If a user-level interrupt routine hits a NightView breakpoint, it will
almost certainly crash the system. Ymay however, set monitorpoints, patchpoints,

and tracepoints, but be certain that none of the expressions associated with these
eventpoints perform any actions not allowed by user-level interrupt code. See
“Eventpoints” on page 3-8. Note that you can set a breakpoint or agentpoint in the
process as long as you ensure they are not executed while servicing a user-level interrupt.

You may attach to a process that has attached to user-level interrupts only if there is at
least one Lightweight Process that is not attached to an interrupt. See “Multithreaded
Programs” on page 3-32.

If you set an eventpoint in code that will be executed while servicing a user-level
interrupt, you must make sure that all memory referenced by the eventpoint is locked in
physical memory. NightView allocates memory regions where it places the code and
data for eventpoints, so those regions must be locked in memory as well. You may either
call themlockall(3C) service, specifyindlCL_CURRENfter you have set all the
eventpoints that will be executed by user interrupt code, or you may call
mlockall(3C) and speciffMCL_FUTURE

If your process has attached awp to a user-level interrupt but also has otherrs not
attached to an interrupt, then the non-internupps can be stopped by NightView, either
using thestop command (see “stop” on page 7-100), by hitting a breakpoint (see
“Breakpoints” on page 3-9), or by receiving a signal (see “Signals” on page 3-10).
NightView indicates that the process has stopped, butLtves serving user-level
interrupts continue to run and service interrupts. Only thers not attached to an
interrupt are stopped.

If you use theselect-context command (see “select-context” on page 7-107) to
examine the state of arwp attached to an interrupt, the context will not be consistent.
The registers will probably reflect the values they had when the called the
ienable(2) service. PowerMAX OS does not allow you to stoplave attached to a
user-level interrupt.

Debugging with Shared Libraries

NightView provides the ability to debug programs that reference shared libraries, but
there are a few things you need to know to use this effectively. This section describes
how NightView interacts with shared libraries.

Shared libraries are a mechanism that allows many programs to share libraries of
common code without duplicating that code in each executable file. The executable files
for those programs contain the names of the shared-library files referenced by that
program. These references mustresolvedbefore the program can reference data or
functions in the libraries. When the program first starts executing, a routine called the
dynamic linkemgets control and resolves references to shared libraries.

However, NightView gets control of a procesefore the dynamic linker executes. This

is useful for NightView, but not very useful for you the user, because until the dynamic
linker runs, you cannot reference any of the data or functions in the shared libraries. For
instance, you could not set a breakpoint in a function residing in a shared library.

Therefore, when NightView detects that the process references shared libraries, it lets the
dynamic linker execute before giving you control of the process. This allows you to

3-35

NightView User’s Guide

3-36

debug the entire program, without needing to know which parts reside in which shared
library.

One consequence of this action, however, concerns signals. If your process should
receive a signal while the dynamic linker is running, NightView will detect it and give
you an error message. You will not be able to reference the shared-library parts of your
program, and most likely the process will not be able to continue executing properly.
One source of such a signal is the dynamic linker itself. If it cannot find one or more of
the shared-library files referenced by the program, it will abort the process with a signal.

Some programs require more flexibility in their use of shared libraries. These programs
call thedlopen(3X) service to load a shared library when it is needed. Because this
happens after the program has initialized, NightView is unaware that a new shared library
has been brought into the program's address space.

However, it is easy to make NightView aware of any dynamically loaded libraries at any
time. Once your program has loaded a library or libraries udlogen , you can use the
exec-file command to force NightView to reexamine the list of shared libraries
referenced by the program. See “exec-file” on page 7-35. After your program has called
dlopen , enter the following command:

exec-file program-name

where program-nameis the name of the program you are running (the one that calls
dlopen). NightView updates its database of shared libraries, and you can then reference
data and procedures in the dynamically loaded libraries.

You can issue thigxec-file command as often as you wish. If your program loads
several libraries at various points during its execution, you may want to issuexéue
file command several times.

Tutorial

4
Tutorial

This is the tutorial for the command-line version of NightView. NightView’'s command-
line interface runs on all terminals. For more information about the command-line inter-
face, see Chapter 7 [Command-Line Interface] on page 7-1. You may also be interested in
the graphical-user-interface (GUI) version of this chapter in Chapter 5 [Tutorial - GUI] on
page 5-1. There is a much shorter tutorial in Chapter 1 [A Quick Start] on page 1-1.

About the Tutorial

This tutorial shows only the most common debugger commands and features. It expects
you to know the basics about processes and signals, but you do not need to know about
NightView and debugging concepts.

The supplied tutorial program spawns a child process. The parent writes a message to std-
out, sleeps, sends signailusRL to the child, and loops. The child writes a message to
stdout when it receives the signal.

Become familiar with the tutorial’s source code; see Chapter G [Tutorial Files] on page

G-1 or the files under thausr/lib/NightView/Tutorial directory. The source
files are:

C Fortran Ada

msg.h msg.i - Defines constants

main.c main.f main.a Forks a child and calls other rou-

tines
parent.c parent.f parent.a Sends signals to the child
child.c child.f child.a Receives signals from the parent

This tutorial takes at least two hours to do. Each section must be performed in order.

Exercises in this tutorial tell you to do things and ask you questions. Make the most of this
tutorial and the manual; follow the steps below:

1. Look up the information.

2. Try to figure out the answer on your own.

4-1

NightView User’s Guide

3. Apply the provided solution. Warning: Type the solutions exactly as
they appear or your results may differ from those provided in later steps of
the tutorial. Do not type anything until you see the words "you should
enter" in the tutorial.)

You do not need to follow cross references in this tutoniglessyou are explicitly told to
read them.

This tutorial often displays processs. Your proces#s will probably differ from those
shown. Also, the tutorial displays hexadecimal addresses. The addresses for your pro-
gram may differ from those shown. Additionally, the line breaks in your output may differ
from those shown because the lengths of displayed data items may vary.

The code produced when you create your program may vary slightly from the programs
used to prepare this tutorial. In particular, the line shown as the return address from a sub-
program may be different from what is shown here.

Some messages might not appear, or additional messages might appear, depending on
your environment.

Creating a Program

NightView is mainly used with executables that contain debug information. To create
such a program, compile source files with a particular option, and link edit them.

Exercise:

Create a directory namad/iew where you can create files for this tutorial, and move
into that directory.

Solution:
You should enter:

$ mkdir nview
$ cd nview

Note: do not enter th§. It is part of the shell prompt.

Exercise:

Use the manual to find out what compiler option is necessary for debugging. (Hint: use
the index.)

Solution:

From the indexCompiling has this information. Theg compiler option puts debug
information into an executable.

4-2

Tutorial

Exercise:
Decide what language program you want to debug.nbBtcopy the source files from the
Just/lib/NightView/Tutorial directory, just compile and link these files. Make
themsg program contain debug information. What command or commands did you use?
Solution:
For C, you should enter:

$ cc -g -0 msg /usr/lib/NightView/Tutorial/*.c
For Fortran, you should enter:

$ f77 -g -0 msg /usr/lib/NightView/Tutorial/*.f
For MAXAda, you should enter:

$ /usr/ada/bin/a.mkenv -g

$ /usr/ada/bin/a.path -l obsolescent

$ /usr/ada/bin/a.intro /usr/lib/NightView/Tutorial/*.a

$ /usr/ada/bin/a.partition -create active -main main
msg

$ /usr/ada/bin/a.build -v msg

$ /usr/ada/bin/a.rmenv .

For HAPSE Ada, you should enter:

$ Jusr/hapse/bin/a.mklib -g -f

$ /usr/hapse/bin/a.make -v -lib . -0 msg main \
-f /usr/lib/NightView/Tutorial/*.a

$ /usr/hapse/bin/a.rmlib

You should now have ansg program with debug information in younview directory.
Note that for this tutorial, the source files showlot be in this directory.

Starting NightView

You are ready to start up NightViewithoutthe graphical-user interface.

Exercise:

Read how to invoke the command-line interface of NightView. (You can find this infor-
mation in the manual, on the man page, or by invokiwgew with the-help option.)
Start up the command-line interface of NightView.

Solution:

In the index,Starting the debugger, Invoking the debugger, andnview , invoking have
this information. See Chapter 6 [Invoking NightView] on page 6-1. You should enter one
of:

4-3

NightView User’s Guide

4-4

$ nview -nogui
$ nview -nog

Note that in this tutoriamsg does not appear on thwiew invocation line.
NightView responds with:

$ nview -nogui

NightView debugger - Version 5.1, linked Mon Jan 17
13:57:27 EST 2000

Copyright (C) 2000, Concurrent Computer Corporation

In case of confusion, type "help"

Use the 'run’ command to run your program under the
debugger
(local)

These messages include NightView version information, copyright information, help
information, and the command promfiigcal) . Your version number and date may
differ. You will use online help later in this tutorial.

A dialogue contains a shell where you run shell commands and debug running programs.
Each dialogue has a name; the default dialoguedal . The default qualifier is also

local . The default command prompt is the qualifier in parentheses. For information
about dialogues, see “Dialogues” on page 3-4. For information about qualifiers, see
“Qualifiers” on page 3-4. For information about prompts, see “Command Syntax” on page
7-1.

In the command-line interface, NightView sometimes displays the command prompt
before it completes its output display. You think NightView may have some undisplayed
output.

Exercise:
To see the undisplayed output, wait a moment, pBysace, then presfReturn.

NightView responds with:

{usr/lib/NightView- releaséReadyToDebug
$ Jusr/lib/NightView- releaséReadyToDebug
$ (local)

NightView runs theReadyToDebug program and your executable in the dialogue shell.
You might see only one echo ddsr/lib/NightView- releaséReadyToDebug ,
depending on how quickly the dialogue shell stareddaseis the NightView release
level). For information abouReadyToDebug , see “ReadyToDebug” on page 3-7. Note
that in this tutorial the dialogue shell promptis “$ ”. Yours may differ.

Tutorial

Getting General and Error Help

This tutorial expects you to look up information in the NightView manual. For the com-
mand-line and simple screen interfaces, online help is available only for error messages.
For general help you need to read the printed manual or consult the online help via Night-
View’s graphical user interface or vizhelp(1) . When this tutorial refers to another
section of the manual, use one of those methods to read the section.

Exercise:

Try to use the non-existent "foo" command.

Solution:
You should enter:
(local) foo
Note: do not enter thflocal) . Itis part of the command prompt.
NightView responds with:

Error: Unrecognizable command "foo". [E-command_proc003]
(local)

Exercise:

Now, invoke help without any arguments.

Solution:
You should enter one of:

(local) help
(local) he

NightView displays additional information about your most recent error and prints a new
command prompt.

Note thathe is not an official abbreviation for theelp command; however, you may
abbreviate NightView commands and some keywords to the shortest unambiguous prefix.
For more information, see “Command Syntax” on page 7-1. You cannot abbreviate file
names, symbolic names, or NightView construct names.

Exercise:

Once again, invoke help without any arguments.

Solution:

You should enter one of:

4-5

NightView User’s Guide

(local) help
(local) he

Note that NightView does not redisplay the extended error information; it assumes that
you have already read that information. If there had been earlier errors, NightView would

display help for the next most recent error now. However, there are no earlier errors, so
NightView gives an error message indicating that.

NightView responds with the command prompt.

Starting Your Program

Most NightView commands operate on existing processes in a running program. Because
you did not specify a program when you started the debugger, there haven't been any pro-
cesses to debug. You must starsg now to debug it and to use most of the rest of the
NightView commands in this tutorial.

Exercise:

Read about theun command. Use it to start thesg program and have the program wait
for debugging.

Solution:
You should enter one of:

(local) run ./msg
(local) ru ./msg

The preceding "./" is a safety precaution. Avoid accidentally debugging the wrong pro-
gram by always providing some path information.

NightView responds with:

Jmsg

New process: local:15625 parent pid: 16428
Process local:15625 is executing /users/bob/nview/msg.
Reading symbols from /users/bob/nview/msg...done
Executable file set to

/users/bob/nview/msg

(local)

If msgwas dynamically linked, NightView also displays the following messages:

Program was dynamically linked.

Dynamic linking completed.

The file " file" does not contain symbolic debug
information,

only external symbols will be visible.

The long messagmaynot appear.

4-6

Tutorial

NightView shows the process (PID) of the new process and its parent process, the path
where your executable exists, and another local dialogue prompt. Pibsiand the path
where your executable exists will probably differ from those in this tutorial. For informa-
tion about processes, see “Programs and Processes” on page 3-2.

Note that by appending an ampersagd {o therun command, you could have started
your program in the background of the dialogue shell. This is generally a good idea
because it gives you the flexibility to debug multiple programs in one NightView session;
however, in this tutorial, you will be supplying the program with input, so the program
needs to be running in the foreground.

Note also that although this tutorial does not ask you to do so, you can usentheom-
mand to rerun a program.

Debugging All Child Processes

By default, NightView debugs child processes only when they have caled(2) . In
the msg program, the child process never cadleec . To be able to debug this child pro-
cess, you must use thet-children commandbeforemsg forks the child process.
Also, you have to issue theet-children commandafter therun command so the
set-children command can be applied to existing processes.

Exercise:

Read about theet-children command. Issue th&et-children command so that
the child process imsg can be debugged.

Solution:

You should enter one of:

(local) set-children all
(local) set-c a

Handling Signals

By default, signals stop execution under the debugger. Inmtbgprogram, the parent
process sends signalGUsRL to the child process. It then sleeps as a crude way of syn-
chronizing the sending and receiving of signals. Having execution stop because of this
signal is not desirable in this case.

Exercise:

Read about theandle command. Use it to adjust the default handling of sheusrL
signal so that the process does not stop.

4-7

NightView User’s Guide

Solution:
You should enter one of:

(local) handle SIGUSR1 nostop
(local) ha usrl nos

NightView responds with:

Signal handling complete
(local)

Note: you had to issue theandle commandaftertherun command so théandle
command could be applied to existing processes.

Listing the Source

4-8

You probably want to look at the source files before debugging them.

Exercise:

Read about thést command. Notice all the syntax variations for this command, and
use one of them to examine the source file whaggn is defined.

Solution:

You should enter one of:

(local) list main.c:1 (for the C program)
(local) I main.c:1 (for the C program)
(local) list main.f:1 (for the Fortran program)
(local) I main.f:1 (for the Fortran program)
(local) list main.a:1 (for the Ada program)
(local) | main.a:1 (for the Ada program)
(local) list main

(local) I main

(local) list

(local) I

NightView responds by displaying ten numbered source lines. (You will see a different
ten source lines depending on how you ranltste command.) Executable lines have an
asterisk t) source line decoration beside the line numbers. For more information about
source line decorations, see “Source Line Decorations” on page 7-62.

Thelist command is repeatable. Prdgsturn.
Now you see the next ten lines of the source file.

Keep pressingReturn until you get an end of file message.

Tutorial

Exercise:

List the source file so the display is centered around line 16.

Solution:

You should enter one of:

(local) list main.c:16 (for the C program)
(local) | main.c:16 (for the C program)
(local) list main.f:16 (for the Fortran program)
(local) | main.f:16 (for the Fortran program)
(local) list main.a:16 (for the Ada program)
(local) | main.a:16 (for the Ada program)
(local) list 16

(local) | 16

NightView responds by listing the lines.

Setting the First Breakpoints

A breakpoint is set on the executable statement where you want program execution sus-
pended. The program stops at the breakpbéforeit executes the instruction where the
breakpoint is set.

Exercise:

Read about théreakpoint command. Set a separate breakpoint to stop at each of the
following places:

* The line that prompts for the number of signals to send
* The call tochild_routine

* The comment before the call fIarent_routine

Solution:
For the C program, this part of your debug session should look something like this:

(local) b 18
local:15625 Breakpoint 1 set at main.c:18
(local) b 25
local:15625 Breakpoint 2 set at main.c:25
(local) b 30
local:15625 Breakpoint 3 set at main.c:30

For the Fortran program, this part of your debug session should look something like this:

(local) b 15
local:15625 Breakpoint 1 set at main.f:15

4-9

NightView User’s Guide

(local) b 21
local:15625 Breakpoint 2 set at main.f:21
(local) b 23

local:15625 Breakpoint 3 set at main.f:23
For the Ada program, this part of your debug session should look something like this:

(local) b 18
local:15625 Breakpoint 1 set at main.a:18
(local) b 25
local:15625 Breakpoint 2 set at main.a:25
(local) b 27
local:15625 Breakpoint 3 set at main.a:27

Note that the preceding examples could have spelled oubitsekpoint command.
NightView gives each breakpoint an ordinal identification number beginning at 1. By
default, breakpoints are set in the current list filggin.c , main.f , or main.a in this
tutorial.

Note that you can put breakpoints only on executable statements. NightView did not give
you an error for attempting to put a breakpoint on a comment line. Instead, it put the
breakpoint on the executable statement that immediately follows the comment line.

Listing a Breakpoint

NightView changes the list display when you set a breakpoint.

Exercise:

Issue thdist command that will relist the current lines.

Solution:
You should enter one of:

(local) list =
(local) | =

NightView redisplays the ten lines you were viewing. Note that if you are displaying a
line with a breakpoint on it, that line now ha®gfor breakpoint) source line decoration.

Continuing Execution

To make use of the breakpoints you set, you must allowntbg program to execute up to
the statement with the breakpoint.

4-10

Tutorial

Exercise:

Read about theontinue command. Use it to continue program execution up to the
statement with the breakpoint.

Solution:

You should enter one of:

(local) continue
(local) c

NightView displays the statement with the breakpoint. Note that the source line decora-
tion is now aB=. TheB still indicates a breakpoint, and theindicates that execution is
stopped there.

Not Entering Functions

Entering Input

Execution is stopped at the line that prompts for the number of signals to send. You don't
want to enter the code for the output statement (or function) because it is part of the
library, not part of your program.

Exercise:

Read about theext command. Use it to skip over the output statement (or function).

Solution:
You should enter one of:

(local) next
(local) n

Themsg program writes the prompt "How many signals should the parent send the
child?". NightView displays the next line. Thesource line decoration shows that execu-
tion is stopped there.

You must respond to thesg program prompt "How many signals should the parent send
the child?". By default, NightView interprets all input as debugger commands.

Exercise:

Assume that you want to send ten signals. See what problems arise when you simply enter
the number ten.

4-11

NightView User’s Guide

Solution:
You should enter:
(local) 10

NightView responds with an error message.

Exercise:

Read about the command. Use it to make NightView understand that the 10 is data for
themsg program. (For information about Dialogue 1/O, see “Dialogue 1/0” on page 3-5
and “!" on page 7-27.)
Solution:
You should enter:

(local) 110
NightView responds with:

(local)

As described in “Starting NightView” on page 4-3, NightView sometimes has output that
does not appear until you preReturn.

PressSpace, then pres®keturn to see your input echoed.
NightView responds with:

10
(local)

Creating Families

4-12

Naming a process or process group has the following advantages over speeifying

* Mnemonic names are often easier to remember and type than nurmeric

* You can groupribs with a single name so that qualified NightView com-
mands act only on the processes in the group.

* You can write generic NightView command files that use process names
instead of specifieiDs.

In this tutorial, you will want to issue some NightView commands that pertain only to the
parent process and others that pertain only to the child process.

Tutorial

Exercise:

Read about théamily command. Use it to give the narparent to all processes that
currently exist in your program. (There is only one process so far.)

Solution:
You should enter one of:

(local) family parent all
(local) fa parent all

Note that to name only the parent process, you had to issue this combeéore Night-

View executes théork in themsg program. Note also that at this point, th argu-

ment represents only one process, the parent process. Later you will see it represent mul-
tiple processes.

You will use theparent family name later in the tutorial.

Continuing Execution Again

Before you can examine aspectgafent_routine andchild_routine , you must
get NightView to stop at the calls to these routines.

Exercise:

Continue executing the program so it stops at the next statement with a breakpoint.

Solution:
You should enter one of:

(local) continue
(local) c

For the C program, NightView responds with:

New process: local:13504 parent pid: 15625
#0 0x10002838 in main() at main.c line 20
20 < | pid = fork();

local:15625: at Breakpoint 3, 0x1000284c in main() at
main.c line 31

31 B parent_routine(pid, total_sig);

(local)

For the Fortran program, NightView responds with:

New process: local:13504 parent pid: 15625
#0 0x100038e4 in main() at main.f line 17

4-13

NightView User’s Guide

17 < | pid = fork()

local:15625: at Breakpoint 3, 0x10003904 in main() at
main.f line 24

24 B=| call parent_routine(pid)

(local)

For the Ada program, NightView responds with:

New process: local:13504 parent pid: 15625

#0 0x10010bc8 in main() at main.a line 21

21 < | pid := posix_1003_1.fork;

local:15625: at Breakpoint 3, 0x10010bdc in main() at
main.a line 28

28 Be| parent_routine(pid, total_sig);

(local)

The first few lines are from the child process. They show that you are currently calling

fork . The< source line decoration indicates that this line made a subprogram call which

has not yet returned. The subprogram that implem@ants is hidden. NightView usu-

ally does not show you system library routines. See “Interesting Subprograms” on page
3-24.

In this example, the child process has proaesk3504, and the parent process has process
ID 15625. Note that your processs will differ. Note also that after théork , only the
parent process continued execution; the child process is still &rtke.

The source line decoration in the parent process is nBw.da heB still indicates a break-
point and the= indicates that execution is stopped there.

Creating Families Again

4-14

In this tutorial, you will want to issue some NightView commands that pertain only to the
parent process and others that pertain only to the child process.

Exercise:

Use thefamily command to give the nanahild to only the newly forked child pro-
cess.

Solution:
You should enter one of:

(local) family child all - parent
(local) fa child all - parent

At this time, theall argument consists of both the parent and chitis. In section “Cre-
ating Families” on page 4-12, you created tagent family so it consists of only the
parentPiD. Subtraction leaves only the chifdb in thechild family.

You will use thechild family name later in the tutorial.

Tutorial

Note that to name only the child process, you had to issue this comaférdNightView
executes théork in themsg program.

Catching up the Child Process

To individually manipulate the parent and child processes, you must qualify your debug-
ger commands.

Exercise:

Read about qualifiers. Get the child process to continue execution up to the breakpoint on
the call tochild_routine (line 25 inmain.c , line 21 inmain.f , and line 25 in
main.a).

Solution:
You should enter one of:

(local) (child) continue
(local) (child) ¢

For the C program, NightView displays:

local:13504: at Breakpoint 5, 0x10002840 in main() at
main.c line 25

25 Be| child_routine(total_sig);

(local)

For the Fortran program, NightView displays:

local:13504: at Breakpoint 4, 0x100038fc in main() at
main.f line 21

21 Be| call child_routine()

(local)

For the Ada program, NightView displays:

local:13504: at Breakpoint 4, 0x10010bd0 in main() at
main.a line 25

25 B child_routine(total_sig);

(local)

This breakpoint in the child corresponds to breakpoint 2 in the parent. Inherited event-
points get new identifiers. The order of eventpoint numbers in the child is unpredictable,
so you might see a breakpoint numbe#ob, or 6.

Note that you could have qualified the command with the child’s processimber
instead of thechild family name.

4-15

NightView User’s Guide
Verifying Data Values

You want to look at the value of variables in thresg program.

Exercise:

Read about therint command. Use it to check that thatal_sig variable has the
value 10.

Solution:
You should enter one of:

(local) print total_sig
(local) p total_sig

NightView responds with:
Process local:15625:
$1: total_sig = 10
Process local:13504:
$2: total_sig = 10

By default, the 10 is printed in decimal. NightView keeps a history of printed values. The
$1 means that this is the first value in this history. For more information about the printed
value history, see “Value History” on page 3-30.

Note that if you had looked at thetal_sig variableafter its last use, you might have
seen gibberish. This happens when the location holding a value gets overwritten. For
more information, see “Optimization” on page 3-30. In the Fortran program,
total_sig was put in COMMON so you could consistently see its value in the tutorial.

NightView displays values for both processes because there are multiple processes in the
default qualifierlocal

Entering Functions

At this point, the parent process is about to pament_routine , and the child process
is about to rurchild_routine

Exercise:

Read about thetep command. Use it to simultaneously enter both routines.

Solution:

You should enter one of:

4-16

Tutorial

(local) step
(local) S

Note that if you had wanted to enter a routine in only one process, you would have had to
qualify thestep command. (For information about qualifiers, see “Qualifiers” on page
3-4.)

In all the following output descriptions, NightView displays the line you stepped to. The
= source line decoration indicates that execution is stopped there.

For the C program, NightView displays:

#0 0x10002884 in child_routine(int total_sig = 10) at
child.c line 14
#0 0x10002944 in parent_routine(pid_t child_pid =
13504, int total_sig = 10)

at parent.c line 11

14 = | signal(SIGUSR1, signal_handler);
11 = | int isec = 2;
(local)

Line 14 is from the child process. Line 11 is from the parent process.
For the Fortran program, NightView displays:

#0 0x1000393c in child_routine() at child.f line 17

17 = | ireturn = csignal(SIGUSR1, signal_handler,
1)
#0 0x10003a48 in parent_routine(INTEGER child_pid /
13504 /)

at parent.f line 15
15 = | do 10 sig_ct = 1, total_sig
(local)

Line 17 is from the child process. Line 15 is from the parent process.
For the Ada program, NightView displays:

#0 0x100108fc in child_routine(total_sig : IN integer =
10) at child.a line 26
#0 0x10010578 in parent_routine(child_pid : IN pid_t =
13504,

total_sig : IN integer = 10) at
parent.a line 6

26 = | procedure child_routine(total sig : integer) is
6 = | procedure parent_routine(child_pid :
posix_1003_1.pid_t; total_sig : integer) is

(local)

Line 26 is from the child process. Line 6 is from the parent process.

NightView tells you when &tep command takes you into (or out of) a subprogram call.
The lines that begin wit#0 announce that you have entereld_routine in the
child process angarent_routine in the parent process.

Note that the order of the lines displayed may vary.

4-17

NightView User’s Guide

Examining the Stack Frames

4-18

It is often helpful to see how you got to a certain point in a program.

Exercise:

Read about theacktrace command. Use it to display the list of currently active stack
frames.

Solution:
You should enter one of:

(local) backtrace
(local) bt

For the C program, NightView responds with:

Backtrace for process local:13504
#0 0x10002884 in child_routine(int total_sig = 10) at
child.c line 14
#1 0x10002848 in main() at main.c line 25
Backtrace for process local:15625
#0 0x10002944 in parent_routine(pid_t child_pid =
13504, int total_sig = 10)

at parent.c line 11
#1 0x10002854 in main() at main.c line 31
(local)

For the Fortran program, NightView responds:

Backtrace for process local:13504
#0 0x1000393c in child_routine() at child.f line 17
#1 0x10003900 in main() at main.f line 21
Backtrace for process local:15625
#0 0x10003a48 in parent_routine(INTEGER child_pid /
13504 /)
at parent.f line 15
#1 0x10003910 in main() at main.f line 24
(local)

For the Ada program, NightView responds:

Backtrace for process local:13504
#0 0x100108fc in child_routine(total_sig : IN integer =
10) at child.a line 26
#1 0x10010bd8 in main() at main.a line 25
#2 0x10022750 in <anonymous>()
Backtrace for process local:15625
#0 0x10010578 in parent_routine(child_pid : IN pid_t =
13504,

total_sig : IN integer = 10) at
parent.a line 6

Tutorial

#1 0x10010be4 in main() at main.a line 28
#2 0x10022750 in <anonymous>()
(local)

Note the order of the displayed lines may vary.

On lines labeledt0, NightView shows its location within the current routine. On lines
labeled#1, NightView shows the location of the call to the current routine within the call-
ing routine.

In the Ada program, stack frame #2 is from the library level elaboration routine, which has
no name.

Moving in the Stack Frames

You may want to move among the stack frames to examine and modify variables, run
functions, etc., in other frames. For example, suppose that you want to examine the value
of local variabletracefile in main .

Exercise:

Read about thep command. Qualify thep command so the current stack frame of the
parent process imain .

Solution:
You should enter:
(local) (parent) up
For the C program, NightView responds with:

Output for process local:15625

#1 0x10002854 in main() at main.c line 31
31 B<| parent_routine(pid, total_sig);
(local)

For the Fortran program, NightView responds with:

Output for process local:15625

#1 0x10003910 in main() at main.f line 24
24 B<| call parent_routine(pid)
(local)

For the Ada program, NightView responds with:

Output for process local:15625

#1 0x10010be4 in main() at main.a line 28
28 B<| parent_routine(pid, total_sig);
(local)

4-19

NightView User’s Guide

The< source line decoration indicates that this line made a subprogram call which has not

yet returned.

Note that you could have qualified the command with the parent’s pracessmber

instead of thegparent family name.

Verifying Data Values in Other Stack Frames

Frommain, you can examine local variables, run functions, etc.

Exercise:

Qualify aprint command so it displays the value of local variatbeefile
only for the parent process.

Solution:
You should enter one of:

(local) (parent) print tracefile
(local) (parent) p tracefile

For the C program, NightView responds with:

$3: tracefile = 0x30003100 "msg_file"
(local)

For the Fortran and Ada programs, NightView responds with:

$3: tracefile = "msg_file"
(local)

in main

Note that you could have qualified the command with the parent’s pracessmber

instead of thegparent family name.

Returning to a Stack Frame

4-20

You want to return tcparent_routine

Exercise:

Read about thdown command. Qualify thelown command so the current stack frame

of the parent process m@rent_routine

Tutorial

Solution:
You should enter one of:

(local) (parent) down
(local) (parent) do

For the C program, NightView responds with:

Output for process local:15625
#0 0x10002944 in parent_routine(pid_t child_pid =
13504, int total_sig = 10)
at parent.c line 11
11 = | int isec = 2;
(local)

For the Fortran program, NightView responds with:

Output for process local:15625
#0 0x10003a48 in parent_routine(INTEGER child_pid /

13504 /)

at parent.f line 15
15 = | do 10 sig_ct = 1, total_sig
(local)

For the Ada program, NightView responds with:

Output for process local:15625
#0 0x10010578 in parent_routine(child_pid : IN pid_t =
13504,

total_sig : IN integer = 10) at
parent.a line 6

6 = | procedure parent_routine(child_pid :
posix_1003_1.pid_t; total_sig : integer) is
(local)

Note: it is not meaningful to do down without doing anup first (as you did in section
“Moving in the Stack Frames” on page 4-19).

Resuming Execution

You want to continue the execution of the child process so that it will get signals as soon
as they are sent by the parent process. ddrginue command can do this, but it ties up
the debugger’s input mechanism while waiting for the process. You don’t want to wait.

Exercise:

Read about theesume command. Qualify theesume command to resume execution
of thechild process without the waiting that occurs with ttentinue command.

4-21

NightView User’s Guide

Solution:
You should enter one of:

(local) (child) resume
(local) (child) res

Note that you could have qualified the command with the child’s processimber
instead of thechild family name.

Setting the Default Qualifier

As described in “Starting NightView” on page 4-3, the default qualifidoeal , which

means that unqualified commands affect all processes. It is cumbersome to keep qualify-
ing commands that operate on a subset of these processes. The rest of the commands in
this tutorial apply only to the parent process.

Exercise:

Read about theet-qualifier command. Use it to tell NightView that the default
qualifier for the remaining commands is the family that consists of only the parent pro-
cess.

Solution:

You should enter one of:

(local) set-qualifier parent
(local) set-q parent

NightView changes the prompt to your new qualifiparent .

Removing a Breakpoint

4-22

Breakpoint 1 (set in “Setting the First Breakpoints” on page 4-9) is no longer needed.

Exercise:

Read about thdelete command. Use it to remove breakpoint 1.

Solution:
You should enter one of:

(parent) delete 1
(parent) d1

Tutorial
Setting Conditional Breakpoints

It is often useful to suspend execution conditionally.

Exercise:

Read about théreakpoint command. Set a breakpoint on the line that displays how
long the parent is sleeping jparent_routine ; the breakpoint should suspend execu-
tion when the value osec equals the value dbtal_sig

Solution:
For the C program, you should enter one of:

(parent) breakpoint 16 if isec == total_sig
(parent) b 16 if isec == total_sig

For the Fortran program, you should enter one of:

(parent) breakpoint 16 if isec .eq. total_sig
(parent) b 16 if isec .eq. total sig

For the Ada program, you should enter one of:

(parent) breakpoint 15 if isec = total_sig
(parent) b 15 if isec = total_sig

For the C program, NightView responds with:
local:15625 Breakpoint 7 set at parent.c:16

For the Fortran program, NightView responds with:
local:15625 Breakpoint 7 set at parent.f:16

For the Ada program, NightView responds with:

local:15625 Breakpoint 7 set at parent.a:15

Attaching an Ignore Count to a Breakpoint

Sometimes you won't want to monitor each iteration of a loop. For example, assume that
aloop runs many times, and somewhere during the loop an error occurs. You could ignore
the first half of the loop values to determine in which half of the iterations the error
occurred.

4-23

NightView User’s Guide

Exercise:

Read about thggnore command. Set Adreakpoint command on the line that dis-
plays how long the parent is sleepinggdarent_routine . NightView has a predefined
name for the most-recently set breakpoint. For more information about this name, see
“Eventpoint Specifiers” on page 7-12. Use this name oiganre command on this line

in parent_routine ; ignore the next five iterations.

Solution:
For the C and Fortran programs, you should enter:

(parent) breakpoint 16
(parent) ignore . 5

or

(parent) b 16
(parent) ig . 5

For the Ada program, you should enter:

(parent) breakpoint 15
(parent) ignore . 5

or

(parent) b 15
(parent) ig . 5

For the C program, NightView responds with:

local:15625 Breakpoint 8 set at parent.c:16
Will ignore next 5 crossings of Breakpoint #8 in
local:15625.

For the Fortran program, NightView responds with:

local:15625 Breakpoint 8 set at parent.f:16
Will ignore next 5 crossings of Breakpoint #8 in
local:15625.

For the Ada program, NightView responds with:
local:15625 Breakpoint 8 set at parent.a:15

Will ignore next 5 crossings of Breakpoint #8 in
local:15625.

Attaching Commands to a Breakpoint

You can attach arbitrary NightView commands to a breakpoint. They run when that partic-
ular breakpoint is hit.

4-24

Tutorial

Exercise:

Read about theommands command. Attach a command stream that prints out the value
of total_sig only when you hit the breakpoint you set in the previous step. Note: use
the NightView predefined name for the most-recently set breakpoint.

Solution:
You should enter one of:

(parent) commands .
(parent) com .

NightView responds with:

Type commands for when the breakpoints are hit, one per
line.

End with a line saying just "end".

>

You should enter:

\%

print total_sig
end

\%

or

\Y

p total sig
end

\%

Automatically Printing Variables

You can create a list of one or more variables to be printed each time execution stops.

Exercise:

Read about thdisplay command. Use display command to display the value of
thesig_ct variable.

Solution:
You should enter one of:

(parent) display sig_ct
(parent) disp sig_ct

Note that thisdisplay = command runs every time execution stops, andptire com-
mand from “Attaching Commands to a Breakpoint” on page 4-24 runs only when execu-
tion stops at a specific breakpoint.

4-25

NightView User’s Guide

Watching Inter-

4-26

Process Communication

You already resumed the execution of the child process, so NightView gave you a prompt
and did not wait for the child process.

Exercise:

Now continue execution for the parent process.

Solution:
You should enter one of:

(parent) continue
(parent) c

NightView responds with something like the following:

1. Parent sleeping for 2 seconds

2. Parent sleeping for 2 seconds

Child got ordinal signal #1

3. Parent sleeping for 2 seconds

Process local:13504 received SIGUSR1

Child got ordinal signal #2

4. Parent sleeping for 2 seconds

Process local:13504 received SIGUSR1

Child got ordinal signal #3

5. Parent sleeping for 2 seconds

Process local:13504 received SIGUSR1

Child got ordinal signal #4

Process local:13504 received SIGUSR1

Child got ordinal signal #5

local:15625: at Breakpoint 8, 0x10002950 in parent_routine(
pid_t child_pid = 13504, int total_sig = 10)
at parent.c line 16

16 B=| printf("%d. Parent sleeping for %d seconds\n", sig_ct, isec);

1: sig.ct = 6

(parent)

Note the order of the displayed lines may vary. For the Fortran and Ada programs, Night-
View prints the argument or argumentsgarent_routine differently.

Because of thggnore command on breakpoint 8, the parent process sent only five out of
ten signals to the child process before the breakpoint was hit. The source code is written
so that the lines that begin with a number come from the parent process, and the lines that
begin with the word "Child" come from the child process. The lines that mention signal
SIGUSRL appear because thandle command is implicitly set tgrint and explicitly

set tonostop . Two lines show where execution stopped; these lines will differ depend-
ing on your programming language. Another line shows the valsigott because of
thedisplay command.

Note that theprint total_sig output did not appear because NightView returned
your prompt before the commands in tbemmands command stream completed their
output.

Exercise:

To see therint total_sig output, enter a spa@ndReturn.

Tutorial

WARNING

If you pressReturn withoutthe space, you will repeat then-
tinue command.)

NightView responds with the following:

$4: total_sig = 10
(parent)

Patching Your Program

You just watched the parent process sleep for 2 seconds between sending signals to the
child process. Look at how this is done in the source.

Exercise:

List the source file for th@arent_routine so the display is centered around line 13.

Solution:

You should enter one of:

(parent) list parent.c:13 (for the C program)
(parent) | parent.c:13 (for the C program)
(parent) list parent.f:13 (for the Fortran program)
(parent) | parent.f:13 (for the Fortran program)
(parent) list parent.a:13 (for the Ada program)
(parent) | parent.a:13 (for the Ada program)

You will notice that the variablésec always has the value 2. Instead, you could vary the
sleep intervaisec by assigning it a value from 1 through 3, based on the signal count
sig_ct . Hint: In C the%operator, in Fortran thenod function, and in Ada theem
operator may be useful.

Exercise:

Read about theatchpoint command. In the parent process the line that displays
how long the parent is sleeping, patch in the assignment expression just described.

Solution:
For the C program, you should enter:

(parent) patchpoint at 16 eval isec = sig_ct % 3 + 1
For the Fortran program, you should enter:

(parent) patchpoint at 16 eval isec = mod(sig_ct ,3)+1

4-27

NightView User’s Guide

For the Ada program, you should enter:
(parent) patchpoint at 15 eval isec := sig_ct re m3+1
For the C program, NightView responds with the following:
local:15625 Patchpoint 9 set at parent.c:16
For the Fortran program, NightView responds with the following:
local:15625 Patchpoint 9 set at parent.f:16
For the Ada program, NightView responds with the following:

local:15625 Patchpoint 9 set at parent.a:15

Disabling a Breakpoint

You want to runmsgto completion without stopping at breakpoint 8.

Exercise:

Read about thelisable command. Use it to disable breakpoint 8 (set in section
“Attaching an Ignore Count to a Breakpoint” on page 4-23).

Solution:
You should enter one of:

(parent) disable 8
(parent) disa 8

Examining Eventpoints

4-28

An eventpoints a generic term which includes breakpoints, patchpoints, monitorpoints,
agentpoints, and tracepoints. You want to examine the locations, associated commands,
and statistics related to the eventpoints you have smisig

Exercise:

Read about thnfo eventpoint command. Use it to examine all eventpoints.

Solution:
You should enter one of:

(parent) (local) info eventpoint

Tutorial

(parent) (local) i ev
(parent) (all) info eventpoint
(parent) @l i ev

For the C program, NightView responds with the following:

Eventpoints for process local:15625:

ID Typ Enb Where
B Y main.c:25

B Y main.c:30

#crossings=1 #hits=1

7 B Y parent.c:16
only if isec == total sig
#crossings=6

8 B N parent.c:16
#crossings=6 #hits=1
commands:

print total_sig

9 P Y parent.c:16

eval = isec = sig ct % 3 + 1

Eventpoints for process local:13504:

ID Typ Enb Where

4 B Y main.c:18
#crossings=1 #hits=1
5 B Y main.c:25
#crossings=1 #hits=1
6 B Y main.c:30
(parent)

For the Fortran program, NightView responds with the following:

Eventpoints for process local:15625:

ID Typ Enb Where
2 B Y mainf2l
3 B Y mainf:23
#crossings=1 #hits=1

7 B Y parentf:16
only if isec .eq. total_sig
#crossings=6
8 B N parent.f:16
#crossings=6 #hits=1
commands:
print total_sig
9 P Y parentf:16
eval = isec = mod(sig ct, 3) + 1

Eventpoints for process local:13504:

4-29

NightView User’s Guide

4 B Y mainf2l
#crossings=1 #hits=1
5 B Y main.f:23
6 B Y mainf15
#crossings=1 #hits=1
(parent)

For the Ada program, NightView responds with the following:

Eventpoints for process local:15625:

ID Typ Enb Where
2 B Y maina?25
3 B Y maina?27
#crossings=1 #hits=1

7 B Y parent.a:15
only if isec = total_sig
#crossings=6
8 B N parenta:15
#crossings=6 #hits=1
commands:
print total_sig
9 P Y parenta:l5
eval = isec := sig_ct rem 3 + 1

Eventpoints for process local:13504:

ID Typ Enb Where
4 B Y maina25
#crossings=1 #hits=1
5 B Y maina:27

6 B Y mainal8
#crossings=1 #hits=1

(parent)

NightView displays all eventpoints for procekxal:15625 followed by the event-
points for procestocal:13504

Breakpoints 1, 2, and 3 were set in “Setting the First Breakpoints” on page 4-9. Breakpoint
1 has no entry because it was deleted in “Removing a Breakpoint” on page 4-22. Break-
points 2 and 3 are still enabled. Breakpoint 3 has been crossed once and hit once. This
means that its line has been executed once and stopped on once.

When the child process was forked, it inherited the parent process’s breakpoints. The
child’s breakpoints 4, 5, and 6 correspond to the parent’s breakpoints 1, 2, and 3. The
order of the eventpoint numbers for inherited eventpoints is not necessarily the same as in
the parent.

Breakpoint 7 was set in “Setting Conditional Breakpoints” on page 4-23 and is still
enabled; note that NightView displays the condition on this breakpoint. This breakpoint

4-30

Tutorial

has been crossed six times without being hit. This means that the line has been executed
six times, but the condition has not been true yet.

Breakpoint 8 was set in “Attaching an Ignore Count to a Breakpoint” on page 4-23 and
was disabled in “Disabling a Breakpoint” on page 4-28; note that NightView displays the
commandsrint total_sig) attached to this breakpoint. This breakpoint has been
crossed six times and has been hit only once. This means that the line has been executed
six times, but thegnore command has prevented the breakpoint from being hit more
than once.

Patchpoint 9 was set in “Patching Your Program” on page 4-27 and is still enabled; note
that NightView displays the expression associated with this patchpoint. This patchpoint
has not been crossed or hit yet so these statistics are omitted from the display.

Continuing to Completion

There’s nothing else to look at, so you decide to msg to completion.

Exercise:

Use thecontinue command to continue execution.

Solution:
You should enter one of:

(parent) continue
(parent) c

NightView responds with something like this:

6. Parent sleeping for 1 seconds

7. Parent sleeping for 2 seconds

Process local:13504 received SIGUSR1

Child got ordinal signal #6

8. Parent sleeping for 3 seconds

Process local:13504 received SIGUSR1

Child got ordinal signal #7

9. Parent sleeping for 1 seconds

Process local:13504 received SIGUSR1

Child got ordinal signal #8

10. Parent sleeping for 2 seconds

Process local:13504 received SIGUSR1

Child got ordinal signal #9

Process local:13504 received SIGUSR1

Child got ordinal signal #10

Process local:15625 is about to exit normally
Process local:13504 is about to exit normally
#1 0x1000285c in main() at main.c line 34
#1 0x1000285c in main() at main.c line 34

4-31

NightView User’s Guide

34 < exit(0);
34 <> exit(0);
--> Undisplayed items:

1: (print) sig_ct
(parent)

Note the order of the displayed lines may vary.

The source code is written so that the lines that begin with a number come from the parent
process, and the lines that begin with the word "Child" come from the child process. Note
that the sleep interval varies from 1 through 3 because of the patch you made. The lines
that mention signasiGUSRL appear because tliandle command is implicitly set to

print and explicitly set tanostop .

The last two lines say thaig_ct is not displayed. This message appears because of the
display command and because thig_ct variable is not visible at this point in the
parent process. For the Fortran prograsig, ct is displayed, because it is still avail-
able.

Leaving the Debugger

4-32

The tutorial is over.

Exercise:

Read about thguit command. Use it to leave the debugger.

Solution:
You should enter one of:

(parent) quit
(parent) q

Neither process has completely exited, so NightView asks the following question:

Kill all processes being debugged?

Exercise:

Make the processes go away.

Solution:
You should respond:
Kill all processes being debugged? y

NightView responds with:

Tutorial

You are now leaving NightView...
Process local:13504 exited normally
Process local:15625 exited normally
Dialogue local has exited.

4-33

NightView User’s Guide

4-34

Tutorial - GUI

5
Tutorial - GUI

This is the tutorial for the graphical user interface (GUI) version of NightView. Night-
View’s graphical user interface runs only on X servers. For more information about the
graphical user interface, see Chapter 9 [Graphical User Interface] on page 9-1. You may
also be interested in the command-line version of this chapter in Chapter 4 [Tutorial] on
page 4-1. There is a much shorter tutorial in Chapter 2 [A Quick Start - GUI] on page 2-1.

About the Tutorial - GUI

This tutorial shows only the most common debugger commands and features. It expects
you to know the basics about window system concepts, processes, and signals, but you do
not need to know about NightView and debugging concepts.

The supplied tutorial program spawns a child process. The parent writes a message to std-
out, sleeps, sends signailusRL to the child, and loops. The child writes a message to
stdout when it receives the signal.

Become familiar with the tutorial’'s source code; see Chapter G [Tutorial Files] on page

G-1 or the files under thausr/lib/NightView/Tutorial directory. The source
files are:

C Fortran Ada

msg.h msg.i - Defines constants

main.c main.f main.a Forks a child and calls other rou-

tines
parent.c parent.f parent.a Sends signals to the child
child.c child.f child.a Receives signals from the parent

This tutorial takes at least two hours to do. Each section must be performed in order. If
you do not have two hours, you may want to see Chapter 2 [A Quick Start - GUI] on page
2-1.

Exercises in this tutorial tell you to do things and ask you questions. Make the most of this
tutorial and the manual; follow the steps below:

1. Look up the information.
2. Try to figure out the answer on your own.

3. Apply the provided solution in the correct windowVérning: Perform
the solutions exactly as indicated, or your results may differ from those

5-1

NightView User’s Guide

provided in later steps of the tutorial. Do not do anything until you see the
words "you should" in the tutorial.)

You do not need to follow cross references in this tutoniglessyou are explicitly told to
read them.

Sometimes NightView displays a status so briefly that it seems to flash before being
replaced by another status. This tutorial documents only the last status displayed.

This tutorial often displays processs. Your proces#s will probably differ from those
shown. Also, the tutorial displays hexadecimal addresses. The addresses for your pro-
gram may differ from those shown. Additionally, the line breaks in your output may differ
from those shown because the lengths of displayed data items may vary.

The code produced when you create your program may vary slightly from the programs
used to prepare this tutorial. In particular, the line shown as the return address from a sub-
program may be different from what is shown here.

Some messages might not appear, or additional messages might appear, depending on
your environment.

Some of the shortened commands that appear in this tutorial are not official abbreviations
for NightView commands; however, you may abbreviate NightView commands and some

keywords to the shortest unambiguous prefix. For more information, see “Command Syn-
tax” on page 7-1. You cannot abbreviate file names, symbolic names, or NightView con-

struct names.

Field names that begin with the word "dialogue" are part of the Dialogue Window. Field
names that begin with the word "debug" are part of the Debug Window.

You could run this entire tutorial with commands and operations from the keyboard.
However, to reduce confusion, use the mouse whenever possible during this tutorial. Use
mouse button 1 when you are told to click, drag, and select.

Creating a Program - GUI

5-2

NightView is mainly used with executables that contain debug information. To create
such a program, compile source files with a particular option, and link edit them.

Exercise:

Create a directory namad/iew where you can create files for this tutorial, and move
into that directory.

Solution:
You should enter:

$ mkdir nview
$ cd nview

Tutorial - GUI

Note: do not enter th§. It is part of the shell prompt.

Exercise:

Use the manual to find out what compiler option is necessary for debugging. (Hint: use
the index.)

Solution:

From the indexCompiling has this information. Theg compiler option puts debug
information into an executable.

Exercise:

Decide what language program you want to debug.nbBtcopy the source files from the
Just/lib/NightView/Tutorial directory, just compile and link these files. Make
themsg program contain debug information. What command or commands did you use?

Solution:
For C, you should enter:

$ cc -g -0 msg /usr/lib/NightView/Tutorial/*.c
For Fortran, you should enter:

$ f77 -g -0 msg /usr/lib/NightView/Tutorial/*.f
For MAXAda, you should enter:

$ /usr/ada/bin/a.mkenv -g

$ /usr/ada/bin/a.path -1 obsolescent

$ /usr/ada/bin/a.intro /usr/lib/NightView/Tutorial/*.a

$ /usr/ada/bin/a.partition -create active -main main
msg

$ /usr/ada/bin/a.build -v msg

$ /usr/ada/bin/a.rmenv .

For HAPSE Ada, you should enter:

$ Jusr/hapse/bin/a.mklib -g -f

$ /usr/hapse/bin/a.make -v -lib . -0 msg main \
-f /usr/lib/NightView/Tutorial/*.a

$ /usr/hapse/bin/a.rmlib

You should now have ensg program with debug information in younview directory.
Note that for this tutorial, the source files showlot be in this directory.

5-3

NightView User’s Guide

Starting NightView - GUI

You are ready to start up NightViewith the graphical user interface.

Exercise:

Read how to invoke the graphical user interface of NightView. (You can find this infor-
mation in the manual, on the man page, or by invokiwgew with the-help option.)
Start up the graphical user interface of NightView.

Solution:

In the index,Starting the debugger, Invoking the debugger, andnview , invoking have
this information. See Chapter 6 [Invoking NightView] on page 6-1. You should enter:

$ nview
Note that in this tutoriamsg does not appear on thwiew invocation line.
NightView responds by displaying a Dialogue Window.

A Dialogue Window is used to control a NightView dialogue and for input and output with
the dialogue shell. A dialogue contains a shell where you run shell commands and debug
running programs. Each dialogue has a name; the default dialotpoais . The dialogue
qualifier area shows the command qualifier, for this dialodaeal . For information

about dialogues, see “Dialogues” on page 3-4. For information about Dialogue Windows,
see “Dialogue Window” on page 9-16. For information about command qualifiers, see
“Qualifiers” on page 3-4.

The dialogue 1/O area displays:

{usr/lib/NightView- releaséReadyToDebug
$ /usr/lib/NightView- releaséReadyToDebug
$

NightView runs theReadyToDebug program automatically as part of initialization. You
might see only one echo dtisr/lib/NightView- releaséReadyToDebug ,
depending on how quickly the dialogue shell stareddaseis the NightView release
level). For information abouReadyToDebug , see “ReadyToDebug” on page 3-7. Note
that in this tutorial the dialogue shell promptis “$ ”. Yours may differ.

Getting General and Error Help - GUI

5-4

This tutorial expects you to look up information in the NightView manual. You may read
the hard copy or the similar online manual. The online manual is accessible through each
major window’sHelp menu.

Tutorial - GUI

Exercise:

Try to use the non-existent "foo" command.

Solution:

In the dialogue command area, you should enter:
foo

and presfRketurn.

NightView displays in the dialogue message area:

Error: Unrecognizable command "foo". [E-command_proc003]

Exercise:

Read about this error message.

Solution:
In the Dialogue Window, you should click on th&elp menu and sele@®n Last Error.
The Help Window displays additional information about your most recent error.

Read the information. Note th&ummary of Commands appears highlighted.

Exercise:

Read about getting information about all NightView commands.

Solution:
In the Help Window, you should click oBummary of Commands.

The Help Window displays a list of NightView commands with each command high-
lighted. The vertical and horizontal scroll bars next to the help display let you examine the
rest of the help text.

Exercise:

Read about the menu bar in the Dialogue Window.

Solution:
In the Dialogue Window, you should click on thtelp menu and sele@®n Context.
NightView changes your pointer to a modified question mark.

Click on the menu bar of the Dialogue Window.

5-5

NightView User’s Guide

NightView restores your pointer. The Help Window displays information about the Dia-
logue Window menu bar.

When this tutorial asks you to read about buttons, use this same procedure.

For now, you are finished using help.

Exercise:

Close the Help Window.

Solution:

In the Help Window, you should click on tHeile menu and seledExit. (The Help Win-
dow is running a separate program, so only that program will exit. NightView will still be
running.)

The Help window goes away.

This tutorial discusses théelp menu again in “Debugging All Child Processes - GUI” on
page 5-8. For more information about help, see “GUI Online Help” on page 9-2.

Starting Your Program - GUI

5-6

Most NightView features operate on existing processes in a running program. Because
you did not specify a program when you started the debugger, there haven't been any pro-
cesses to debug. You must starsg now to debug it and to use most of the rest of the
NightView features in this tutorial.

Exercise:

Start themsg program, and have it wait for debugging.

Solution:

In the dialogue 1/O area, you should enter:
Jmsg

and presfRketurn.

The preceding "./" is a safety precaution. Avoid accidentally debugging the wrong pro-
gram by always providing some path information.

NightView displays the Principal Debug Window. (You can create other Debug Windows,
but you won't do that for this tutorial.)

The debug identification area shows thatg is the executable program the process is run-
ning.

Tutorial - GUI

The debug message area shows:

New Process: local: 15625 parent pid: 17882
Process local:15625 is executing /users/bob/nview/msg.
Reading symbols from /users/bob/nview/msg...done
Executable file set to

/users/bob/nview/msg

Switched to process local:15625.

If msgwas dynamically linked, NightView also displays the following messages:

Program was dynamically linked.

Dynamic linking completed.

The file " file" does not contain symbolic debug
information,

only external symbols will be visible.

The long messagmaynot appear.

NightView shows the process (PID) of the new process and the path where your execut-
able exists. YoupID and the path where your executable exists will probably differ from
those in this tutorial. For information about processes, see “Programs and Processes” on
page 3-2.

The messag8witched to process local:15625. indicates that this process is
thecurrently displayed process

The debug source file name field shows the name of the source file that is being displayed
in the debug source displaypain.c , main.f , ormain.a .

In the debug source display, NightView displays humbered source lines. Executable lines
have an asterisk {) source line decoration beside the line numbers. For more information
about source line decorations, see “Source Line Decorations” on page 7-62. The vertical
and horizontal scroll bars next to the debug source display let you examine the rest of the
source file.

The debug status area shows the st&taspped for exec. This means that the process
has justexec(2) ’ed a new program image.

The debug qualifier area shows the qualifiecal:15625

The debug group area has an entry for this process. The entry shows the qualifier,
local:15625 , the name of the program this process is runningg, and the status of
the processStopped for exec . See “Debug Group Area” on page 9-35.

The Switch To button and the buttons below the lalsalitch To Stopped Process
are disabled (dimmed) because there is only one process present at this time.

The Dialogue Window lists an entry for process 15625 and says the process is running
msg.

Note that by appending an ampersa&jitp the./msg , you could have started your pro-
gram in the background of the dialogue shell. This is generally a good idea because it
gives you the flexibility to debug multiple programs in one NightView session; however,
in this tutorial, you will be supplying the program with input, so the program needs to be
running in the foreground.

5-7

NightView User’s Guide

Note also that although this tutorial does not ask you to do so, you can rerun a program by

invoking it again.

Debugging All Child Processes - GUI

5-8

By default, NightView debugs child processes only when they have caled(2) . In
the msg program, the child process never calleec . To be able to debug this child pro-

cess, you must use thet-children commandbeforemsg forks the child process.
Also, you have to issue thget-children commandafter invoking ./msg so the
set-children command can be applied to existing processes.

Exercise:

Read about theet-children command.

Solution:

You should click on thédelp menu of either window and sele®in Commands. Scroll

down to theset-children command. Click on the highlighted text. Read the infor-
mation that the Help Window displays about set-children command.
Exercise:

Use theFile menu to close the Help Window.

Solution:
In the Help Window, you should click on tHéile menu and seledExit.
The Help Window goes away.

When this tutorial asks you to read about commands, use this same procedure.

Exercise:

Issue theset-children command so that the child procesaiisg can be debugged.

Solution:
In the debug command area, you should enter one of:

set-children all
set-c a

and presfRketurn.

NightView echoes this command in the debug message area.

Tutorial - GUI
Handling Signals - GUI

By default, signals stop execution under the debugger. Inntbgprogram, the parent
process sends signalGUsRL to the child process. It then sleeps as a crude way of syn-
chronizing the sending and receiving of signals. Having execution stop because of this
signal is not desirable in this case.

Exercise:

Read about theandle command. Use it to adjust the default handling of sheusrL
signal so that the process does not stop.

Solution:
In the debug command area, you should enter one of the following:

handle SIGUSR1 nostop
ha usrl nos

and presfRketurn.
NightView echoes this command and displays in the debug message area:
Signal handling complete

Note: you had to issue theandle commandafterinvoking./msg so thehandle
command could be applied to existing processes.

Setting the First Breakpoints - GUI

A breakpoint is set on the executable statement where you want program execution sus-
pended. The program stops at the breakpbéforeit executes the instruction where the
breakpoint is set.

Exercise:

Read about thBreakpoint debug command button in the Debug Window. Set a separate
breakpoint to stop at each of the following places:

* The line that prompts for the number of signals to send
* The call tochild_routine

* The comment before the call Iarent_routine

5-9

NightView User’s Guide

Solution:

You should alternate between clicking on a prospective breakpoint line in the debug
source display and clicking on thigreakpoint debug command button. Pause between
each click so that NightView can respond.

For the C program, the lines are 18, 25, and 30. NightView displays the following infor-
mation in the debug message area.

local:15625 Breakpoint 1 set at main.c:18
local:15625 Breakpoint 2 set at main.c:25
local:15625 Breakpoint 3 set at main.c:30

For the Fortran program, the lines are 15, 21, and 23. NightView displays the following
information in the debug message area.

local:15625 Breakpoint 1 set at main.f:15
local:15625 Breakpoint 2 set at main.f:21
local:15625 Breakpoint 3 set at main.f:23

For the Ada program, the lines are 18, 25, and 27. NightView displays the following infor-
mation in the debug message area.

local:15625 Breakpoint 1 set at main.a:18
local:15625 Breakpoint 2 set at main.a:25
local:15625 Breakpoint 3 set at main.a:27

An eventpoints a generic term which includes breakpoints, patchpoints, monitorpoints,
agentpoints, and tracepoints. NightView gives each eventpoint an ordinal identification
number beginning at 1.

Note that you can put breakpoints only on executable statements. NightView did not give
you an error for attempting to put a breakpoint on a comment line. Instead, it put the
breakpoint on the executable statement that immediately follows the comment line. How-
ever, the message in the debug message area has the number of the line you clicked on.

NightView changes the debug source display when you set a breakpoint. Note that each
line with a breakpoint on it now hast(for breakpoint) source line decoration.

Continuing Execution - GUI

5-10

To make use of the breakpoints you set, you must allowntkg program to execute up to
the statement with the breakpoint.

Exercise:

Read about thResume debug command button in the Debug Window. Use it to con-
tinue program execution up to the statement with the breakpoint.

Tutorial - GUI

Solution:
In the Debug Window, you should click on tiResume button.

The debug status area shows the st&tiepped at breakpoint 1. This means that the
process hit breakpoint number 1. The debug group area shows the same status.

NightView changes the source line decoration on the statement with the breakpBint to
TheB still indicates a breakpoint, and tkeindicates that execution is stopped there.

For the C program, NightView displays the following in the debug message area:

local:15625: at Breakpoint 1, 0x10002818 in main() at
main.c line 18

For the Fortran program, NightView displays the following in the debug message area:

local:15625: at Breakpoint 1, 0x10003878 in main() at
main.f line 15

For the Ada program, NightView displays the following in the debug message area:

local:15625: at Breakpoint 1, 0x10010b18 in main() at
main.a line 18

Not Entering Functions - GUI

Execution is stopped at the line that prompts for the number of signals to send. You don't
want to enter the code for the output statement (or function) because it is part of the
library, not part of your program.

Exercise:

Read about thé&lext debug command button in the Debug Window. Use it to skip over
the output statement (or function).

Solution:
In the Debug Window, you should click on tiNext button.

Themsg program writes the prompt "How many signals should the parent send the
child?" in the dialogue 1/O area.

In the debug source display, NightView changes the source line decoration of the next line
to =, which shows that execution is stopped there.

The debug status area and the debug group area show the Stapysed after step.
This means that the process has finished a stepping command.

5-11

NightView User’s Guide
Entering Input - GUI

You must respond to thesg program prompt "How many signals should the parent send
the child?".

Exercise:

Send ten signals.

Solution:
In the dialogue 1/O area, you should enter:
10

and presfRketurn.

Continuing Execution Again - GUI

Before you can examine aspectgafent_routine andchild_routine , you must
get NightView to stop at the calls to these routines.

Exercise:

Continue executing the program so it stops at the next statement with a breakpoint.

Solution:
In the Debug Window, you should click on tiesume debug command button.

The debug status area and the debug group area show the Stapysed at break-
point 3. This means that the process hit breakpoint number 3.

For the C program, NightView displays the following in the debug message area:

local:15625: at Breakpoint 3, 0x1000284c in main() at
main.c line 31

For the Fortran program, NightView displays the following in the debug message area:

local:15625: at Breakpoint 3, 0x10003904 in main() at
main.f line 24

For the Ada program, NightView displays the following in the debug message area:

local:15625: at Breakpoint 3, 0x10010bdc in main() at
main.a line 28

5-12

Tutorial - GUI

The source line decoration is nowBs. TheB still indicates a breakpoint, and theindi-
cates that execution is stopped there.

The debug group area has a new entry for the child process. The child process is the one
with the statusNew Process.

The Switch To button and the buttons below the lalsalitch To Stopped Process
are now enabled (not dimmed).

You would like to view the child process in the Debug Window.

Exercise:

Read about the debug group area. Switch to the child process.

Solution:

In the process list of the debug group area, you should click on the entry for the child pro-
cess. Then you should click on tiavitch To button.

Now the Debug Window is displaying the child process.

The debug identification area still shows timaggis the executable program the process in
this window is running. (The child is executing the same program as the parent.) The
qualifier specifier field now shows the qualifier of the child process.

For the C program, the debug message area shows:

Switched to process local:13504.
New process: local:13504 parent pid: 15625
#0 0x10002838 in main() at main.c line 20

For the Fortran program, the debug message area shows:

Switched to process local:13504.
New process: local:13504 parent pid: 15625
#0 0x100038e4 in main() at main.f line 17

For the Ada program, the debug message area shows:

Switched to process local:13504.
New process: local:13504 parent pid: 15625
#0 0x10010bc8 in main() at main.a line 23

In this example, the child process has proaesk3504, and the parent process has process
ID 15625. Note that your processs will differ. Note also that after théork , only the
parent process continued execution; the child process is still &rtke.

The debug source display shows the main program because execution is stopped in a rou-
tine (fork(2)) which is hidden because it is uninteresting. NightView usually does not
show you system library routines. See “Interesting Subprograms” on page 3-24< The
source line decoration indicates that this line made a subprogram call which has not yet
returned.

5-13

NightView User’s Guide

The debug status area shows the stétesv process. This means that the process has
just been created byfark(2) call in the parent process. The process is stopped. See
“Multiple Processes” on page 3-2.

The debug qualifier area shows the qualiflegal: 13504

The Dialogue Window lists entries for processes 15625 and 13504.

Catching up the Child Process - GUI

5-14

Exercise:

Get thechild process to continue execution up to the breakpoint on the call to
child_routine (line 25 inmain.c , line 21 inmain.f , and line 25 ifMmain.a).

Solution:

In the Debug Window, with thehild as the currently displayed process, you should click
on theResume debug command button.

For the C program, NightView displays in the debug message area:

local:13504: at Breakpoint 5, 0x10002840 in main() at
main.c line 25

For the Fortran program, NightView displays in the debug message area:

local:13504: at Breakpoint 4, 0x100038fc in main() at
main.f line 21

For the Ada program, NightView displays in the debug message area:

local:13504: at Breakpoint 4, 0x10010bd0 in main() at
main.a line 25

The debug source file namernsain.c , main.f , ormain.a .

NightView puts aB= source line decoration in the debug source display on line 25 for the
C and Ada programs and line 21 for the Fortran program.

The debug status area and the debug group area show the Stapysed at break-

point 5. This means that the process hit breakpoint number 5. Breakpoint 5 in the child
corresponds to breakpoint 2 in the parent. Inherited eventpoints get new identifiers, but the
order of the eventpoint identifiers is unpredictable, so your breakpoint may have a differ-
ent number.

Tutorial - GUI
Verifying Data Values - GUI

You want to look at the value of variables in thresg program.

Exercise:

Read about th@rint debug command button in the Debug Window. Use it to check that
thetotal_sig variable has the value 10.

Solution:

In the debug source display of the Debug Window, start at one side of any instance of the
total_sig variable, hold down mouse button 1, drag it across the entire variable name,
and release. (Alternatively, you could double click on the variable name where it appears
surrounded by spaces.) Only the variable name should be highlighted. Click Bnitite
button.

NightView displays in the debug message area:
$1: total_sig = 10

The Print button always prints integers in decimal. NightView keeps a history of printed
values. Thebl means that this is the first value in this history. For more information
about the printed value history, see “Value History” on page 3-30.

Note that if you had looked at thietal_sig variableafter its last use, you might have
seen gibberish. This happens when the location holding a value gets overwritten. For
more information, see “Optimization” on page 3-30. In the Fortran program,
total_sig was put in COMMON so you could consistently see its value in the tutorial.

Listing the Source - GUI

You want to look at the source code faild_routine

Exercise:

Read about the Debug WindowSource menu’sList Function/Unit... item in
“Debug Source Menu” on page 9-22. With tharent as the currently displayed process,
use this item to display the source codedbild_routine

Solution:

You should switch to th@arent process by clicking on the parent process’s entry in the
debug group area process list and then clicking onSkhetch To button. Then you
should click on thé&Source menu, and seledtist Function/Unit....

5-15

NightView User’s Guide

After pressingSwitch To, Switched to process local:15625 appears in the debug
message area. The debug status area sBooyped at breakpoint 3 . The debug
source display shows that execution is stopped at the cprent_routine

After clicking in theSource menu, NightView puts up th8elect a Function/Unit
dialog box.

Exercise:

Read about th&earch button in theSelect a Function/Unit dialog box. Use it to
search forchild_routine

Solution:

IntheSelect a Function/Unit dialog box, you should entehild_routine as the
regular expression, and click on tBearch button. (For more information about regular
expressions, see “Regular Expressions” on page 7-12.)

NightView finds thechild_routine function and puts it in the list.

Exercise:

Read about th©K button in theSelect a Function/Unit dialog box. Use it to change
the debug source display.

Solution:
IntheSelect a Function/Unit dialog box, you should click on th@K button.
NightView closes th&Select a Function/Unit dialog box.

NightView changes the debug source file namehtdd.c , child.f , orchild.a
and the debug source display shows the source code.

Entering Functions - GUI

5-16

At this point, the parent process is about to pament_routine , and the child process
is about to rurchild_routine

Exercise:
Change to group process mode.

Read “Group Process Mode” on page 9-14.

Tutorial - GUI

Solution:

From the debug menu bar, you should sel@dcoup Process Mode from theView
menu. The debug qualifier area displd@oup Mode] . NightView displays this mes-
sage in the debug message ahanged to group process mode

Exercise:

Read about th&tep debug command button. Use tBéep button tosimultaneously
enter both routines.

Solution:
In the debug command button area, you should click orSte button.

Because both the parent and child processes are listed in the debug group area of this
Debug Window, and the Debug Window is in group process modetap button causes
both processes to step.

For the C program, NightView displays in the debug message area:

#0 0x10002884 in child_routine(int total_sig = 10) at
child.c line 14
#0 0x10002944 in parent_routine(pid_t child_pid =
13504, int total_sig = 10)

at parent.c line 11

For the Fortran program, NightView displays in the debug message area:

#0 0x1000393c in child_routine() at child.f line 17
#0 0x10003a48 in parent_routine(INTEGER child_pid /
13504 /)

at parent.f line 15

For the Ada program, NightView displays in the debug message area:

#0 0x100108fc in child_routine(total_sig : IN integer =
10) at child.a line 26
#0 0x10010578 in parent_routine(child_pid : IN pid_t =
13504,

total_sig : IN integer = 10) at
parent.a line 6

NightView tells you when &tep command takes you into (or out of) a subprogram call.
The lines that begin wit#0 announce that you have enterehild_routine in the
child process angarent_routine in the parent process.

Note that the order of the lines displayed may vary.

Both theState: fields in the debug group area show the ste&dtispped after step.
This means that the processes have finished a stepping command. The debug status area
shows the same status for the parent process.

NightView changes the debug source file name#&oent.c , parent.f | or par-
ent.a , and the debug source display shows the source code.

5-17

NightView User’s Guide

Line 11 ofparent.c , line 15 ofparent.f , or line 6 ofparent.a in the debug source
display has the source line decoration, which indicates that execution is stopped there.

Examining the Stack Frames - GUI

It is often helpful to see how you got to a certain point in a program.

Exercise:

Read about theacktrace command. Use it to display the list of currently active stack
frames forboth processes.

Solution:
In the debug command area, you should enter one of:

backtrace
bt

and presfRketurn.
NightView echoes this command in the debug message area.
For the C program, NightView displays in the debug message area:

Backtrace for process local:15625
#0 0x10002944 in parent_routine(pid_t child_pid =
13504, int total_sig = 10)

at parent.c line 11
#1 0x10002854 in main() at main.c line 31
Backtrace for process local:13504
#0 0x10002884 in child_routine(int total_sig = 10) at
child.c line 14
#1 0x10002848 in main() at main.c line 25

For the Fortran program, NightView displays in the debug message area:

Backtrace for process local:15625
#0 0x10003a48 in parent_routine(INTEGER child_pid /
13504 /)
at parent.f line 15
#1 0x10003910 in main() at main.f line 24
Backtrace for process local:13504
#0 0x1000393c in child_routine() at child.f line 17
#1 0x10003900 in main() at main.f line 21

For the Ada program, NightView displays in the debug message area:

Backtrace for process local:15625
#0 0x10010578 in parent_routine(child_pid : IN pid_t =
13504,

5-18

Tutorial - GUI

total_sig : IN integer = 10) at
parent.a line 6
#1 0x10010be4 in main() at main.a line 28
#2 0x10022750 in <anonymous>()
Backtrace for process local:13504
#0 0x100108fc in child_routine(total_sig : IN integer =
10) at child.a line 26
#1 0x10010bd8 in main() at main.a line 25
#2 0x10022750 in <anonymous>()

On lines labeledt0, NightView shows its location within the current routine. On lines
labeled#1, NightView shows the location of the call to the current routine within the call-
ing routine.

In the Ada program, stack frame #2 is from the library level elaboration routine, which has
no name.

Moving in the Stack Frames - GUI

You may want to move among the stack frames to examine and modify variables, run
functions, etc., in other frames. For example, suppose that you want to examine the value
of local variabletracefile in main .

Exercise:

Change back to single process mode and make surgatiemt process is the currently dis-
played process.

Solution:

From the debug menu bar, you should seleotgle Process Mode from theView
menu. The debug qualifier area displays the qualifier for the currently selected process.
NightView displays these messages in the debug message area:

Changed to single process mode.
Switched to process local:15625.

If the parent process is not the currently displayed process, you should switch to it.

Exercise:

Read about theap command. Use thep command to make the current stack frame of the
parent process benain .

Solution:

In the debug command area, you should enter:

up

5-19

NightView User’s Guide

and presfRketurn.
NightView echoes this command in the debug message area.

NightView changes the debug source file namenttin.c , main.f , ormain.a , and the
debug source display shows the source code.

For the C program, NightView displays in the debug message area:

Output for process local:15625
#1 0x10002854 in main() at main.c line 31

For the Fortran program, NightView displays in the debug message area:

Output for process local:15625
#1 0x10003910 in main() at main.f line 24

For the Ada program, NightView displays in the debug message area:

Output for process local:15625
#1 0x10010be4 in main() at main.a line 28

The> source line decoration in the debug source display indicates that execution will
resume there when the called routine returns. This source line decoration appears on line
34 ofmain.c , line 27 ofmain.f , and line 31 ofmain.a .

The < source line decoration in the debug source display indicates that this line made a
subprogram call which has not yet returned. This source line decoration appears on line
31 ofmain.c , line 24 ofmain.f , and line 28 ofmain.a .

Verifying Data Values in Other Stack Frames - GUI

5-20

Frommain, you can examine local variables, run functions, etc.

Exercise:

Use thePrint debug command button to display the value of local varigtaleefile
in main for the parent process.

Solution:

In the debug source display, start at one side of any instance tfitefile variable,

hold down mouse button 1, drag it across the entire variable name, and release. (Alterna-
tively, you could double click on the variable name. Note that this does not work in the C
source because double clicking would highlight text delimited by spaces; in this case, it
would highlight the* with the variable name.) Only the variable name should be high-
lighted. Click on thePrint button.

For the C program, NightView displays in the debug message area:

$2: tracefile = 0x30003100 "msg_file"

Tutorial - GUI

For the Fortran and Ada programs, NightView displays in the debug message area:

$2: tracefile = "msg_file"

Returning to a Stack Frame - GUI

You want to return tcparent_routine

Exercise:

Read about thdown command. Use thdown command to make the current stack frame
of the parent process lparent_routine

Solution:
In the debug command area, you should enter one of:

down
do

and presfRketurn.
NightView echoes this command in the debug message area.
For the C program, NightView displays in the debug message area:

Output for process local:15625
#0 0x10002944 in parent_routine(pid_t child_pid =
13504, int total_sig = 10)

at parent.c line 11

For the Fortran program, NightView displays in the debug message area:

Output for process local:15625
#0 0x10003a48 in parent_routine(INTEGER child_pid /
13504 /)

at parent.f line 15

For the Ada program, NightView displays in the debug message area:

Output for process local:15625
#0 0x10010578 in parent_routine(child_pid : IN pid_t =
13504,

total_sig : IN integer = 10) at
parent.a line 6

NightView changes the debug source file name#&went.c , parent.f , or par-
ent.a , and the debug source display shows the source code.

5-21

NightView User’s Guide

The = source line decoration in the debug source display indicates that execution stopped
there. This source line decoration appears on line 1jasént.c , line 15 ofpar-
ent.f ,and line 6 ofparent.a

Note: it is not meaningful to do down without doing anup first (as you did in section
“Moving in the Stack Frames - GUI” on page 5-19).

Resuming Execution - GUI

5-22

You want to continue the execution of the child process so that it will get signals as soon
as they are sent by the parent process.

Exercise:

Use theResume debug command button to resume execution ofcthiéd process.

Solution:

You should switch to thehild process by clicking on the child process’s entry in the
debug group area process list and then clicking onSkhetch To button. Then you
should click on thdResume button.

After pressingSwitch To, the debug source file shown ¢hild.c , child.f or
child.a .Switched to process local:13504 appears in the debug message area.

After pressingResume, NightView disables (dims) most of the debug command buttons.

The debug status area and the debug group area show theRtatmsng. This means
that the process is currently executing.

Exercise:

The remainder of this tutorial does not deal with the child process directly. Arrange for
the remaining commands to affect only the parent process.

Solution:

You should switch to th@arent process by clicking on the parent process’s entry in the
debug group area process list and then clicking orfwéch To button.

After clicking Switch To, the debug source file name, source display area and status are
changed to their values for the parent. The debug message area Shwitaised to
local:15625 . The buttons that were dimmed for the child process are no longer
dimmed.

Tutorial - GUI
Removing a Breakpoint - GUI

Breakpoint 1 (set in “Setting the First Breakpoints - GUI” on page 5-9) is no longer
needed.

Exercise:

Read about the Debug WindowBventpoint menu'sSummarize/Change... itemin
“Debug Eventpoint Menu” on page 9-24. Use this item to remove breakpoint 1.

Solution:
You should click on th&Eventpoint menu. SelecBummarize/Change....
NightView displays the debug eventpoint summarize/change dialog box.

Three eventpoints appear in the eventpoint list. NightView displays the following mes-
sage below the eventpoint lig:eventpoints were found.

Exercise:

Read about th®elete button in “Debug Eventpoint Summarize/Change Dialog Box” on
page 9-41. Use it to delete the breakpoint.

Solution:
You should select breakpoint 1 from the eventpoint list, and click obtbkete button.

NightView puts up a warning dialog box.

Exercise:

Read the message in the warning dialog box, allow the delete to proceed, and make the
dialog box go away.

Solution:
In the warning dialog box, you should click on tRK button.

NightView closes the warning dialog box and deletes the breakpoint from the eventpoint
list.

NightView displays the following message below the eventpointDstteted 1 event-
point: 1.

You have finished removing this breakpoint.

Exercise:

Make the debug eventpoint summarize/change dialog box go away.

5-23

NightView User’s Guide

Solution:

In the debug eventpoint summarize/change dialog box, you should click odltse
button.

NightView closes the window.

Setting Conditional Breakpoints - GUI

5-24

It is often useful to suspend execution conditionally.

Exercise:

Read about the Debug WindowBventpoint menu’sSet Breakpoint... item in
“Debug Eventpoint Menu” on page 9-24. Use this feature to set a breakpoint on the line
that displays how long the parent is sleepingpiarent_routine ; the breakpoint
should suspend execution when the valuese€ equals the value dbtal_sig

Solution:

In the debug source display, you should click on the line. pament.c andpar-
ent.f ,itisline 16. Forparent.a ,itisline 15. You should click on thEventpoint
menu. SelecBet Breakpoint....

NightView displays the breakpoint dialog box.

Do notpressReturn after you enter the following text.

For the C program, you should enter in th@ndition text input area:
isec == total_sig

For the Fortran program, you should enter in thendition text input area:
isec .eq. total_sig

For the Ada program, you should enter in thendition text input area:
isec = total_sig

You are ready to finish setting the conditional breakpoint.

Exercise:

Save your changes and make the breakpoint dialog box go away.

Solution:
In the breakpoint dialog box, you should click on & button.

NightView closes the breakpoint dialog box.

Tutorial - GUI

For the C program, NightView displays in the debug message area:
local:15625 Breakpoint 7 set at parent.c:16

For the Fortran program, NightView displays in the debug message area:
local:15625 Breakpoint 7 set at parent.f:16

For the Ada program, NightView displays in the debug message area:
local:15625 Breakpoint 7 set at parent.a:15

The indicated line gets B source line decoration in the debug source display.

Attaching an Ignore Count to a Breakpoint - GUI

Sometimes you won't want to monitor each iteration of a loop. For example, assume that
a loop runs many times, and somewhere during the loop an error occurs. You could ignore
the first half of the loop values to determine in which half of the iterations the error
occurred.

Exercise:

Set a breakpoint on the line that displays how long the parent is sleeping in
parent_routine , ignoring the next five iterations.

Solution:

In the debug source display, you should click on the line. parent.c andpar-
ent.f ,itisline 16. Forparent.a ,itisline 15. You should click on thEventpoint
menu. SelecBet Breakpoint....

NightView displays the breakpoint dialog box.
Enter5 in theignore count text input area. Doot pressReturn.

You are ready to finish attaching an ignore count to a breakpoint.

Exercise:

Save your changes and make the breakpoint dialog box go away.

Solution:

In the breakpoint dialog box, you should click on & button.
NightView closes the breakpoint dialog box.

For the C program, NightView displays in the debug message area:

local:15625 Breakpoint 8 set at parent.c:16

5-25

NightView User’s Guide

For the Fortran program, NightView displays in the debug message area:
local:15625 Breakpoint 8 set at parent.f:16
For the Ada program, NightView displays in the debug message area:

local:15625 Breakpoint 8 set at parent.a:15

Attaching Commands to a Breakpoint - GUI

5-26

You can attach arbitrary NightView commands to a breakpoint. They run when that partic-
ular breakpoint is hit.

Exercise:

Attach a command stream that prints out the valu®t#l_sig only when you hit the
breakpoint you set in the previous step (set in “Attaching an Ignore Count to a Breakpoint
- GUI” on page 5-25).

Solution:

You should click on th&Eventpoint menu. SelecBummarize/Change....

NightView displays the debug eventpoint summarize/change dialog box.

Exercise:

Read about th€hange... button in “Debug Eventpoint Summarize/Change Dialog
Box” on page 9-41. Use it to add commands to this breakpoint.

Solution:

Notice that some of the buttons are disabled (dimmed), because you have not yet selected
an eventpoint from the eventpoint list. Select breakpoint 8 from the eventpoint list, which
will enable the buttons, and click on tihange... button.

NightView displays the breakpoint dialog box.

Note that5 is in theignore count text input area from “Attaching an Ignore Count to a
Breakpoint - GUI" on page 5-25.

Do notpressReturn after you enter the following text.
In thecommands text input area, you should enter one of:

print total_sig
p total_sig

Tutorial - GUI

Exercise:

In the breakpoint dialog box, save your changes and make the dialog box go away.

Solution:
In the breakpoint dialog box, you should click on & button.

NightView closes the breakpoint dialog box.

Exercise:

Make the debug eventpoint summarize/change dialog box go away.

Solution:

In the debug eventpoint summarize/change dialog box, you should click odltse
button.

NightView closes the window.

Automatically Printing Variables - GUI

You can create a list of one or more variables to be printed each time execution stops.

Exercise:

Read about thdisplay command. Use display command to display the value of
thesig_ct variable.

Solution:
In the debug command area, you should enter one of:

display sig_ct
disp sig_ct

and presfRketurn.
NightView echoes this command in the debug message area.

Note that thisdisplay = command runs every time execution stops, andptid@ com-
mand from “Attaching Commands to a Breakpoint - GUI” on page 5-26 runs only when
execution stops at a specific breakpoint.

5-27

NightView User’s Guide
Watching Inter-Process Communication - GUI

You already resumed the execution of the child process, so NightView did not wait for the
child process.

Exercise:

Now continue execution for thgarent process.

Solution:
In the Debug Window, you should click on tiResume button.
In the dialogue 1/O area, NightView responds with something like the following:

1. Parent sleeping for 2 seconds
2. Parent sleeping for 2 seconds
Child got ordinal signal #1
3. Parent sleeping for 2 seconds
Child got ordinal signal #2
4. Parent sleeping for 2 seconds
Child got ordinal signal #3
5. Parent sleeping for 2 seconds
Child got ordinal signal #4
Child got ordinal signal #5

Because of the ignore count on breakpoint 8, the parent process sent only five out of ten
signals to the child process before the breakpoint was hit. The source code is written so
that the lines that begin with a number come from the parent process, and the lines that
begin with the word "Child" come from the child process.

The debug status area and the debug group area show the Stapysed at break-
point 8. This means that the process hit breakpoint number 8.

For the C program, NightView displays something like the following in the debug mes-
sage area:

local:15625: at Breakpoint 8, 0x10002950 in
parent_routine(
pid_t child_pid = 13504, int total_sig
= 10)
at parent.c line 16
1: sig ct = 6
$3: total_sig = 10

For the Fortran program, NightView displays something like the following in the debug
message area:

local:15625: at Breakpoint 8, 0x105d0 in parent_routine(
INTEGER child_pid / 13504 /) at

parent.f line 16

1: sig ct = 6

$3: total_sig = 10

5-28

Tutorial - GUI

For the Ada program, NightView displays something like the following in the debug mes-
sage area:

local:15625: at Breakpoint 8, 0x30324 in parent_routine(
child_pid : IN integer = 13504,
total_sig : IN integer = 10) at

parent.a line 15

1: sig ct = 6

$3: total_sig = 10

Initial lines show where execution stopped. One line shows the valsgoft because
of thedisplay command. Another line shows the valuetotal_sig from the
print command attached to breakpoint 8.

Note that the order of the displayed lines may vary.

Patching Your Program - GUI

You just watched the parent process sleep for 2 seconds between sending signals to the
child process. Look at how this is done in the source.

You will notice that the variablésec always has the value 2. Instead, you could vary the
sleep intervaisec by assigning it a value from 1 through 3, based on the signal count
sig_ct . Hint: in C the%operator, in Fortran thenod function, and in Ada theem
operator may be useful.

Exercise:

Read about the Debug WindowEsventpoint menu’'sSet Patchpoint... item in
“Debug Eventpoint Menu” on page 9-24. In tharent processpn the line that displays
how long the parent is sleeping, patch in the assignment expression just described.

Solution:

You should click on thé&Eventpoint menu. SelecBet Patchpoint....

NightView displays the patchpoint dialog box.

Do notpressReturn after you enter the following text.

For the C program, you should enter in thealuate text input area:
isec = sig_ct % 3 + 1

For the Fortran program, you should enter in ¢aluate text input area:
isec = mod(sig_ct, 3) + 1

For the Ada program, you should enter in #healuate text input area:

isec := sig_ct rem 3 + 1

5-29

NightView User’s Guide

You are ready to finish patching your program.

Exercise:

Save your changes and make the patchpoint dialog box go away.

Exercise:
In the patchpoint dialog box, you should click on tB& button.
NightView closes the patchpoint dialog box.

Note that the line in the debug source display with a patchpoint on it now B&s=#for
breakpoint, patchpoint, and execution stopped here) source line decoration.

For the C program, NightView displays in the debug message area:
local:15625 Patchpoint 9 set at parent.c:16

For the Fortran program, NightView displays in the debug message area:
local:15625 Patchpoint 9 set at parent.f:16

For the Ada program, NightView displays in the debug message area:

local:15625 Patchpoint 9 set at parent.a:15

Disabling a Breakpoint - GUI

You want to runmsgto completion without stopping at breakpoint 8.

Exercise:

Disable breakpoint 8 (set in section “Attaching an Ignore Count to a Breakpoint - GUI” on
page 5-25).

Solution:

You should click on th&Eventpoint menu. SelecBummarize/Change....

NightView displays the debug eventpoint summarize/change dialog box.

Exercise:

Read about th®isable button in “Debug Eventpoint Summarize/Change Dialog Box”
on page 9-41. Use it to disable the breakpoint.

Solution:

Select breakpoint 8 from the eventpoint list, and click onBtigable button.

5-30

Tutorial - GUI

The eventpoint list shows that breakpoint 8 is disabled. NightView also displays the fol-
lowing message below the eventpoint IBtisabled 1 eventpoint: 8.

Exercise:

Make the debug eventpoint summarize/change dialog box go away.

Solution:

In the debug eventpoint summarize/change dialog box, you should click odltse
button.

NightView closes the debug eventpoint summarize/change dialog box.

Examining Eventpoints - GUI

You want to examine the types, locations, and statuses of the eventpoints you have set in
msg.

Exercise:

Change to group process mode.

Solution:

From the debug menu bar, you should sel@dcoup Process Mode from theView
menu. The debug qualifier area displd@oup Mode] . NightView displays this mes-
sage in the debug message aehanged to group process mode.

NightView displays in the debug message area:

Process local:13504 received SIGUSR1
Process local:13504 received SIGUSR1
Process local:13504 received SIGUSR1
Process local:13504 received SIGUSR1
Process local:13504 received SIGUSR1

The lines that mention signalGusRL appear because thandle command is implicitly

set toprint and explicitly set tamostop . These messages were saved while the Debug
Window was in single process mode with another process as the currently displayed pro-
cess; now that the Debug Window is in group process mode, messages from all processes
are displayed, including any saved messages.

Exercise:

Examine all eventpoints.

5-31

NightView User’s Guide

Solution:
You should click on th&Eventpoint menu. SelecBummarize/Change....
NightView displays the debug eventpoint summarize/change dialog box.

For the C program, NightView displays in the eventpoint list:

EvptiID Type Enabled Process - Address
2 B Enabled local:15625 at main.c:25
3 B Enabled local:15625 at main.c:30
7 B Enabled local:15625 at parent.c:16
8 B Disabled local:15625 at parent.c:16
9 P Enabled local:15625 at parent.c:16
4 B Enabled local:13504 at main.c:18
5 B Enabled local:13504 at main.c:25
6 B Enabled local:13504 at main.c:30

For the Fortran program, NightView displays in the eventpoint list:

EvptiID Type Enabled Process - Address
2 B Enabled local:15625 at main.f:21
3 B Enabled local:15625 at main.f:23
7 B Enabled local:15625 at parent.f:16
8 B Disabled local:15625 at parent.f:16
9 P Enabled local:15625 at parent.f:16
4 B Enabled local:13504 at main.f:21
5 B Enabled local:13504 at main.f:23
6 B Enabled local:13504 at main.f:15

For the Ada program, NightView displays in the eventpoint list:

EvptiID Type Enabled Process - Address
2 B Enabled local:15625 at main.a:25
3 B Enabled local:15625 at main.a:27
7 B Enabled local:15625 at parent.a:15
8 B Disabled local:15625 at parent.a:15
9 P Enabled local:15625 at parent.a:15
4 B Enabled local:13504 at main.a:25
5 B Enabled local:13504 at main.a:27
6 B Enabled local:13504 at main.a:18

NightView displays all eventpoints for procekxal:15625 followed by the event-
points for procestocal:13504

Breakpoints 1, 2, and 3 were set in “Setting the First Breakpoints - GUI” on page 5-9.
Breakpoint 1 has no entry because it was deleted in “Removing a Breakpoint - GUI” on
page 5-23. Breakpoints 2 and 3 are still enabled.

When the child process was forked, it inherited the parent process’s breakpoints. The
child’s breakpoints 4, 5, and 6 correspond to the parent’s breakpoints 1, 2, and 3. The
order of the eventpoint numbers for inherited eventpoints is not necessarily the same as in
the parent.

5-32

Tutorial - GUI

Breakpoint 7 was set in “Setting Conditional Breakpoints - GUI” on page 5-24 and is still
enabled.

Breakpoint 8 was set in “Attaching an Ignore Count to a Breakpoint - GUI” on page 5-25
and was disabled in “Disabling a Breakpoint - GUI” on page 5-30.

Patchpoint 9 was set in “Patching Your Program - GUI” on page 5-29 and is still enabled.

Exercise:

Make the debug eventpoint summarize/change dialog box go away.

Solution:

In the debug eventpoint summarize/change dialog box, you should click odltee
button.

NightView closes the debug eventpoint summarize/change dialog box.

Exercise:

Change back to single process mode and make surgatiest process is the currently dis-
played process.

Solution:

From the debug menu bar, you should seleotgle Process Mode from theView
menu. The debug qualifier area displays the qualifier for the currently selected process.
NightView displays these messages in the debug message area:

Changed to single process mode.
Switched to process local:15625.

If the parent process is not the currently displayed process, you should switch to it.

Continuing to Completion - GUI

There’s nothing else to look at, so you decide to msg to completion.

Exercise:

Continue execution aisg.

Solution:
In the Debug Window, you should click on tiResume button.

NightView displays in the dialogue 1/O area:

5-33

NightView User’s Guide

6. Parent sleeping for 1 seconds
7. Parent sleeping for 2 seconds
Child got ordinal signal #6
8. Parent sleeping for 3 seconds
Child got ordinal signal #7
9. Parent sleeping for 1 seconds
Child got ordinal signal #8
10. Parent sleeping for 2 seconds
Child got ordinal signal #9
Child got ordinal signal #10

The source code is written so that the lines that begin with a number come from the parent
process, and the lines that begin with the word "Child" come from the child process. Note
that the sleep interval varies from 1 through 3 because of the patch you made in “Patching
Your Program - GUI” on page 5-29.

Note the order of the displayed lines may vary.
The debug source display shows the main program, at the catitto .

The debug status area and the debug group area show the Atadus to exit. This
means that the process has called the exit system service. See “Exited and Terminated Pro-
cesses” on page 3-14. The debug group area shows the same status for the child.

For the C and Ada programs, NightView displays in the debug message area:

Process local:15625 is about to exit normally
--> Undisplayed items:
1: (print) sig_ct

The last two lines say thaig_ct is not displayed. This message appears because of the
display command and because thig_ct variable is not visible at this point in the
parent process.

For the Fortran program, the variable sig_ct is still available, so it is displayed:

1: sig_ct = 11

Leaving the Debugger - GUI

5-34

The tutorial is over.

Exercise:

Read about the Debug WindowRsightView menu. Use it to leave the debugger.

Solution:

You should click on theNightView menu of any window. Seledxit (Quit Night-
View).

Tutorial - GUI

Neither process has completely exited, so NightView puts up a warning dialog box, asking
the following question:

Kill all processes being debugged?

Exercise:

Make the processes go away.

Solution:
In the warning dialog box, you should click on tRK button.

All windows are removed.

5-35

NightView User’s Guide

5-36

Invoking NightView

6
Invoking NightView

This section describes how to start a NightView session.

You can start NightView without any arguments at all, if you wish. The arguments
available on the NightView command line control the initial state of the debugger, and
optionally allow you to specify the first program to be debugged. The command line to
invoke NightView looks like this:

nview [-editor programl [-help] [-ktalk] [-nogui]

[-noktalk] [-nolocal] [-nx] [-prompt string]
[-safety safe-modE [-simplescreen] [-version]
[- Xoption ...] [-Xx command-filg [-xeditor]

[program-name| corefile-namg
-editor program

Useprogramto edit source files. (See “Edit” on page 9-23.) This option is valid
only in the graphical user interface.

-help
Causes NightView to print its command line syntax followed by a brief description
of each option and then exit with code 0.

-ktalk
Allows NightView to communicate with other tools via KoalaTalk. (See “Using
NightView with Other Tools” on page 3-32.) This is the default mode of operation.
Use-noktalk to disable this mode. This option is valid only in the graphical user
interface.

-nogui
Prevents NightView from automatically invoking the graphical user interface. See
Chapter 9 [Graphical User Interface] on page 9-1.

-noktalk
Prevents NightView from being used as a debug server via KoalaTalk. (See “Using
NightView with Other Tools” on page 3-32.) This option is valid only in the graph-
ical user interface.

-nolocal

Prevents NightView from starting a dialogue on the local system. See “Dialogues”
on page 3-4. In the graphical user interfaceniblocal is used, NightView pops
up a Remote Login Dialog Box (see “Remote Login Dialog Box” on page 9-44).

6-1

NightView User’s Guide

6-2

Prevents NightView from reading commands from the default initialization file. See
“Initialization Files” on page 3-30.

-prompt string
Sets NightView's initial prompt string tstring. See “set-prompt” on page 7-47.
-safety safe-mode

Sets the initial safety level teafe-modewhich can beforbid , verify , or
unsafe . The default level iverify . This controls the debugger's response to
dangerous commands. See “set-safety” on page 7-49.

-simplescreen

Directs NightView to use a simple full-screen interface. This option implies
-nogui . See Chapter 8 [Simple Full-Screen Interface] on page 8-1.

-version
Causes NightView to display its current version and then exit with code 0.
- Xoption

Any standard X Toolkit command line option (s€1)). These options are
allowed only when using the graphical user interface.

-X command-file

Directs NightView to read commands frooommand-filebefore reading commands
from the default initialization file or from standard input. You may supply more
than one-x option if you like; the files are read in the order of their appearance on
the command line.

-xeditor

Use this option if the program specified bgditor ~ communicates with X directly
(seeX(1)). For example, ihedit(1) is specified by theeditor option, you
should specify-xeditor . However, ifvi(l) is specified as the editor, you
should not use this option becauge must run from within arxterm(1) . This
option is valid only in the graphical user interface.

program-name

If no corefile-nameargument is specified, then NightView will prompt you for argu-
ments to supply t@rogram-nameand start debugging that program. If you inad-
vertently specified th@rogram-namergument, you will have the opportunity to
cancel its effect when you are prompted for arguments.

corefile-name

When you supply botlprogram-nameand corefile-namearguments, NightView
starts out by creating a pseudo-process for the given core file, using thegiven
gram-nameas the executable image for that core file. See “Core Files” on page 3-4
and “core-file” on page 7-34.

Invoking NightView

All options may be abbreviated to unique prefixes. For example,
nview -si
invokes NightView with the simple full-screen interface.

If the environment variableisPLAY is set, or the standard X Toolkit command line
option -display is used, then NightView communicates through a graphical user
interface. In this case, other standard X Toolkit command line options are also allowed,
e.g.,-xrm resourcestring See Chapter 9 [Graphical User Interface] on page 9-1.

NightView must be run with the Elan License Manager. If your site has multiple license
servers, and you need to indicate a server on a particular system, you can set the
environment variableOWERWORKS_ELMH®@STe name of the server's system before
invoking NightView. For more information about the license manager, seétae
License Manager Release Nates

All NightView command line options are case-insensitive. However, note that X Toolkit
options are case-sensitive.

When NightView starts execution, it first attempts to read commands from any files
specified in -x options. It then looks for any initialization files to read (see
“Initialization Files” on page 3-30), unless thax option was specified. When those
files have all been processed, NightView reads commands from standard input until it
encounters the end of the file or tlggit command is executed (see “quit” on page
7-17).

6-3

NightView User’s Guide

6-4

Command-Line Interface

7
Command-Line Interface

This chapter describes how to interact with NightView through commands.

In some cases, this may be your only means of directing the debugger's actions. If you
are using the graphical user interface (see Chapter 9 [Graphical User Interface] on page
9-1), however, commands are only one of several ways to control the debugger and your
programs.

Command Syntax

This section describes the general syntax and conventions of NightView commands.

Most commands have three parts. A qualifier appears first (in parentheses) and is used to
restrict the command to a certain set of processes or dialogues. Next comes the keyword
indicating which command is to be executed. The command arguments follow as the

third part. In general, you must separate syntactic items (like keywords and argument

values) with white space, unless they are separated by punctuation characters. White
space consists of one or more blank or tab characters. These rules may be different
within expressions, where the rules of the programming language apply.

Some commands apply to individual processes, others apply to dialoguesqualiféer

is a prefix that determines the dialogues and/or processes to which the following
command applies. A qualifier is simply a list of dialogues and/or processes enclosed in
parentheses. If a command applies only to dialogues, and the qualifier includes specific
processes, the command applies to the dialogues containing the processes. If a command
applies only to processes, but the qualifier includes dialogues, the command applies to all
processes in those dialogues. If a command affects neither dialogues nor processes, the
qualifier is ignored. You can set a default qualifier that will be applied when you don't
provide one. For more information on the syntax and operation of qualifiers, see
“Qualifier Specifiers” on page 7-10.

On startup, NightView provides you with a dialoguecal , for debugging on the local
machine. The initial default qualifier is set tall to indicate all dialogues and
processes.

After the qualifier, if any, all commands start withkayword which may be abbreviated

to the shortest unambiguous prefix. Many frequently used commands also have special
abbreviations. Most commands have one or memguments some arguments are also
keywords, while others are information you supply. A keyword argument can usually be
abbreviated if it is unambiguous; any exceptions to this rule are noted in the section
describing the command. Both command and argument keywords are case-insensitive;
they can be entered in either upper or lower case. You cannot abbreviate file names,
symbolic names, or NightView construct names.

Commands are terminated by the end of the input line.

7-1

NightView User’s Guide

If you enter a line interactively consisting solely of a newline, NightView will usually
repeat the previous command. This is explained more fully later; see “Repeating
Commands” on page 7-15.

You can include comment lines with your commands. A comment line starts with the
character, which must be the first non-blank character on the line, and terminates at the
end of the input line. Comments are most useful when you write debugger source files or
macros (see “Defining and Using Macros” on page 7-130 and “source” on page 7-110).

NightView prompts you for input. The format of the prompt may be controlled by the
set-prompt command (see “set-prompt” on page 7-47). The default prompt includes
the names of all the dialogues in the default qualifier and looks like this:

(local)

Some NightView commands require multiple lines of input. For these commands, the
command-line and simple full-screen interfaces change the prompttdoremind you
that you are entering a multi-line command.

>

To terminate NightView, use thguit command, which can be abbreviatgdsee “quit”
on page 7-17).

The subsections below explain some common syntactic constructs that are used in a
variety of NightView commands.

Selecting Overloaded Entities

7-2

For general information about function and operator overloading, see “Overloading” on
page 3-21.

The special overloading syntax used in both expressions and location specifiers is always
introduced by a number sign charactgy gsed as a suffix directly following the entity (an
operator in an expression or a function or procedure name). #Tiedollowed by addi-

tional information indicating the specific kind of overload request. There are three forms
of # syntax:

1. #?

A number sign followed by a question mark is a query. It always makes the com-
mand it appears in fail, but the error message shows all the possible choices for over-
loading the name or operator (even if there is only 1 choice). The choices will be
numbered starting at 1, and the number may be used to select the specific function.

2. ##

Two number signs in a row act just assiét-overload were on for that one
name. If there is only one possible choice, it is used; if there are multiple choices,
the command fails and the error message shows the list.

Command-Line Interface

3. #<digits>

A number sign followed by a number is the syntax used to pick a specific over-
loaded function or operator from the list printed in the error message.

In C++, the function call and subscript operators don’t appear in a single location, but are
"spread out" with arguments or subscripts between the parenthesis or brackets. In these
cases the final bracket or parenthesis is the character which should be suffixed with the
For example:

function#5(12,3)
This picks the 5th instance of the nafiumction from a list of overloaded functions.
object(12,3)#5

This, on the other hand, picks the 5th version of an overloaxestator() function
call operator applied to thebject variable.

The following example shows a use of the overloaded "+" operator in Ada#7The first
used to do a query, then the desired operator is selected#dithhen the expression is
evaluated again.

(local) print a +#? b

Warning: local:5865 Cannot evaluate argument expression:
Reason follows [E-print_cmd007]

Unresolved overloaded functions or operators:

#1 native language operator +
#2 interval_timer.a:294
FUNCTION "+"(1 : IN time, r : IN time)
RETURN time
#3 interval_timer.a:328
FUNCTION "+"(1 : IN time, r : IN integer)
RETURN time
#4 interval_timer.a:375
FUNCTION "+"(I : IN time, r : IN time)
RETURN long_float
#5 interval_timer.a:391
FUNCTION "+"(I : IN time, r : IN time)
RETURN float
#6 interval_timer.a:407
FUNCTION "+"(1 : IN time, r : IN time)
RETURN duration
(local) print a+#1 b
$1: a +#1 b = 11

The following example shows that tiset-overload command may be used to turn on
automatic overloading, in which case you will see the same error message without needing
the#? syntax.

(local) set-overload operator=on

Overload mode set to operator=on routine=off

(local) print a + b

Warning: local:5865 Cannot evaluate argument expression:

7-3

NightView User’s Guide

Reason follows [E-print_cmd007]

#1 native language operator +
#2 interval_timer.a:294
FUNCTION "+"(1 : IN time, r : IN time)
RETURN time

etc...
Overloaded procedures may also be referenced with similar syntax.

(local) set ada.text_io.put#?("Hello world")
Warning: local:5865 Unable to evaluate expression
" ada.text_io.put#?("Hello world")": Problem follows [E-
set_cmd007]
Unresolved overloaded functions or operators:
#1 phase2/predefined/text_io_b.pp:1247
PROCEDURE text_io.put(file : IN file_ptr, item : IN
character)
#2 phase2/predefined/text_io_b.pp:1269
PROCEDURE text_io.put(item : IN character)
#3 phase2/predefined/text_io_b.pp:1469
PROCEDURE text_io.put(file : IN file_ptr, item : IN
string)
#4 phase2/predefined/text_io_b.pp:1491
PROCEDURE text_io.put(item : IN string)
(local) set ada.text_io.put#4("Hello world")

Special Expression Syntax

For general information about expression evaluation, see “Expression Evaluation” on
page 3-18. In addition to the standard language syntax, NightView offers a special syntax
for referencing convenience variables and variables from other scopes or stack frames.

The special constructs all start with '$’ as shown in the following table.

Table 7-1. Special '$’ Constructs

$
A simple '$’ by itself is a special convenience variable which always refers to the
last value history entry (see “print” on page 7-65). See “Value History” on page
3-30.

$$
The name '$$'’ refers to the value history entry immediately prior to '$’. See “Value
History” on page 3-30.

$number

A%’ followed by a number refers to that number entry in the value history. See
“Value History” on page 3-30.

7-4

Command-Line Interface

${- numbe}

A '$’ followed by a negative number enclosed in braces refers to value history
entries prior to the most recent one. '${-0}' is a complicated way to refer to the
same thing as '$’, and '${-1} is the same as '$$'. This syntax is useful when you
want to reference values farther back than -1. See “Value History” on page 3-30.

$identifier

This is the standard syntax for convenience variables. Many names are predefined
(for instance, all the machine registers may be referenced using predefined conve-
nience variables). See “Convenience Variables” on page 3-29, and “Predefined
Convenience Variables” on page 7-6.

${ file: line expressioh

This syntax is used to evaluate the expression in the context specified by the given
file and line number. This is most useful for referencing static variables which are
not visible in the current context. If you reference a local stack or register variable
from some other context, the results are not defined.

${+ number routine expressign

This syntax is used to go up the stack (see “up” on page 7-106) until youseleer
previous occurrences obutinerelative to the current frame. (It does not matter
what the current routine name is, this construct always backs up the frame first, then
starts looking for frames associated with the given routine.) The gixpressions

then evaluated in that context. For example, '${+1:fred x}' refers to the variable
named X’ in the first routine namefled above the current routine.

${+ number expressign

This syntax simply refers to previous stack frames, regardless of the routine name.
The immediately previous frame is '+1'.

${- number routine expressign

This syntax is useful only if you have changed your current frame witlugheom-
mand. This allows you to refer to frames down the stack and is analogous to the ver-
sion above which uses the '+’ syntax.

${- number expressign

This is also analogous to the corresponding '+’ syntax, but refers to frames down,
rather than up the stack.

${= number expressign

This syntax evaluates the expression in the context of the given absolute frame num-
ber, regardless of the current frame. You can determine absolute frame numbers by
using thebacktrace command (see “backtrace” on page 7-64).

${* frame-addr expressign

This syntax useframe-addr which must be a numeric constant, as an absolute
frame address. It evaluategpressiorin the context of this frame address, regard-

7-5

NightView User’s Guide

less of the current frame. If there is no frame on the current stack with this address,
the results are undefined.

You may wish to use this form idisplay expressions (see “display” on page 7-71) to
refer to a specific stack frame regardless of where it appears relative to the current frame.
You can use thénfo frame command (see “info frame” on page 7-118) to get the
frame address for any stack frame.

The above constructs may be used freely in any language expression. This means they
may be nested (in case you want to do something like back up the stack frame, then shift
to a different local scope in that routine). Because different frames may be associated
with routines in different languages, the expressions evaluated in any given context may
be expressions in different languages. This might not always make sense because
different languages support different data types. If NightView cannot figure out how to
evaluate a mixed language expression, it returns an error.

If you use any of these constructs in a conditional expression for an eventpoint (see
“condition” on page 7-88) or in a patchpoint (see “patchpoint” on page 7-79) or in a
monitorpoint (see “monitorpoint” on page 7-83), they are evaluated at the time you
establish the conditional, patchpoint, or monitorpoint expression, not when the condition
or patchpoint or monitorpoint itself is evaluated. This is because conditional expressions
and patchpoints are compiled into your program by the debugger, and these constructs
must be evaluated at that time.

In the rare case of a user program which contains variables that have a '$’ in their name,
the user program variable is always referenced in preference to the convenience variable.

Predefined Convenience Variables

You may create any number of convenience variables simply by assigning values to new
names, but some variables are predefined and have special values. The '$ and '$$'
variables have already been documented (see “Special Expression Syntax” on page 7-4).
The following special variables are all automatically defined on a per process basis.

Table 7-2. Predefined Convenience Variables

7-6

$

This variable holds the address of the last item dumped witlxtbemmand (see

“X" on page 7-67). It is also set by the eventpoint status commands to the address of
the last eventpoint listed, and tigo line command to the address of the first
executable instruction in the line. If you were dumping words, it holds the address
of the last word. If you were dumping bytes, it holds the address of the last byte, etc.
See “X” on page 7-67, “info eventpoint” on page 7-112, “info breakpoint” on page
7-113, “info tracepoint” on page 7-114, “info patchpoint” on page 7-115, “info mon-
itorpoint” on page 7-116, “info agentpoint” on page 7-117, and “info line” on page
7-129.

This variable holds the contents of the last item printed byxtttemmand. If you
were dumping words, it holds the last word. If you were dumping bytes, it holds the
last byte, etc.

Command-Line Interface

$pc

This variable provides access to the program counter. This is a machine register, but
every machine has$pc, so this name is common to all machines. When a program

is stopped$pc is the location where it stopped. On any given mach#ipg, may

not map directly onto a specific machine regis®s machines often have multiple
program counters), but it always represents the address at which the program
stopped. See “Program Counter” on page 3-22.

$cpe

$cpce is similar to$pc. In frame 0, if there are no hidden frames below frame 0
(because of uninteresting subprogran®gpc has the same value &pc. See
“Interesting Subprograms” on page 3-24. In other frames (including frame 0 if there
are hidden frames below itfcpc is the address of the instruction that is currently
executing. In most cases, this is the call instruction that caused the frame immedi-
ately below the current frame to be created. For the frame immediately above a sig-
nal-handler stack framé&cpc is the address of the instruction that was executing
when the signal occurred.

$sp
Most machines have a stack pointer. The stack pointer is always &sifed
$fp

Most machines either have a frame pointer, or have an implicit frame pointer derived
from information in the program. Th&fp variable always represents the frame
address (even if it is not a specific hardware register), and local variables are always
described with some offset from the frame pointer (see “info address” on page
7-127).

PowerPC Registers

The PowerPC machines are based on the IBM/Motorola PowerP®" 6¢hitecture
(seePowerPC Microprocessor Family: The Programming Environméatsrchitectural
details). See “info registers” on page 7-120.

In addition to the common register definitions for stack pointer, frame pointer, and
program counter, the PowerPC machines support the registers shown in the following
table.

Table 7-3. PowerPC Registers
$r0 through$r31

These names map onto the 32 general purpose registers (nddsphiatthe same as
rl , andfp will typically be either$rl or $r2 , depending on the kind of code
generated by the compiler).

$f0 through$f31

These names map onto the 32 floating-point registers. The floating point registers on
the PowerPC always hold double precision format values.

7-7

NightView User’s Guide

7-8

$lr

The link register.
$ctr

The counter register.
$er

The condition register.
$crf0 through$crf7

These names map onto the eight individual condition fields contained in the condi-
tion register$er .

$fpscr

The floating point status and condition register.
$xer

The integer exception register.
$srr0 through$srrl

The exception state save and restore register. $§5h® register is the same as the
$pc register).

$mq

The $mqgregister does not really exist on the machine, and the compilers will not
generate references to it, but for backward compatibility with older architectures, it
is emulated by the operating system, and you can refer to it in the debugger.

Note that the floating point registers are not normally displayed by itife
registers command, if you want to display all the floating-point registers, you can do
so with the following command:

info registers f.*
The Power Hawk 700 Series supports additional registers:
$v0 through$v3i

Vector registers. To change the value of these registers with the debugger, see “vec-
tor-set” on page 7-75.

$vrsave

This register describes which vector registers are in use by the program. This is used
by the operating system when context-switching. Avoid modifying this register.

$vscr

Vector status and control register.

Command-Line Interface

Location Specifiers
A location-specis used in various commands to specify a location in the executable
program. It can be any of the following:
function_namer unit_namé¢'specification [body]

specifies the beginning of the named function or Ada unit. Note 'Hpecifi-

cation and'body are meaningful only with an Ada unit. If a unit name is speci-
fied and neithetspecification nor'body are given, therbody is assumed.
'specification and'body may be abbreviated to unique prefixes.

file_name line_number
specifies the first instruction generated for the given line in the given file
file_name function_name

specifies the beginning of the specified function declared in the given file (this is
required forstatic ~ functions that are not globally visible).

line_number
specifies the first instruction generated for the given line in the current file
line_number unit_namé¢'specification [body]

specifies an Ada unit name, which may be specified as a fully expanded unit name,
preceded by the line number in the source file. If neitspecification nor

'‘body are given, therbody is assumedspecification and'body may be
abbreviated to unique prefixes.

Note that when specifying a line number andridt nameas a location specifier that
the line number comdgst; whereas when specifyingfdenamewith a line number,
the line number idast

* expression
specifies the address given bypression

If a location specifier is omitted, then the location used is the next instruction to be
executed in the current stack frame. See “Current Frame” on page 3-23.

Function names always refer to the location of the first instruction following any
prologue code (therologueis code that allocates local stack space, saves the return
address, etc.). To refer to the actual entry point of a function, uséetkgressionform

and write an expression that evaluates to the function entry point address (in C language
mode, this would look liké&function).

7-9

NightView User’s Guide

NOTE

A location specifier may sometimes designate multiple locations;
for instance, a line number within an Ada procedure that has been
expanded inline several times will designate every location where
that procedure was expanded. If such a location specifier is used
to set an eventpoint (see “Manipulating Eventpoints” on page
7-76), NightView will set the eventpoint at each of the corre-
sponding locations. An eventpoint set at multiple locations is still
considered to be a single eventpoint. If you wish to set an event-
point at some subset of the locations that are implied by a patrticu-
lar location specifier, thénfo line command may be used to
determine the locations corresponding to the particular location
specifier. Thetfexpression form of location specifier may then

be used to designate the proper location.

Wherever dile_nameappears, it may be enclosed in double quotes. This is necessary if
thefile_namecontains special characters.

Wherever a function name appears in a location specifier, it may also appear with an over-
loading suffix to distinguish between multiple functions with the same name (see “Select-
ing Overloaded Entities” on page 7-2). The names of operator functions in Ada or C++
may also be used as function names. In Ada, the operator name must appear in double
guotes, and in C++ the keywoaperator should be followed by the operator name (the
same syntax used to declare operator functions in the language). Because the function
name form of operator functions is always used in location specifiers, thesatly
overload mode which affects location specifiers is tloeitinemode (see “set-overload”

on page 7-54).

All commands that acceptlacation-spea@rgument allow the keywordt to precede the
location-spec In most cases, that keyword is optional, but a few commands require it

to be present. The syntax of each command indicates whether the keyword is required or
optional.

Qualifier Specifiers

7-10

Qualifiers are used to apply NightView commands to specific processes or dialogues. A
qualifier is simply a list ofqualifier specifiers each specifier representing one or more
processes or dialogues. You can supply a qualifier explicitly, in parentheses as a prefix
to the command, or implicitly, by using thset-qualifier command (see “set-
qualifier” on page 7-46). In a prefix qualifier, the list of specifiers is separated by either
blanks or tabs.

Eachqualifier specifiercan be any one of the following items:
family-name

A name given by you to a set of processes, callédnaily. See “family” on page
7-40.

Command-Line Interface

dialogue-name

The name of a dialogue in your NightView session. This is usually the name of the
system on which the dialogue is running, but you may also specify a different name
(see “login” on page 7-18). In contexts where the qualifier is being used to specify a
set of processes,dalogue-nameefers to all the processes being debugged in that
dialogue.

PID

The numeric value of the process of one of the processes being debugged by
NightView. You can use this form only if the proceassis unique among all the pro-
cesses being debugged. This may not be true if you have multiple dialogues, but it is
always true if you have only one dialogue.

dialogue-nameID

This is how you specify a particular process when processes in different dialogues
have the same process

all
This keyword designates all processes or dialogues known to NightView.
auto

This keyword designates the one process that is currently stopped and has been
stopped for the longest time. You may want to speeifyo as your default quali-

fier if you want to work on only one process at a time (see “set-qualifier” on page
7-46). NightView gives you an error message if you aséo when there are no
processes stopped.

Note that, because a qualifier specifier can be either a family name or a dialogue name,
you cannot have a dialogue with the same name as a process family.

In general, the specifiers in a qualifier are motaluateduntil a qualified command
requests the information. A qualifier is evaluated when a command qualified by it needs
the information; that is, when the command is applied to the processes or dialogues in the
qualifier. Certain NightView commands ignore their qualifier, so they do not request
evaluation of the specifiers in the qualifier. This has several effects on you:

¢ A family-nameappearing in a qualifier may remain undefined until a com-
mand requires evaluation of the qualifier. You may also change the defini-
tion of afamily-namecurrently in use in a qualifier; such a change will
affect the next command that evaluates that qualifier.

¢ Evaluating adialogue-nameyields all the processes in the dialogue at the
time of the evaluation. Since evaluation is generally delayed until the last
possible moment, usingdalogue-names usually a good way to refer-
ence all the currently-existing processes in a dialogue.

* The specifierall andauto are evaluated at the time a command is actu-
ally executed.

7-11

NightView User’s Guide

Eventpoint Specifiers

Eventpoints may be grouped together and assigned a name (see “name” on page 7-77).
In addition, the name '’ is a reserved name that always refers to the set of eventpoints
most recently created by a single command. Eventpoint numbers and eventpoint names
are the two different types a@ventpoint specifier&ventpoint specifiers that refer only to
breakpoints may also be calledreakpoint specifiers(tracepoint specifiers patch
specifiers agentpoint specifiegsandmonitorpoint specifierare similarly defined).

Regular Expressions

A regexpis used by many of the commands to specify a pattern used to match against a set
of names (like variable names or register names inirtfie commands). Regular expres-
sions may be case-sensitive or case-insensitive depending eatteearch command

(see “set-search” on page 7-54).

Regular expressions are similar to wildcard patterns, but are more flexible. Regular
expressions and wildcard patterns are used for different things in the debugger (see
“Wildcard Patterns” on page 7-14). The descriptions of the commands tell if they take a

regular expression or a wildcard pattern.

The regular expression syntax recognized is similar to that recognized by many other
common tools, but the details (as always) vary somewhat.

Table 7-4. Regular Expressions

7-12

A dot matches any character except a newline.

A star matches zero or more occurrences of the preceding regular expression. For
example,* matches zero or more of any character except a newline.

A plus matches one or more occurrences of the preceding regular expression.
{m}

Matches exactlyn occurrences of the preceding regular expression.
{m}

Matchesm or more occurrences of the preceding regular expression.
{m, n}

Matches frommto n occurrences of the preceding regular expression.

Command-Line Interface

A caret matches at the beginning of a string.

A dollar sign matches at the end of a string.

()

Parentheses are used to group regular expressions.

Brackets define a set of characters, any one of which will match. Within the brack-
ets, additional special characters are recognized:

AN

If the first character inside the brackets is a caret, then the set of characters
matched will be the inverse of the set specified by the remaining characters in
the brackets.

A range of characters may be matched by specifying the starting and ending
characters in the range separated by a dash.

To define a set that includes-acharacter, specify the dash as the first or last
character in the set.

Any other character matches itself.

To literally match one of the special characters defined above, use a backshash (
character in front of it (to literally match a backslash, use two of th&ém)(

Themandn match counts above must be positive integers less than 256.

Most commands that use regular expressions do not require the use of '~ and '$’ because
they implicitly assume that aanchoredmatch is called for. Other commands (such as the
forward-search and reverse-search commands) assume that only a partial
match is called for (and does not imply amchoredmatch). The description of each
command that uses regular expressions specifies whether or not it implicitly assumes its
regular expressions are to be anchored.

If you do not need the full expressive power of regular expressions, you can just use a
normal string.

Examples:
r[1-5]

This example matches the strings 'r1', 'r2', 'r3', 'r4', and 'r5'. This might be a good
expression to match register names.

child_pid

7-13

NightView User’s Guide

This example matches only the string 'child_pid'. This might be a good expression to
match a program variable name.

Wildcard Patterns
Wildcard patterns are used by the commadelug , nodebug andon program . See
“debug” on page 7-20, “nodebug” on page 7-20, and “on program” on page 7-36.

Wildcard patterns are similar to regular expressions, but are usually more convenient for
representing file names. See “Regular Expressions” on page 7-12.

If the wildcard pattern starts with A&, it is assumed to be a pattern that must match a
complete absolute path name. Otherwise the pattern is matched against the rightmost
(trailing) components of the program name. Patterns are always matched to component
boundaries. Spaces and tabs are not allowed in wildcard patterns.

Wildcards are similar to wildcards ish .
Table 7-5. Wildcard Patterns

*

Matches zero or more characters (but does not match a

{[charg}
Matches any of the characters in the set. A dagtcén be used to separate a range

of characters and a leading banig fnatches any characters except the ones in the
set (but not d).

Matches any single character (except)a
Any other character matches itself.
Unlike sh, a* matches a leading dot) in a file name.
If you do not need the full expressive power of wildcards, you can just use the file name.
Examples:
/bin/*
This matches any file in the directoflgin
test*
This matches any file that begins with the letterst |, in any directory.
*.C

This matches any source file that ends with, in any directory. This might be a good
expression to match file names.

7-14

Command-Line Interface

/usr/bob/myprog

This matches only the fil&isr/bob/myprog

Repeating Commands

A line typed from an interactive terminal consisting solely of a newline (no other
characters, including blanks) generally causes NightView to repeat the previous
command. Note that the blank line must come from an interactive device; a blank line in
a macro or in a disk file read by thepurce command does not cause repetition. The
command that gets repeated may, however, come from a macro.

Not all commands can be repeated in this manner. In general, commands whose result
would not be any different when repeated will not repeat. Typing a blank line after a non-
repeating command has no effect; it acts the same as a comment. If the description of a
command does not say it is repeatable, then it isn't.

A few commands, such dist or x, alter their behavior slightly when repeated: instead
of exactly repeating the command, they typically repeat the action on a different set of
data. These differences in behavior are documented in the description of the command.

In the following examples, assume all commands were entered interactively.

(local) list func:20
(local)
(local)

In this example, lines 16-25 (approximately) of functiimc would be listed by the
list command. Repeating this command lists the next set of 10 lines, lines 26-35.
Note thatlist is one of the commands whose behavior changes when it is repeated.

(local) define mac(ln) as

> list func:@In
> end define
(local) @mac(20)
(local)

(local)

This example is equivalent to the previous one. It demonstrates that the repeated
command may come from a macro.

(local) define mac(vn) as

> x/20Xx @vn
> echo

> end define
(local) @mac(xstruct)
(local)

(local)

This example demonstrates how to write a macro that does not repeat at all eShuce
is a non-repeating command, entering a blank line after@mac(xstruct) line does
nothing.

7-15

NightView User’s Guide

Replying to Debugger Questions

This section describes how to respond when the debugger asks you a question.

Certain forms of some debugger commands are considered unsafe and will check the
debugger's safety-level (see “set-safety” on page 7-49) before executing. When the
safety-level isverify , these commands will ask a question of the user and wait for
verification. The possible responses to the question are always "yes" and "no" (case
insensitive). These responses may be abbreviated to their first letter if desired. The
response must be terminated by a carriage return.

A "yes" response indicates that the unsafe action is to be performed.
A "no" response indicates that the unsafe actiomato be performed.

In the graphical user interface, the debugger pops up a warning dialog box. See
“Warning Dialog Box” on page 9-15.

Controlling the Debugger

7-16

This section describes how to exit NightView, and the commands used to control
debugged processes and your interaction with them.

Command-Line Interface

Quitting NightView

quit

Stop everything. Exit the debugger.
quit
Abbreviation: g

This command terminates the debugger. If the safety level (see “set-safety” on page 7-49)
is forbid , you will not be allowed to quit unless there are no processes being debugged.
In other safety levels, any active processes will be killed when you quit. If the safety
level is verify , you will be prompted for confirmation before quitting causes any
debugged processes to be killed (see “Replying to Debugger Questions” on page 7-16).

The processes killed include all active processes started in any dialogue shell and not
explicitly detached. NightView detaches from any processes that are being controlled but
are not being debugged by you because abdebug command. See “Detaching” on
page 3-3. See “nodebug” on page 7-20.

Processes started using thieell command are independent of the debugger, and are
not affected by auit .

7-17

NightView User’s Guide

Managing Dialogues

A dialogueis an interaction with a particular host system for the purpose of debugging
one or more processes on that system under a particular user name. You may have as
many dialogues as you wish; there can even be more than one dialogue with a particular
host system. Dialogues are described in more detail in the Concepts chapter (see
“Dialogues” on page 3-4).

login
Login to a new dialogue shell.

login [/conditional] [/popup] [name= dialogue namg
[user= login namé [others ...] machine

NOTE

If present, the optionkonditional and/popup must appear
before the machine name and before any keywords.

Thelogin command takes many keyword parameters. The most commonly used are:
/conditional

Ignore thislogin command if a dialogue with this name already exists. This
is useful from macros (see “Defining and Using Macros” on page 7-130) and
for other programs that communicate with NightView.

/popup

Pop up the Remote Login Dialog Box (see “Remote Login Dialog Box” on
page 9-44) initialized with the machine name and the values afdhee=and
user= keywords. No other keywords are allowed with this option. This
option is meaningful only in the graphical user interface.

name=dialogue name

Give this parameter to specify a name for the dialogue you are creating. If you
leave it off, the dialogue name is the same as the name of the machine running
the dialogue. To run multiple dialogue shells on the same machine you must
give them unique names. No dialogue name may be the same as a family
name (see “family” on page 7-40). A dialogue name must start with an alpha-
betic character and may be followed by any number of alphabetic, numeric, or
underscore characters.

user= login name

Login as this user. Normally your current user name is used, but you may
login as any user.

7-18

Command-Line Interface

machine

Specify the machine where the programs to be debugged are located and the
dialogue shell will run. This is a required parameter. It may be a host name,
with or without domain qualification, or it may be an IP address.

The following parameters are less frequently used, but are provided to allow you to
control the execution environment of the remote dialogue.

nice= nice value

The dialogue normally runs with normal interactive priority. A positive nice
value lowers the priority (makes other programs seem more important). You
must have special privileges to specify a negative nice value.

cpu=cpu list

Set the CPU bias for the dialogue.
memory=flags

Control what sort of memory (local or global) will be used for the dialogue.
priority= value

Specify the priority of the remote dialogue processes. The scheduling policy
determines what values may be specified for the priority.

scheduling= sched_keywords

Control the scheduling policy that will be used for the dialogue. The allowed
keywords aresched_fifo ,fifo ,sched_rr ,rr , sched_other ,and
other .

guantum= time
Control the time slice quantum size for the process.

Thecpu, memory, scheduling , priority , andquantum parameters all accept the
same arguments as the corresponding options onutid) command — see the man
page for details.

Any programs started in the dialogue shell will inherit all the above parameters. The
run(l) command can control all these parameters, and may be used within the dialogue
shell to debug programs and change the parameters.

When you use thdogin command you are asked for a password. See “Remote
Dialogues” on page 3-6 for a general discussion of how to use remote dialogues.

Example:

(afamily) login fred

To begin a remote debug session on ‘fred’, enter the
password for user 'wilma'.

Password: enter wilma's password

(afamily) login user=barney name=fredIl fred

To begin a remote debug session on ‘fred’, enter the

7-19

NightView User’s Guide

debug

nodebug

7-20

password for user 'barney'.
Password: enter barney's password
(afamily)

The above example shows the creation of two new dialogues. Théofijist command
starts a dialogue on a machine nanfiedl and logs in as the current usevilina in this
example). This dialogue is naméed , because no explicit name was given.

The second creates a dialogue on macliied namedfredll . In this case the user
logged intofred is barney .

The login command is creating a new dialogue, so the qualifier has no effect on this
command.

Specify names for programs you wish to debug.
debug pattern ...
pattern

A wildcard pattern matching the name of a program to be debugged. Spaces
and tabs are not allowed pattern See “Wildcard Patterns” on page 7-14.

This command and its inverse (see “nodebug” on page 7-20) allow you to control which
programs get debugged. The list of programs applies to the individual dialogues specified
in the debug command qualifier (different dialogues may have different lists of
programs to be debugged).

The debug and nodebug commands work by remembering the list débug and
nodebug commands. When a new file needs to be checked to see if it should be
debugged, the name is first compared to the pattern in the most recent command, then the
pattern in the next most recent command, and so on.

The first pattern that matches the file name determines what to do with the associated
process. If the matching pattern is ondabug command, then the process will be
debugged. If it was on modebug command, then the process will not be debugged.

The patterrt matches everything, so the list of patterns is always reset Whegspears
as an argument. Since each dialogue always starts with eigiery * or nodebug *
in the list, it is impossible to pick a file name that does not match at some point in the list.

The default pattern list for a dialogue is:

nodebug /usr/ccs/lib/* [usr/ccs/bin/* [sbin/* [usr/sbin/* [bin/*
Jusr/bin/* fusrfucb/* [usr/bin/X11/* [usr/lib/*

debug *

To print the list ofdebug andnodebug patterns, see “info dialogue” on page 7-123.

Specify names for programs you do not wish to debug.

Command-Line Interface

nodebug pattern ...
pattern
A wildcard pattern matching the name of a program to avoid debugging.

This command is typically used in combination with tdebug command to control
which programs are debugged in a dialogue. The complete syntax of wildcards and the
algorithm used to match files is described in ttebug command (see “debug” on page
7-20).

Example:

(afamily) nodebug *
(afamily) debug x*

This example usesodebug * to turn off all debugging. It then usekebug to turn on
debugging for any programs started where the basename begins with th& letter

Note that even if one command is not debugged, its children may be debugged. To avoid
debugging a command as well as any children, you must usdettaeh command (see
“detach” on page 7-32).

To print the list ofdebug andnodebug patterns, see “info dialogue” on page 7-123.

translate-object-file

Translate object filenames for a remote dialogue.
translate-object-file [from [to]]
Abbreviation: xI
from
The filename or filename prefix as seen by the remote system.
to
The filename or filename prefix as seen by the local system.

If both from and to are present, a translation is added. If ofilgm is present, the
translation exactly matchinffom is removed. If neither is present, all translations are
removed.

NOTE

from andto arenotwildcard patterns or regular expressions. See
“Wildcard Patterns” on page 7-14. See “Regular Expressions” on
page 7-12.

The translate-object-file command manages translations for object filenames

7-21

NightView User’s Guide

for each dialogue in the qualifier. Translations are useful when:

* An object file is visible from both systems, but its position in the file sys-
tem is different. For exampléusr on systemfred may be mounted as
[ffred/usr on the local system.

* An object file is not visible from the local system, but you have a copy of
the file. For example, you might have a development directory from which
the image on the remote system is created.

* The object file on the remote system has been stripped, but you have a copy
with debugging information.

Object filenames fronexec-file andload commands are subject to object filename
translation. See “exec-file” on page 7-35. See “load” on page 7-74. Dynamic library
names are also subject to object filename translation. See “Debugging with Shared
Libraries” on page 3-35. Obiject filenames frosgmbol-file commands arenot
subject to object filename translation. See “symbol-file” on page 7-33.

NightView attempts to match translations to the initial characters of the filename. The
longest matching translation is used. Filename component boundaries are not treated
specially. If you want to match to component boundaries, include slashes in the strings.

If an exec-file command fails because you don't have any translations or the
translations are wrong, you can re-issue éiec-file command again after fixing the
translations.

Examples:
(fred) xlI /wilma/pebbles/ pebbles/

This command translates any object filename beginning with the striigna/
pebbles/ to the same filename witlwilma/pebbles/ replaced bypebbles/

For example, /wilma/pebbles/hair becomes pebbles/hair . Note that
pebbles/hair will be evaluated relative to NightView's current working directory.
See “pwd” on page 7-56.

(fred) x| /betty/ /barney/
(fred) x| /betty/bam /dino/bam

These commands translate any object filename beginning with the #tetty/ to the
same filename with/betty/ replaced by/barney/ and any object filename
beginning with the string/betty/bam to the same filename withbetty/bam
replaced by/dino/bam . NightView picks/betty/bam in preference tdbetty/
becausdbetty/bam islonger. For example,

/betty/dress becomegbarney/dress
/betty/bambam becomeddino/bambam
/betty/bambino becomegdino/bambino

A good place to put &ranslate-object-file command is in aron dialogue
command in your.NightViewrc file. See “on dialogue” on page 7-23. Also, see
“Initialization Files” on page 3-30.

7-22

logout

on dialogue

Command-Line Interface

Example:

(aln on dialogue fred.* do
> x| lusr/ [fred/usr/
> end on dialogue

This command translates the directolysr to the directory/usr/fred for any
dialogues whose name begins wited .

Terminate a dialogue.
logout

The logout command terminates any dialogues named in the command qualifier. |If
your safety-level isinsafe thenall processes being debugged in the dialogues are killed
(see “set-safety” on page 7-49). If your safety-leveldsify then you are prompted for
confirmation before the logout causes any debugged processes to be killed (see “Replying
to Debugger Questions” on page 7-16). If your safety-levebibid , then the logout

does not occur. If you want any processes to continue running, you detesth them

prior to usinglogout (see “detach” on page 7-32). NightView detaches from any
processes that are being controlled but are not being debugged by you because of a
nodebug command. See “Detaching” on page 3-3. Also, see “nodebug” on page 7-20.

If the dialogue shell is still running dbgout time, it is killed (you may send an exit
command to the shell to terminate it normally prior to logging out).

Example:
(adialogue) detach
(adialogue) lexit
(adialogue) logout

The example shows how to avoid having any processes killed.detech command
allows all processes in the dialogue to continue running independently of the debugger.
The !lexit command sends an exit command to the dialogue shell to terminate it
normally, then thdogout command terminates the debugger dialogue.

Specify debugger commands to be executed when a dialogue is created.
on dialogue [regexp
on dialogue regexp command
on dialogue regexp do
regexp

A regular expression to match against the names of newly created dialogues.
See “Regular Expressions” on page 7-12.

7-23

NightView User’s Guide

7-24

command

A debugger command to be executed when a new dialogue whose name
matchegegexpis created.

In the third form of theon dialogue @ command, the debugger commands to be
executed must begin on the line following tl® keyword. The list of debugger
commands to execute is terminated when a line containing only the werds on
dialogue is encountered.

Theon dialogue command allows a user-specified sequence of one or more debugger
commands to be executed immediately after creating a new dialogue within NightView.
When a new dialogue is created, the list of @l dialogue regular expressions is
checked to see if any of them match the name of the new dialogue. The most recently
specifiedon dialogue command whose regular expression matches the dialogue name
will have its commands executed.

In its first form (given only a regular expression), tbe dialogue command will
remove any commands that were associated with the given regular expression. If no
regular expression is given, thefl previously definecbn dialogue commands are
removed. If your safety level is set forbid , you are not allowed to remove aih
dialogue commands. If your safety level is set terify , NightView requests
verification before removing albn dialogue commands. See “set-safety” on page
7-49.

In its second and third forms, then dialogue command will associate a sequence of
one or more user-specified debugger commands with the given regular expression. Macro
invocations arenot expanded when reading the commands to associate with the regular
expression.

If dialoguelocal is started up automatically by NightView, then it will exis¢foreany
commands in yourNightViewrc file are read. In this case, NightView automatically
runs theon dialogue command after all the initialization files have been processed.
See “apply on dialogue” on page 7-25. See “Initialization Files” on page 3-30.

The default qualifier for all commands associated with the given regular expression will
be the newly created dialogue.

The commands specified lpn dialogue are event-triggered commands: they have
an implied safety level (which may be different from the safety level that was set using
set-safety).

If you wish to list all on dialogue = commands, or see whicbn dialogue
commands would be executed for a particular dialogue name, you should uiséothe
on dialogue command.

Example:
(local) on dialogue ben.* nodebug /ust/bin/*

After issuing the above command, if we now create a new dialogue né@eechur |,
then we will automatically set it up so that programs residing in the directory named
usr/bin are not debugged by NightView.

apply on dialogue

Command-Line Interface

Now suppose we do the following:

(local) on dialogue .*jerry do

> nodebug /usr/remote/*
> nodebug /usr/local/*
> end on dialogue

At this point, if we create another dialogue nameen_n_jerry , then this newly
created dialogue will automatically be set up so that programs residing in the directories
/usr/remote and /usr/local are not debugged by NightView. Note that even
though the nameben_n_jerry also matches the regular expressiban.* , this
dialoguewill try to debug programs that reside in the directéugr/bin . This is
becauseon dialogue regular expressions are matched in reverse-chronological order
(most recent first), and only the first match found is used.

(local) info on dialogue ben_n_jerry
on dialogue .*jerry do
nodebug /usr/remote/*
nodebug /usr/local/*
end on dialogue

If we were to now issue the command:
(local) on dialogue .*jerry

Then this would remove*jerry (and its associated commands) from the debuggers
on dialogue command list. Now, if we create yet another dialogue named
benny_and_jerry , then this third dialogue willnot automatically debug programs
that reside in the directorfusr/bin , but it will debug programs that reside funsr/
remote and/ust/local (just like the first one did).

(local) info on dialogue benny_and_jerry
on dialogue ben.* do

nodebug /usr/bin/*

end on dialogue

Executeon dialogue commands for existing dialogues.
apply on dialogue

The apply on dialogue command allowson dialogue commands to be
executed for existing dialogues. See “on dialogue” on page 7-23. For each dialogue
specified by the qualifier, then dialogue = commands which would match the name

of the dialogue are immediately executed on behalf of the dialogue.

When the debugger automatically creatdsal dialogue, it does aon dialogue
command with a qualifier oflocal) after processing all the initialization files. See
“Initialization Files” on page 3-30. Because dialoguecal exists before the
customization commands in the userigightViewrc file are interpreted by the
debugger, then dialogue command by itself cannot initialize the environment for
dialogue local (since it only applies to dialogues that will be creaféet theapply on
dialogue command is issued). The automatn dialogue executes anyon

7-25

NightView User’s Guide

dialogue commands that refer to dialogleral

7-26

Command-Line Interface

Dialogue Input and Output

Because each dialogue is a separate shell, each dialogue has its own input and output
streams. NightView has several options for sending input to dialogues and managing the
output data generated by the dialogue shell and the programs being run within it.

Pass input to a dialogue.
I' [inputling
input line

If input lineis specified, it is passed to the dialogue (or dialogues) determined
by the command qualifier.

If input lineis not specified, then this command switches to a special dialogue
input mode.

If the qualifier for this command specifies more than one dialogue, then the same input
data is sent to all the dialogues. This can make sense if you are doing something like
debugging two versions of the same program and you want to see where they diverge. It
iS up to you to insure that the input is sensible to all the dialogues (or that the command
qualifier only refers to one dialogue).

When you use thé command without aimput line argument to switch to dialogue input
mode, everything you type goes to the specified dialogues. Nothing you type is treated as
a debugger command until a special terminator string is recognized. The default
terminator string is -." (note that this is not the same as the " ~." useddin(1)

or cu(l)). See “set-terminator” on page 7-48, for information on how to change the
terminator string.

The ! command without arinput line argument cannot be used inside a macro (see
“Defining and Using Macros” on page 7-130), nor can it be used in the graphical or full-
screen user interfaces.

Macros arenotexpanded when reading the input (or arguments) to this command.

This command does not care if it is talking to the dialogue shell or to a program running
in the shell. If you start a program that requests input, you can pass the input to it using
this command.

See “Repeating Commands” on page 7-15.
Example:

(afamily) Ipwd
(afamily) !
PATH=/extra/progs:$PATH
ulimit -m 200

ulimit -d 100

ulimit -s 100

7-27

NightView User’s Guide

(afamily)

The first line just sends pwd command to the dialogue. The second switches to dialogue
input mode and then several lines of input are sent directly to the dialogue to set up
environment variables and limits on the amount of memory subsequent processes will be
allowed to use. The final-" " switches back to normal command input mode.

Note that if you just want to send a program name to the shell and wait for that program
to start, you may want to use then command instead. See “run” on page 7-30.

set-show

Control where dialogue output goes.

set-show [silent | notify =mode | continuous =modé
[log[=filenamd] [buffer =numbef}

silent

Just buffer the dialogue output, do not display it. Bhew command may be
used to see what has accumulated (see “show” on page 7-29).

notify= mode

Do not display the dialogue output, but do print a notice when output first
becomes available.

continuous= mode
Display dialogue output when it is generated.

The notify and continuous modes both accept one of the following keyword
arguments:

immediate

In immediate mode the notification or actual output is displayed as soon as
output becomes available.

atprompt
In the atprompt mode, the output is displayed only when the debugger is not
requesting input. This is typically immediately prior to printing a new prompt
to request additional commands, but it also prints output when the debugger is
waiting for some event and has not yet prompted for new input.

Additional parameters on theet-show command control logging to a file and the size
of the internal buffer.

log [=filenamé

Thelog parameter without thefilenameoption turns off logging to a file and
resumes buffering a limited amount of output in memory. When a file name is

7-28

show

Command-Line Interface

specified, the output from the dialogue is logged to that file until the log
parameter is changed.

buffer= number

Thebuffer parameter is used to set the size of the buffer holding all the

most recent output from the dialogue. The default size is 10240 (10K bytes).
When the buffer fills up, the oldest output is discarded. When logging to a file,

this parameter does not have any effect — a log file may grow until disk space
is exhausted.

This command only logs the output from dialogues. It does not log debugger commands,
nor does it directly log the input to a dialogue; however, the input will normally be
echoed by the system, so it will be logged as output from the dialogue.

To log the entire debug session, see “set-log” on page 7-44.
Each dialogue starts off in the default mode:

(aln set-show buffer=10240 continuous=atprompt

Control dialogue output.
show [number| all | none] || shell-command
number
The number of old output lines you wish to see again.
all

Specifyingall instead of a number means show all the buffered output from
the dialogue shell.

none

Thenone keyword is used to tell the debugger you are not interested in any of
the buffered output. It pretends you have already seen any data currently in the
buffer.

| shell-command

You may use a vertical bar (shell pipe operator) to request the output be sent to
an arbitrary shell command, rather than being displayed. You may use this to
run the output through a pager or filter of some kind.

The debugger always internally buffers output generated by dialoguesstiblve com-

mand displays any buffered output from a dialogue which you have not yet seenufrhe
berorall arguments tell the debugger to display that many lines of previous output in
addition to the new output (so the total number of lines displayed may be greater than
numbe}. Theset-show command is used to control when dialogue output is printed
without a specific request via trehow command (see “set-show” on page 7-28).

7-29

NightView User’s Guide
Managing Processes

run

Run a program in a dialogue and wait for NightView to start debugging it.
run inputline
input line
The shell command that will start a program (or programs) to debug.

This command is very similar to the command (see “!” on page 7-27): it sends the
specified input line to the dialogue shell (or shells) specified by the qualifier. The
difference betweenun and! is thatrun waits for a new process to be debugged in one
of the dialogues specified by the qualifier.

NOTE

Even if the qualifier specifies multiple dialogues, then com-
mand terminates as soon as one new process has started.

Therun command does not check the giveput line for validity; it simply passes it
unchanged to the dialogue shell, just like thecommand. |If it does not start a new
process to be debugged, tham will just continue waiting forever (or until you type
<CONTROL C>). If you issue arun command that starts more than one prograum,

will only wait until one of them starts up and is noticed by NightView. The other
programs will start up and be debugged, but you probably won't know about them until
after you have entered the next command.

If you just want to send input to a program that is reading from the shell's input terminal,
or you want to start up a program or programs without waiting for them, just uske the
command.

If you want to run the same program again, usertire command again. See “Restarting

a Program” on page 3-11. If you want multiple programs to run concurrently, end the
shell commands witt& (ampersand). (You can't do this if your program expects input
from you.)

set-notify

Control how you are notified of events.
set-notify [silent | continuous =modé
silent

Only report events when explicitly requested.

7-30

notify

Command-Line Interface

continuous= mode
Display events when they happen.
Thecontinuous mode accepts one of the following keyword arguments:
immediate
In immediate mode the notification is displayed as soon as the event happens.
atprompt

In the atprompt mode, the natification is displayed only when the debugger is
not requesting input. This is typically immediately prior to printing a new
prompt to request additional commands, but it also prints notifications when
the debugger is waiting for some event and has not yet prompted for new
input.

This command controls how the debugger tells you what is happening to the processes
you are debugging. Individual processes may be set to notify you in different ways
(using the command qualifier).

Events that might cause notification include hitting a breakpoint, getting a signal (but see
“handle” on page 7-102), oexec 'ing a new program. New processes to be debugged
also cause notification, but this notification is controlled by the notification setting of the
parent of the new process. Processes created directly by the dialogue shell always cause
notification in the default notify mode. When a process exits, you will be notified by the
process' dialogue (but see “show” on page 7-29 and “set-show” on page 7-28).

The output generated by any commands attached to a breakpoint or any automatic display
expressions is also controlled bgt-notify . If you set notify mode tasilent for a
process, all debugger output associated with that process will be buffered up and saved
until you ask to see it.

Any change to the notify mode of a process takes place immediately, so changing the
mode fromsilent to continuous may also result in large amounts of accumulated
event notifications and other buffered output being generated.

The notify command (see “notify” on page 7-31) can be used to explicitly request
notification of any events that have been saved up (this is the only way to find out about
events that have happened in a process where the notify meients).

If no arguments are given to thmtify command, then the current notify mode of each
process in the qualifier is printed.

The default notify mode is:

(aln set-notify continuous=atprompt

Ask about pending event notifications.

notify

7-31

NightView User’s Guide

attach

detach

7-32

If you have been suppressing event notification on certain processes (see “set-notify” on
page 7-30), thaotify = command may be used to request any notifications that have not
yet been printed. It only tells you about pending events in the processes specified by the
command qualifier.

Attach the debugger to a process that is already running.
attach pPID
PID
The proces® of the running process.

This command allows a program to be debugged even if it was not started from a
debugger dialogue shell (see “Attaching” on page 3-3). The qualifier on this command
must specify a single dialogue indicating which machine is running the speeifiedAn

error is reported if the qualifier implies multiple dialogues. It is also an error to attempt

to attach to a program already being debugged, or to attach any of the processes required
to run the debugger.

Since the program to which you are attaching is already running independently of the
debugger, you will not be able to send it input through the normal dialogue input
mechanism (see “I” on page 7-27) or see the output it generates (the input and output for
the process remain connected to the same streams they were connected to prior to the
attach).

Once you attach to a process, any future children it forks will also be debugged. See
“set-children” on page 7-41. Children created prior to the attach must be explicitly
attached if you want to debug them.

See “Attach Permissions” on page 3-33 for a description of what processes you are
allowed to attach.

Stop debugging a list of processes.
detach

Thedetach command terminates the debugger's connection to all the processes named
in the command qualifier. Any breakpoints or monitorpoints set in those processes are
removed, but patchpoints, tracepoints, and agentpoints remain if they are enabled when
you execute thaletach command. See “breakpoint” on page 7-78, “patchpoint” on
page 7-79, “monitorpoint” on page 7-83, “agentpoint” on page 7-86, and “tracepoint” on
page 7-82.

The processes are allowed to continue running normally and the debugger will not be
notified of any subsequent events that occur in those processes. If any of the processes
fork or exec new programs, the debugger will not see them.

When the safety level isinsafe (see “set-safety” on page 7-49), detaching a process

kill

symbol-file

Command-Line Interface

that was stopped while evaluating a debugger expression containing a function call aborts
any expression evaluation in progress. This returns the process to the state it was in when
you asked to evaluate the expression.vatify safety level, it asks first, and at safety
levelforbid , it refuses to let you detach the process.

For another way of avoiding debugging certain processes, see “nodebug” on page 7-20.
Also, see “set-children” on page 7-41.

Terminate a list of processes.
kill
Thekill command terminates all the processes named in the command qualifier.

In the Graphical User Interface, if you use a 'Kill’ button (as opposed to manually typing
thekill command) the debugger will check your safety level (see “set-safety” on page
7-49) before permitting you to kill the desired processes. If your safety leviefld

then you will not be permitted to kill the selected processes. If your safety level is
verify then you will be prompted for verification (see “Warning Dialog Box” on page
9-15). If your safety level isinsafe then the processes are terminated with no questions
asked.

Establish the file containing symbolic information for a program.
symbol-file program-name
program-name

This must be the name of an executable file corresponding to the programs
running in the specified processes. It should contain symbolic debug informa-
tion for the program.

If program-names a relative pathname, it is interpreted relative to Night-
View's current working directory.

program-names not subject to object filename translations. See “translate-object-file”
on page 7-21.

A symbol fileis an executable file from which NightView obtains information about
symbols in a program being debugged. Normally, the symbol file is the same as the
program's executable file, but it may be different if, for example, you are debugging a
stripped program (sestrip(1)). In this case, you need to specify an unstripped
version of the program in thesymbol-file command, if you want to access
information symbolically.

The symbol-file command is applied to each process in the qualifier. You should
make sure that each of those processes is running the same program; otherwise, you may
get unpredictable results from the debugger when you examine variables or memory.

7-33

NightView User’s Guide

core-file

7-34

Note: If you have not specified a symbol file for a process, NightView attempts to obtain
the information from the executable file (see “exec-file” on page 7-35).

In some situations, an object filename translation is more appropriate tegmizol-
fle command. See “translate-object-file” on page 7-21.

Create a pseudo-process for debugging an aborted program's core image file.
core-file corefile-name[exec-file= program-namg
corefile-name
The name of a core file.

If corefile-names a relative pathname, it is interpreted relative to NightView's
current working directory.

exec-fle= program-name
Specifies the name of the executable program that created the given core file.

If program-names a relative pathname, it is interpreted relative to Night-
View's current working directory.

A core file is a copy of a process's memory made when a process is terminated
abnormally. You can examine these core files using NightView by specifying the core
file name in thecore-file command. NightView responds with a process(PID)
corresponding to a newly-creatpdeudo-processThis is not a real executing process; a
pseudo-process is merely a mechanism for dealing with core files in NightView.pibhe
NightView assigns does not correspond to any running process, but you can use it in
qualifiers, and you can also include it in process families usingfaldly command.

See “family” on page 7-40.

The qualifier for thecore-file command is used only to determine with which
dialogue the pseudo-process should be associated. (Among other things, this determines
the type of machine that created the core file.) Thus, the qualifier should specify exactly
one dialogue; otherwise, NightView issues an error message and refuses to honor the
command.

If you specify theexec-file= program-nameoption, it is equivalent to executing an
exec-file command (see “exec-file” on page 7-35) on the pseudo-process created by
the core-file command. This is seldom required, since NightView attempts to

determine the location of the executable program from information saved in the core file
(see “Finding Your Program” on page 3-8). If NightView is unable to correctly
determine the executable program, you will need to specifyettex-file= program-
nameoption or use theexec-file command to specify the name of the executable
program.

When debugging a core file, NightView uses the executable program file for two
purposes. NightView uses this file to obtain symbolic information about variables and
procedures in your program, just as it does when debugging normal processes. For core
files, NightView also must use this file to obtain the contents of read-only memory,
including the machine instructions of the program. If NightView is unable to locate the

exec-file

Command-Line Interface

executable program, then you will only be able to examine writable memory by absolute
address. You can specify the file, or files, NightView should use by specifying the
exec-fle= program-nameoption or by using theexec-file and symbol-file
commands (see “exec-file” on page 7-35 and “symbol-file” on page 7-33).

Note that, unlike other debuggers, NightView allows you to examine the core file of a
process at the same time you are executing the program that produced the core file. This
allows you to try executing your program again to try to find the problem, while still
accessing information from the core file. For instance, you may find from the core file
that a certain global variable has an incorrect value. You could then run the program
again, stopping it at interesting points to check the value of that global variable. By using
an appropriate qualifier, you can easily print out the values of variables in both the
running program and the core file for easy comparison.

Specify the location of the executable file corresponding to a process.
exec-file program-name
program-name

Specifies the file containing the executable program corresponding to the
specified processes.

If program-names a relative pathname, it is interpreted relative to Night-
View's current working directory.

program-names subject to object filename translations. See “translate-
object-file” on page 7-21.

This command tells NightView where to find the executable file corresponding to the
processes specified by the qualifier. Obviously, you should ensure that all those
processes are, in fact, running the same program; otherwise, you may get strange
behavior. (NOTE: NightView does not do this verification for you because the processes
may be executing different copies of the same program on several different systems.
NightView would not be able to tell that these were the same program.)

You usually use this command in conjunction with there-file command (see
“core-file” on page 7-34). You may also need to use it if NightView is unable to
determine the executable file corresponding to a new process being debugged. See
“Finding Your Program” on page 3-8.

If you do not explicitly specify a symbol file for a process (see “symbol-file” on page
7-33), NightView uses the executable file. Since the symbolic information is usually
contained in the executable file anyway, this is most often what you want. You can
specify the executable file and symbol file in any order for a given process.

When a new executable file is specified, amy program commands that match the
new file name are executed. See “on program” on page 7-36.

Examples:

(local) core-file ./mycore
New process: local:65536

7-35

NightView User’s Guide

on program

7-36

/users/bob/mycore

was last modified on Wed Nov 18 17:48:38 1992
Core file indicates the executable file is /users/bob/
myprog

Executable file set to

/users/bob/myprog

Pseudo-process assigned PID 65536

Process 65536 terminated with SIGQUIT

(local) family mycore 65536

(local) (mycore) exec-file ./stripped_prog

(local) (mycore) symbol-file ./full_prog

The first command creates a new pseudo-process for thenfiieore in NightView's
current directory. NightView assigns this pseudo-procegs number 65536. The
family command then gives the nameycore to this pseudo-process. Thexec-
fle command then establishes the figipped_prog as the executable file for that
process, while theymbol-file command establishdsll_prog as the name of the
symbol file.

Specify debugger commands to be executed when a program is 'exec’ed.

on program [patterr]
on program pattern command

on program pattern do
pattern

A wildcard pattern to match against the executable file names of newly
'exec 'ed programs. See “Wildcard Patterns” on page 7-14.

command

A debugger command to be executed when a new program whose executable
file name matchepatternis 'exec 'ed.

In the third form of theon program command, the debugger commands to be executed
must begin on the line following thdo keyword. The list of debugger commands to
execute is terminated when a line containing only the wadd on program is
encountered.

Theon program command allows a user-specified sequence of one or more debugger
commands to be executed immediately after 'exec’ing a program that is being debugged
by NightView. When a debugged process performs an 'exec’ (oretkexc-file

command is used to change the location of the executable file name), the st of
program patterns for that process's controlling dialogue is checked to see if any of the
patterns match the executable file name of the program that was just 'exec’ed. The most
recently specifiedon program command whose pattern matches the executable file
name of the newly 'exec’ed program will have its commands executed.

on program processing is related ton restart processing. When a program

Command-Line Interface

exec s (or theexec-file command is used), NightView first checks thie restart

patterns. See “on restart” on page 7-38. If a match is found, then the commands
associated with the matching pattern are executed. In this casenngorogram
patterns are checked. Howevem restart commands created by a checkpoint
always begin with a call to the macrestart_begin_hook . The initial definition of

this macro invokes thapply on program command. So, by defaulbn program
patterns are checked and matching commands arebefore the on restart
commands are run. See “Restarting a Program” on page 3-11.

If no match is found in theon restart patterns, then NightView checks thmn
program patterns.

In its first form (given only a pattern), then program command will remove any
commands that were associated with the given pattern for each dialogue specified in the
qualifier. If no pattern is given, theall previously definecbn program commands are
removed from each dialogue specified in the qualifier. If your safety level is set to
forbid , you are not allowed to remove an program commands. If your safety

level is set toverify , NightView requests verification before removing ah
program commands. See “set-safety” on page 7-49.

In its second and third forms, then program command will associate a sequence of
one or more user-specified debugger commands with the given pattern for each dialogue
specified by the qualifier. Macro invocations aret expanded when reading the
commands to associate with the pattern.

The default qualifier for all commands associated with the given pattern will be the
process performing the 'exec’.

The commands specified lpn program are event-triggered commands: they have an
implied safety level (which may be different from the safety level that was set using
set-safety), and may be terminated automatically if they resume execution of the
‘'exec’ing process. See “Command Streams” on page 3-27.

If you wish to list allon program commands, or see whiain program commands
would be executed for a particular program name, you should useanfbe on
program command.

Example:
(local) on program ren* break main.c:24

After issuing the above command, if we now run a program in dialdgoa named
ren_n_stimpy , then we will automatically set a breakpoint in it at line 24 of the file
main.c .

Now suppose we do the following:

(local) on program *stimpy do

> handle 5 noprint nostop
> handle 6 noprint nopass
> end on program

At this point, if we runren_n_stimpy again, then this newly 'exec’ed program will
handle signals 5 and 6 in the specified manner. Note that even though the name
ren_n_stimpy also matches the patteran* that a breakpoint wilhot automatically

be set at line 24 ofmain.c in this new invocation ofen_n_stimpy . This is because

7-37

NightView User’s Guide

apply on program

on restart

7-38

on program patterns are matched in reverse-chronological order (most recent first),
and only the first match found is used.

(local) info on program ren_n_stimpy
on program *stimpy do
handle 5 noprint nostop
handle 6 noprint nopass
end on program

If we were to now issue the command:
(local) on program *stimpy

Then this would remove*stimpy (and its associated commands) from tha

program list for dialoguelocal . Now, if we runren_n_stimpy a third time, then
this third invocation will automatically have a breakpoint set at line 24nafn.c (just
like the first one did).

(local) info on program ren_n_stimpy
on program ren* do

break main.c:24

end on program

Executeon program commands for existing processes.
apply on program

Theapply on program command allow®n program commands to be executed

for existing processes. (See “on program” on page 7-36). For each process specified by
the qualifier, theon program commands which would match the executable file name

of the process are immediately executed on behalf of the process.

Example:

Suppose | want to set a breakpoint at the subroutine nameéd in all programs both
new and old that are debugged in dialodoeal . Using theon program andapply
on program commands, this could be accomplished as follows:

(local) on program * b main
(local) apply on program

Specify debugger commands to be executed when a program is restarted.

on restart [patterr]
on restart pattern command

on restart pattern do

checkpoint

Command-Line Interface

pattern

A wildcard pattern to match against the executable file names of newly
exec ed programs. See “Wildcard Patterns” on page 7-14.

command

A debugger command to be executed when a new program whose executable
file name matchepatternis exec ed.

In the third form of theon restart command, the debugger commands to be executed
must begin on the line following thdo keyword. The list of debugger commands to
execute is terminated when a line containing only the wamdd on restart is
encountered.

Theon restart command is primarily intended to be used internally by the debugger
as part of the restart processing. See “Restarting a Program” on page 3-11. You may use
on restart explicitly, if desired, but you should be wary of conflicts with the
debugger's use. The debugger creates restart commands as a result of a
checkpoint.

on restart is virtually identical toon program in form and function. See “on
program” on page 7-36 for a description of the parameters and functionality of these
commands. That section also describes the interaction of these two commands.

If you wish to list allon restart ~ commands, or see whiain restart commands
would be executed for a particular program name, useitlffie on restart
command. See “info on restart” on page 7-124.

Take a restart checkpoint now.
checkpoint

The checkpoint command saves restart information for the program running in each
process in the qualifier.

In most cases, you do not need to use ¢checkpoint command, because checkpoints
are taken automatically at certain times. See “Restarting a Program” on page 3-11.
checkpoint gives you a way to explicitly take a checkpoint at a time you choose.
Note that any later checkpoints (either explicit or automatic) will replace the restart
information.

Example:

In this example, you are debugging a complex program. You know some good places to
set breakpoints, and you know that you need some more to find the bug, but are not sure
yet where they should be. You set your known breakpoints, take a checkpoint, and save
the restart information to a file. Then you experiment with some different breakpoints.

(local) # set known good breakpoints
(local) breakpoint fred.c:123
set other known breakpoints ...

7-39

NightView User’s Guide

family

7-40

(local) checkpoint
(local) info on restart output=restart_info

(local) # now try experimental breakpoints
(local) breakpoint pebbles.c:456
set other experimental breakpoints ...

You decide to start the program again and want only the known breakpoints. You Kkill
your process, which takes a checkpoint, including the experimental breakpoints. Then
you source the file containing the restart information. The restart information is
replaced with only the known breakpoints. When you restart your program, only the
known breakpoints are restored.

(local) kill
(local) source restart_info
restart program

Give a name to a family of one or more processes.
family family-namef[[-] qualifier-spet ...
family-name

The family name to be defined. This must not be the same as the name of any
dialogue you currently have. The family-name must consist only of alphanu-
meric characters and underscores and must begin with an alphabetic character.
The family-name may be of arbitrary length.

qualifier-spec

Identifies one or more processes to be included or excluded in the family
named byfamily-name See “Qualifier Specifiers” on page 7-10.

The total set of processes is accumulated by scanningubHfier-specarguments left to
right. An argument is added to the set unless it is preceded by a -, in which case it is
subtracted from the set accumulated so far.

If no qualifier-speds included, then this command removes any previous definition of the
family-name If your safety level is set téorbid , you are not allowed to remove the
definition of afamily-namethat is present in the default qualifier. If your safety level is
set toverify , NightView requests verification before removing such a definition. See
“set-safety” on page 7-49.

If one or morequalifier-specarguments are supplied, they are immediately evaluated (see
“Qualifier Specifiers” on page 7-10) and thamily-nameis defined as the list of
processes indicated by those arguments. Evaluation of the arguments has the following
implications:

¢ Any family-nameappearing in the argument list must be defined. Subse-
guent changes made to the definition of tiianily-namewill have no

set-children

Command-Line Interface

effect on the processes implied by tfeamily-namebeing defined in the
family command.

* The processes denoted by adialogue-nameappearing in the argument
list are just those that exist at the time faenily command is executed.

* The argumentll denotes only those processes that exist at the time the
family command is executed.

* The argumenauto denotes the process that has been stopped the longest
at the time thdamily command is executed.

Any qualifier applied to this command has no effect.

Note that you may use amily-namein a qualifier before it is actually defined, but you
must define thdamily-namebefore executing any command that needs to know what the
family-namerefers to.

Examples:

(local) family faml 12 25 18
(local) family fam2 faml 99
(local) family faml faml 16

The first command gives the nanfi@m1to the processes identified ®yps 12, 18, and
25. The second command gives the nafam?2 to the three processes fiaml plus
process 99. The third command extends the definitiofawflto include process 16; thus
famlis a synonym for four processes: 12, 16, 18, and 25. Note that extefalimthas
no effect onfam2 which still consists of processes 12, 18, 25, and 99.

Using the families defined in the previous examples, the use of a minus sign on
arguments can be illustrated by the following examples:

(local) family fam3 faml fam2 -12
(local) family fam3 faml -12 fam2

The first command defineam3to be the processes 16, 18, 25, and 99. In contrast, the
second command definédam3to be the processes 12, 16, 18, 25, and 99. In this case,
the argument12 removed process 12 from the set accumulated ffaml but the

fam2 argument adds that process back in. In general, it is a good idea to put all the
subtracted arguments at the end of the list.

Control whether children should be debugged.
set-children { all [resume] | exec | none }
all

Debug all children. If the optional keyworgsume is specified, then a child
process isesume d automatically after NightView has prepared it for debug-
ging. This is useful if your program creates many child processes that you
want to debug, but all you need to do is inherit the eventpoints and debug set-
tings from the parent process. See “Multiple Processes” on page 3-2.

7-41

NightView User’s Guide

set-exit

7-42

exec

Debug children only when they have calledec(2) (that is, when they are
running a different program). The program name is checked against the
debug/nodebug list for the controlling dialogue to see if the program should be
debugged. See “debug” on page 7-20. This is the default setting for direct
children of the dialogue shell and processes debugged withttagh com-
mand. See “attach” on page 7-32.

none
Ignore all children.

Sometimes you are not interested in the child processes of the process you are debugging.
For example, your program may make many callsystem(3) which you are not
interested in debugging. Theet-children command gives you a way of controlling
which children will be debugged without having to detach from each one individually.
See “detach” on page 7-32.

The set-children command applies to future children of the processes specified by
the qualifier. Existing children are not affected.

This mode is inherited by future children.

Control whether a process stops before exiting.
set-exit [stop | nostop]
stop
The process will stop if thexit system service is called.
nostop
The process wilhot stop before exiting.

The set-exit command controls whether the processes specified by the qualifier will
stop before exiting. The default state for a process is to stop before exiting. See “Exited
and Terminated Processes” on page 3-14.

If no arguments are specified to the command, the command prints the current state for
each process in the qualifier. If an argument is specified, the command changes the state
of each process in the qualifier accordingly and then prints the new state.

Note that theset-exit mode is inherited by a child process if a process forks. Note
also that the mode persists for the entire life of the process, even acresearsystem

call, until modified by anotheset-exit command. In the case of axec, anon
program or on restart command might specify &et-exit command that
changes the mode. See “on program” on page 7-36 and “on restart” on page 7-38. See
also “Restarting a Program” on page 3-11.

If you also want a process to automatically resume execution aftegxan, put a
resume command in aron program specification. See “resume” on page 7-95 and

Command-Line Interface

“on program” on page 7-36.

mreserve

Reserve a region of memory in a process.
mreserve start= address{length= bytes| end= addres}
start= address
Specify the start address of the region.
length=bytes
Specify the length of the region in bytes.
end=address
Specify the end address of the region.

The start= addressparameter is required. You must specify eitheleagth or an
end address.

Themreserve command reserves a region of memory for each process specified by the
qualifier. This means that NightView will not allocate space for patch areas in that
region. See Appendix E [Implementation Overview] on page E-1.

This command does not directly affect the process. It is only an indication to NightView
to avoid placing patch areas in the specified region, presumably because your program
will be using that region later in its execution.

mreserve only affectsfuture allocations. You should reserve memory before using any
commands that allocate space in the process, including eventpoint commanidsdthe
command, or any command with an expression that involves a function call. See
“Eventpoints” on page 3-8. See “load” on page 7-74. See “Expression Evaluation” on
page 3-18.

You should exercise some caution with this command. It is possible to reserve memory
in such a way that NightView cannot function.

For convenience, you are allowed to specify reservations that overlap or contain existing
regions in your process.

Memory reservations are printed as part of thi®y memory command. See “info
memory” on page 7-122.

Memory reservations are remembered as part of the restart information. See “Restart

Information” on page 3-13. During restart, memory reservations are applied before any
commands that would allocate space in the process.

7-43

NightView User’s Guide
Setting Modes

set-log

Log session to file.
set-log keyword filename
keyword
Thekeywordparameter must be one of the following:
all

Log entire session (commands as well as the output generated by com-
mands).

commands
Log just commands typed.
close
Close a log file.
filename
Name of the log file.

This command starts logging the debugger session to a file. If the file already exists, the
log information is appended to it. You may log just the commands (by using the
commands keyword) or the entire sessioal(keyword) to a file (if the named file is
already an open log file, specifying a different keyword simply changes the mode of the
log). You may open multiple log files (although more than one of each type of log would
be rather redundant).

The close keyword is used to close the log associated with the file. (See “info log” on
page 7-112).

The qualifier does not have any effect on this command. Any logs are global to the debug
session.

Note that this command logs everything that happens during the debug session
(essentially, everything you see on your terminal). Be&show command may be
used to log output from a single dialogue (see “set-show” on page 7-28).

set-language
Establish a default language context for variables and expressions.

set-language {ada | auto | ¢ | c++ | fortran}

7-44

Command-Line Interface

ada
Indicates that the default language should be Ada.
auto

Indicates that the default language should be determined automatically.

Indicates that the default language should be C.
Cc++
Indicates that the default language should be C++.
fortran
Indicates that the default language should be Fortran.
The arguments to this command can be in any mixture of upper and lower case.

For each process specified by the qualifiset-language sets the default language
used to interpret expressions and variables in commands. If a default language has not
been established, or if the default has been sauto , NightView decides the language

in one of two ways. If the object file contair@wARF, then it contains the language
information. Otherwise, NightView infers the language from the extension (the last few
characters) of the source file name associated with the frame selected when the
expression or variable is mentioned. The following extensions are recognized:

a
The language is assumed to be Ada.
.c
The language is assumed to be C.
.C
The language is assumed to be C++.
f
The language is assumed to be Fortran.
S

Although this indicates an assembler source file, NightView uses the C lan-
guage for such files. C expressions include nearly all the operators allowed by
the assembler, plus much more.

The language determines the meaning of operators and constants in expressions;
determines the syntax of some kinds of expressions (e.g., C type casts); controls the
visibility of variable names; and controls the significance of case (upper versus lower) in
variable names. The language also controls the formatting of output frorprithte
command (see “print” on page 7-65), especially the way the type of an expression is

7-45

NightView User’s Guide

indicated.

set-qualifier
Specify the default list of processes or dialogues that will be affected by subsequent
commands which accept qualifiers.
set-qualifier [qualifier-spec...]
qualifier-spec
Specifies a process or dialogue to be included in the default qualifier list (see
“Qualifier Specifiers” on page 7-10). Any family names in tipealifier-spec
are evaluated at the time of each command, not at the tinseteduali-
fier
If no argument is specified, the default qualifier is set to null, meaning that a qualifier
must be supplied to subsequent commands that require qualification.
set-history
Specify the number of items to be kept in the value history list.
set-history count
count
The number of items to be kept in the value history.
The qualifier is ignored on this command. The default history list size is 1000. If more
history items than that are created, the oldest ones are discarded. No matter how many
items are in the list, each new history item gets the next highest number.
set-limits

Specify limits on the number of array elements, string characters, or program addresses
printed when examining program data.

set-limits {array= number| string= number| addresses= numbe} ...
array= number

Thearray keyword parameter specifies the maximum number of array ele-
ments to be printed. If you want unlimited output, specify zero as the limit.

string=number

Thestring keyword parameter specifies the maximum number of charac-
ters of a string to be printed. If you want unlimited output, specify zero as the
limit.

7-46

set-prompt

Command-Line Interface

addresses= number

Theaddresses keyword parameter specifies the maximum number of
addresses to be printed for a particular location (See “Location Specifiers” on
page 7-9). If you want unlimited output, specify zero as the limit.

Thearray , string , andaddresses keywords may be specified in any order.

The qualifier is ignored on this command. The limits setdey-limits apply to all
output of variables or expressions or program locations. If a printed value is truncated
because of these limits, the value will be followed by ellipses.

Note that the limitation on array elements applies to each dimension of a multi-
dimensional array. If you print 80 x 20 two-dimensional array, and you have the
array limit set to5, then you will see the first 5 elements of the each of the first 5 rows
(or columns, for Fortran).

The default limits are 100 array elements, 100 characters, and 10 addresses. To find out
what the current limits are, use tirdo limits command (See “info limits” on page
7-120).

Set the string used to prompt for command input.
set-prompt string
string

Specify the string the debugger uses to prompt for command input. The string
must be enclosed in double quotes. If you include any of the following sub-

strings in the prompt, they will be expanded by the debugger immediately

prior to printing the prompt.

%0q
Expands to the current default qualifier. This prints out the same way
the qualifier was defined. If you used a family name, it shows the family
name (not the individuabibs), etc. If the default qualifier iauto , it
prints the current automatically selecteid.

%p
Expands to the complete list efbs implied by the current default qual-
ifier.

%d
Expands to the complete list of dialogues implied by the current default
qualifier.

%a

Expands to the complete list of dialogues, if the current default qualifier
isall . Otherwise, this expands to the current default qualifier.

7-47

NightView User’s Guide

set-terminator

7-48

%%
Expands to the single characgér

The string argument may also include the escape sequences recognized in C language
strings, such as '\n’ to indicate a newline.

The string "{(%a) " is the default prompt.
The qualifier on theset-prompt command is ignored.

Examples:

(afamily) set-prompt "%p>
local:2047,2048>

The above example shows what happens when the default qualifier is a process family
namedafamily assumed to contain twaibs (2047 and 2048), both in dialoglozal

The initial prompt is (%q) " and theset-prompt command changes it to expand to a

list of PIDs.

(afamily) set-prompt "Dialogues: %d\nProcesses: %p>"
Dialogues: machl,mach2
Processes: machl:15 mach2:15,549,2047,2048>

The above example prints two lines as a prompt, the first containing a list of dialogues
and the second containing a list of processes.

Set the string used to recognize end of dialogue input mode.
set-terminator string
string

Define thestring used to terminate dialogue input mode (see “!” on page
7-27).

When the!l command is used to switch all input to a dialogue, the terminator string is
recognized to switch input back to the debugger. The terminator string must appear on a
line by itself to be recognized. The default string is " (different fromrlogin and

cu).

Unlike normal debugger commands, this string must be typed exactly as specified in the
set-terminator command. The case of the letters must match, and the full string
must be typed.

Only one terminator string is defined. The qualifier on this command is ignored.

Leading and trailing whitespace in the specified terminator string is ignored. Macros are
notexpanded when reading the new terminator string.

If no terminator string is given, then the current terminator string is printed, otherwise the
new terminator string is printed.

Command-Line Interface

set-safety
Control debugger response to dangerous commands.
set-safety [forbid | verify | unsafe]

forbid

In forbid mode, the debugger simply refuses to execute a dangerous com-
mand and explains why it will not execute. (You may have triequt while
processes were still running, etc.).

verify

In verify mode, the debugger tells you what dangerous thing you are about
to do and asks if you really meant that (see “Replying to Debugger Questions”
on page 7-16). If you answees , it goes ahead and does it. This is the
default safety level of the debugger.

unsafe

In unsafe mode, the debugger simply tells you what it did. It assumes you
meant what you said and does not try to stop you.

If no mode is specified then theet-safety command prints the current safety level.

The qualifier on theset-safety command is ignored.

set-restart
Control whether restart information is applied.
set-restart [always | never | verify]

always

Restart information is unconditionally applied when a program starts. This is
the default mode.

never
Restart information is never applied when a program starts.

verify

When a program starts, you are asked whether to apply restart information to
it.

If no keyword is specified then thset-restart command prints the current restart
mode.

The restart mode is a global mode, not a per-process or per-dialogue mode. The qualifier
on theset-restart command is ignored.

See “Restarting a Program” on page 3-11.

7-49

NightView User’s Guide

set-local

set-patch-area-size

7-50

Define process local convenience variables.
set-local identifier ...
identifier

The name of a convenience variable (the leading '$’ on each identifier, nor-
mally used to reference convenience variables, is optional).

Each named identifier is defined to be a process local convenience variable.

A process local variable always has a unique value in each process. If the variable was
already defined as a global at the time it appears setalocal command, then each
process gets a separate copy of the current global value, but future changes will be unique
for each process.

The command qualifier does not have any effect on this command. It is not possible to
define a variable to be local for only one process, but globally shared among other
processes.

Control the size of patch areas created in your process.

set-patch-area-size {data= data-size| eventpoint= eventpoint-size|
monitor= monitor-size | text= text-sizé ...

data= data-size
Thedata keyword parameter specifies the size of the data area in kilobytes.
monitor= monitor-size

The monitor keyword parameter specifies the size of the shared memory
region used by all monitorpoints in this dialogue, in kilobytes.

text= text-size
Thetext keyword parameter specifies the size of the text area in kilobytes.
eventpoint= eventpoint-size

Theeventpoint keyword parameter specifies the size of the eventpoint
areas in kilobytes.

Thedata , monitor , text , andeventpoint keywords may be abbreviated and may
be specified in any order.

NightView creates some regions in your process, and uses these regions to store text and
data. There is usually one data region, one text region, one or more eventpoint regions,
and, if there are any monitorpoints in the process, one shared memory region for the
monitorpoints. These regions are callpatch areas See Appendix E [Implementation
Overview] on page E-1.

interest

Command-Line Interface

You can adjust the sizes of the patch areas with this command. For example, if you have
a lot of conditional eventpoints, then you may need to make the size of the eventpoint and
text regions larger so that NightView has room to allocate all the code necessary for those
eventpoints. Similarly, if you have a lot of monitorpoints, then you may need to make
the size of the monitorpoint shared memory region larger. On the other hand, if system
memory resources are scarce, then you may need to make some of these regions smaller.

The patch area size values are associated with each dialogue and apply to all processes
within the dialogue. This command sets the values for each dialogue specified in the
qualifier.

Note that these values only apply to patch areas created in the future. Existing regions are
not changed. Therefore, if you want to debug a program and use a large text or data area,
you need to specify that before you run your program (i.e., before the process calls
exec). (Forfork , the child process inherits its regions from the parent, so the regions
are the same size in the child and the parent.)

Each process has its own data, eventpoint and text areas, but the monitorpoint shared
memory region is shared by all the processes that have monitorpoints in the dialogue, and
by the dialogue itself. Therefore, if you want to change the size of the monitorpoint
shared memory region, you need to do so before creating any monitorpoints in the
dialogue. See “Monitorpoints” on page 3-9.

The initial values of the patch area sizes are 512 kilobytes each for the data and text patch
areas, 256 kilobytes for the eventpoint areas, and 32 kilobytes for the monitorpoint shared
memory region. This is adequate for most applications.

Useinfo dialogue to see the current patch area size values. (see “info dialogue” on
page 7-123).

You can see information about the patch areas in an existing process withfthe
memory command (see “info memory” on page 7-122).

Control which subprograms are interesting.
interest [level [[at] [location-spef]
Set or query the interest level for a subprogram.

interest inline[= level
interest justlines[= level
interest nodebug[= level

interest threshold[= level
Set or query the interest keyword values.
level

Specify a level for the subprogram defined Ibgation-specor a value for the
specified keyword.levelis a signed integer or the keywordsinimum or

7-51

NightView User’s Guide

7-52

maximum. If this argument is not present, then this command queries the
level of the subprogram or the specified keyword.

[at] location-spec

Set or query the interest level for the subprogram specifietbbgtion-spec
See “Location Specifiers” on page 7-9. If hmcation-speds present, it
defaults to*$cpc . If the at keyword is present, it must be followed by a
location-spec If no levelis specified, then that keyword is required to dis-
tinguish some forms of location specifiers frontezel

inline

Set or query the inline interest level. If this level is less than the interest level
threshold, then all inline subprograms have thiaimum interest level unless
their interest level has been explicitly set wittterest level location-spec
The initial value of this level i$).

justlines

Set or query the interest level for subprograms with line number information
but no other debug information. The initial value-5s.

nodebug

Set or query the interest level for subprograms with no debug information
(e.g., system library routines). Without debug information, the interest level
cannot be specified for individual subprograms, so NightView uses the value
specified by this form. The initial value il .

threshold

Set or query the interest level threshold NightView uses to decide whether a
subprogram is interesting. The initial valuelis

Theinterest command sets or queries the information NightView uses to decide which
subprograms are interesting for each process in the qualifier. See “Interesting Subpro-
grams” on page 3-24.

Theminimum keyword specifies the lowest possible interest level. faimum key-
word specifies the highest possible interest level.

A query prints the interest information requested. If an interest level is being set, the com-
mand prints the new interest level.

Some compilers provide a means to specify the interest level of a subprogram through the
debug information. If the subprogram has debug information, but it does not specify an
interest level, the default level & Theinterest command overrides an interest level

set at compile time.

The interest levels and the interest level threshold are remembered as part of the restart
information. See “Restart Information” on page 3-13. For a way to see all the interest lev-
els that have been explicitly set, see “info on restart” on page 7-124.

If an interest level or the interest level threshold is changed, then NightView checks the
current frame to see if it has become uninteresting. See “Current Frame” on page 3-23. If

Command-Line Interface

it has, then the current frame is reset to frame 0 of the current context and frame informa-
tion is printed. See “select-context” on page 7-107. Even if the current frame does not

have to be reset, it gets a different frame number if frames below it have become hidden or
unhidden.

Examples:

(local) run fact 7

...process startup information...

(local) interest

local:6729: Interest level is -4 (uninteresting) for
0x100024d0 (nodebug)

You query the interest level, using the default location specifiefhopc . The program
begins in the C runtime startup routine, which has no debug information, so it is uninter-
esting.

(local) breakpoint 26

local:6729 Breakpoint 1 set at fact.c:26

(local) continue

local:6729: at Breakpoint 1, 0x10002780 in main(int argc
= 2, unsigned char ** argv = Ox2fffeaed) at fact.c line
26

26 B=| answer = factorial(x);

(local) step

#0 0x100026f4 in factorial(iint x = 7) at fact.c line 6

6 =| if (x <= 1) {

(local) interest -1

local:6729: Interest level set to -1 (uninteresting) for
factorial

#0 0x10002780 in main(int argc = 2, unsigned char **
argv = Ox2fffeaed at fact.c line 26S
26 B<>| answer = factorial(x);

You step into thefactorial function, then decide that it is not interesting. You mark
factorial uninteresting, using the default location specifier. Your current frame
becomes uninteresting, so it is reset to frame 0. Frame 0 is now the frameafar,
becauséactorial is not interesting. The source decorations for line 26 showgpat
and$cpc are within that line. See “Source Line Decorations” on page 7-62.

(local) interest threshold=-1

local:6729: threshold interest level set to -1

(local) frame

Output for process local:6729

#1 0x10002780 in main(int argc = 2, unsigned char **
argv = Ox2fffeaed) at fact.c line 26

26 B<>| answer = factorial(x);

You change the interest level threshold, which mdkesorial interesting again. Your
current frame is still interesting, so it is not reset to frame 0. ffime command shows
that your current frame is still the frame forain , but now that frame is frame number 1.

7-53

NightView User’s Guide

set-auto-frame

set-overload

set-search

7-54

Control the positioning of the stack when a process stops.
set-auto-frame args ...

The functionality of this command has been subsumed bynteeest command. See
“interest” on page 7-51. This command has been retained for compatibility, but it might
be removed in some future release.

Control how NightView treats overloaded operators and routines in expressions.
set-overload [operator={on | off}] [routine={on | off}]
operator={on | off}
Turn operator overloadingn or off .
routine={on | off}
Turn routine overloadingn or off .

The set-overload command determines how NightView treats overloaded operators,
functions, and procedures in expressions. See “Expression Evaluation” on page 3-18.
This behavior can be controlled for operators separately from functions and procedures
using the keywords on the command. The specified settings apply to all expressions eval-
uated by NightView. The qualifier is ignored by tiset-overload command. The
routine mode also controls overloading of function names which appear in location
specifiers.

After setting the specified overloading modes, fe¢-overload command prints the
new settings. If no arguments are specified, the command simply prints the existing
overloading modes.

For a discussion of how overloading works in NightView see “Overloading” on page 3-21.
For the details of the syntax used to specify overloading in expressions and location speci-
fiers see “Selecting Overloaded Entities” on page 7-2.

Control case sensitivity of regular expressions in NightView.
set-search [sensitive | insensitive]
sensitive
Make regular expressions case sensitive (this is the default setting).
insensitive

Make regular expressions case insensitive.

set-editor

Command-Line Interface

Theset-search command controls case sensitivity for the regular expressions (see
“Regular Expressions” on page 7-12) used by several commands as well as some dialog
boxes in the graphical interface.

When theset-search command is run with no argument, it reports (but does not
change) the current mode setting.

When thesensitive ~ argument is specified, regular expressions become case sensitive.
The case of alphabetic characters must match exactly as written in the regular expression.
This is the defaulset-search mode.

When theinsensitive argument is specified, regular expressions become case insensi-
tive. Either the upper case or the lower case form of an alphabetic character will match
both the upper and lower case form of that same character.

Set the mode for editing commands in the simple full-screen interface.
set-editor mode
mode
One ofemacs, gmacs or vi .

Determine which kind of keystroke commands are available to edit commands in the sim-
ple full-screen interface.

See “Editing Commands in the Simple Full-Screen Interface” on page 8-2.

7-55

NightView User’s Guide

Debugger Environment Control

cd

pwd

7-56

Set the debugger's default working directory.
cd dirname
dirame
The name of the directory.

Thecd command changes the working directory of NightView to the specified directory.
You usually use this command to control the search for source files, core files, and
program files. It affects the behavior of the following commands:

¢ shell (see “shell” on page 7-110)

* list (see “list” on page 7-58)

e directory (see “directory” on page 7-60)

¢ symbol-file (see “symbol-file” on page 7-33)
¢ core-file (see “core-file” on page 7-34)

¢ exec-file (see “exec-file” on page 7-35)

The cd command does not affect commands executed in dialogue shells (see “login” on
page 7-18). Also, the qualifier does not have any effect on this command.

You can use thewd command to find out what NightView's current working directory
is. See “pwd” on page 7-56.

Print NightView's current working directory.
pwd

This command prints the current working directory of the debugger. Note that this
directory may not be the same as the current working directory of your dialogue shells,
nor need it be the same as the current working directory of any program you are
debugging.

You can use thed command to set the current working directory. (see “cd” on page
7-56).

The qualifier does not have any effect on this command.

Command-Line Interface

Source Files

This section describes commands to view source files and to search for text in source
files.

7-57

NightView User’s Guide
Viewing Source Files

list
List a source file. This command has many forms, which are summarized below.
list where-spec
List ten lines centered on the line specifiedvlgere-spec
list where-specl where-spec2
List the lines beginning witkvhere-specip to and including thevhere-specfine.
list , where-spec
List ten lines ending at the line specified ere-spec
list where-spec
List the ten lines starting athere-spec Note the comma.
list +

List the ten lines just after the lines last listed.

list -
List the ten lines immediately preceding the lines last listed.

list =
List the last set of lines listed. If the previous command was a search command, list
the ten lines around the line found by the search.

list

If a list command has not been given since the current source file was last estab-
lished (see below), this form lists the ten lines centered around the line where execu-
tion is stopped in the current source file. Otherwise, this form lists the ten lines just
after the last lines listed.

Abbreviation: |
Eachwhere-speargument can be any one of the following forms.
[at] location-spec

Specifies a location in the program or a source file (See “Location Specifiers”
on page 7-9). No matter which form tdcation-spegyou use, it is always
translated into a source line specification for this command. If you give two
arguments on thBst command, they cannot specify different source files.

7-58

Command-Line Interface

[at] file_name

Specifies the first line of the file. Thidle_namemay be a quoted or unquoted

string, but be aware that an unquoted string may be ambiguous. A string with-
out quotes will be interpreted first as a function name or an Ada unit name; if
no such function or Ada unit exists, the string will then be interpreted as a file

name.

+n
Specifies the line that is lines after the last line in the last group listed (see
below). If this is the secondihere-specit specifies the line lines after the
first argument.

-n

Like +n, except it specifies the linelinesbeforethe last line in the last group
listed (see below). If this is the secomtdhere-spedit specifies the linen lines
before the first argument.

Thelist command is applied to each process in the qualifier. If the qualifier specifies
more than one process, you get one listing for each process; each listing is preceded by a
notation indicating which process the listing is for. The specified source file is found
using the directory search path you established usingditetory command (see
“directory” on page 7-60). Note that each program has its own directory search path.

NightView maintains, for each process, a current source file. The current source file is
usually the most recent file listed or searched. However, when the process stops
execution, the current source file is automatically set to the file where execution stopped.
The context selection commands (see “Selecting Context” on page 7-105) also set the
current source file to the one associated with the selected stack frame. When a process
first starts execution, the current source file is the one containing the main program. If the
first argument to thdist command does not explicitly specify a source file, then the
current source file is used.

When you list one or more lines in a source file, NightView remembers the first and last
line of that group. If you subsequently givdist command that uses a relatindere-
specor contains just & or - argument, those arguments are interpreted relative to the
lines in the last group listed. Arguments containing are relative to the last line in the
group, and arguments containing are relative to the first line in the group. This also
affects theforward-search and reverse-search commands. See “forward-
search” on page 7-61 and “reverse-search” on page 7-61.

Repeating théist command by entering a blank line behaves differently depending on
the form oflist you used last. In most cases, repeating the command lists the next ten
lines following the last line in the last group. However, if you usedlise - form

last, then repetition lists the ten lines preceding the first line in the last group.

The listed source lines are preceded byurce decorations (see “Source Line
Decorations” on page 7-62).

You can use thinfo line command to determine the location in your program of the
code for a particular source line. (see “info line” on page 7-129).

7-59

NightView User’s Guide

directory

7-60

Set the directory search path.
directory [dirname ...]
dirname

The name of a directory to include in the search path. If this is not an absolute
pathname, it is interpreted relative to NightView's current working directory
and transformed into an absolute pathname. Thus, if you later change Night-
View's working directory, the search path will not be affected. See “cd” on
page 7-56 and “pwd” on page 7-56.

Thedirectory = command sets the directory search path for the program in each process
in the qualifier. The arguments are used in order as the elements of the directory search
path. Subsequendirectory commands contribute directories to the head of the
current search path.

The directory search path is used for displaying source files. When you list a source file
(see “list” on page 7-58), NightView looks for the source file in each of the directories in
the search path, starting at the beginning of the search path each time.

If no directory command has been specified for the program, the search path
implicitly contains the path to the executable file and NightView's current working
directory. Once alirectory command is specified for the program, these directories
are no longer implicit in the search path.

If you enter adirectory command with no arguments, the search path is reset to its
initial state.

The directory search path is associated with a program, not with a process. If you debug
multiple instances of a program, the directory search path is the same for each instance.
If your process callexec(2) , the directory search path is implicitly set for the new
program.

Use theinfo directories command to display the directory search path for a
program. See “info directories” on page 7-119.

For ELF programs, the debugging information contains absolute pathnames to source
files, so the directory search path may not be needed. It is still sometimes useful to
indicate that a source tree is not where the debugging information indicates.

Example:

Suppose your ELF program was compiled from two source filest/bob/src/

main/main.c and /usr/bob/src/doit/doit.c . You want to debug your
program, but you have moved the source files/usr/joe/main/main.c and/
usr/joe/doit/doit.c . Enter adirectory command to indicate the new root of

the source tree:

(local) directory /usr/joe

Searching

forward-search

reverse-search

Command-Line Interface

Search forward through the current source file for a specified regular expression.
forward-search regexp
regexp

The regular expression to search fdlio anchored match is implied. (see
“Regular Expressions” on page 7-12).

The search command is applied to the current source file of each process specified by the
qualifier. The search starts at the line following the last line in the last group listed (see
“list” on page 7-58) and proceeds forward through the file to the end. If the regular
expression is found, the containing source line is listed. This will affect subsequent
list commands that specify relative arguments.

If the end of the file is encountered without finding the regular expression, a message is
printed indicating the search was unsuccessful. For a definition of current source file, see
“list” on page 7-58.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 7-54).

Search backwards through the current source file for a specified regular expression.
reverse-search regexp
regexp

The regular expression to search fbio anchored match is implied. (see
“Regular Expressions” on page 7-12).

The search command is applied to the current source file of each process specified by the
qualifier. The search starts at the line preceding the last line in the last group listed and
proceeds backwards through the file to the beginning. If the regular expression is found,
the containing source line is listed. This will affect subsequestt commands that
specify relative arguments. (see “list” on page 7-58).

If the beginning of the file is encountered without finding the regular expression, a
message is printed indicating the search was unsuccessful. For a definition of current
source file, see “list” on page 7-58.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 7-54).

7-61

NightView User’s Guide

Source Line Decorations

When NightView lists source lines in your program or displays the assembly instructions
of your program, it precedes each line with decorations providing information about that
line. Every source line getslane number which is relative to the beginning of that file.
Each instruction displayed is preceded by the line number of the source line that
generated it (see “X” on page 7-67). Following the line number may be one or more of
the decorations shown in the following table.

Table 7-6. Source Line Decorations
A

Indicates that one or more agentpoints, possibly disabled, are set somewhere within
this source line. When displaying instructions, this indicates that one or more agent-
points are set on this instruction. (see “agentpoint” on page 7-86).

Indicates that one or more breakpoints, possibly disabled, are set somewhere within
this source line. When displaying instructions, this indicates that one or more break-
points are set on this instruction. (see “breakpoint” on page 7-78).

Indicates that one or more monitorpoints, possibly disabled, are set somewhere
within this source line. When displaying instructions, this indicates that one or more
monitorpoints are set on this instruction. (see “monitorpoint” on page 7-83).

Indicates that one or more patchpoints, possibly disabled, have been inserted some-
where within this source line. (see “patchpoint” on page 7-79). When displaying
instructions, this indicates the instruction where the patchpoint was inserted, and the
patched expressions are displayed elsewhere.

Indicates that one or more tracepoints, possibly disabled, are set within this source
line. When displaying instructions, this indicates a tracepoint immediately preced-
ing this instruction. (see “tracepoint” on page 7-82).

Indicates that execution is stopped somewhere within or at the beginning of this line.
When displaying instructions, this indicates the instruction at which execution is
stopped (the one that will next be executed).

Indicates the line (or instruction) in the current frame (see “frame” on page 7-105),
where execution will resume when the called routine returns.

This decoration is not displayed if the current frame is frame #0 (with no hidden
frames below frame 0); in this case the '=' decoration will appear in its place.

7-62

Command-Line Interface

Indicates the line (or instruction) in the current frame (see “frame” on page 7-105),
which was executing when the called frame was created$icpc . See “Program
Counter” on page 3-22.

This decoration is not displayed if the current frame is frame #0 (with no hidden
frames below frame 0); in this case the '='decoration will appear in its place.

Indicates that this source line corresponds to executable code. A line that appears
executable may still not have executable code associated with it because of optimi-
zation or conditional compilation. Not used when displaying instructions.

This decoration is not displayed if there are any other indicators also on that line,
since the other indicators imply there is executable code for the line.

Used only when displaying instructions, this character indicates that the associated
instruction is the first for the corresponding source line.

NightView reserves enough columns for displaying a 3-digit line number, 2 decoration
characters, and a 2-character separator. If the line number and decorations fit within this
space, the source text displayed lines up in columns just as it does in the source file. If
more space is needed for line number or decorations, the line is shifted over accordingly.

In the source listing, the 2-character separator is a vertical bar followed by a space. This
helps distinguish decorations from source characters. In the disassembly listing, the 2-
character separator consists of 2 spaces.

Example source listing:

20 | void

21 * | main(argc, argv)

22 | int argc;

23 | char ** argv;

24 | {

25 | int i, errors;

26 * | errors = 0;

27 * | for (i = 1; i < argc; ++i) {

28 | long xl;

29 | int x;

30 | int answer;

31 * | char * ends = NULL;

32 T | xlI = strtol(argv[i], &ends, 10);
33 B x = (int)xl;

34 B | answer = factorial(x);

35 P | printf(“factorial(%d) == %d\n", x, answer);
36 | }

37 * | exit(errors);

38 |}

In this example, line 32 has a tracepoint set on it; line 33 has a breakpoint set somewhere
within the line, and execution is stopped on the line (but not necessarily at the
breakpoint). Line 34 has a breakpoint set somewhere within the line (perhaps on the

7-63

NightView User’s Guide

return fromfactorial

). Line 35 has a patchpoint inserted somewhere within it. Apart

from these lines, the other lines with asterisks on them have executable code associated

with them.

Example instruction listing:

31 @ 0x10002788 <main+52>:
31 0x1000278c <main+56>:
32 @T 0x10002790 <main+60>:
32 0x10002794 <main+64>:
32 0x10002798 <main+68>:
32 0x1000279¢c <main+72>:
32 0x100027a0 <main+76>:
33 @B= 0x100027a4 <main+80>:
34 @ 0x100027a8 <main+84>:
34 B 0x100027ac <main+88>:
35 @P 0x100027b0 <main+92>:
35 0x100027b4 <main+96>:
35 0x100027b8 <main+100>:
35 0x100027bc <main+104>:

li 16,0
stw r6,0x40(rl)

slwi r5,r16,2

lwzx r3,r17,r5

addi r4,r1,64

li 15,10

bl 0x100010e0 <strtol>
mr r20,r3

bl 0x10002700 <factorial>
mr r5,r3

lis r3,12288

addi r3,r3,12528

mr r4,r20
bl 0x10001100 <printf>

This is a partial assembly listing for the preceding example source listing.

Examining and Modifying

backtrace

7-64

Print an ordered list of the currently active stack frames.

backtrace [number-of-framgs
Abbreviation: bt

number-of-frames

Number of stack frames to print, starting with the currently executing frame.

The backtrace

command prints, for each process specified in the qualifier, a summary

of the active stack frames, starting with the currently executing frame. Each subsequent
entry corresponds to the caller of the frame which precedes it in the listing. All active
frames are indicated, unless a value farmber-of-framess given, in which case, the

given number of frames is printed.

Each entry in théacktrace

listing includes the frame number (the first frame is num-

bered0), the program counter, the subprogram name (if known), the arguments of the sub-
program (if known), the source file name (if known), and the line number (if known).

For information on changing the current stack frame, see “frame” on page 7-105, “up” on

page 7-106, or “down” on page 7-107.

Frames corresponding to uninteresting subprograms are not shown in the listing. See

“Interesting Subprograms” on page 3-24.

print

Command-Line Interface

Print the value of a language expression.

print [/ print-format-lette} expression

Abbreviation: p

print-format-letter

One of the following letters specifying the format in which to print each com-
ponent value of the expression:

a

P rint the value of the expression in hexadecimal and as an address rela-
tive to a program symbol.

Treat the rightmost (least significant) eight bits of the value as a charac-
ter constant and print the constant.

Print the bit representation of the value in signed decimal.

Print the bit representation of the value as a single precision floating-
point number and print using floating-point syntax. If the data type of
the language expression is double precision, however, then the bit repre-
sentation is printed as a double precision floating-point number.

Print the bit representation of the value in octal.

Print the data as a character string. Arrays of characters will print as one
character string (terminated with a zero byte if the language is C or
C++); scalar types will print using their default format plus the bytes of
the value will be printed as a string. (You might want to use this in For-
tran if you put Hollerith data inNTEGERvariables.)

See note below about limits on the length of printed strings.

Print the bit representation of the value in unsigned decimal.

Print the bit representation of the value in hexadecimal.

7-65

NightView User’s Guide

set

7-66

expression
A language expression (see “Expression Evaluation” on page 3-18).

print displays the value of a language expression in each process specified by the
qualifier. When the expression is an aggregate item, such as an array, record, or union,
each component value of the expression is printed, along with the appropriate subscript,
record field name, etc.

The space betweeprint and/ may be omitted. If ngprint-format-letteris given,
expressioris printed in a format corresponding to the data type of the expression in the
currently defined language.

The printed value is given a value history number (see “Value History” on page 3-30),
indicated in the output b$ followed by the history number.

If the value printed contains an array or a character string, the number of array elements
and characters will be limited to the values set by gbelimits command (see “set-
limits” on page 7-46).

NOTE

For ease in debugging C and C++ programs pitiet command
treats expressions of type 'char *' specially. Whenepgnt
prints the value of a 'char *' pointer, it also prints the string it
points to, inside double-quote marksint assumes the string is
terminated by a null byte.

Most other commands that print expressions or variables also treat
'char *' pointers in this manner.

Examples:

(local) (12) p/x var_name*4
(local) (12) p array_name

The first example prints, in hexadecimal, a number equal to four times the value of
var_name , for process 12. The second example prints the value of each member of the
arrayarray_name in a format based on the data typeasfay _name , for process 12.

Evaluate a language expression without printing its value.
set expression
expression
A language expression (see “Expression Evaluation” on page 3-18).

This command is similar to thprint command (see “print” on page 7-65), in that it

Command-Line Interface

evaluates a language expression for each process specified in the qualifier. However,
set does not accept a format specifier, print the value of the expression, or place the
value of the expression in the value history. It is useful for doing assignments to
language objects (e.g., memory addresses preceded by the C language cast syntax,
variables, and array elements) and convenience variables, as well as for performing calls
to subprograms whose return value is unimportant.

Examples:

(local) set $i = 98

(local) (27) set vector[5] = x * 25
(local) set *(int *)0x1234 = Oxabcd0123
(local) set routine(3,4)

The first example assigns the vald@ to the convenience variab . The second exam-

ple assigns the value of * 2.5 to element five of arrayector , in process 27. The

third example assigns the hexadecimal vadbed0123 to the hexadecimal absolute
memory locatiorl234 . The final example performs a call to the subprograntine

Print the contents of memory beginning at a given address.
X [[[repeat-courf size-lette]] x-format-lettef] [addr-expressioh
repeat-count

Decimal number of consecutive memory units to print, where a unit is defined
by thesize-letterand thex-format-letter

size-letter

One of the following letters specifying the size of each memory unit:

b
Each memory unit is one byte (8 bits) long.
h
Each memory unit is one halfword (two bytes) long.
w
Each memory unit is one word (four bytes) long.
g

Each memory unit is one giant word (eight bytes) long.

Thesize-lettermay appear either before or after thdormat-letter

7-67

NightView User’s Guide

x-format-letter

One of the following letters specifying the format in which to print the con-
tents of memory:

a

7-68

Print as an integer in hexadecimal and as an address relative to a pro-
gram symbol. This format ignoresize-letterand always uses

Print as character constants. This format ignaies-letterand always
usesb.

Print as signed integers in decimal format.

Print as floating-point values.

Print as machine instructions in assembler syntax, using the length of
each instruction as the unit size. rApeat-coungiven with this format
indicates how many instructions to print.

Print as unsigned integers in octal format.

Print as a null-terminated string, using the length of the string (including
the null byte) as the specified unit size; thige-letterif any, is ignored.

A repeat-coungiven with this format indicates how many strings to
print.

If the string to be printed is longer than the string limit set by skée
limits command, the initial characters of the string are printed, with
an ellipsis following the closing quote. (see “set-limits” on page 7-46).

Print as unsigned integers in decimal format.

Print as unsigned integers in hexadecimal format.

Print as unsigned integers in hexadecimal format with a display of the
corresponding\scil characters.

Command-Line Interface

addr-expression

An expression yielding a memory address (see “Expression Evaluation” on
page 3-18).

The x command prints the contents of memory beginning at the address specified by
addr-expressiornin each process specified by the qualifier. If atdr-expressioris not

given, the address corresponds to the byte following the end of the memory contents
printed in the lask command.

The space betweenand/ may be omitted. Ifepeat-counis omitted, one memory unit
is printed. If eithersize-letteror x-format-letteris omitted, the default is the last value
used in anx command (beginning defaults arendd, respectively).

If the x command is repeated, memory contents are printed using the repe&-count
size-letter andx-format-letteras in the previous command, and the beginning address
corresponds to the byte following the end of the memory contents printed in the previous
command.

A 0 precedes octal numbers. @x precedes hexadecimal numbers. Thus decimal 64
would appear in hexadecimal 8840 and in octal a9100 .

The x-format-letterz produces a hexadecimal displejthoutthe leading0x prefix. The
character display shows non-printable characters replaced(pgriod). Here printable
is determined by the current locale. The display of characters is framgdamd] .

After anx command, the convenience variabfesand $__ are set and ready to use in
expressions (see “Predefined Convenience Variables” on page 7-6). The convenience
variable$_ is set to address of the last memory unit examined. The convenience variable
$__ is set to the contents and type of the last memory unit examined.

Examples:

(local) (14544) x/4i $pc
7 @B= 0x1000271c <factorial+28>: |i r3,1

7 0x10002720 <factorial+32>: Ilwz r16,0x40(rl)
7 0x10002724 <factorial+36>: Iwz r13,0x58(rl)
7 0x10002728 <factorial+40>: mtlr r13

For the process with process id 14544, print memory as four machine instructions starting
with the address of the current program counter. See “Source Line Decorations” on page
7-62 for a description of the characters at the beginning of each line of this format.

(local) X /4wx 0x40a188

0x0040a188: 0x77767574 0x73727170 Ox6f6e6d6¢c Ox6b6a6968
(local) x /8bz 4235656

0x0040a188: 77 76 75 74 73 72 71 70 |wvutsrgp|

(local)

0x0040a190: 6f 6e 6d 6¢c 6b 6a 69 68 |onmlkjih|

(local) p $_ - 4235656

17: $_ - 4235656 = Oxf

(local) p$__

$18: $_ = 104 'n'

Print memory as four words (four-byte memory units) starting at hexadecimal address
0x0040a188 as unsigned integers in hexadecimal format Withprefixes.

7-69

NightView User’s Guide

output

echo

7-70

Print memory as eight bytes (one-byte memory units) starting at the same address
expressed in decimakp35656) as unsigned integers in hexadecimal format with a
display of the printable characters.

Print in the same format and repeat count starting at the next adOx&x10a190).

Print an expressiofi_ - 4235656 to show the relative difference between the address
of the last memory unit printe_ - 4235656 and address of the first memory unit
two commands ag4235656 .

Print expressio$__ to show the value of the last memory unit printed.

Print the value of a language expression with minimal output.
output [/ print-format-lettetf expression
print-format-letter

A letter specifying the format in which to print the expression, as described in
theprint command (see “print” on page 7-65).

expression
A language expression (see “Expression Evaluation” on page 3-18).

output prints the value of a language expression for each process specified by the
qualifier in the same manner as tipeint command, except that a newline is not
printed, the value is not entered in the value history, and"thieistory-number = "

string does not prefix the output.

The space betweeoutput and/ may be omitted. If ngprint-format-letteris given,
expressions printed in a format corresponding to the data type of the expression.

Print arbitrary text.
echo text
text

Arbitrary text to be printed, up to the end of the line. Non-printing characters
may be represented with C language escape sequences, such as "\n’ for new-
line.

This command prints the given text. It is intended as an adjunct to the other commands
which print information about the program, so that the output can be customized to
whatever is desired.

A backslash ('\') may be used to correctly print leading and trailing spaces. In other

display

Command-Line Interface

words, a backslash may be used at the beginnirtgxito print leading spaces appearing
after the backslash, and one may be used at the etekttb print the spaces appearing
before the backslash. The backslash characters themselves are not printed.

Note that a newline is not printed unless the newline sequence (\n") is included.
Examples:

(local) echo \ Text with two leading spaces and a newline\n
(local) echo A backslash (\\) and the number three (\063)

The first example prints " Text with two leading spaces and a newline", followed by a
newline. The second example prints "A backslash (\) and the number three (3)", but does

not print a newline.

Add to the list of expressions to be printed each time the process stops.

display [[/ print-format-lettet expressioh
display /[repeat-courif size-lettel| x-format-lettef addr-expression

print-format-letter

A letter specifying the format in which to print the expression, as in the
print command (see “print” on page 7-65).

expression
A language expression (see “Expression Evaluation” on page 3-18).
repeat-count

Decimal number of consecutive memory units to print, where a unit is defined
by thesize-letterand thex-format-letter

size-letter

A letter specifying the size of each memory unit, as described ix tbem-
mand (see “X” on page 7-67). Tls&ze-lettermay appear either before or after
the x-format-letter

x-format-letter

A letter specifying the format in which to print the contents of memory, as
described in th& command (see “X” on page 7-67).

addr-expression

An expression yielding a memory address (see “Expression Evaluation” on

page 3-18).

The display item list contains language and memory address expressions which will be
used to print expression values or contents of memory, respectively, each time one of the
specified processes in the qualifier stops (hits a breakpoint, receives a signal, etc.).

7-71

NightView User’s Guide

undisplay

7-72

display adds a language or memory address expression to the list.

In order to determine whether the given expression is a language or address expression,
the parameters before the expression are first examinedreffeat-counbr size-letteris

given, or if either of thex-format-lettes 's’ or 'i’ is given, then the expression is treated

as anaddr-expression Otherwise, the expression is treated as a langeageession

When one of the processes specified by the qualifier stops, each enabled item in the
display item list is evaluated. The indicated expression value or memory location is

displayed, each item beginning on a new line. Each display item has an item number,
followed by the text of the expression and then the expression's value or the contents of
memory. If a language expression for an item cannot be evaluated in the currently
defined language, output will not appear for that item; however, a summary of the

unevaluated items will appear at the end of digplay output.

The space betweedisplay and/ may be omitted. If ngrint-format-letteris given

for a language expressioexpressioris printed in a format corresponding to the data type
of the expression at the time the process stopsepkat-counis omitted, one memory
unit will be printed. If size-letteror x-format-letteris omitted, the defaults ang andd,
respectively.

If display is entered on a line by itself, the current values of the expressions or
contents of memory for each item on the display list are printed. To simply see the
expressions themselves, use thi® display command (see “info display” on page
7-120).

Examples:

(local) (12) display/x var_name
(local) (12) display/4d 0x1234

If these commands are entered, then each time process 12 stops, the waluenafme
will be printed in hexadecimal on one line, and four words of memory starting at
hexadecimal addred234 will be printed on the next line.

Disable an item from the display expression list.
undisplay item_number...
item_number

An item number of an item to be disabled in the list of expressions to be
printed each time the program stops, as specified in predday com-
mands (see “display” on page 7-71).

Theundisplay command disables the given items in each of the processes specified by
the qualifier. The associated expressions or memory locations cease to be displayed
when the corresponding process stops, until you enable them again using the
redisplay command (see “redisplay” on page 7-73). The effect of the qualifier on this
command is to limit the items to be disabled to only those that occur in the specified
processes.

redisplay

printf

Command-Line Interface

Item numbers prefix each displayed language expression and memory section. The item
numbers also may be viewed by entering théo display command (see “info
display” on page 7-120).

Enable a display item.
redisplay item_number...
item_number

An item number of an item to be enabled in the list of expressions to be
printed each time the program stops, as specified in predday com-
mands (see “display” on page 7-71).

Theredisplay = command enables the specified display items so that they once again
print data when the corresponding process stops. rétlisplay = command reverses

the effect of theundisplay = command. The effect of the qualifier on this command is
to limit the items to be enabled to only those that occur in the specified processes.

Item numbers prefix each displayed language expression and memory section. The item
numbers also may be viewed by entering théo display command (see “info
display” on page 7-120).

Print the values of language expressions using a format string.
printf format-string, expression...]
format_string

A string within quotes containing text to be printed and print formats for
expressions to be printed.

expression
A language expression (see “Expression Evaluation” on page 3-18).

printf prints user-specified text plus, optionally, values of language expressions
evaluated in the currently defined language, for each process specified in the qualifier.
This command acts the same as the C language library ropting (3C) , With the
exception of the '%n’ format descriptor. As in that routine, each print format (i.e.,
substring beginning with ‘%’ and or width specifier "*') in tHlermat-stringcorresponds

to one language expression in the specified list. The number of language expressions
entered must match the number of print formats.

If a '%n’ format descriptor is present in the format string, it is considered a syntax error
and theprintf command is aborted.

7-73

NightView User’s Guide

load

7-74

Example:
(local) (27) printf "The value of var_name = %d.\n", var_name

This example prints "The value of var_name = " followed by the decimal value of
var_name and a newline, for the process withD 27.

Dynamically load an object file, possibly replacing existing routines.
load object
object
The name of an object file to be loaded into the program.

objectis subject to object filename translations (see “translate-object-file” on
page 7-21).

This command dynamically loads the designated object file into the address space of the
running program. If the loaded file contains any routines which are already defined in the
program, the entry points of the existing routines are patched to jump directly to the new
routines just loaded. If there are any active stack frames for old routines, the return
addresses in the stack still point to the old code. New calls made followirigatde will

call the new routines.

If you had any breakpoints or other eventpoints set in the old routine, you may need to set
equivalent ones again in the new routine (the old ones are still there, but since the old
routine will never be called again, you will probably never hit any of them).

The primary purpose of this command is to allow you to replace an existing routine with
a new version, avoiding the overhead of forcing you to stop debugging the program,
relink it, and rerun to get back to the point of interest.

This command must be used with care. If the new object file contains any global data
definitions, you are very likely to wind up with an erroneous program in which old
routines refer to the original data locations and new routines refer to the newly loaded
data definitions. Patching the old routine entry points to jump to the new routine
definitions is simple, but it is not possible to locate all the places that might refer to data
items defined in the object file, so loading object files that define static data items is
likely to generate unexpected results.

If the object file refers to other routines or external data items that are not already defined
in the program file, you are told about the undefined symbols, and the object file is not
loaded. If you load an object file that defines new symbols, they are added to the symbol
table for the program, so subsequent loads may refer to the new names.

This command checks for obvious problems with the new object file and warns you of
anything that is likely to be a mistake, but it loads the new object anyway.

Command-Line Interface

vector-set

Set the value of a vector.

vector-set [-value component component...

vector-set [-value = repeat-countcomponent

The arguments toector-set are all expressions separated by commay.('The
expressions may not contain commas.

[-value

A vector variable, array element, register, etc., which can be assignedl- The
valuemay be followed by either a comma or an equals sigh).('This expres-
sion may not contain an equals siga'('or a comma ('").

component
One component of the vector.
repeat-count
The number of times to repeat the following component.

This command creates a vector value by concatenating the component values and assigns
the value to the specifiddvalue, which must be a vector, for each process in the command
qualifier. vector-set is meaningful only on the Power Hawk 700 Series.

The command operates based on the number of argurfaiteing thel-value If there

are 2 arguments, then the first argument is takenrapeat-count The value of the com-
ponent is replicated to makepeat-countomponents. The value of tlepeat-counmust

be one of4, 8 or 16. If there are more than 2 arguments, then each argument is a compo-
nent.

The format of each component is determined by the number of components.

Number of Components Component Format

16 1 byte integer
2 byte integer
4 4 byte integer or float

For the 4-byte case, the component type, integer or floating-point, is determined by the
type of the component value. NightView warns you if the components are not all of the
same type. For the integer formats, each component is implicitly cast to an unsigned inte-
ger.

Examples:

(local) vector-set my vec = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1,1, 1,1, 1,1

(local) vector-set my_vec = 16, 1

7-75

NightView User’s Guide

Both of these commands seiy_vec to 16 bytes, with each byte set1o
(local) vector-set $v0 = 1.0, 2.0, 0.0, 4.0

Set$v0 to these floating-point values.
(local) vector-set $v0 = f(0), f(1), f(2), f(3)

Set$v0 to the results of calling functioh with various values. The type of the 4 compo-
nents is detemined by the return typef of

Manipulating Eventpoints

This subsection describes the various commands that are used to set and modify
eventpoints.

Some of the commands which operate on breakpoints also operate on patchpoints,
tracepoints, monitorpoints, and agentpoints as well. The following table indicates which
types of eventpoints may be affected by which commands:

Table 7-7. Eventpoint Commands

What the Command Applies to

Command Name

Breakpoints Patchpoints Tracepoints Agentpoints Monitorpoints
name X X X X X
clear X X X X X
commands X X
condition X X X X X
delete X X X X X
disable X X X X X
enable X X X X X
ignore X X X X X
tbreak X
tpatch X

7-76

Command-Line Interface

Eventpoint Modifiers

An eventpoint modifiemodifies the setting of eventpoints in a program.
The modifiers come after the eventpoint commands as follows:
commandmodifier...]

Currently, the only eventpoint modifier idisabled

/disabled

Causes the eventpoint to be created in a disabled state. You must weeatiie
command to activate the eventpoint. (see “enable” on page 7-91).

name

Give a name to a group of eventpoints.
name [/fadd] name [[] eventpoint-spéc...
fadd
Add the eventpoints to the named set, rather than redefining the set.
name

The name of the set of eventpoints to be defined. This must not be the same as
the name of any dialogue you currently have, or of any process family that is
currently defined. The name must consist only of alphanumeric characters and
underscores and must begin with an alphabetic character. The name may be of
arbitrary length.

eventpoint-spec
An eventpoint specifier. See “Eventpoint Specifiers” on page 7-12.

The total set of eventpoints is accumulated by scanningtteatpoint-spec
arguments left to right. An argument is added to the set unless it is preceded
by a’-’, in which case it is subtracted from the set accumulated so far.

If no eventpoint-speés given, then this command removes any previous definition of
name

Any qualifier applied to this command has the effect of restricting the set of eventpoints
named to those which exist in the processes specified by the qualifier.

Examples:

(local) name evptl 12 25 18
(local) name evpt2 evptl 99
(local) name evptl evptl 16

The first command gives the nanewptlto three eventpoints identified by eventpoints

7-77

NightView User’s Guide

12, 18, and 25. The second command gives the navpé2to the three eventpoints in
evptlplus eventpoint 99. The third command extends the definitioawpit1to include
eventpoint 16; thusvptlis a synonym for four eventpoints: 12, 16, 18, and 25. Note that
extendingevptlhas no effect ovpt2 which still consists of eventpoints 12, 18, 25, and
99.

Using the names defined in the previous examples, the use of a minus sign on arguments
can be illustrated by the following examples:

(local) name evpt3 evptl evpt2 -12
(local) name evpt3 evptl -12 evpt2

The first command definesvpt3 to be the eventpoints 16, 18, 25, and 99. In contrast,
the second command definegpt3 to be the eventpoints 12, 16, 18, 25, and 99. In this
case, the argumenil2 removed eventpoint 12 from the set accumulated feuptl ,

but theevpt2 argument adds that eventpoint back in.

breakpoint

Set a breakpoint.

breakpoint [eventpoint-modifigr [name =breakpoint-namje
[[at] location-spet [if conditional-expressidn

Abbreviation: b
eventpoint-modifier
Specifies the breakpoint modifier. See “Eventpoint Modifiers” on page 7-77.
name=breakpoint-name

Gives a name to the breakpoint for later reference. (see “name” on page 7-77).
If breakpoint-namés already defined, then this command adds the newly cre-
ated breakpoints to the list of eventpoints associated with the name.

location-spec
Specifies the breakpoint location. (see “Location Specifiers” on page 7-9).

If location-speds omitted, then the location used is the next instruction to be
executed in the current stack frame. See “Current Frame” on page 3-23.

if conditional-expression

Specifies a breakpoint condition. The language and scope of the expression is
determined by the location at which the breakpoint is set (see “Scope” on page
3-22 and “Context” on page 3-22). See also “Expression Evaluation” on page
3-18.

7-78

patchpoint

Command-Line Interface

NOTE

Theat , if , andname keywords may not be abbreviated in this
command.

breakpoint sets a breakpoint in each of the processes specified by the qualifier. This
causes the program to suspend execution at the breakpoint location. An optional
condition may be applied to the breakpoint which causes execution to be suspended only
if the condition evaluates toRUE. The conditional expression is evaluated in the user
program when the breakpoint location is reached (unless the breakpoint is currently being
ignored, see “ignore” on page 7-91).

If more than one breakpoint is set (through the use of more than one process in the
qualifier) then each breakpoint in each process is assigned a unique breakpoint number.

You can specify debugger commands to be executed when a breakpoint is hit. See
“commands” on page 7-88.

It is possible (and sometimes useful) to set more than one breakpoint at the same location
in a process. Perhaps you have two breakpoints set at the same place and each has its own
set of commands. By enabling only one of the two breakpoints at a time, you can
effectively toggle the set of commands that gets executed when the process reaches that
location.

If more than one breakpoint is set at the same location in a given process, then the oldest
breakpoint with an ignore count of zero and a condition that evaluatesup will be the

first breakpoint responsible for stopping the process. After this breakpoint has stopped
the process, before continuing on to the next instruction, NightView will check for any
remaining breakpoints at that location which may stop the process. If there are any, then
the process will stop at least once more (at the same location) before continuing on to the
next instruction.

Example:
(local) (441 115) break name=loop sort.c:42

This example sets two breakpoints at line 42 of the file nametic and associates

both breakpoints with the name ’loop’. One of the breakpoints is set in process 441 and
the other breakpoint is set in process 115. Each of the two breakpoints is assigned a
unique breakpoint number.

Install a small patch to a routine.

patchpoint [eventpoint-modifigr [name= patchpoint-namk
[[at] location-spet eval expression

Insert an expression in the program.

patchpoint [eventpoint-modifigr [name= patchpoint-namk
[[at] location-spet goto location-spec

7-79

NightView User’s Guide

Insert a branch in the program.
eventpoint-modifier
Specifies the patchpoint modifier. See “Eventpoint Modifiers” on page 7-77.
name=patchpoint-name

Patchpoints are assigned event numbers, anddahee= syntax as well as the
name command (see “name” on page 7-77) may be used to give them names.
See “Manipulating Eventpoints” on page 7-76.

at location-spec

Specify the exact point in the program to execute the patchpoint (see “Loca-
tion Specifiers” on page 7-9). The patchpoint is executed immediately prior to
any existing code at this location.

If location-speds omitted, then the location used is the next instruction to be
executed in the current stack frame. See “Current Frame” on page 3-23.

eval expression

This variant of thepatchpoint command specifies an expression to insert

in the program at the designatiextation-specAda, C, and C++ programmers
should note that this is an expression and not a statement; therefore, itatoes
end with a semicolon. (The concept eXpressioris extended to include
assignments and procedure calls in Ada and Fortran.) See “Expression Evalu-
ation” on page 3-18.

goto location-spec

This variant of thepatchpoint command specifies a location to branch to
when the program reaches the point of the patchpoint. The instruction origi-
nally at the patchpoint location will not be executed.

Note that if an expression is used akeation-specthe expression is evalu-
ated only once for each process in the qualifier. For example, ifabation-
specis *$Ir , the value of registdr in thecurrent contexts used as the loca-
tion to branch to.

NOTE

The keywordsname, at , eval , andgoto may not be abbrevi-
ated in this command.

Once areval patchpoint is installed, the language expression will be executed each time
control reachedocation-specin the program. After the patchpoint is executed, the
original instruction will also execute.

Once agoto patchpoint is installed, the branch will be executed before the patched
instruction each time execution reachesation-spedn the program. It is important to
note that the original instruction is not executed if the patchpoihttighat is, depending

7-80

set-trace

Command-Line Interface

on the enabled status, the ignore count and any eventpoint condition on the patchpoint). If
the patchpoint is not hit, the original instruction is executed normally.

When patching in @oto , you should be aware that the compiler has probably generated
code which expects certain register contents and altering the flow of control in your pro-
gram can very easily send it to a new location with unexpected values in registers, so the
goto patchpoint should be used only when you are sure you know all the consequences.

You may attach a condition or ignore count to both kinds of patchpoints, using the
condition (see “condition” on page 7-88) dgnore (see “ignore” on page 7-91)
commands. This suppresses execution of the patched expression unless the ignore count
is zero and the conditional expression evaluatesrige.

Patchpoints are implemented by modifying the executable code for the program, so they
will remain in effect until the program exits, even if yaetach the debugger from the
program, unless the patchpoint was disabled when you detached (see “detach” on page
7-32 and “disable” on page 7-90). Note that the disk copy of the program is not modified;
you must edit your source, recompile and relink to make a permanent modification to the
program.

If multiple patchpoints are made at the same point in the program, they will all be
executed in the order they were applied. This is especially important to noggofor
patchpoints, because oncegato is executed, any subsequent patchpoints (or other
kinds of eventpoints, such as breakpoints and tracepoints) at that same location will not
be executed. If goto patchpoint is not hit (because it was disabled, or the ignore count
or condition caused it to be skipped), then the branch will not be taken and subsequent
patchpoints will be executed, as well as the original patched instruction.

Example:
(local) patchpoint file.c:12 eval i=0

This C example patches the code to initialize the variabte zero immediately prior to
executing line 12 in the filéile.c . Note that no semicolon appears in this example.

Establish tracing parameters.
set-trace [eventmap= event-map-filg
eventmap= event-map-file

Names the file that contains the mapping between symbolic trace-event tags
and numeric trace-evems. This should be the same as the event-map file
passed tatrace(1)

The set-trace command is used to specify information that may be required before
any tracepoints may be set in a process (see “tracepoint” on page 7-82).

If you want to use symbolic trace-event tags rather than numeric trace-@gnt the
event-idparameter of théracepoint command, then you must specify an event-map
file. You may specify multiple event-map files by repeating theentmap parameter.

7-81

NightView User’s Guide

tracepoint

7-82

As long as the files do not contain conflicting definitions for tags, all the tags will be
defined for use as trace-event identifiers.

Set a tracepoint.
tracepoint [eventpoint-modifigr event-id [name =tracepoint-namp
[[at] location-spet [value= logged-expressign
[if conditional-expressidn
eventpoint-modifier
Specifies the tracepoint modifier. See “Eventpoint Modifiers” on page 7-77.

event-id

An identifier for the trace event to be traced RightTrace . Thisis either a
numeric trace-evenb or a symbolic trace-event tag obtained from the event-
map file specified by theventmaypparameter of theet-trace command
(see “set-trace” on page 7-81).

name:tracepoint-name

Gives a hame to the tracepoint for later reference. See “name” on page 7-77.
If tracepoint-namés already defined, then this command adds the newly cre-
ated tracepoints to the list of eventpoints associated with the name.

location-spec
Specifies the tracepoint location. See “Location Specifiers” on page 7-9.

If location-speds omitted, then the location used is the next instruction to be
executed in the current stack frame.

value= logged-expression

Specifies that the value ddgged-expressioshould be recorded with the trace
event. The expression is evaluated in the user program, so it obeys the same
rules that conditional and patchpoint expressions do. See “Expression Evalua-
tion” on page 3-18.

if conditional-expression

Specifies a tracepoint condition. The language and scope of the expression is
determined by the location at which the tracepoint is set (see “Scope” on page
3-22 and “Context” on page 3-22). See also “Expression Evaluation” on page

3-18.

NOTE

The name, value , andif keywords may not be abbreviated in
this command.

monitorpoint

Command-Line Interface

The tracepoint command sets a tracepoint in each of the processes specified by the
qualifier. This causes the program to emit special tracing output at the tracepoint
location. An optional condition may be applied to the tracepoint which causes tracing to
be performed only if the condition evaluates t@UE. The conditional expression
conditional-expressiolis evaluated in the user program when the tracepoint location is
reached (unless the tracepoint is currently being ignored, see “ignore” on page 7-91).

Tracepoints set in a process remain set even if getach the debugger from the
program, unless the tracepoint was disabled at the time you detached (See “detach” on
page 7-32 and “disable” on page 7-90).

NOTE

Thentrace(3X) routines must have been linked into the pro-
gram when it was built. If the program does not initialize tracing,
then you must initialize tracing manually by evaluating expres-
sions that contain calls to the appropriate trace routines
(trace_start followed bytrace_open_thread).

The debugger doe®t start thentraceud(1) monitor process.
You must do that manually (see “NightTrace Monitor” on page
3-34).

If more than one tracepoint is set (through the use of more than one process in the
qualifier) then each tracepoint in each process is assigned a unique tracepoint number.

It is possible (and sometimes useful) to set more than one tracepoint at the same location
in a process. Perhaps there is more than one noteworthy event that takes place at the same
location in your program. If more than one tracepoint is set at the same location in a
given process, then the tracepoints at that location are recorded in the order they were
defined.

Example:
(local) (441 115) tracepoint 27 name=loop_trace sort.c:42

This example sets two tracepoints at line 42 of the file namedlc and associates

both tracepoints with the name ’loop_trace’. One of the tracepoints is set in process 441
and the other tracepoint is set in process 115. Each of the two tracepoints is assigned a
unique tracepoint number. The of the trace event to trace is given by the number 27.

Monitor the values of one or more expressions at a given location.

monitorpoint [eventpoint-modifi§r [name =monitorpoint-namp
[[at] location-spet

7-83

NightView User’s Guide

eventpoint-modifier

Specifies the monitorpoint modifier. See “Eventpoint Modifiers” on page
7-77.

name=monitorpoint-name

Gives a name to the monitorpoint for later reference. See “name” on page
7-77. If monitorpoint-names already defined then this command adds the
newly created monitorpoints to the list of eventpoints associated with the
name.

location-spec
Specifies the monitorpoint location. See “Location Specifiers” on page 7-9.

If location-speds omitted, then the location used is the next instruction to be
executed in the current stack frame.

The monitorpoint command sets a monitorpoint in each of the processes specified by
the qualifier. Each line following thenonitorpoint command must be a special form
(described later) oprint command; eaclprint command specifies an expression to
be evaluated and monitored at the location of the monitorpoint. To end the [isinbf
commands, typend monitor on a line by itself.

In the command-line and simple full-screen interfaces, the prompt changeswtile
you are entering the attachpdnt commands. See “Command Syntax” on page 7-1.

When the monitorpoint is executed, the expressions specified in the attached commands
will be evaluated and their values saved in a location reserved by NightView. The
monitored values are displayed periodically in a monitor display area; see “Monitor
Window” on page 3-25. For a more detailed description of monitorpoints, see
“Monitorpoints” on page 3-9.

The syntax of the commands attached to a monitorpoint is:
print [/ print-format-lette} [id=" string"] expression

This syntax is identical to thprint NightView command (see “print” on page 7-65),
with the addition of the optionatl=" string' argument. Thestring, if specified, is used

to identify the monitored expression in the monitor display area. If you do not specify the
id= parameter, the text of the expression itself is used as the identifying string. Note that
you may not abbreviate thid= keyword to anything shorter (like "i").

Once you have created a monitorpoint, you can change the set of commands attached to it
(and thus the expressions being monitored) using ¢benmands command. See
“commands” on page 7-88.

Example:

(local) monitorpoint file.c:12

> print variablel

> print id="Velocity (ft/sec)" variable2
> end monitor

In this example, two variables will be monitored at line 12 fié.c . The first

7-84

mcontrol

Command-Line Interface

variable,variablel , will be displayed using its name as the identifying string. The
second variablesariable2 , will be displayed with the strinyelocity (ft/sec)

Control the monitor display window.
mcontrol {display | nodisplay} [monitorpoint-spec...]
Turn on or off the display of individual monitorpoints in the monitor window.
mcontrol delay milliseconds
Set the milliseconds to delay between monitor window updates.
mcontrol {off | on | stale | nostale | hold | release}
Toggle a monitoring parameter.
Abbreviation: hold

This is an abbreviation famcontrol ~ hold .
Abbreviation: release

This is an abbreviation fomcontrol release

display nodisplay

These keywords are used to enable or disable the display of specific monitor-
points in the monitor window. The monitorpoints appearing in the argument
and in the processes specified by the qualifier are either added to or removed
from the monitor window display area. This does not affect the monitorpoint
itself, it simply determines which monitorpoints are shown in the window. See
“monitorpoint” on page 7-83.

on off

These keywords turn the monitor window on or off. You may wish to turn off
the monitor window to reclaim screen space, then turn it back on later. Turn-
ing off the window also does laold , but turning the windowon does not
implicitly do arelease

stale nostale

The monitor window normally displays a stale data indication next to each
value. Thenostale keyword causes the monitor window to display blank
space rather than one of the stale data indicators. The indicators may be turned
back on with thestale keyword.

hold release

Thehold andrelease keywords are used to hold or release updates of the
monitor window. When the window is held, the values displayed in the moni-

7-85

NightView User’s Guide

agentpoint

7-86

tor window will no longer change (the processes containing the values are not
affected, they continue to run). Thelease keyword allows the monitor
window to start updating the values again.

Interrupting the debugger implicitly causes the Monitor Window to stop
updating. See “Interrupting the Debugger” on page 3-28.

delay

The monitor window normally waits one second (1000 milliseconds) between
updates. A different number of milliseconds may be specified following the
delay keyword. If you tell it to wait zero milliseconds, it updates the monitor
window as fast as it possibly can.

All of the mcontrol parameters allow you to control various aspects of the monitor
display window (see “Monitor Window” on page 3-25).

You may not combine parameters on tieontrol command. Only one keyword may
be used in one invocation of the command. The command qualifier is only used when the
display ornodisplay keywords are used to specify a list of monitorpoints.

Insert a call to a debug agent at a given location.

agentpoint [eventpoint-modifigr [name =agentpoint-namnie
[[at] location-spet

eventpoint-modifier
Specifies the patchpoint modifier. See “Eventpoint Modifiers” on page 7-77.
name=agentpoint-name

Gives a name to the agentpoint for later reference. See “name” on page 7-77.
If agentpoint-namés already defined then this command adds the newly cre-
ated agentpoints to the list of eventpoints associated with the name.

location-spec
Specifies the agentpoint location. See “Location Specifiers” on page 7-9.

If location-speds omitted, then the location used is the next instruction to be
executed in the current stack frame.

Once an agentpoint is installed, a call to a special debug agent (see “Debug Agent” on
page 3-15) will be executed each time control readbestion-spedn the program. After

the debug agent is executed, the original instruction will also execute. The debug agent
allows you to debug your process while it is running.

You may attach a condition or ignore count to an agentpoint, usingahedition (see
“condition” on page 7-88) oignore (see “ignore” on page 7-91) commands. This
suppresses execution of the debug agent unless the ignore count is zero and the
conditional expression evaluatesTRUE.

clear

Command-Line Interface

Agentpoints are implemented by modifying the executable code for the program, so they
remain in effect until the program exits, even if yoetach the debugger from the
program, unless the agentpoint was disabled when you detached (see “detach” on page
7-32 and “disable” on page 7-90).

For best results, the debug agent should be executed frequently. If you cannot find just

one place in your program that is executed frequently enough, you may create multiple

agentpoints, each at a different location. You can enable and disable each agentpoint
independently.

Clear all eventpoints at a given location.
clear [[at] location-spet
location-spec

Specifies the location from which all eventpoints are to be removed. See
“Location Specifiers” on page 7-9.

If location-speds omitted, then the location used is the next instruction to be
executed in the current stack frame. See “Current Frame” on page 3-23.

clear removes all eventpoints at the specified location in each process. Once an
eventpoint has served its purpose, the eventpoint may be removed by ustigathe or

delete commands (see “delete” on page 7-89). Both commands remove an eventpoint.
clear removes eventpoints based on where they are in the prockdste removes
eventpoints specified by name or by eventpoint-number.

NOTE

A location specifier may sometimes designate multiple locations
(see “Location Specifiers” on page 7-9). Hence, it is possible for a
single eventpoint to be set at multiple locations. If any of the loca-
tions at which an eventpoint is set match any of the locations
implied by the location specifier for thedlear command, then
that eventpoint will be removed (fromll of its corresponding
locations).

It is unnecessary to clear a breakpoint in order to continue execution after the breakpoint
has stopped the program.

Example:
(local) clear sort.c:42

This example removes all eventpoints set at line 42 of the file nasogdc in each of
the processes specified by the default qualifier.

7-87

NightView User’s Guide

commands

condition

7-88

Attach commands to a breakpoint or monitorpoint.
commands eventpoint-spec
eventpoint-spec

The breakpoints or monitorpoints to which the given commands are attached.
See “Eventpoint Specifiers” on page 7-12.

The commands command attaches the given list of commands to the given breakpoints
or monitorpoints in processes specified by the qualifier. Each line following the
commands command-line should be a command to associate with the breakpoints or
monitorpoints. To end the list of commands, type 'end’ on a line by itself. For a
breakpoint, each of the commands given is implicitly qualified withrizeof the process

that stopped as a result of this breakpoint being hit.

In the command-line and simple full-screen interfaces, the prompt changeswtile
you are entering this command. See “Command Syntax” on page 7-1.

If the first line given is 'silent’, then the usual message that is printed when a breakpoint
stops the process will be suppressed. Furthermore, the ’'silent’ command will also
prevent the current source line from being listed, and will prevent any displays from
being updated. The 'silent’ command is valid only when attached to a breakpoint and is
useful for breakpoints that are intended only to print a specific message and then resume
execution.

Certain commands (such a&entinue , resume, andsignal), once executed, will
automatically terminate the command stream associated with a set of commands that
were attached to a breakpoint using t@mmands command. See “continue” on page
7-94, “resume” on page 7-95, and “signal” on page 7-101.

Although you can use theeommands command to attach commands to either
breakpoints or monitorpoints, the eventpoints specified on the command line must be all
of one type or the other. Also note that the commands allowed for monitorpoints is
restricted tgprint commands. See “monitorpoint” on page 7-83.

Attach a condition to an eventpoint.
condition eventpoint-sped conditional-expressidn
eventpoint-spec

The eventpoints associated with the condition. See “Eventpoint Specifiers”
on page 7-12.

conditional-expression

The condition to be associated with the eventpoints. See “Expression Evalua-
tion” on page 3-18.

delete

Command-Line Interface

The simplest type of breakpoint is one which stops the program each time it is
encountered (amnconditional breakpoint Often however, you may wish to stop the
program at a given location only after a certain event has occurred or when a specified
condition has been met (@nditional breakpoinjt The condition = command may be
used to attach a condition to a breakpoint.

In a similar manner, conditions may also be attached to tracepoints, monitorpoints,
agentpoints, and patchpoints, causing the desired tracing, monitoring, patched expression,
or debug-agent call to take effect only when the associated condition evaluataseto

Thecondition = command attaches the conditioanditional-expressioto one or more
eventpoints in the processes specified by the qualifier. cdfditional-expressioris
omitted, then any condition attached to the specified eventpoint is removed in each of the
processes specified by the qualifier, (and the eventpoint becomes an unconditional one).
If the specified eventpoint already has a condition attached to it, the existing condition is
replaced withconditional-expressian

Examples:

(local) breakpoint name=loop at foo.c:12
(local) condition loop (index == 0)
(local) condition loop

The firstcondition =~ command attaches a condition to the breakpoint named ’loop’ so
that it only stops the program when the variable 'index’ is zero. The secondition
command removes any condition associated with the breakpoint named ’loop’ (thus
making it an unconditional breakpoint).

(local) trace MyEvent name=tracel at foo.c:12
(local) condition tracel (x>12)

In this example, a tracepoint named 'tracel’ is set, and the condition 'x>12’ is attached to
the tracepoint. Therefore, the event will be traced only when 'x’ is greater than 12.

Delete an eventpoint.
delete [eventpoint-spec..]
Abbreviation: d
eventpoint-spec
The eventpoints to be deleted. See “Eventpoint Specifiers” on page 7-12.

delete removes the specified eventpoints in each of the processes specified by the
qualifier. Bothdelete andclear may be used to delete eventpoints (see “clear” on
page 7-87). The difference is thdg¢lete removes eventpoints specified by name or by
eventpoint-number anclear removes eventpoints specified by location.

If eventpoint-spets omitted and your safety-level imsafe thenall eventpoints in the
processes specified by the qualifier are removed (see “set-safety” on page 7-49). If
eventpoint-speés omitted and your safety-level igerify , then you are prompted for

7-89

NightView User’s Guide

disable

7-90

confirmation before the eventpoints are removed (see “Replying to Debugger Questions”
on page 7-16). leventpoint-specs omitted and your safety-level frbid then no
eventpoints are removed.

The effect of the qualifier on this command is to limit the eventpoints deleted to be only
those that occur in the processes specified by the qualifier.

Examples:

(local) d loop
(local) d25

The first example removes all eventpoints associated with the name ’loop’. The second
example removes eventpoints 2 and 5.

Disable an eventpoint.
disable [eventpoint-spec..]
eventpoint-spec
The eventpoints to be disabled. See “Eventpoint Specifiers” on page 7-12.

Thedisable command disables the given eventpoints in each of the processes specified
by the qualifier. Disabling an eventpoint is not quite the same as removing an eventpoint.
When an eventpoint is removed, it is made inoperative and all the information associated
with the eventpoint is removed. When an eventpoint is disabled, it is simply made
inoperative. It may still be seen, however, if you useitife eventpoint command

(see “info eventpoint” on page 7-112). All information associated with the eventpoint is
still retained so that the eventpoint may later be reactivated usingrtilele command

(see “enable” on page 7-91).

If eventpoint-spets omitted and your safety-level imsafe thenall eventpoints in the
processes specified by the qualifier are disabled (see “set-safety” on page 7-49). |If
eventpoint-speés omitted and your safety-level igerify , then you are prompted for
confirmation before the eventpoints are disabled (see “Replying to Debugger Questions”
on page 7-16). leventpoint-spets omitted and your safety-level frbid then no
eventpoints are disabled.

The effect of the qualifier on this command is to limit the eventpoints disabled to be only
those that occur in the processes specified by the qualifier.

Example:

(local) disable 4
(local) (115 441) disable calvin
(local) (549) disable 8 hobbes 12 14

The first example disables eventpoint number 4 in the processes specified by the default
qualifier. The second example disables the eventpoints associated with the name
"calvin ' in process 115 and in process 441. The third example disables the eventpoints
associated with the name 'hobbes’ and disables eventpoints numbered 8, 12, and 14 in

Command-Line Interface

process 549.

enable
Enable an eventpoint for a specified duration.
enable [/oncel/delete] eventpoint-spec..
/once
Specify whether the given eventpoints are to be enabled once only and then
immediately disabled after the next time they are hit. There need not be a
space between the command name and the /.
/delete
Valid only for breakpoints. Specify whether the given breakpoints are to be
enabled once only and then immediately deleted after the next time they are
executed. There need not be a space between the command name and the /.
eventpoint-spec
The eventpoints to be enabled. See “Eventpoint Specifiers” on page 7-12.
The enable command enables for the specified duration each of the eventpoints in the
processes specified by the qualifier. If neitllence nor/delete is specified, then
the given eventpoints are simply enabled. /dihce is specified, then the given
eventpoints are temporarily enabled. The eventpoints will be disabled again after the
next time they are hit. Ifdelete s specified, then for each process in the qualifier, the
given breakpoints are enabled and also marked for deletion. The breakpoints will be
deleted after the next time they are hit.
The effect of the qualifier on this command is to limit the eventpoints enabled to be only
those that occur in the processes specified by the qualifier.
Examples:
(local) enable calvin
(local) enable /once 4 6 23
(local) enable /delete 8 hobbes
The first example enables all eventpoints associated with the name ’calvin’ in the default
qualifier. The second example enables eventpoints number 4, 6, and 23 for once-only
execution (the eventpoints will be disabled after the next time they are hit). The third
example enables breakpoint number 8, and the breakpoints associated with the name
'hobbes’ for deletion (these breakpoints will be deleted after the next time they are hit).
ignore

Attach an ignore-count to an eventpoint.

7-91

NightView User’s Guide

ignore eventpoint-spec count
eventpoint-spec
The eventpoints to be ignored. See “Eventpoints” on page 3-8.
count

The number of times to ignore the eventpoint. Specifying an ignore-count of
zero has the effect of causing the eventpoints to no longer be ignored. The
ignore-count is evaluated in the user's process.

The ignore command causes the specified eventpoints to be skipped thecoent

times execution reaches them (even if the eventpoint is a conditional eventpoint). This is
accomplished by attaching an ignore-count to the given eventpoints. In the case of a
breakpoint, any NightView commands associated with the breakpoint will not be
executed until the breakpoint is hit.

Example:
(local) ignore calvin 4

This example causes the eventpoints associated with the name 'calvin’ to be ignored 4
times before they may be hit again.

tbreak

Set a temporary breakpoint.

tbreak [name= breakpoint-namie [[at] location-spet
[if conditional-expressidn

name=breakpoint-name

Gives a name to the breakpoint for later reference. See “name” on page 7-77.
If breakpoint-namés already defined then this command adds the newly cre-
ated breakpoints to the list of eventpoints associated with the name.

location-spec
Specifies the breakpoint location. See “Location Specifiers” on page 7-9.
if conditional-expression

Specifies an eventpoint condition. The language and scope of the expression is
determined by the location at which the breakpoint is set (see “Scope” on page
3-22 and “Context” on page 3-22). See “Expression Evaluation” on page
3-18.

Note: Theat , if , andname keywords may not be abbreviated in this command.

Like the breakpoint command (see “breakpoint” on page 7-78), ttiweak
command sets a breakpoint. The difference between the two ishifeatk sets a one-
time-only breakpoint in each of the processes specified by the qualifier. The breakpoint

7-92

tpatch

Command-Line Interface

will be disabled after being hit once.
Example:
(local) (115) tbreak sort.c:48

This example sets a temporary breakpoint in process 115 at line 48 of the source file
sort.c

Set a patchpoint that will execute only once.
tpatch [name =patchpoint-namk [[at] location-spef eval expression

Insert an expression in the program that will be executed the next time the patchpoint is
hit, then never executed again unless explicitly enabled. See “enable” on page 7-91.

tpatch [name=patchpoint-nami[at] location-spetgoto location-spec

Overwrite an instruction in the program with a branch that will only be taken once.
Subsequent execution will ignore the patchpoint and execute the original instruction.

name= patchpoint-name

Patchpoints are assigned event numbers, anddahee= syntax as well as the
name command (see “hame” on page 7-77) may be used to give them names.
See “Manipulating Eventpoints” on page 7-76.

at location-spec

Specify the exact point in the program to execute the patchpoint. See “Loca-
tion Specifiers” on page 7-9. The patchpoint is executed immediately prior to
any existing code at this location.

If location-speds omitted, then the location used is the next instruction to be
executed in the current stack frame. See “Current Frame” on page 3-23.

eval expression

This variant of thepatchpoint command specifies an expression to insert

in the program at the designatkstation-specAda, C and C++ programmers
should note that this is an expression and not a statement; therefore, itatoes
end with a semicolon. (The concept eXpressioris extended to include
assignments and procedure calls in Ada and Fortran.) See “Expression Evalu-
ation” on page 3-18.

goto location-spec

This variant of thepatchpoint command specifies a location to branch to
when the program reaches the point of the patchpoint. The instruction origi-
nally at the patchpoint location will not be executed.

7-93

NightView User’s Guide

NOTE

The keywordsname, at , eval , andgoto may not be abbrevi-
ated in this command.

Thetpatch command is a variant of theatchpoint command. See “patchpoint” on
page 7-79. It works exactly like the patchpoint command, but a temporary patchpoint
will automatically disable itself after executing one time. A temporary patchpoint may be
enabled later, in which case it will act exactly like a normal patchpoint. See “enable” on
page 7-91.

A temporary patchpoint may be useful for patching in initialization code which should
only execute once.

Controlling Execution

continue

7-94

This section describes commands used to control the execution of a process.

Most of the commands described in this section cause the processes specified in the
qualifier to resume execution and then wait for something to happen. (This is what you
usually want when you are debugging a single process.) Qedtyme resumes
execution and then returns immediately for another command.

Some of the commands continue until something special happens. For exateple,
continues until control crosses a source line boundary. However, you should be aware
that another event, such as a signal or hitting a breakpoint, may cause the process to stop
sooner.

If the process stopped because of a signal, then it will receive that signal when the
process resumes, subject to the setting oftthedle command, see “handle” on page
7-102. If you want the process to receive a different signal, or no signal at all, then use
thesignal command. See “signal” on page 7-101.

If you ask to continue execution of a process with any of the commands here, and that
process is already executing, then you get a warning message. Any other processes
specified by the qualifier are continued.

If a process is stopped at a breakpoint, ihét necessary to remove the breakpoint before
continuing.

Continue execution and wait for something to happen.
continue [count

Abbreviation: ¢

resume

Command-Line Interface

count

If the countargument is specified the processes will not stop at the current
breakpoint again until they have hitébunttimes. This argument is ignored
for any processes that are not stopped at breakpoints.

continue causes the processes specified by the qualifier to resume execution at the
point where they last stopped. Processes run concurrently. Each process will execute
until some event, such as hitting a breakpoint, causes it to stop.

If this command is entered interactively, the debugger does not prompt for any more
commands until one of the processes specified by the qualifier stops executing for some
reason. Note that only one of the specified processes has to stop feottiaue
command to complete; it does not wait fall of the processes to stop. Note also that a
process is considered to be stopped the moment it hits a breakpoint; if the breakpoint has
commands attached to it, they probably will not execute before you receive a prompt for
another command.

If a continue command in a breakpoint command stream continues execution of the

process stopped at that breakpoint, the command stream is terminated; no further
commands are executed from that stream. déatinue command continues execution

of a process that is currently executing another breakpoint command stream, the
continue command does not take effect until that command stream has completed

execution. See “Command Streams” on page 3-27.

If a continue command continues execution of a process that is currently executing an
on program oron restart command stream, theontinue command does not
take effect until the affected process has been completely initialized by NightView and is
ready to be debugged.

continue is similar toresume . See “resume” on page 7-95.
Example:
(local) c5

The processes specified by the default qualifier are resumed and will not stop again at the
current breakpoint until it has been hit 5 times.

Continue execution.
resume [sigid]
sigid

The processes receive the specified signal when they resume exesigidn.

is a signal name or number. You may specify a signal name with or without
the siG prefix; the name is case-insensitive. slfjid is 0, then the processes
receive no signal when they resume execution. See “signal” on page 7-101.

If this argument is not present, then the processes are resumed with the signal
that caused them to stop, similardontinue

7-95

NightView User’s Guide

step

7-96

resume causes the processes specified by the qualifier to resume execution at the point
where they last stopped. The processes run concurrently. Each process will execute until
some event, such as hitting a breakpoint, causes it to stop.

If a resume command in a breakpoint command stream continues execution of the
process stopped at that breakpoint, the command stream is terminated; no further
commands are executed from that stream. résume command continues execution of

a process that is currently executing another breakpoint command strearestinee
command does not take effect until that command stream has completed execution. See
“Command Streams” on page 3-27.

If a resume command continues execution of a process that is currently executiolg an
program or on restart command stream, theesume command does not take
effect until the affected process has been completely initialized by NightView and is
ready to be debugged.

The difference betweeresume andcontinue is thatresume does not wait for the
processes to stop. The debugger continues to read and process commands. See
“continue” on page 7-94.

Example:

(local) resume O
The processes specified by the default qualifier are resumed with no signal.
Example:

(local) resume 2

The processes specified by the default qualifier are resumed with signal number 2.

Execute one line, stepping into procedures.
step [repeat
Abbreviation: s

repeat

Therepeatargument specifies the number of lines to single step. The default
is one line.

step causes the processes specified by the qualifier to continue execution until they
have crossed a source line boundary. With a repeat count, this hajgpeadtimes.

step follows execution into called procedures. That is, if the current line is a procedure
call, and youstep , then the process will execute until it is in that new procedure and
then stop. If you want to step over the procedure,nes¢ . See “next” on page 7-97.

If a step command causes execution to enter or leave a called procedure, then the output
includes the equivalent of lame 0 command to show this. See “frame” on page

next

Command-Line Interface

7-105.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals” on page 3-10 for a discussion of the interactions between single-stepping and
signals.

step is interpreted relative to the current frame. See “Current Frame” on page 3-23.
That is, any lower frames are automatically finished before stepping.

There are also commands to single step individual instructions. See “stepi” on page 7-98
and “nexti” on page 7-99.

When the program has just startetep steps to the beginning of the procedure that calls
static initializers or library-level elaboration procedures, if any. If there are reiep,
steps to the beginning of the main procedure.

Because of optimization and other considerations, a process may appear to stop multiple
times in the same line or not at all in some lines. The decorations that appear when you
list the source can help you decide which lines are executable (see “Source Line
Decorations” on page 7-62). Also, disassembly can help you determine the flow of
control through your program (see “x” on page 7-67).

If the step command causes execution to enter a procedure which is uninteresting, the
step acts likenext . See “Interesting Subprograms” on page 3-24. See “next” on page
7-97.

If an exception propagates to the current frame or a calling frame, thestépe com-
pletes and execution is stopped at the beginning of the exception handler.

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
the call.

Execute one line, stepping over procedures.
next [repeat
Abbreviation: n

repeat

Therepeatargument specifies the number of lines to single step. The default
is one line.

next causes the processes specified by the qualifier to continue execution until they
have crossed a source line boundary. With a repeat count, this hajgpeadtimes.

7-97

NightView User’s Guide

stepi

7-98

next steps over called procedures. That is, if the current line is a procedure call, and
you single step witmext , then the process will execute until that new procedure has
returned. If you want to follow execution into the procedure, st&p . See “step” on
page 7-96.

If a next command causes execution to leave a called procedure, then the output
includes the equivalent of rlame 0 command to show this. See “frame” on page
7-105.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals” on page 3-10 for a discussion of the interactions between single-stepping and
signals.

next is interpreted relative to the current frame. See “Current Frame” on page 3-23.
That is, any lower frames are automatically finished before stepping.

There are also commands to single step individual instructions. See “nexti” on page 7-99
and “stepi” on page 7-98.

When the program has just starteéxt steps to the beginning of the main procedure.

Because of optimization and other considerations, each process may appear to stop
multiple times in the same line or not at all in some lines. The decorations that appear
when you list the source can help you decide which lines are executable (see “Source
Line Decorations” on page 7-62). Also, disassembly can help you determine the flow of
control through your program (see “x” on page 7-67).

If an exception propagates to the current frame or a calling frame, themettte com-
pletes and execution is stopped at the beginning of the exception handler.

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
the call.

Execute one instruction, stepping into procedures.
stepi [repeat
Abbreviation: si

repeat

The repeatargument specifies the number of instructions to single step. The
default is one instruction.

stepi executes a single machine instruction in each of the processes specified by the

nexti

Command-Line Interface

qualifier.

This is very similar tostep , except thatstep executes lines andtepi executes
individual instructions. See “step” on page 7-96.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals” on page 3-10 for a discussion of the interactions between single-stepping and
signals.

stepi is interpreted relative to the current frame. See “Current Frame” on page 3-23.
That is, any lower frames are automatically finished before stepping.

Sometimes, when stepping by instructions, it is useful to setdipday command to
show the instruction that is just about to be executed each time the process stops. To do
that, say

(local) display/i $pc
See “display” on page 7-71.

If the stepi command causes execution to enter a procedure which is uninteresting, the
stepi acts likenexti . See “Interesting Subprograms” on page 3-24. See “nexti” on
page 7-99.

If an exception propagates to the current frame or a calling frame, thestephe com-
pletes and execution is stopped at the beginning of the exception handler.

Execute one instruction, stepping over procedures.
nexti [repeal
Abbreviation: ni

repeat

The repeatargument specifies the number of instructions to single step. The
default is one instruction.

nexti executes a single machine instruction in each of the processes specified by the
qualifier.

This is very similar tonext , except thatnext executes lines andexti executes
individual instructions. See “next” on page 7-97.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals” on page 3-10 for a discussion of the interactions between single-stepping and
signals.

nexti is interpreted relative to the current frame. See “Current Frame” on page 3-23.
That is, any lower frames are automatically finished before stepping.

7-99

NightView User’s Guide

finish

stop

7-100

If an exception propagates to the current frame or a calling frame, thamettie com-
pletes and execution is stopped at the beginning of the exception handler.

Continue execution until the current function finishes.
finish

finish causes a process to continue execution until the current frame returns. This
happens in each process specified by the qualifier.

Note that this may cause the process to finish multiple procedures, depending on which
frame is the current frame. See “frame” on page 7-105. If the current frame is in the
context of a task, thread, awp chosen by theelect-context command, execution
continues until that task, thread, owp completes execution of that procedure, or until
the process stops for some other reason.

In general, the exact action of this command is dependent on the language being
debugged.

The finish command causes execution to leave a called procedure, so the output
includes the equivalent offlame 0 command to show this.

This command completes only when all of the processes specified by the qualifier have
completed the function execution or stopped for some other reason (like receiving a
signal). The discussion in “Signals” on page 3-10 concerning interactions between
single-stepping and signals also applies tofthish command.

If an exception propagates past the current frame, thefirtish completes and execu-
tion is stopped at the beginning of the exception handler.

Stop a process.
stop

Thestop command stops each of the processes specified by the qualifier. In many cases
(such as setting breakpoints), NightView requires a process to be stopped before a
command may be applied to the process.

The stop command does not complete until all of the specified processes have been
stopped. If a specified process is already stopped, this command silently ignores that
process.

jump

signal

Command-Line Interface

WARNING

It is possible, though unlikely, that the process will stop of its own
accord (say by hitting a breakpoint) while NightView is trying to
stop it. If that happens, your process may receive a spurious
SIGTRAPsignal the next time you resume its execution. This sig-
nal should be harmless; resuming your process after this signal
occurs should get everything back to normal.

Example:
(local) (addams) stop

This example stops each of the processes in the process family named 'addams’.

Continue execution at a specific location.
jump [at] location-spec
location-spec

Thelocation-specspecifies where to continue execution. See “Location Speci-
fiers” on page 7-9.

jump causes execution to continue at the specified location. This happens for each
process specified in the qualifier.

jump does not modify the stack frames or registers, it just modifies the program counter
and continues execution. Unless you are sure the registers have the right contents for the
new location, you are cautioned to avoid using this command.

You must be in frame 0, with no hidden frames below frame zero, tgusp . See
“Interesting Subprograms” on page 3-24.

Continue execution with a signal.
signal sigid
sigid

Specifies the name or number of the signal with which to continusigltlis
0, then the processes are continued without a signal. You may specify a signal
name with or without thesiG prefix; the name is case-insensitive.

signal resumes execution of the processes specified in the qualifier, passing them a
signal.

7-101

NightView User’s Guide

handle

7-102

signal is useful if a process has received a signal (causing it to stop and be recognized
by the debugger), but you don't want it to see the signal. Then, rather than using
continue to continue the process, usignal 0

Or, perhaps you want the process to receive a different sigimglal can resume your
process with any signal.

If a signal command in a breakpoint command stream continues execution of the
process stopped at that breakpoint, the command stream is terminated; no further
commands are executed from that stream. dfgmal command continues execution of

a process that is currently executing another breakpoint command streasigriae
command does not take effect until that command stream has completed execution. See
“Command Streams” on page 3-27.

If a signal command continues execution of a process that is currently executiolg an
program or on restart command stream, theignal command does not take
effect until the affected process has been completely initialized by NightView and is
ready to be debugged.

For a way to have the debugger deal with signals automatically, see “handle” on page
7-102. signal overrides thgass setting ofhandle .

Typeinfo signal to get a list of all of the signals on your system. See “info signal’
on page 7-121.

Example:
(local) signal 2

The processes resume with signal number 2.

Specify how to handle signals and Ada exceptions in the user process.

handle [/signal] sigid keyword...
handle /exception exception-name keyword.

handle /exception unit-name keyword...

handle /exception all keyword ...
handle /unhandled_exception keyword ...
/signal

Specifies handling of a signal. This is the default.
sigid

Specifies the name or number of a signal to handle. Does not apply to
handle /exception commands. You may specify a signal name
with or without thesiG prefix; the name is case-insensitive.

Command-Line Interface

/exception
Specifies handling of an Ada exception.
exception-name

Specifies the name of a particular Ada exception to be handled. This

form of handle/exception takes precedence over any previous
handle/exception command that specifieall
unit-name

Specifies that all Ada exceptions defined in the specified unit will be
handled according to the keyword specifications. The effect is identical
to the effect obtained by mentioning each of those exceptionhiana
dle/exception command.

all

Specifies that all Ada exceptions will be handled as specified by the
keywords. This overrides any previobandle/exception com-
mand that specifies either @axception-namer a unit-name Doesn't
apply to signal handling specifications, nor to the handling of exceptions
for which the user program does not have a handler baselle/
unhandled_exception for that).

/unhandled_exception

Specifies the handling (by NightView) of exceptions raised by the program
when the program has no handler of its own for that exception.

keyword

keywordis one ofstop , nostop , print , noprint , pass or
nopass . Multiple keywords may be specified.

handle tells the debugger how to deal with signals sent to, or exceptions generated by,
the user program.

Here are the meanings of the keywords:
stop

The process stops when it gets this signal or exceptimmt is implied
with this keyword.

nostop

The process continues executing automatically after the signal or exception.
You may still useprint to tell you when the signal or exception has
occurred.

print

NightView notifies you that the signal or exception has occurred. In the com-
mand-line interface, a message is printed to your terminal. In the graphical
user interface, a message is printed in the Debug Message Area. See

7-103

NightView User’s Guide

7-104

Chapter 9 [Graphical User Interface] on page 9-1. See “Debug Message
Area” on page 9-28.

noprint

You do not receive notification when the signal or exception ocawstop
is implied with this keyword.

pass

The signal will be passed to your process the next time it executes. This key-
word is not applicable to Ada exceptions.

nopass

The signal is discarded, after stopping and printing if that's appropriate. This
keyword is not applicable to Ada exceptions.

In most cases, a signal sent to a debugged program will cause that program to be stopped
and NightView to be notified of the signal. NightView's normal action for most signals is

to notify you of the signal and save it to be passed to the process the next time it is
continued. For example, the default setting $asQuiT would be described as:

(local) handle sigquit stop print pass

This default behavior can be altered by thendle command. Some settings allow the
system to avoid stopping your process and notifying NightView of the signal. See
“Signals” on page 3-10 for more information about this.

The default action for a few signals is different than the behavior described above.
ConsidersiGALRM, which is not usually an error; it is used in the normal functioning of
the program. You usually don't want to know when your program getsa RM (but

your program does) so the default setting$6sALRM is:

(local) handle sigalrm nostop noprint pass

This says that if NightView discovers that your process has been s&ginarm, it will
automatically resume execution and pass the signal to the process without notifying you.
(NightView may not even be aware of the signal with these settings ohémelle
command. See “Signals” on page 3-10.)

SIGINT is handled a little differently; when the process receives=nT, the process stops
and NightView notifies you, but the signal is discarded, so that the process never sees it.
The normal setting foSIGINT is:

(local) handle sigint stop print nopass
For Ada programs the signalGADA is set as follows.
(local) handle sigada nostop noprint pass
For a way to deal with signals one at a time, see “signal” on page 7-101.
To find out the current settings for all the signals, see “info signal” on page 7-121.

If two conflicting keywords are specified, they are both applied, in the order they appear.
For example, if the initial setting for signal number 1si®p , print , pass, and you

Command-Line Interface

say:

(local) handle 1 noprint print
then the new setting isostop , print , pass , becausaoprint impliesnostop .
handle applies to all the processes specified in the qualifier.

The default settings for all Ada exceptions ar@stop , noprint . If the settings are
changed testop andprint , then execution is stopped in the Ada runtime routine that
routes exceptions to the proper handler. This routine is usually uninteresting, so the cur-
rent frame is set to the code that caused the exception. See “Interesting Subprograms” on
page 3-24. The user is informed of the name of the exception and the Ada Reference
Manual references.

To find out how one or more exceptions will be handled, you may useirfe
exception command. See “info exception” on page 7-125.

Selecting Context

frame

Select a new stack frame or print a description of the current stack frame.

frame [frame-numbdr

frame *expression[at location-spet
Abbreviation: f
frame-number

Frame number selected as the new current stack frame. Frame number zero
corresponds to the currently executing frame. Frame numbers for all the cur-
rently available stack frames may be obtained with baektrace com-

mand (see “backtrace” on page 7-64).

* expression

Expression which yields an address at which the stack frame should start. This
is the value tha$fp would have, not the value &isp .

location-spec

Specifies a location in the program to use to interpret the stack frame at the
address given byexpression See “Location Specifiers” on page 7-9. If you
do not supply this argument, the default is the current valugcpt .

7-105

NightView User’s Guide

up

7-106

NOTE

Theat keyword may not be abbreviated in this command.

If no argument is given, a brief description of the current stack frame is printed. If
multiple processes are specified in the command qualifier, each of them is described
separately. For a more complete description of a frame, see “info frame” on page 7-118.

If a frame-numbeis given, the chosen stack frame is selected as the current frame (see
“Current Frame” on page 3-23).

The* expressiorform of this command is provided for those occasions in which the stack
is in an inconsistent state, or you wish to examine some memory whose contents look like
stack frames. You should be very careful when using this form, observing the following
cautions.

* A stack frame cannot be interpreted except in the context of some program-
counter value. Therefore, you must be sure thatdbation-speg/ou give
(or the value offcpc) is consistent with the stack frame you are examin-

ing.
* The values of the machine registers are not altered by this form of the

frame command. This means that variables that reside in registers cannot
be reliably examined.

* The up, down, andbacktrace commands are executed relative to the
given frame address and program-counter value. However, the register
contents for calling frames may still be incorrect, since only the registers
saved in the stack can be restored by NightView.

* Modifying a register (or a variable stored in a register) may alter the current
value of a machine register, or it may alter the value of that register stored
on the stack. You must be very careful when doing this.

* Unless you have modifiefipc or other machine registers, resuming execu-
tion of the process will resume with the state the process was in before the
frame command was issued.

Once you have issuedfeame command with & expressiorargument, you can restore
the previous view of the stack by issuingfame command with aframe-number
argument. This restores NightView's view of the stack to what it was before you issued
theframe * expressiorcommand.

We recommend that, while you have the frame set using*teressionform, you
should restrict yourself to just using tlup, down, backtrace , andprint commands,
and that you print only global variables or variables stored on the stack.

Move one or more stack frames toward the caller of the current stack frame.

up [number-of-framds

down

select-context

Command-Line Interface

number-of-frames

Number of stack frames to advance toward the oldest calling frame. The number zero
may be used to restore the current source position in the current frame (see “Current
Frame” on page 3-23). If a negative number is specified, then frames are advanced
toward the newest stack frame (see “down” on page 7-107).

If number-of-framess not given, the number defaults to one, corresponding to the caller
of the current frame.

This command is applied to each process in the qualifier.

Move one or more stack frames toward frames called by the current stack frame.
down [number-of-framds
number-of-frames

Number of stack frames to advance toward the currently executing (newest)
stack frame. The number zero may be used to restore the current source posi-
tion in the current frame (see “Current Frame” on page 3-23). If a negative
number is specified, then frames are advanced toward the oldest stack frame
(see “up” on page 7-106).

If number-of-framess not given, the number defaults to one, corresponding to the frame
called by the current frame.

This command is applied to each process in the qualifier.

Select the context of an Ada task, a thread, or of a Lightweight Process.(

select-context default
select-context task= expression
select-context thread= expression
select-context lwp= Iwpid

default

This keyword selects the stack frame for the context where the process has
stopped. If the process contains multiple Lightweight Processes, the operating
system chooses one of them as the default context. See “Multithreaded Pro-
grams” on page 3-32.

7-107

NightView User’s Guide

task= expression

Thetask= keyword selects the context of an Ada task. Expressiormust
either denote a task object or it must be an integer or pointer whose value is
the address of a Task Control Blockog).

thread= expression

The thread= keyword selects the context of a thread created by
thr_create(3thread) . Theexpressiomust be thehread_t value
returned bythr_create for a currently active thread.

Iwp= lwpid

The lwp= keyword selects the context of a specific Lightweight Process
(twpP). Thelwpid is theID of the Lightweight Process whose context is
selected.

The select-context command allows you to examine the context (see “Examining
Your Program” on page 3-18) of an Ada task, a thread, orwn. Using select-

context , you can get a backtrace (see “backtrace” on page 7-64) and examine registers
and variables in the context of the selected task, threadypr

When a process that contains multipeps, tasks, or threads stops, the current context
becomes that of one specific task, thread,wp. (For a discussion of how this choice is
made, see “Multithreaded Programs” on page 3-32.) You can usesdlest-

context command to temporarily change the context to that of some other task, thread,
or LWP.

Once a context has been selected,frdime , up, down, andbacktrace commands
apply to that context. All expressions and references to registers also refer to that
context, with one exception. When an Ada task is not assigned tavanthe state of the

task is saved in memory, but only certain registers are saved. If you reference other
registers, their contents reflect tlefault context.

Note that execution control is on a process basis: if you resume executiawralare
allowed to execute. If you enterfmish , step , next , stepi , ornexti command,
the process executes until the selected task, thread/mcompletes the stepping opera-
tion, but other tasks, threads loxPs may execute as well.

If you request evaluation of an expression containing a function call, the process is
allowed to execute and allwps are allowed to run. If anothexwp hits a breakpoint, or
stops for some other reason, the function call is terminated prematurely and an error
message is issued.

Miscellaneous Commands

help

7-108

Access the online help system.

refresh

Command-Line Interface

help [sectiod
section
The name of a section in this manual (anything in the table of contents).

You can read any section in this document by giving the section name (or a unique prefix
of the section name) as an argument toltelp command.

If you typehelp without arguments, the help system displays the document section most
relevant to the last error you received. Tyedp again to see help on the previous error
you received, and so on.

Error message identifiers are section names, so you can get help for a specific error by
giving the help command with the error message identifier. An error message
identifier, beginning withE-, is printed with each error message. See “Errors” on page
3-26.

In the non-graphical user interfacdglp prints to the terminal. In the graphical user
interface help uses another program to display the documentation in a separate window.
See “GUI Online Help” on page 9-2.

NOTE

In the non-graphical user interfaces, help is available only for
error messages.

Thehelp command ignores the command qualifier.
Examples:
(local) help Summary of Commands

The above example displays the section of the document that contains a brief description
of each command.

(local) help backtrace
Display the description of thieacktrace command.
(local) help E-command_proc003

Display help for the error with error message identifiecommand_proc003 .

Refresh the terminal screen.
refresh

Therefresh command clears the terminal screen and redraws it. This is helpful when
the screen becomes garbled, such as with a modem and noisy phone lines.

7-109

NightView User’s Guide

shell

source

7-110

refresh is only useful in the simple full-screen interface. This command does nothing in
the command-line interface. See Chapter 8 [Simple Full-Screen Interface] on page 8-1.

Run an arbitrary shell command.
shell [shell-command

Theshell command is used to execute a single line in a subshell. This command has
nothing to do with debugging and the qualifier is ignored. It is simply provided because it
is sometimes convenient to have a way to execute a shell command without having to
suspend or exit the debugger.

If you just typeshell without arguments, the debugger puts you in a shell where you
can execute arbitrary commands until you exit the shell, at which time the debugger will
get control again. You cannot use this form of 8fell command inside a macro (See
“Defining and Using Macros” on page 7-130).

The programs run by this command run on the local system only (the same one you are
running NightView on) and inherit the current working directory of the debugger (see
“cd” on page 7-56).

If you start background processes giaell , they will continue to run normally even if
you quit out of the debugger.

The shell used is determined by looking for thieeLL environment variable, and if that is
not found, by using your login shell.

In the simple full-screen interface, NightView does not have control over the terminal
while you are executing shell command, so after the command has completed you are
asked to press return. This gives you a chance to view the command output before
NightView redraws the screen. See Chapter 8 [Simple Full-Screen Interface] on page
8-1.

Input commands from a source file.
source command-file
command-file
The file to read.

This command reads the designated file and treats each line in the file as though it were a
command you typed in. After reading all the commands in the file, the debugger returns
to reading commands from the keyboard again. sgiirce commands are nested,
ending one file returns to reading from the previous file.)

If NightView encounters any serious error, it stops reading frosparce file. See

delay

Command-Line Interface

“Command Streams” on page 3-27.

The qualifier on thesource command has no effect. The default qualifier is applied to
any commands in the source file which do not have explicit qualifiers.

Delay NightView command execution for a specified time.
delay [millisecond$
milliseconds

The number of milliseconds to delay command execution. If not specified,
the default is 1.

This command delays the execution of NightView commands for at least the specified
time period, expressed in milliseconds. The actual delay may be longer than the specified
period. The command following delay command in the same command stream will
not execute until at least the specified time has elapsed.

The primary use of thélelay command is in command scripts, when you may want to
prevent a command from executing immediately after the preceding one. For instance,
you may wish to allow time for your program to execute for some length of time between
the execution of two NightView commands.

The qualifier on thalelay command has no effect.

Info Commands

The info commands all start with the wondfo , which may always be abbreviated to
the single charactér. The keyword followinginfo identifies one of the many topics for
which info is available. Each info command may also have additional arguments specific
to the individual command.

The info commands can be broadly divided into two basic categories:

¢ Status queries, returning information about the current state of the debug-
ger and the processes being debugged.

¢ Symbol table queries, returning information about program variables and
type definitions.

7-111

NightView User’s Guide

Status Information

info log

info eventpoint

7-112

The status info commands allow you to query various information about the current state
of the debugger (e.g., what breakpoints are set, how many dialogues are active, etc.).

Describe any open log files.
info log

Describes any open log files currently in use by the debugger. The log files may be
created byset-log (see “set-log” on page 7-44) or kyet-show (see “set-show” on
page 7-28).

Describe current state of breakpoints, tracepoints, patchpoints, monitorpoints and
agentpoints.

info eventpoint [/verbose] [name | numbef ...
Iverbose

Specify that the locations of all eventpoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the eventpoint and, where possible, the corresponding function
name, file name, and line number. The numberofddresses printed is sub-
ject to the limit on printing addresses (see “set-limits” on page 7-46). The
verbose keyword may be abbreviated.

name

An eventpoint name.
number

An eventpoint number.

This command describes eventpoints associated with the processes in the command
qualifier. An eventpoint is any of a breakpoint, tracepoint, patchpoint, monitorpoint or
agentpoint. This command combines five separate commands. See “breakpoint” on page
7-78, “tracepoint” on page 7-82, “patchpoint” on page 7-79, “agentpoint” on page 7-86,
and “monitorpoint” on page 7-83.

The information printed includes:

* The eventpointD.
* The eventpoint type.

¢ Current state of eventpoint (enabled, disabled, temporary).

info breakpoint

Command-Line Interface

* The eventpoint location. Werbose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the eventpoint was created.

* The number of times program execution has crossed the eventpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

* The number of times the eventpoint has béérsince the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

* Any conditions attached to the eventpoint.
* The current ignore count.

* Any commands attached to the eventpoint (if it is a breakpoint or monitor-
point).

This command sets the defaxitcommand dump address as well as $hepredefined
convenience variable to the address of the last eventpoint listed. See “X” on page 7-67
and “Predefined Convenience Variables” on page 7-6.

Describe current state of breakpoints.
info breakpoint [/verbose] [name | numbef ...
Abbreviation: i b

Iverbose

Specify that the locations of all breakpoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the breakpoint and, where possible, the corresponding function
name, file name, and line number. The numberofddresses printed is sub-
ject to the limit on printing addresses (see “set-limits” on page 7-46). The
verbose keyword may be abbreviated.

name

An eventpoint name.
number

An eventpoint number.

This command normally describes all breakpoints associated with the processes indicated
by the command qualifier. If you specify a list of eventpoint names or numbers, only
those events are described. If any of the specified eventpoints are not breakpoints, they
are ignored. Breakpoints are created with tbhesakpoint command. See
“breakpoint” on page 7-78.

The information printed includes:

7-113

NightView User’s Guide

info tracepoint

7-114

* The breakpointD.
¢ Current state of breakpoint (enabled, disabled, temporary).

* The breakpoint location. Ifverbose was specified, then the location
will be printed in verbose format. Otherwise it will be printed in the format
in which it was specified when the breakpoint was created.

* The number of times program execution has crossed the breakpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

* The number of times the breakpoint has bédrsince the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

* Any conditions attached to the breakpoint.
* The current ignore count.

* Any commands attached to the breakpoint.

This command sets the defaxitcommand dump address as well as $hepredefined
convenience variable to the address of the last breakpoint listed. See “x” on page 7-67
and “Predefined Convenience Variables” on page 7-6.

Describe current state of tracepoints.
info tracepoint [/verbose] [name | numbef ...
Iverbose

Specify that the locations of all tracepoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the tracepoint and, where possible, the corresponding function
name, file name, and line number. The numberofddresses printed is sub-
ject to the limit on printing addresses (see “set-limits” on page 7-46). The
verbose keyword may be abbreviated.

name
An eventpoint name.
number
An eventpoint number.

This command describes tracepoints in the processes indicated by the qualifier. Normally
all tracepoints are described, but if an argument is given, only those named are described.
Any eventpoints specified in the argument list which are not tracepoints are ignored.
Tracepoints are created with theacepoint command. See “tracepoint” on page
7-82.

The information printed includes:

info patchpoint

Command-Line Interface

* The tracepointD.
¢ Current state of tracepoint (enabled, disabled, temporary).

* The tracepoint location. verbose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the tracepoint was created.

* The tracepoint evenb.

* The number of times program execution has crossed the tracepoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

* The number of times the tracepoint has béérsince the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

* Any conditions attached to tracepoint.
* The current ignore count.

* The expression being recorded at the tracepoint.

This command sets the defaxitcommand dump address as well as $hepredefined
convenience variable to the address of the last tracepoint listed. See “X” on page 7-67
and “Predefined Convenience Variables” on page 7-6.

Describe current state of patchpoints.
info patchpoint [/verbose] [name | numbef ...
Iverbose

Specify that the locations of all patchpoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the patchpoint and, where possible, the corresponding function
name, file name, and line number. The numberofddresses printed is sub-
ject to the limit on printing addresses (see “set-limits” on page 7-46). The
verbose keyword may be abbreviated.

name
An eventpoint name.
number
An eventpoint number.

This command describes patchpoints in the processes indicated by the qualifier. Normally
all patchpoints are described, but if an argument is given, only those named are
described. Any eventpoints specified in the argument list which are not patchpoints are
ignored. Patchpoints are created using plagchpoint command. See “patchpoint”

on page 7-79.

7-115

NightView User’s Guide

info monitorpoint

7-116

The information printed includes:

* The patchpointp.
¢ Current state of patchpoint (enabled, disabled, temporary).

* The patchpoint location. lverbose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the patchpoint was created.

* The number of times program execution has crossed the patchpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

* The number of times the patchpoint has béérsince the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

¢ Any conditions attached to patchpoint.
* The current ignore count.

* The expression patched in at that point.

This command sets the defaxitcommand dump address as well as $hepredefined
convenience variable to the address of the last patchpoint listed. See “x” on page 7-67
and “Predefined Convenience Variables” on page 7-6.

Describe current state of monitorpoints.
info monitorpoint [lverbose] [name | numbef ...
Iverbose

Specify that the locations of all monitorpoints displayed will be in verbose
format. Verbose location format includes the program counter address (or
addresses) of the monitorpoint and, where possible, the corresponding func-
tion name, file name, and line number. The numbepoaddresses printed is
subject to the limit on printing addresses (see “set-limits” on page 7-46). The
verbose keyword may be abbreviated.

name
An eventpoint name.
number
An eventpoint number.

This command describes monitorpoints in the processes indicated by the qualifier.
Normally all monitorpoints are described, but if an argument is given, only those named
are described. Any eventpoints specified in the argument list which are not monitorpoints
are ignored. Monitorpoints are created with th@onitorpoint command. See
“monitorpoint” on page 7-83.

info agentpoint

Command-Line Interface

The information printed includes:

* The monitorpointp.
¢ Current state of monitorpoint (enabled, disabled, temporary).

* The monitorpoint location. Ifverbose was specified, then the location
will be printed in verbose format. Otherwise it will be printed in the format
in which it was specified when the monitorpoint was created.

* The number of times program execution has crossed the monitorpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

* The number of times the monitorpoint has begh since the program
started execution (this count is incremented only if the condition and ignore
count are satisfied).

¢ Any conditions attached to monitorpoint.
* The current ignore count.

* The commands attached to the monitorpoint.

This command sets the defaxitcommand dump address as well as $hepredefined
convenience variable to the address of the last monitorpoint listed. See “x” on page 7-67
and “Predefined Convenience Variables” on page 7-6.

Describe current state of agentpoints.
info agentpoint [/verbose] [name | numbef ...
Iverbose

Specify that the locations of all agentpoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the agentpoint and, where possible, the corresponding function
name, file name, and line number. The numberofddresses printed is sub-
ject to the limit on printing addresses (see “set-limits” on page 7-46). The
verbose keyword may be abbreviated.

name
An eventpoint name.
number
An eventpoint number.

This command describes agentpoints in the processes indicated by the qualifier. Normally
all agentpoints are described, but if an argument is given, only those named are
described. Any eventpoints specified in the argument list which are not agentpoints are
ignored. Agentpoints are created with tgentpoint command. See “agentpoint” on
page 7-86.

7-117

NightView User’s Guide

The information printed includes:

* The agentpoinip.
¢ Current state of agentpoint (enabled, disabled, temporary).

* The agentpoint location. Iverbose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the agentpoint was created.

* The number of times program execution has crossed the agentpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

* The number of times the agentpoint has ba#érsince the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

¢ Any conditions attached to agentpoint.

* The current ignore count.

This command sets the defaxitcommand dump address as well as $hepredefined
convenience variable to the address of the last agentpoint listed. See “x” on page 7-67
and “Predefined Convenience Variables” on page 7-6.

info frame

Describe a stack frame.
info frame [M] [expression[at location-spef]
v
If this option is supplied, NightView prints detailed, machine-specific, infor-
mation about the requested stack frame. You are seldom likely to be interested

in this information; it is provided primarily for detecting problems with the
generated debugging information.

* expression
The address of a stack frame. This is the value $fiat would have, no%sp .
location-spec

Specifies a location in the program to use to interpret the stack frame at the
address given byexpression See “Location Specifiers” on page 7-9. If you
do not supply this argument, the default is the current valugcpt .

NOTE

Theat keyword may not be abbreviated in this command.

This command describes all available information about the current stack frame for a

7-118

info directories

info convenience

Command-Line Interface

process (see “Current Frame” on page 3-23). See also “frame” on page 7-105.

If multiple processes are specified in the command qualifier, each of them is described
separately. An error message is printed if any of the processes are running.

If the optional* expressioris given, then the frame at that address is described (but the
current frame is not changed). If you supply toeation-specargument, the frame is
interpreted as a frame for the routine at the resulting address. If you omit this argument,
the current value ofcpc is used in decoding the frame.

If *expressiordoes not evaluate to a valid frame address, or the frame at that address
does not correspond to the given program location, the information printed will probably
be nonsense.

The information printed about a frame includes:

* The address of the frame.

* The addresses of the adjacent frames (if any).

* The current frame size.

* The saved return address and its location on the stack (or in a register).
* Any saved registers and their locations on the stack.

* Which registers are currently in use as stack and/or frame pointers and their
relation to the current frame.

* The name of the subroutine associated with the frame along with the source
line and file name (if known).

Print the search path used to locate source files.
info directories

Print the search path used to locate source files. If multiple processes are given in the
qualifier, print the list of directories for each process. See “directory” on page 7-60, for
the command used to set the search path.

Describe convenience variables.
info convenience

This command describes all the convenience variables that have been defined.

Convenience variables may be global or process local (see “set-local” on page 7-50). This

command first describes the global variables, then (for each process specified by the

command qualifier) describes the process local variables. The name, data type, and value
of each variable is listed.

The convenience variables that correspond to the process registers are not described by

7-119

NightView User’s Guide

info display

info history

info limits

info registers

7-120

this command (see “info registers” on page 7-120).

Describe expressions that are automatically displayed.
info display

This command describes the set of expressions that are automatically displayed each time
a program stops (see “display” on page 7-71).

Print value history information.
info history [numbet
number

Specifies an item in the value history list (each value has a unique sequence
number). The default value is the most recent history list entry.

This command prints ten history-list values centered around the specified entry. It also
prints information about how many history items currently exist. See “set-history” on
page 7-46.

Print information about limits on expression and location output.
info limits

The command prints the limits on array elements and character-string elements printed by
expression output commands, and the limits on program locations printed byirdfther
commands. See “set-limits” on page 7-46.

The qualifier is ignored by this command.

Print information about registers.
info registers [regexp
regexp

A regular expression matching register names. An anchored risaittiplied.
See “Regular Expressions” on page 7-12.

If the regexpargument is not given, this command prints all the normally accessible
registers that are of general interest to most programmers (such as accumulators, program

info signal

Command-Line Interface

counter, stack pointer, etc.). If you give a regular expression argument, any register with a
name matching that regular expression is printed. To m@ihthe registers, you must
specify the regular expressiah as an argument (this includes all the obscure control
registers and any other registers not normally of interest to a programmer). See
“Predefined Convenience Variables” on page 7-6.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 7-54).

Registers are printed relative to the current frame (see “Current Frame” on page 3-23).
This means that any register saving is logically unwound as you change frames (the
register contents are not actually modified). You see the value the register would have if
you returned to the current frame. (If the current frame is also the most recent frame at
the end of the stack, the current machine register contents are the correct contents relative
to frame zero.)

If the current frame is not frame zero, but you want to see the current active contents of
the machine registers, you have to move to frame zero before runningnfie
registers command (see “frame” on page 7-105).

If the command qualifier names multiple processes, the registers from each process are
printed separately. If any of the processes are running, an error is printed.

Since this command operates only on register names, the dollar&igiomally used to
refer to registers is optional for this command.

Some registers are defined by the architecture to be composed of various figfols.
registers expands those fields symbolically. If a field is a single bit, NightView
prints an abbreviation for that field only if the value of the fieldlis See the architecture
manual for descriptions of the fields and a list of the abbreviations for each register.

Print information about signals.
info signal [signal ...]
signal
A signal number or signal name.

This command describes how signals will be handled by the process receiving them. If
the command qualifier specifies multiple processes, then the signal information is listed
separately for each process. The information printed includes:

* The signal name.
* The signal number.

* The way the debugger will handle this signal. (see “handle” on page
7-102).

If no signalsare specified, then information for all signals is printed.

7-121

NightView User’s Guide

info process

Describe processes being debugged.
info process

This command lists information about all the processes specified in the command
qualifier (qualify with(all) to list all of them). The information includes:

* The process ID (PID).

* The controlling dialogue for the process.

* The arguments passed to the program on stagrgy(array).

* The current process state (running, stopped).

* When the process state is stopped, list where and why it stopped.
* The current language setting. See “set-language” on page 7-44.

* The disposition of child processes; that is, under what circumstances a
child process will be debugged. See “set-children” on page 7-41.

info memory

Print information about the virtual address space.
info memory [/verbose]
Iverbose
Indicates that extra information should be printed.

This command prints information about the virtual address space for each process speci-
fied in the command qualifier. For each region of memory, this command prints the fol-
lowing information:

* The beginning address and ending address of the region.
* The size, in bytes, of the region.

¢ |If the region is the first region associated with a shared library, the name of
the library is printed.

* Whether the region is readable, writable, executable, shared, or locked in
physical memory.

* Whether the region is being used as the process’ stack or memory heap.

¢ |If the region was attached by NightView, what the region is for and how
much space is left in the region. See Appendix E [Implementation Over-
view] on page E-1. If théverbose option is specified, NightView prints
information about the individual blocks allocated in the region.

The list also includes any regions reserved by the user witmtieserve command. See
“mreserve” on page 7-43.

7-122

info dialogue

info family

info name

Command-Line Interface

Print information about active dialogues.
info dialogue

This command lists information about all the dialogues specified in the command
qualifier (qualify with(all) to list all of them). The information includes:

* The machine running the dialogue.

* The sizes that will be used for patch areas created in the future. See “set-
patch-area-size” on page 7-50.

* The list ofdebug andnodebug patterns for this dialogue. See “debug”
on page 7-20.

* The processes being debugged under control of the dialogue.
* The user running the dialogue.
* The status of any dialogue output (see “set-show” on page 7-28).

* The list of object filename translations for this dialogue. See “translate-
object-file” on page 7-21.

Print information about an existing process family.
info family [regexp
regexp

A regular expression matching family names. An anchored miatithplied.
See “Regular Expressions” on page 7-12.

For each family name that matchesgexpthis command lists each process that is a
member of that family (see “family” on page 7-40).régexpis omitted, then the contents
of all process families are printed.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 7-54).

Print information about an existing eventpoint-name.
info name [regexp
regexp

A regular expression matching eventpoint-names. An anchored match
implied. See “Regular Expressions” on page 7-12.

7-123

NightView User’s Guide

info on dialogue

info on program

info on restart

7-124

For each eventpoint-name that matchegexp this command lists each eventpoint that is
a member of that eventpoint-name (see “name” on page 7-7@géixpis omitted, then
the contents of all eventpoint-names are printed.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 7-54).

Each eventpoint is identified by a dialogue-name, a processii), @nd an eventpoint-id
that is unique for that process.

Printon dialogue commands.
info on dialogue [namé
name
The name of a prospective dialogue.

If no arguments are given, then all existing dialogue commands are printed. If a
dialogue name is given, then only tba dialogue = commands that would be executed
if a dialogue namedamewere to be created are printed. See “on dialogue” on page 7-23

Printon program commands.
info on program [prograni
program
The path name of a prospective executable file.

If no arguments are given, thénfo on program prints all existingon program
commands for each dialogue specified by the qualifier. If a program path is given, then
info on program prints theon program commands that would be executed if
programwere run in each dialogue specified by the qualifier. See “on program” on page
7-36.

Printon restart commands.
info on restart [output=outname| append= outnamé [program
output= outname
Write the information tmutname
append= outname

Append the information toutname

info exception

Command-Line Interface

program
The path name of a prospective executable file.

If no programis given, theninfo on restart prints all existingon restart
commands for each dialogue specified by the qualifier. pf@grampath is given, then

info on restart prints theon restart commands that would be executed if
programwere run in each dialogue specified by the qualifier. See “on restart” on page
7-38.

If no outhames specified, then the output is to the terminal or to the GUI message area.

info on restart may be used to preserve restart information in a file for use in a
later debug session. See “source” on page 7-110. See “Restarting a Program” on page
3-11. For an example, see “checkpoint” on page 7-39.

Print information about Ada exception handling.

info exception exception-name...
info exception unit-name

info exception
exception-name
Specifies the name of a particular Ada exception.
unit-name
Specifies all Ada exceptions defined in the specified unit.

This command describes the current exception handling settings for the processes
specified by the qualifier. See “handle” on page 7-102. With no arguments, the current
default handling of exceptions is displayed along with the handling of any specific
exceptions to which the default is not applicable. If an argument is given, the handling of
those specific exceptions is displayed. Thi® exception command will list:

* The exception name, or the keywaall denoting the default.

* The exception handling settings.

7-125

NightView User’s Guide

Symbol Table Information

info args

info locals

info variables

7-126

The info commands in this section are used to lookup and report on information recorded
in the debug tables of program files. This includes the names and declarations of
variables, the address of generated code for source lines, etc.

Print description of current routine arguments.
info args

This command prints a description of each argument of the subroutine associated with the
current frame (see “Current Frame” on page 3-23).

Print information about local variables.
info locals [regexp
regexp

A regular expression matched against local variable names. An anchored
matchis implied. See “Regular Expressions” on page 7-12.

Print a description of every local variable visible in the current context. Ifrégexp
argument is given, print only the variables with names matching the regular expression.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 7-54).

The termlocal variablesis defined to include all variables with any sort of restricted
scope. External variables visible throughout the program are never listed by this
command.

The information listed for each variable includes:

* The name of the variable.

* The type of the variable.

* The current value of the variable.
* The location of the variable.

* The scope of the variable (directly visible, inherited from an outer block,
etc.).

Print global variable information.

info address

info sources

info functions

Command-Line Interface

info variables [regexp
regexp

A regular expression matched against global variable names. An anchored
matchis implied. See “Regular Expressions” on page 7-12.

This command prints information about global variables. Whenrdgexpargument is
given, it prints only variable names matching the regular expression.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 7-54).

Determine the location of a variable.
info address identifier
identifier
The name of the variable to be described.

Print out information about where the given variable (visible in the current context) is
located. If the variable is in a register, it prints the register name. If it is on the stack, it
prints the stack frame offset. If it is in static memory, it prints the absolute location.

To determine the absolute address of a particular instance of a stack variable you must
use theprint command to evaluate an expression which returns the address (for the C
language, this would be something liggnt &name , see “print” on page 7-65).

List names of source files.
info sources [patterd
pattern

Wildcard pattern to match against source file names. See “Wildcard Patterns”
on page 7-14.

This command lists the names of the source files recorded in the debug tables. If a
wildcard pattern is given, it lists only file names matching the wildcard pattern.

If multiple processes are specified in the command qualifier, the source files for each
process are listed separately.

List names of functions, subroutines, or Ada unit names.

info functions [regexp

7-127

NightView User’s Guide

info types

info whatis

info representation

7-128

regexp

A regular expression to match against function names. An anchored isatch
implied. See “Regular Expressions” on page 7-12.

This command lists the names of functions, subroutines, or Ada unit names recorded in
the debug tables. If a regular expression is given, it lists only names matching the regular
expression.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 7-54).

Print type definition information.
info types [regexp
regexp

A regular expression to match against type names. An anchored risatch
implied. See “Regular Expressions” on page 7-12.

This command prints information about type definitions. When rdgexpargument is
given, it prints only type names matching the regular expression; otherwise, it prints all
the types defined in the program.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 7-54).

Describe the result type of an expression visible in the current context.
info whatis expression
Abbreviation: whatis

expression

An expression for which the data type is to be determined. See “Expression
Evaluation” on page 3-18.

Describe the result type of the expression. The expression is hot normally evaluated, but
operations which require run time type determination may require portions of the expres-
sion to be evaluated. If the expression includes the Ad¥ attribute or the C++
dynamic_cast<> function, their operands must be evaluated in order to determine the
actual type of the result.

Describe the storage representation of an expression.

info declaration

info files

info line

Command-Line Interface

info representation expression
Abbreviation: representation
expression

An expression for which the data type is to be determined. See “Expression
Evaluation” on page 3-18.

Describe the storage representation of the result type of the expression. The expression is
not evaluated.

Print the declaration of variables or types.
info declaration regexp
Abbreviation: ptype

regexp

A regular expression to match against type names and variable names. An
anchored matcks implied. See “Regular Expressions” on page 7-12.

The regexpparameter may specify type or variable names visible in the current context.
This command prints the complete declaration of all matching names.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 7-54).

Print the names of the executable, symbol table and core files.
info files

For each process specified in the command qualifier, print the names of the executable
file, symbol table file, and core file associated with the process (the executable and
symbol table files are usually the same).

Describe location of a source line.
info line [at] location-spec
location-spec
Query the source line number associated with this location.

Describe the location of the source line implied by toeation-specargument (see
“Location Specifiers” on page 7-9). The information printed includes:

7-129

NightView User’s Guide

* The address of thiecation-spec

* The ranges of addresses occupied by the generated code for the line. The
number of address ranges printed is subject to the current limit on
addresses (see “set-limits” on page 7-46).

* The source file and line number.

* The function containing the line.

This command sets the defaxitcommand dump address as well as $hepredefined
convenience variable to the address of the first instruction in the line. See “x” on page
7-67 and “Predefined Convenience Variables” on page 7-6.

Defining and Using Macros

NightView provides a macro facility so you can augment the NightView commands with
your own features. Macros can either be used as part of another command, or as a new
command.

A macrois a named set of text, possibly with arguments, that can be substituted later in
any NightView command. The arguments allow macros to expand to different text in
different circumstances. Macros are useful in extending the command set available in
NightView; they can also serve as shortcuts for frequently used constructs in commands
or expressions.

define

Define a NightView macro.

define macro-namf arg-name[, arg-namé ...)] | texq

define macro-name[(arg-name[, arg-namé ...)] as
macro-name

This is the name of the macro. Macro names follow the usual rules for identi-

fiers in most languages: they must begin with an alphabetic character, fol-
lowed by zero or more alphanumeric characters or underscore. There is no
limit to the length of a macro name.

A macro name can be the same as a NightView command name, but this may
render the command unusable. See “Referencing Macros” on page 7-133 for
more information.

arg-name

A formal argumenhame. These names follow the same rulesyasro-name

7-130

Command-Line Interface

text

The text to be substituted when the macro is invoked. In this form, the substi-
tuted text will not contain any newline characters, sotdbecomes part of
whatever command the macro invocation appears in.

NOTE

There must not be any blanks separatingrttaero-namedrom the
left parenthesis that introduces the formal arguments.

In the second form of theefine command, the text of the macro begins on the line
following thedefine command and extends until a line containing only the weana
define is encountered. Except for the newline character immediately followingshe
keyword and the newline immediately preceding #wed define command, the
newline characters within the body of the macro will be retained in the substituted text.
Thus, each line of text in the macro body must normally be a complete NightView
command.

Comments appearing in the body of the macro become part of the body. Thus, they
appear in the text that is substituted for a reference to the macro. You should avoid
having a comment as the last line of a macro, because it may cause any text following the
macro invocation to be ignored.

In the command-line and simple full-screen interfaces, the prompt changeswtdle
you are entering the second form of tteefine command. (See “Command Syntax” on
page 7-1.)

Thedefine command associates a body of text with the gimeacro-name When the

macro is invoked (see “Referencing Macros” on page 7-133), the macro name and its
actual arguments are replaced by the associated text. The text of the macro, called the
macro body may contain references to other macros (in particular, they will want to
reference their formal arguments). A macro may not reference itself, either directly or
indirectly; that is, macros cannot be recursive.

Within the body of a macro, eacirg-namebecomes a macro without arguments that
expands to its corresponding actual argument. “Referencing Macros” on page 7-133
describes the syntax of macro invocations and actual arguments.

A macro body should not contain anotldafine command.
Thedefine command ignores any qualifier supplied for it.

If the givenmacro-namavas previously defined as a macro, the new definition replaces
the old one. If you omit théextin a one-line definition, or thend define command
appears on the line immediately following thdefine ..as command, any prior
definition of macro-names removed.

Examples:

(local) define printhex(str,x) printf "The value of %s is 0x%x\n",

@str, @x

The above example defines a macro that prints a descriptive string and the value of an

7-131

NightView User’s Guide

7-132

arbitrary variable, using therintf ~ command.

(local) define advance(p) as

> set @p = @p->next
> print *@p
> end define

The preceding example defines a macro that advances a pointer to the next item in a
linked list, then prints the item. Note that this macro requires the language context to be

C or C++, but the type of the argument pointer can be a pointer to any structure that

contains an appropriately-typed field named "next".

(local) define short (VERY_LONG_NAME(INDEX*2,INDEX-1)*SOME_CONSTANT)

This example simply defines a shorthand for a long Fortran expression. Note that it does
not have any arguments; the parentheses surround the substituted text to make sure that
precedence of operators is preserved when the macro is invoked.

Command-Line Interface

Referencing Macros

Macros are usually referenced by preceding the macro name with the @ character, and
following the macro name with a parenthesized list of arguments, if the macro was
defined with arguments. If you wish, you may enclose the macro name inside of '{" and
'} (but any argument list must appeautsideof the braces). The number of arguments
you supply must be the same as the number of formal arguments (i.earghame}
specified in thedefine command; otherwise, NightView issues an error. Arguments
are matched with each formal argument name by position.

A reference to a macro without any arguments consists solely of the @ character
followed (without intervening blanks) by the macro name. A reference to a macro with
one or more arguments consists of the @ character, the macro name, and a list of actual
arguments. The actual arguments begin with a left parenthesis and end with a matching
right parenthesis. If more than one argument is given, a comma must separate them. If
an actual argument contains a left parenthesis, then the argument extends until a matching
right parenthesis is encountered, irrespective of any other characters, including commas,
in the intervening text. Note that an unmatched right parenthesis appearing in an actual
argument prematurely ends the list of actual arguments; this may cause an error, or it may
produce unexpected results.

An actual argument may contain an invocation of another macro; that invocation is
expanded immediately when the actual argument is read during the processing of the
enclosing macro invocation. This can lead to some surprising results, because NightView
expands these actual arguments without regard to the context in which they will
ultimately appear.

For example:

(local) define abc xyz

(local) define printit(x) print "The value is %s\n", @x
(local) print "The value is %s\n", "@abc"

(local) @printit("@abc")

The print command will print "The value is @abc", because macros are not normally
expanded within string literals. However, tt@printit command will print "The value

is xyz", because NightView expands the mao@abc when it is processing the
invocation of macra@printit . At that time, it does not know that the double quotes
imply a string literal.

String literals as actual arguments can cause other problems as well. For example:

(local) # lllegal reference:

(local) @mymac("This has a left-parenthesis(")
(local) # Okay:

(local) @mymac("This has two parentheses()")

The first invocation ofmymac is invalid because the actual argument contains an

unmatched left parenthesis. Since NightView attempts to balance parentheses without
regard to any other text (including quotes), the right parenthesis matches the left
parenthesis in the argument, leaving the argument list without a closing right parenthesis.

If a macro invocation appears where a command keyword is expected, then you can leave
off the @ prefix character (but the macro name maybe enclosed between '{’ and '}).

7-133

NightView User’s Guide

7-134

This allows macros to be used conveniently as command shortcuts. However, if the
macro requires arguments, these must still be placed within parentheses after the macro
name.

Macros take precedence over commands when the macro name appears in place of a
command keyword. This means that if you name a macro the same as a built-in
NightView command, you may not be able to reference the built-in command anymore.
However, you cannot abbreviate the macro name in an invocation, so you may be able to
use an abbreviation for the built-in command. If you name a macro the same as a built-in
command abbreviation, you won't be able to use that particular abbreviation for the built-

in command later, but you can still use the full form, or a different abbreviation. If you
accidentally name a macro the same as a built-in command, you can remove the
definition by entering

(local) # Note, no text given in definition.
(local) define macro-name

You may want to refer to the Summary of Commands (see Appendix B [Summary of
Commands] on page B-1) for a complete list of the NightView commands, so you can
avoid these kinds of conflicts.

Macro references can generally appear anywhere within a NightView command, but you
should be aware of the following rules:

* NightView never expands macros that appear within command comments.

* NightView usually does not expand macros that appear within string liter-
als. However, if the literal appears as an actual argument in another macro
invocation, macros within the string literal may be expanded.

* Macros are not expanded in tHermat-string argument to theprintf
command. See “printf” on page 7-73.

* Macros appearing in archo command are expanded. See “echo” on
page 7-70.

* Macros appearing in & (see “!” on page 7-27)un (see “run” on page
7-30), orshell (see “shell” on page 7-110) command are not expanded.

* A macro referenced within a language expression must expand to text that
makes sense as part of that expression.

* A macro can be used to form part of a syntactic item, or token, in a Night-
View command. For example, you could form a variable name in an
expression from the results of two macro invocations. However, you can-
not use this technique to construct the name of a macro to be invoked.

Examples:

(local) define short (VERY_LONG_NAME(INDEX*2,INDEX-1)*SOME_CONSTANT)
(local) set $x=i + @{short*10

The above example uses a macro in an expression.

(local) define printhex(str,x) printf "The value of %s is 0x%x\n",
@str, @x

(local) printhex("ptrl", ptrl)

(local) printhex("ptrl->next", (ptrl=ptrl->next, ptrl))

Command-Line Interface

This example invokes the macro 'printhex’ twice. The second invocation demonstrates
how an expression containing a comma can be included as a formal argument.

The following C fragment defines some data types for use in the next example:

struct list_element {
struct list element * next ;
struct data * the data ;

I3
extern struct list_element * hd ;
Example NightView commands:

(local) define printdata(p) as

> printf "The data is:\n"
> print *(@p)->the_data
> end define

(local) define next(p) as

> set @p = (@p)->next
> end define

info macros

Print a description of one or more NightView macros.
info macros [regexp
regexp

A regular expression matching macro names. An anchored nsmtetplied.
See “Regular Expressions” on page 7-12.

If the regexpargument is not given, the@fo macros command prints a description of
every macro you have defined. If you giveregexpargument, a description of every
macro whose name matches the regular expression is printed.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 7-54).

The description of each macro includes:

* The name of the macro.
* The formal argument names, if any, of the macro.

* The macro body text, exactly as it will appear when substituted, except that
the last line of the macro will be followed by a newline.

7-135

NightView User’s Guide

7-136

Simple Full-Screen Interface

8
Simple Full-Screen Interface

NightView is designed to be able to debug multiple processes asynchronously. That
means your processes may be running and producing output or hitting breakpoints, all at
the same time. You might be entering NightView commands at the same time as well.

This can be a little confusing. It would be especially confusing if NightView were to write
to your terminal at the same time you are trying to enter a command For this reason,
NightView doesn't usually show you output or event notifications while it is reading your
commands (It will do that if you want it to, though. See “set-show” on page 7-28.)

This means that NightView may have output or event notifications to show you, but it will
not show them to you because it is waiting for you to type a command. You can press car-
riage return a few times to see output you are expecting, but that can be annoying

A full-screen interface gives NightView a way to show you output and event notifications
as soon as they are available without interfering with your typing

The simple full-screen interface has the same basic functionality as the command-line
interface. All the commands are the same. In fact, the simple full-screen interface looks
a lot like the command-line interface. The main difference is that NightView has control
over the entire screen, so it can print output to you while you are "at a prompt".

Using the Simple Full-Screen Interface

To use the simple full-screen interface, you should have yeam environment variable
set to the type of your terminal. If you are using a full-screen editor, suef{Bs , you
probably have already taken care of this.

Invoke NightView with the-simplescreen option:
nview -simplescreen

NightView clears the screen before it writes its welcome message. Then the prompt is
written to the bottom line and you can type a command.

NightView does not have control over the terminal while you are executsitglh com-

mand, so after the command has completed you are asked to press return This gives you a
chance to view the command output before NightView redraws the screen. See “shell” on
page 7-110.

The simple full-screen interface creates a special window when you use monitorpoints.

See “Monitor Window - Simple Full-Screen” on page 8-2 for more information about this
window.

8-1

NightView User’s Guide

Editing Commands in the Simple Full-Screen Interface

You can use special key sequences to edit your commands. The key sequences are based
on the line editing modes dsh(1) . NightView implements themacs, gmacs andvi

modes ofksh . In particular, you can use the various key sequences to retrieve previously
entered commands.

The initial editor mode is set from yolfISUAL or EDITOR environment variables. If
NightView cannot determine the mode from those variables, then the default mode is
emacs. You can explicitly set the editor mode with tket-editor command. See
“set-editor” on page 7-55.

Monitor Window - Simple Full-Screen

8-2

The Monitor Window is created when you use monitorpoints while running NightView
with the simple full-screen interface. See “Monitor Window” on page 3-25.

In the simple full-screen interface, the Monitor Window appears at the top of the screen
and takes up as many lines as it needs for the number of items displayed, plus one status
line, while leaving at least ten lines for other debugger operations at the bottom of the
screen.

Only the items that fit in the space available at the top of the screen are displayed. Any
further items are left in the same state they would be in followingraontrol nodis-
play command (See “mcontrol” on page 7-85)

The stale data indicators used in the simple full-screen Monitor Window are simple char-
acters used to indicate each state. A space () is used to indicate updated values. A period
(-) is used for monitorpoints that have not been executed. An exclamation poiig (

used for monitorpoints which have executed but not taken a sample. For more informa-
tion about stale data indicators, see “Monitor Window” on page 3-25.

A status line at the bottom of the simple full-screen Monitor Window divides it from the
remainder of the screen. The status line indicates the state of the Monitor Wihetv (

or running) and shows the current delay time in milliseconds between updates of the
window.

Graphical User Interface

9
Graphical User Interface

This chapter describes the graphical user interfagel)(for NightView. The Gul
provides more flexibility and functionality than either the command-line interface or the
simple full-screen interface.

The graphical user interface for NightView is based on OSF/MWbtifNightView runs in
the environment of the X Window SystéthVersion 11, Release 6 (or later).

This chapter assumes that you have a basic understanding of window system concepts
such as selecting objects by clicking with the mouse. For more information, s€Sthe
Motif User's Guide

It is assumed that your X server has a three-button mouse. By default, mouse button 1 is
the leftmost button, button 2 the middle button, and button 3 the rightmost button. You
can reassign the functions associated with mouse buttons by xmsiodmap(1) . If you

do not have a three-button mouse, see your system administrator or read sections on input
and navigation in th&®©SF/Motif Style GuideUse mouse button 1 when you are told to
click, drag, press, and select.

This chapter refers to using a mouse, and refedie&ing on objects to select them or to
activate them, but you may also use keyboard selection and activation. See “Keys” on
page 9-10.

You can customize the NightView GUI. See Appendix D [GUI Customization] on page
D-1.

Sample debug sessions showing how to use the NightView graphical user interface are
available. See Chapter 2 [A Quick Start - GUI] on page 2-1. See Chapter 5 [Tutorial -
GUI] on page 5-1.

NightView GUI Concepts

GUI Overview

This section explains concepts that you need to understand so that you can use the
NightView graphical user interface to its fullest advantage.

The Graphical User Interface contains these major types of windows.

¢ Dialogue Window

¢ Debug Window

9-1

NightView User’s Guide

GUI Online Help

9-2

¢ Monitor Window - GUI
¢ Global Window

¢ Help Window

Each of these major windows has supporting dialog boxes which are described with the
corresponding major window. See “Dialogues and Dialog Boxes” on page 9-10.

A Dialogue Window is used to control a NightView dialogue and for input and output
with the dialogue shell. See “Dialogue Window” on page 9-16. A Debug Window is
used to debug and manipulate one or more processes. See “Debug Window” on page
9-20. The GUI Monitor Window displays monitorpoints. See “Monitorpoints” on page
3-9. The Global Window is used to control the debugger in general. See “Global
Window” on page 9-47. The Help Window is used only when you ask for help. See
“Help Window” on page 9-49.

Typically, while debugging a process, you have the Debug and Dialogue Windows
available, but most of the actual debugging is done with the Debug Window. You may
iconify any windows you don't need at the moment.

Each of the NightView windows has a unique icon image that relates to the window's
function. The Debug Window icon displays the identifying NightView image, and each
of the other windows includes this image as part of its icon. If you are displaying the
icon images (it is possible to display only the icon labels), you can quickly see which
iconified windows belong to the NightView application.

The graphical user interface provides several ways of providing help on particular topics.

¢ Context-sensitive help is available in all major NightView windows. See
“Context-Sensitive Help” on page 9-3.

¢ Each of the major windows hasHelp Menu. See “Help Menu” on page
9-3.

* Pressing thé&1 function key displays help for the part of the window that
has the current focus.

¢ Some of the windows have help buttons that pop up help for the particular
window.

* You can use théelp command from the command-line interface. See
“help” on page 7-108.

Help information is displayed in a Help Window. NightView uses a separate program to
display the Help Window. Once a Help Window is displayed, you can move around in
the help system in a variety of ways. You can keep the Help Window on your screen, or
dismiss it. You can also iconify it, and it redisplays itself the next time you ask for help.

See “Help Window” on page 9-49.

Graphical User Interface

Context-Sensitive Help

Help Menu

Context-sensitive help is available through thtelp menu found in each major
NightView window. See “Help Menu” on page 9-3. In addition, the <Help> key
(usually this is tha=1 function key) displays help information for the currently selected
window component.

Generally, help is not provided on individual graphical items, such as individual buttons.
Instead, you are given help for the region you have selected. For example, if you select
help on theDetach button in the Dialogue Window, the Help Window displays
information about the process summary area. See “Process Summary” on page 9-18.

To get context-sensitive help using thelp menu, select th©n Context menu item.

The pointer changes to a question mark with an arrow. Place the point of the arrow over
the graphical region for which you want help and click mouse button 1. The Help
Window is displayed with information about that region. The pointer changes back to its
original shape.

To get context-sensitive help using thd (Help) key, select a window component that
you have a question about. Press Hie(Help) key. A Help Window is displayed with
information about that region.

Mnemonic:H

Each major window in NightView haslelp menu. TheHelp menu in each window has
the same menu items.

On Context
Mnemonic:C

This item provides help about a particular graphical region of a window. See “Con-
text-Sensitive Help” on page 9-3.

On Last Error
Mnemonic:E

If NightView just displayed an error message, you can get help on that error by
selecting this menu item.

Selecting this item is similar to using ttelp command with no argument. See
“help” on page 7-108.

On Help
Mnemonic:H

This item gives help about how to use NightView's help system. See “GUI Online
Help” on page 9-2.

9-3

NightView User’s Guide

Help Buttons

9-4

On Window

Mnemonic:W

This item gives help about the window where you selectedtblp menu.
On Commands

Mnemonic:M

This item gives a summary of NightView commands.
On Keys

Mnemonic:K

This item gives help about using special keys in NightView. See “Keys” on page
9-10.

Index

Mnemonic:|

This item shows an index that lists all the help topics available for NightView.
Table of Contents

Mnemonic:N

This item shows a table of contents that lists all the help topics available for Night-
View.

A Quick Start
Mnemonic:Q

This item takes you to the beginning of the GUI quick start chapter. See Chapter 2
[A Quick Start - GUI] on page 2-1.

Tutorial
Mnemonic:T

This item takes you to the beginning of the GUI tutorial chapter. See Chapter 5
[Tutorial - GUI] on page 5-1.

On Version
Mnemonic:V

This item pops up an information dialog box that describes which version of Night-
View you are running.

Dialog boxes include alelp button in the lower right corner. You can click on this

Help Command

GUI Components

Text Input Areas

Graphical User Interface

button to receive help on the dialog box. See “Dialogues and Dialog Boxes” on page
9-10.

You can type thehelp command, followed by the topic you want help on, into the
command entry area of a major NightView window to obtain online help. See “help” on
page 7-108. A Help Window is displayed that contains information about the requested
topic. See “Help Window” on page 9-49.

If a Help Window does not exist, NightView displays one for you. Otherwise, the text of
the existing Help Window changes to show you the information that you requested.

If NightView cannot find the information you requested, a warning dialog box and a Help
Window are displayed. See “Warning Dialog Box” on page 9-15. You must
acknowledge the warning before you can interact with any of the other NightView
windows. Click on theDismiss button.

This section describes GUI components that you need to understand to use the graphical
user interface.

Text input areas receive text from the keyboard. The most important examples of text
input areas are the single line input areas in the major windows, which are used to enter
NightView commands. See “Debug Command Area” on page 9-34.

The command areas usecambo boxto provide access to the command history. See
“Combo Boxes” on page 9-6.

Text input areas have many special keys that can be used to position the text cursor and
to edit the text. A description of all the special keys is beyond the scope of this chapter.
However, this section describes some of the most important keys as they apply to
NightView's command areas. For more information on keys, se©®ie/Motif User's

Guide

Text input areas can take input only when they have the keyboard focus. See “Keyboard
Focus” on page 9-10.

For color devices, NightView uses a different color for areas of a window that you can
type into. You can configure this color. Refer to the NightView color application
defaults file. See Appendix D [GUI Customization] on page D-1.

left and right arrows
move the cursor by one character to the left or right, respectively

Home

9-5

NightView User’s Guide

Combo Boxes

Message Areas

9-6

moves the cursor to the beginning of the line of text
End

moves the cursor to the end of the line of text
Return

completes the text entry
Backspace

deletes the character before the text cursor
Delete

deletes the character following the text cursor

Combo boxes combine a text input area and a drop-down list (see “Text Input Areas” on
page 9-5). You can see the list by clicking on the downward-pointing arrow next to the
text input area. You may then select any item in the list. The selected item replaces the
text in the text input area. You may then edit that text and enter it if desired.

You can also use the keyboard to manipulate the combo box. Use the up arrow or down
arrow to replace the text with the next item in the list without displaying the list. Display
the list by holding dowrCTRL and pressing the up arrow or the down arrow. When the
list is displayed you can move within the list with up arrow and down arrow. Hide the list
by pressingesc.

NightView uses combo boxes to provide access to the command history. See “GUI Com-
mand History” on page 9-12.

Each major NightView window (Global, Dialogue, and Debug windows) has an output
area that displays messages pertaining to that element along with the output of commands
and actions performed in that window. These message areas are scrolling text areas, and
each is headed by the word "Messages:" above the scrolling text. See “Global Output
Area” on page 9-48. See “Dialogue Message Area” on page 9-17. See “Debug Message
Area” on page 9-28.

Above each scrolling text area, to the right of the "Messages:" label, is an area used to
provide feedback to the user when NightView is busy performing a task that might
prevent or delay other user interaction. This area will display one of two forms of
feedback:

¢ An output-only text field displaying a message. The message indicates the
task that NightView is performing. The background color of this field indi-
cates that it is an output-only field. See “NightStar Color Resources” on
page D-4.

Graphical User Interface

* A progress bar displaying both a message and a visual indication of
progress. The message again indicates the task that NightView is perform-
ing, and the progress bar gives an approximate indication of how much of
the task is done and how much is left to do. The colors used for progress
indication are user customizable; see “NightStar Color Resources” on
page D-4.

Some tasks involve an amount of work that is difficult to quantify from the begin-
ning. Inthose cases, a number may be included in the feedback message that indi-
cates the current estimate of the amount of work to be done. This number may
change as the task progresses, and consequently the progress bar may "back up"
rather than progress smoothly. This is normal behavior.

Some examples of tasks that you may see feedback for are:
Initializing processiame

This message appears when NightView is preparing a new process, executing file
name for debugging.

Initial scan of object filename

This message appears when NightView is scanning the debug information of file
nameprior to debugging a program for the first time. The named file may be the
name of either an executable program or a shared library.

Translatingn type definitions inrname

If you are debugging a program that was built from many different source files com-
piled separately, your program may contain debug information for the same user-
defined type many times. NightView must resolve these many definitions before it
can manipulate items of that type. Because NightView attempts to minimize over-
head by reading and interpreting debug information only when required, this process
may be incurred at any time during your debug session.

This type resolution process is typically only incurred in C and C++ programs,
although it may also be required for some Ada programs that use shared libraries.
You may be able to eliminate or considerably reduce the amount of time NightView
takes to resolve these type definitions by runningapes(1) program on your
executable file.

Note that, once NightView has resolved the definition of a particular data type, it
does not need to resol¥battype again for that executable, regardless of how many
times you debug that program during your NightView session. As long as you do
not exit NightView and do not modify the executable file, NightView will be able to
retain the information it has acquired from debug information and thus reduce your
debugging time. See “Restarting a Program” on page 3-11.

File Selection Dialog Box

A file selection dialog box allows you to browse through directories and choose a file
from a list. Or, you can type in a file name. You can change directories and view
subdirectories and their files. Typically, the file selection dialog box lists files in the
current directory. In some cases, NightView may instruct the file selection dialog box to

9-7

NightView User’s Guide

9-8

list certain files in a specific directory.

There are two possible versions of the file selection dialog box; this section describes the
default version used by NightView. You can use the other version if you comment out
the following resources ifusr/lib/X11/app-defaults/Nview

*XmFileSelectionBox.pathMode
*XmFileSelectionBox fileFilterStyle

Also, see th@©SF/Motif Style Guide

The file selection dialog box consists ofl@irectory text input area for the directory
name, aFilter mask, a list of subdirectories, a list of files,S®lection text input area

for the filename, and buttons that allow you to take actions related to the file selection
dialog box. See “Text Input Areas” on page 9-5.

See “List Selection Policies” on page 9-9.
Directory.

This area shows the name of the directory whose files and subdirectories appear in
the lists.

Thisis a text input area. You can change the directory name; click dritter but-
ton and the file selection dialog box updates Bieectories andFiles lists.

File Filter.

By editing theFilter string and clicking on thé&ilter button, you can change the
files that are displayed in theiles lists.

Thisis atextinput area. See “Text Input Areas” on page 9-5.
Directories List.

This list shows the subdirectory names that are located in the directory indicated by
theDirectory string.

To choose a directory from the list, click on its name in the list and click orrihe
ter button. Double-clicking on a directory entry changesHiker directory to that
directory. The list of subdirectories and the list of files are also changed.

Files List.

This list shows the file names that are located in the directory indicated by the
Directory string.

To select a file from the list, you can click on its name in the list and click orCtKe
button. You can also double-click on a file in the list to select that file.

File Selection.

This area shows the currently selected file name irRites list, or you can type in
a file name.

Thisis atextinput area. See “Text Input Areas” on page 9-5.

Graphical User Interface

Action Area Buttons.

If you are satisfied with the file name selection, click on @K button. NightView
uses the file you chose; how the file is used depends on the application context.

Clicking onFilter changes th®irectories andFiles list contents to reflect the
contents of thédirectory andFilter fields.

Clicking onCancel cancels the current action and closes this dialog box.

You can get help for this dialog box by clicking ételp.

List Selection Policies

A list allows you to select one or more items. The selected items are highlighted. Once
selected, you can cause some action to be taken on the items; usually, this action is
invoked by pressing a button near the list.

With some lists in NightView, you can change the default selection policy. The resource
that controls the list selection policy selectionPolicy . Refer to the NightView
application defaults file to determine which windows have list selection policies that are
configurable. See Appendix D [GUI Customization] on page D-1.

Lists may have different selection policies, depending on what type of selection is most
appropriate in a given application context. For example, a list may allow only one item at
a time to be selected, or it may allow you to select multiple discontiguous items. Unless
otherwise indicatedyrowseis the default list selection policy.

In the case where it is appropriate to select only one item at a time, there are two possible
selection policies:browseandsingle

The browseselection policy allows you to select, at most, one item. One item is always
selected, although the list may initially display with no selected item. You can click on
an item to select it, or you can hold down mouse button 1 and drag the pointer through
the list of items, scrolling the list. As you browse through the list with the mouse pointer,
the selected item changes.

Thesingleselection policy allows you to click on an item to select it. Click on a selected
item to deselect it. At most, one item is selected. There may be no item selected.

In some cases, a list allows multiple list items to be selected. For these lists, there are
two possible selection policiesnultipleandextended

The multiple selection policy allows you to click on one or more items to select items.
Clicking on a selected item deselects it. You can select all items by @&fifg /. You
can deselect all items by usit@tri+\.

The extendedselection policy allows you to select multiple discontiguous ranges of
items. Use mouse button 1 to drag the pointer and select a range of items. Once you
have selected one or more items, pressGhe key while using the mouse pointer to add
more items to the set of currently selected items. You can click on any item to deselect
all other items in the selection set; that item will be selected. To deselect itemE€trse
while clicking on a selected item or while dragging the pointer through a range of
selected items.

9-9

NightView User’s Guide

You can also use keyboard methods to select and deselect all items in a list with an
extended selection policy. You select all items by ustgl+ /. While in normal mode
(notice that the location cursor is a solid box), you can deselect all list items, except the
item indicated with the location cursor, by usi@gri+\. To deselect all items in the list,

you must change tadd mode(notice that the location cursor is a dashed box), and use
Ctrl+\. The standard key binding for toggling between normal mode and add mode is
Shift+F8.

For more information on list selection policies, virtual keys, and common key bindings
see theOSF/Motif Style Guide For information on using lists, see tESF/Motif User's
Guide

Dialogues and Dialog Boxes

Keyboard Focus

Keys

9-10

NightView has a concept called dialogue which is a way of communicating with an
ordinary command shell. See “Dialogues” on page 3-4. Note that this kind of dialogue is
spelled with a "ue" at the end.

The graphical user interface uses another tedialog box This is not related to the
NightView concept of adialogue Dialog boxrefers to a particular type of window that
may appear during your session. A dialog box usually appears only briefly and typically
allows you to specify a particular item, such as a file name.

These two concepts are distinct and unrelated, even though they sound alike.

The GUI uses the concept &kyboard focus Keyboard input is accepted only in a field
when that field has the keyboard focus. When a field of a window has the keyboard
focus, the window is also considered to have the keyboard focus, for the purposes of
using mnemonics and accelerators. See “Keys” on page 9-10. The field that has the
keyboard focus is highlighted.

How you set the keyboard focus depends on the focus policy. If the focus policy is
pointer, then the keyboard focus is in whatever field the pointer is in. If the focus policy
is explicit, then you must take some action to move the keyboard focus to a field. You
can do this by clicking on the field or by using certain keys. See “Keys” on page 9-10.

The default keyboard focus policy for NightView &xplicit The resource used to
control this is keyboardFocusPolicy . Information about how to change this
resource can be found in the NightView application defaults file. See Appendix D [GUI
Customization] on page D-1.

For more information on how to manipulate the keyboard focus, seeOBE/Motif
User's Guide

NightView uses certain key combinations as shortcuts for displaying menus and selecting
menu items. These key combinations are cabedeleratorsand mnemonics Each
window has its own set of accelerators and mnemonics that are active only while the

Sashes

Graphical User Interface

keyboard focus is in that window. However, the keyboard focus does not have to be in
any particular field of the window to use accelerators and mnemonics. See “Keyboard
Focus” on page 9-10.

Menus can be displayed with mnemonics.

Menus can be displayed from the keyboard by typigrmnemonic Each of the

main windows has a menu bar near the top of the window. The different menus are
labeled. For example, the Debug Window haBracess menu. If you look at the
Process menu, you can see that teis underlined P is the mnemonic for the
Process menu. That means that, in addition to displaying Bre@cess menu by
clicking on it with mouse button 1, you can also display it witlt+ p (hold down

Alt and presp).

If you decide you don't want to select any of the menu items, you can make the
menu go away by typingsc or by clicking somewhere else.

Menu items can be selected with mnemonics.

Once a menu is displayed, you can select a menu item by typing only the mnemonic
for that item. The mnemonics for the menu items are underlined, just as the mne-
monics for the menus are underlined. To select a menu item by using its mnemonic,
just press the key.

Menu functions can be invoked with accelerators.

Some commonly used menu items have accelerator keys. The functions associated
with these menu items can be invoked directly, without displaying the menu, by
pressing the accelerator keys. The accelerator keys for a particular menu item are
listed next to the item in the menu.

The accelerator keys are often a combination of a control key plus a letter, such as
Ctrl+ O. To typeCtrl+ O, hold down the control key and pre€s

In addition to mnemonics and accelerators, there are also special keys used for navigation
within and among windows and fields. These keys incliad, Shift+Tab, Home,

End, Page Up, Page Down and the arrow keys. The documentation of these keys is
beyond the scope of this chapter. For more information about keys, s&@3RfMotif

User's Guide

There are many special keys used to edit text input areas. See “Text Input Areas” on
page 9-5.

Some of the windows are divided into panes and have sashes. A sash is a little box near
the right end of the line that separates the panes.

A sash may be used to change the sizes of two adjoining panes, relative to each other.
You can do this by dragging the sash with mouse button 1. As you increase the size of
one pane, the adjoining pane's size is decreased proportionally. The size of the window
does not change, only the sizes of the adjoining panes within the window are affected.

For more information about Paned Windows, seeQi&#/Motif User's Guide

9-11

NightView User’s Guide

Toggle Buttons

A toggle button is a graphical element that can be toggled on or off. There are two types

of toggle buttons: check buttons and radio buttons. More than one check button can be
selected in a group of check buttons, whereas only one radio button can be selected in a
group of radio buttons.

The graphical item used for a check button to indicate the on state is either a check mark
graphic in a square box (the default), or a filled square check box. The graphical item
used for a radio button to indicate the on state is either a filled circle (the default), or a
filled diamond. The off state is indicated with an empty box, circle or diamond.

You can configure the selection color of the toggle button by defining the
selectColor resource. Refer to the NightView color application defaults file. See
Appendix D [GUI Customization] on page D-1.

GUI Command History

NightView keeps a history of the commands you enter. See “Command History” on page
3-30. In the graphical user interface you can access the command history through the
combo box in the command area of each major window.

The combo box in each window shows the entire history from all the windows. See
“Combo Boxes” on page 9-6.

Understanding the Debug Window

This section explains the concepts you need to understand so that you can debug and
manipulate processes in a NightView Debug Window.

Debug Window Behavior

9-12

NightView automatically creates one Principal Debug Window. This Debug Window
contains all processes that appear in a NightView session. You can debug processes using
only this window, or you can create additional Debug Windows and define which
processes appear in them.

Any single process may be represented in one or more Debug Windows at a time. While
all Debug Windows share common behavior traits, the behavior of the Principal Debug
Window varies slightly from Debug Windows that you create.

Common Debug Window Behavior.

NightView allows you to control one or more processes in one or more Debug Win-
dows. You can choose to manipulate one process at a time, or to manipulate all the
processes in the window as a group. To accomplish this, the Debug Window allows
you to switch betweesingleandgroupprocess modes. See “Single Process Mode”
on page 9-13. See “Group Process Mode” on page 9-14.

Graphical User Interface

If the window is in single process mode, commands and actions apply to the cur-
rently displayed process. If the window is in group process mode, commands and
actions apply to each of the processes in the group area list. See “Debug Group
Area” on page 9-35.

New processes always appear in the same windows as their parent.

If a process exits, it is removed from the group list of all Debug Windows where it
appeared.

You can choose to close a Debug Window at any time during the NightView session.
Closing a Debug Window has no effect on the processes that are represented in that
window.

Principal Debug Window.
The Principal Debug Window can be empty.

This window remains available throughout the NightView session; it is not automat-
ically closed. If you choose to close it, the Principal Debug Window can be re-
opened by using thilightView menu found in the Debug, Dialogue, and Global
Windows.

User-Created Debug Windows.

You can create other Debug Windows and define which processes initially appear in
each window. See “Debug Group Selection Dialog Box” on page 9-36.

In contrast to the Principal Debug Window, a Debug Window that you create is
never empty; NightView automatically closes the window when the last process in
the window exits.

You can tell NightView to automatically display each process in its own Debug Window
by setting theoneWindowPerProcess resource ta'rue (the default isFalse). See
Appendix D [GUI Customization] on page D-1. When this resourcki :

* NightView displays a separate Debug Window for each process. Any
Debug Windows created this way are considered to be user-created Debug
Windows.

* NightView sets the window's title to the process's qualifier.
* The Principal Debug Window is not automatically displayed.

* You might also want to consider setting tkésplayGroupToggle-
Button.set resource td-alse . See “Debug View Menu” on page
9-26.

Single Process Mode

By default, the Debug Window is in single process mode. This means that any
commands that you issue apply only to the currently displayed process. This includes
commands that are typed into the command area or commands that are issued using
graphical methods. If there is more than one process in the window, you can change the
currently displayed process by selecting a process from the debug group area list and

9-13

NightView User’s Guide

clicking on theSwitch To button. See “Debug Group Area” on page 9-35. Initially, the
process that occurs first in the group area list is the currently displayed process in the
source display area. See “Debug Source Display” on page 9-30.

When the Debug Window is in single process mode, some of the command buttons may
be disabled to indicate that their use is not appropriate at this time. For example, when the
selected process is stopped, tBeop button is disabled. Any messages generated by
commands are displayed in the debug message area. See “Debug Message Area” on
page 9-28.

You can determine when the Debug Window is in single process mode by looking at the
debug qualifier area. See “Debug Qualifier Area” on page 9-34. When the window is in
single process mode, you see tQaialifier: label and the process's qualifier displayed
here. Otherwise, you see the phré&oup Mode]. See “Group Process Mode” on
page 9-14.

The View menu contains radio buttons that also indicate which of the two modes is
currently set, and allows you to change your view of the window between single and
group process mode. See “Debug View Menu” on page 9-26. See “Toggle Buttons” on
page 9-12.

There are keyboard accelerators associated with these menu items which allow you to
switch between modes without displaying the menu. See “Keys” on page 9-10.

Group Process Mode

If you want to issue commands that apply to more than one process, you can do this by

changing to group process mode. This means that any commands that you issue apply to
each of the processes listed in the group area. This includes commands that are typed
into the debug command area or commands issued using graphical methods.

When the Debug Window is in group mode, all of the command buttons are enabled and
any messages generated by any of the processes in the group are displayed in the debug
message area.

You can determine when the Debug Window is in group process mode by looking at the
debug qualifier area. See “Debug Qualifier Area” on page 9-34. When the window is in
group process mode, you do not see tQealifier: label, and instead of a specific
qualifier you see the phrag&roup Mode]. To see the value of the qualifier, use the
View menu itemShow Qualifier.... See “Debug View Menu” on page 9-26.

The View menu contains radio buttons that also indicate which of the two modes is
currently set, and allows you to change your view of the window between single and
group process mode. See “Debug View Menu” on page 9-26. See “Toggle Buttons” on
page 9-12.

There are keyboard accelerators associated with these menu items which allow you to
switch between modes without displaying the menu. See “Keys” on page 9-10.

Confirm Exit Dialog Box

9-14

If you try to close a window and NightView determines that this is the last visible

Graphical User Interface

window on your screen, NightView assumes you want to exit the debugger. NightView
displays a dialog box allowing you to confirm this assumption.

Message.

The dialog box that pops up contains text that indicates that this is the last open win-
dow and asks you if you want to exit the debugger.

Action Area Buttons.
Selecting théDK button tells the debugger to go ahead and exit the debugger.

Selecting theCancel button tells the debugger to cancel the request to exit the
debugger.

If you wish to get help, select thdelp button.

You must select either th@K button or theCancel button before you can continue.

Warning and Error Dialog Boxes

Warning Dialog Box

If an error occurs, or if you have instructed NightView to take an action that may result in
the loss of data, NightView displays warning or error windows to alert you to the error or
the unsafe action. Often, you need to acknowledge the warning or error before you can
continue by clicking on one of the buttons. A default choice is indicated by a highlighted
box around one of the buttons.

Certain actions performed by the debugger are considered unsafe. They cause a warning
dialog box to pop up and ask you for verification to perform the unsafe action.

Warning Message.

The warning dialog box that pops up contains text that specifies the unsafe action
that is to be performed.

Action Area Buttons.

Selecting theOK button tells the debugger to go ahead and perform the unsafe
action.

Selecting theCancel button tells the debugger to cancel the request to per-
form the unsafe action.

If you wish to get help, press thel (Help) key. Or, you can select tligan-

cel button and then either get help on the last diagnostic or error message that
was displayed or on the section that was referenced by the last diagnostic mes-
sage or error message. See “Help Menu” on page 9-3.

You must select either th@K button or theCancel button before you can use any other
NightView windows.

9-15

NightView User’s Guide

Error Dialog Box

If you make an error while using NightView, an error dialog box may pop up to inform
you of the mistake.

Error Message.

The error dialog box that pops up contains a message about the error condition.
Action Area Buttons.

Click on OK to acknowledge the error and dismiss the error dialog box.

If you wish to get help, press thHel (Help) key.

You must acknowledge the error by selecting @k button before you can use any other
NightView windows.

Dialogue Window

The Dialogue Window lets you communicate with and control a NightView dialogue.
See “Dialogues” on page 3-4.

Any programs that you run in the dialogue 1/O area can be debugged and manipulated by
NightView. See “Dialogue I/O Area” on page 9-17.

Dialogue Menu Bar

The dialogue menu bar lets you perform global NightView actions, control the dialogue
and access online help.

Dialogue NightView Menu

Dialogue Menu

9-16

Mnemonic:N

The NightView menu is used to control NightView windows and perform global
NightView actions. TheNightView menu appears in the Debug, Dialogue and Global
windows and has the same menu items in each window.

See “Debug NightView Menu” on page 9-20, for a description of the individual
NightView menu items.

Mnemonic:D

TheDialogue menu lets you terminate the dialogue.

Graphical User Interface

Logout
Mnemonic:L

Selecting this item terminates the dialogue and closes the Dialogue Window. This is
similar to using thdogout command. See “logout’ on page 7-23.

Depending on the safety level (see “set-safety” on page 7-49) and whether there are
any active processes, NightView may display a warning dialog box when you use
theLogout menu item. See “Warning Dialog Box” on page 9-15.

Dialogue Help Menu

Mnemonic:H

This menu provides ways of getting context-sensitive help, help on the current window,
help on the last error NightView encountered, as well as several other categories of help.
NightView help information is displayed in a Help Window. See “Help Window” on
page 9-49.

TheHelp menu is described in another section. See “Help Menu” on page 9-3.

A general discussion of NightView's online help is also available. See “GUI Online
Help” on page 9-2.

Dialogue Identification Area

This area shows the name of the particular dialogue that this window is associated with.

There is also a label showing the name of the system the dialogue is running on.

Dialogue Message Area

This area displays messages related to this dialogue. The displayed information includes
process exit messages, error messages and output from commands that are processed by
this Dialogue Window.

This is a scrolling area. You can use the scroll bar to look at older or newer messages.

You can change the height of this area by moving the sash up or down. See “Sashes” on
page 9-11.

Dialogue 1/0 Area

This area allows you to interact with the dialogue shell and with your programs. See
“Dialogues” on page 3-4. You can run your program here, just as you would normally
run it, providing any arguments that it needs. Shell and program output is displayed here.

9-17

NightView User’s Guide

You can also enter input to the shell and to your programs. This window acts something
like a little terminal. If your shell lets you do command-line editing, then you can do that
in this window, too.

This is a scrolling area. You can use the scroll bar to look at older or newer output.

You can change the height of this area by moving the sash up or down. See “Sashes” on
page 9-11.

Dialogue Interrupt Button

Clicking on this button interrupts whatever the debugger is doing. This is similar to using
the shell interrupt character in the command-line interface. See “Interrupting the
Debugger” on page 3-28.

Dialogue Qualifier Area

The dialogue qualifier area is a label to remind you that commands entered in the
dialogue command area are implicitly qualified by the dialogue associated with this
Dialogue Window. The label shows the name of the dialogue.

Unlike the default qualifier in the global qualifier area in the Global Window, you cannot
change this qualifier.

Dialogue Command Area

The dialogue command area in the Dialogue Window is used to enter NightView

commands. Like the debug command area in the Debug Window and the global
command area in the Global Window, all the command-line interface commands, except
for shell , can be entered in the dialogue command area.

Input to this area is similar to using the command-line interface. For example, you can
enter an explicit qualifier followed by a command. If you do not specify a qualifier, the
command is implicitly qualified by the dialogue associated with this Dialogue Window.

The dialogue command area is a combo box. See “Combo Boxes” on page 9-6.

Process Summary

9-18

The process summary provides a list of all the processes that exist in the dialogue. The
list is followed by buttons that provide related process actions. Select one or more
processes, then press one of the buttons. The button action that you choose applies to all
selected processes.

The buttons allow you to detach and terminate processes.

Graphical User Interface

To detach from a process, first select one or more processes in the summary window.
The selected processes are highlighted. Then clicketach. The selected processes

are detached from the dialogue. This is similar to using detach command. See
“detach” on page 7-32.

TheKill button may be used to terminate one or more processes. This is similar to using
thekill command. See “kill” on page 7-33.

The default list selection policy isxtended, which means you can select discontiguous
ranges of items. This list selection policy is configurable. (The only other selection
policy that is appropriate imultiple.) See “List Selection Policies” on page 9-9. See
Appendix D [GUI Customization] on page D-1.

You can change the height of this area by moving the sash up or down. See “Sashes” on
page 9-11.

Dialogue Window Dialog Boxes

This section describes dialog boxes that may appear while you are using the Dialogue
Window.

Program Arguments Dialog Box

This dialog box pops up if you invoke NightView with a program name as a command-
line argument (see Chapter 6 [Invoking NightView] on page 6-1). It allows you to
specify the arguments that your program expects. The message in the dialog box tells
you the name of the program and what to do.

You cannot interact with other NightView windows, except the Help Window, until you
select eithe©OK or Cancel in this dialog box.

Enter Program Arguments.

Enter the arguments, if any, in the text input area. PreRigirn activates th®©K
button.

See “Text Input Areas” on page 9-5.
Choose an Action Button.
If you are satisfied with the arguments you entered, clickodt

If you decide you do not want to debug this program, click@ancel. You can
still debug the program later, by entering the appropriate shell command in the dia-
logue I/O area. See “Dialogue I/O Area” on page 9-17).

You can get help for this dialog box by clicking ételp.

The dialog box will disappear, and you should see a shell command for your program,
with the arguments you specified in this dialog box, appear in the dialogue I/O area. The
program is started, causing a Debug Window to appear for it; at that point, you can debug
the program. See “Debug Window” on page 9-20.

9-19

NightView User’s Guide

Debug Window

Debug Menu Bar

The Debug Window provides the primary means of debugging and manipulating one or
more processes.

By default, the window is in single process mode, which means you can debug and
manipulate the currently displayed process or switch to any other process represented in
this Debug Window. See “Single Process Mode” on page 9-13. See “Debug Group Area”
on page 9-35. If you want to debug and manipulate all the processes represented in this
window at the same time, you can change to group process mode. See “Group Process
Mode” on page 9-14. See “Debug View Menu” on page 9-26.

You can create Debug Windows and define the group of processes that appear in them.
See “Debug NightView Menu” on page 9-20.

The behavior of a Debug Window differs slightly depending on whether it is the Principal
Debug Window (created automatically by NightView) or a Debug Window created by
you. See “Debug Window Behavior” on page 9-12.

From the debug menu bar you can perform global NightView actions, perform actions on
one or more processes, choose source to display or edit, manipulate eventpoints, change
the way you view the window, and obtain online help.

Debug NightView Menu

9-20

Mnemonic:N

The NightView menu is used to control NightView windows and perform global
NightView actions. TheNightView menu appears in the Debug, Dialogue and Global
windows and has the same menu items in each window.

Create Debug Window...
Mnemonic:D

Selecting this menu item allows you to create a new Debug Window. See “Debug
Window” on page 9-20.

A dialog box is displayed that allows you to select one or more qualifier specifiers to
define the new window. You can also provide a name for the new Debug Window.
See “Qualifier Specifiers” on page 7-10.

See “Debug Group Selection Dialog Box” on page 9-36.
Open Principal Debug Window

Mnemonic:P

Graphical User Interface

Selecting this menu item opens the Principal Debug Window. See “Debug Window
Behavior” on page 9-12.

This menu item is disabled (dimmed) if the Principal Debug Window is already
open.

Open Global Window
Mnemonic:G
Selecting this menu item opens the Global Window.

This menu item is disabled (dimmed) if the Global Window is already open. See
“Global Window” on page 9-47.

Start Remote Dialogue...
Mnemonic:R

Selecting this menu item allows you to create a remote dialogue on a target system
of your choice. A dialog box is displayed that allows you to choose parameters for
the remote dialogue. See “Remote Login Dialog Box” on page 9-44.

Close Window
Mnemonic:C
Selecting this menu item closes this window and any related dialog box windows.

If this is a Debug Window, closing the window has no effect on the processes in the
window. If this is a Dialogue Window, closing the window has the same effect as
logging out of the dialogue. See “Dialogue Menu” on page 9-16.

Exit (Quit NightView)
Mnemonic:X
AcceleratorCtrl+ Q

Selecting this menu item causes NightView to exit. This has the same effect as the
quit command. See “quit” on page 7-17.

Depending on the safety level (see “set-safety” on page 7-49) and whether there are
any active processes, NightView may display a warning dialog box when you use
the Exit menu item. See “Warning Dialog Box” on page 9-15.

Debug Process Menu

Mnemonic:P
This menu is used to perform actions on processes.

If the window is in single process mode, the menu item you select will affect only the
currently displayed process. See “Single Process Mode” on page 9-13. If the window is
in group process mode, then the menu item you select will act on each of the processes in
the group area list. See “Group Process Mode” on page 9-14.

9-21

NightView User’s Guide

Detach
Mnemonic:D

Selecting this item causes NightView to detach from the currently displayed process
(if in single process mode) or from each process listed in the group area list (if in
group process mode). See “Single Process Mode” on page 9-13. See “Group Pro-
cess Mode” on page 9-14. See “Debug Group Area” on page 9-35.

This is similar to using theetach command. See “detach” on page 7-32.

Depending on the safety level (see “set-safety” on page 7-49), NightView may dis-
play a warning dialog box when you use tbeetach menu item. See “Warning
Dialog Box” on page 9-15.

Kill
Mnemonic:K

Selecting this item causes NightView to terminate the currently displayed process (if
in single process mode) or each process listed in the group area list (if in group pro-
cess mode). See “Single Process Mode” on page 9-13. See “Group Process Mode
on page 9-14. See “Debug Group Area” on page 9-35.

This is similar to using th&ill command. See “kill” on page 7-33.

Depending on the safety level (see “set-safety” on page 7-49), NightView may dis-
play a warning dialog box when you use tkdl menu item. See “Warning Dialog
Box” on page 9-15.

Debug Source Menu

9-22

Mnemonic:S

This menu provides ways of changing the program code displayed in this window's source
display area and editing source files that are listed. See “Debug Source Display” on page
9-30.

Because the source display area shows only one process's program code at a time, the
items in this menu act independently of whether the window is in single or group process
mode. See “Single Process Mode” on page 9-13. See “Group Process Mode” on page
9-14.

List Function/Unit...
Mnemonic:F

Selecting this menu item pops up a dialog box that allows you to list the program
code of a function or Ada unit in the debug source display. See “Debug Source Dis-
play” on page 9-30.

This dialog box is titledSelect a Function/Unit, and displays the process's qual-
ifier specifier. See “Qualifier Specifiers” on page 7-10. It allows you to optionally
enter a regular expression that is used to search for function names that NightView
knows about. (An anchored matchristimplied.) See “Regular Expressions” on

Graphical User Interface

page 7-12. For example, entgzt$ to search for function names ending with 'set'.

A list of functions is displayed, and one function can be selected for display in the
debug source display. For Ada and C++, the regular expression is only applied to the
final component of a name.

The regular expression case sensitivity depends on the current search mode (see
“set-search” on page 7-54).

The Select a Function/Unit dialog box is one variation of the debug source
selection dialog box, which is also used by thist Source File... menu item.
See “Debug Source Selection Dialog Box” on page 9-36.

List Source File...

Mnemonic:S

Selecting this menu item pops up a dialog box that allows you to list a source file in
the debug source display. See “Debug Source Display” on page 9-30.

This dialog box is titledSelect a Source File, and displays the process's quali-
fier specifier. See “Qualifier Specifiers” on page 7-10. It allows you to optionally
enter a wildcard pattern which is used to search for source file names that Night-
View knows about. See “Wildcard Patterns” on page 7-14. For example, enter
mod*.c to search for source file names that start with 'mod' followed by any num-
ber of characters and ending with '.c'. A list of source files is displayed, and one
source file can be selected for display in the debug source display.

TheSelect a Source File dialog box is one variation of the debug source selec-
tion dialog box, which is also used by thést Function/Unit... menu item. See
“Debug Source Selection Dialog Box” on page 9-36.

List Any File...

Edit

Mnemonic:A

Selecting this menu item pops up a file selection dialog box that allows you to
choose any file you wish and list it in the debug source display. See “Debug Source
Display” on page 9-30.

This dialog box is tittedSelect a File. See “Debug File Selection Dialog Box” on
page 9-37.

Mnemonic:E

Selecting this item lets you edit the source file that is currently displayed in the
debug source display. See “Debug Source Display” on page 9-30.

There are some rules for determining how the editor is invoked. The resedirce

tor is expected to be a stringditorstring that describes how to invoke the editor.
The string may contain variable specifiers, which are composedabiiowed by
another character. The variable specifiers are replaced by an appropriate value to
create the editor string. The variable specifier characters are:

%

9-23

NightView User’s Guide

Replaced by That is, to get & use%%

s
Replaced by the name of the source file.
Replaced by the line number of the current position.

p
Replaced by the offset, in characters, of the current position from the begin-
ning of the file.

c

Replaced by the column of the current position.
A %followed by any other character is ignored.
An exampleeditor resource is:
nview*editor: emacsclient +%l %s

If the editor resource is not defined, then the name of the editor is taken from the
EDITOR environment variable. If there is reDITOR variable, thervi is used. In

these cases the editor is invoked with the name of the current source file as the sole
argument.

If your editor can communicate with the X Window System display directly, then
you should set the resoureditorTalksX totrue . Then the editor is invoked
aseditorstring Otherwise, the editor is run vi@sr/bin/X11/xterm -e edi-
torstring.

Note that once you have edited the source file, NightView displayad¢lmeontents,

but the debugging information still refers to tbhéd contents. For this reason, the
source decorations may no longer match. Also, you might get confusing results
from using the special keys in the debug source display or from entering commands
based on the new contents.

Debug Eventpoint Menu

9-24

Mnemonic:E

This menu provides ways to set and change eventpoints, and see a summary of
eventpoints. See “Eventpoints” on page 3-8.

Before selecting one of the menu items, position the text insertion cursor on the line of
interest in the debug source display. See “Debug Source Display” on page 9-30.
NightView uses this line to determine the location specifier for you. See “Location
Specifiers” on page 7-9.

Once you select a menu item, NightView displays the eventpoint dialog box for the
selected item.

Graphical User Interface

Set Breakpoint...
Mnemonic:B
AcceleratorCtrl+ B

Selecting this menu item pops up a breakpoint dialog box that allows you to set a
new breakpoint at a given location and apply eventpoint commands to it. See
“Manipulating Eventpoints” on page 7-76. See “breakpoint” on page 7-78.

For information on using the breakpoint dialog box, see “Debug Eventpoint Dialog
Boxes” on page 9-38.

Like the Breakpoint button, this menu item allows you to set a breakpoint. But
using the breakpoint dialog box provides you with more control and flexibility.
Using theBreakpoint button, you can only set a simple breakpoint. See “Debug
Command Buttons” on page 9-32.

Set Monitorpoint...
Mnemonic:M
AcceleratorCtrl+ M

Selecting this menu item pops up a monitorpoint dialog box that allows you to set a
new monitorpoint at a given location and apply eventpoint commands to it. See
“Manipulating Eventpoints” on page 7-76. See “monitorpoint” on page 7-83.

For information on using the monitorpoint dialog box, see “Debug Eventpoint Dia-
log Boxes” on page 9-38.

Set Patchpoint...
Mnemonic:P
AcceleratorCtrl+ P

Selecting this menu item pops up a patchpoint dialog box that allows you to set a
new patchpoint at a given location and apply eventpoint commands to it. See
“Manipulating Eventpoints” on page 7-76. See “patchpoint” on page 7-79.

For information on using the patchpoint dialog box, see “Debug Eventpoint Dialog
Boxes” on page 9-38.

Set Tracepoint...
Mnemonic:T
AcceleratorCtrl+ T

Selecting this menu item pops up a tracepoint dialog box that allows you to set a
new tracepoint at a given location and apply eventpoint commands to it. See
“Manipulating Eventpoints” on page 7-76. See “tracepoint” on page 7-82.

For information on using the tracepoint dialog box, see “Debug Eventpoint Dialog
Boxes” on page 9-38.

9-25

NightView User’s Guide

Debug View Menu

9-26

Set Agentpoint...

Mnemonic:A
AcceleratorCtrl+ A

Selecting this menu item pops up an agentpoint dialog box that allows you to set a
new agentpoint at a given location and apply eventpoint commands to it. See
“Manipulating Eventpoints” on page 7-76. See “agentpoint” on page 7-86.

For information on using the agentpoint dialog box, see “Debug Eventpoint Dialog
Boxes” on page 9-38.

Summarize/Change...

Mnemonic:U
AcceleratorCtrl+ U

Selecting this menu item pops up an eventpoint dialog box that allows you to see a
summary of eventpoints and make changes to existing eventpoints. See “Manipu-
lating Eventpoints” on page 7-76.

For information on using the eventpoint summary dialog box, see “Debug Event-
point Summarize/Change Dialog Box” on page 9-41.

Mnemonic:V

This menu allows you to change the way you view the contents of the Debug Window.

Display Group Area

Mnemonic:D
AcceleratorCtrl+ D

This menu item displays a check button which is eitbetror unset depending on
whether the debug group area is displayed or hidden from view. See “Debug Group
Area” on page 9-35. See “Toggle Buttons” on page 9-12.

The default initial setting iset the debug group area is displayed. You can change
this setting at any time by selecting this menu item.

You can change the initial setting by setting the resoulisplayGroupTog-
gleButton.set . The default value of this resourceTisue . See Appendix D
[GUI Customization] on page D-1.

Single Process Mode

Mnemonic:S

AcceleratorCtrl+ S

Graphical User Interface

Selecting this menu item causes the appearance of the window to change and causes
NightView commands to operate on a single process, rather than on all the processes
which may be represented in this window's group area. See “Single Process Mode”
on page 9-13. See “Debug Group Area” on page 9-35. Single process mode is the
default setting.

When the Debug Window is in single process mode, a filled radio button is shown
next to the menu item to indicate that this option is selected. See “Toggle Buttons”
on page 9-12.

The other member of this set of options is tAeoup Process Mode menu item.
See “Group Process Mode” on page 9-14.

The behavior of the Debug Window when in single or group process mode is
described in another section. See “Debug Window Behavior” on page 9-12.

Group Process Mode
Mnemonic:G
AcceleratorCtrl+ G

Selecting this menu item causes the appearance of the window to change and causes
NightView commands to operate on all the processes represented in the group area,
rather than on a single process. See “Group Process Mode” on page 9-14. See
“Debug Group Area” on page 9-35.

When the Debug Window is in group process mode, a filled radio button is shown
next to the menu item to indicate that this option is selected. See “Toggle Buttons
on page 9-12.

The other member of this set of options is thiegle Process Mode menu item.
See “Single Process Mode” on page 9-13.

The behavior of the Debug Window when in single or group process mode is
described in another section. See “Debug Window Behavior” on page 9-12.

Show Qualifier...
Mnemonic:L
AcceleratorCtrl+ L

Use this menu item to see the value of the qualifier for this window. See “Qualifier
Specifiers” on page 7-10. The qualifier is displayed in an information dialog box
entitledWindow Qualifier. SelectOK to dismiss the dialog box.

TheWindow Qualifier dialog box is not dynamically updated when the qualifier
changes. You must redisplay this dialog box each time you want to see the current
value of the qualifier.

Debug Help Menu

Mnemonic:H

9-27

NightView User’s Guide

This menu provides ways of getting context-sensitive help, help on the current window,
help on the last error NightView encountered, as well as several other categories of help.
NightView help information is displayed in a Help Window. See “Help Window” on
page 9-49.

TheHelp menu is described in another section. See “Help Menu” on page 9-3.

A general discussion of NightView's online help is also available. See “GUI Online
Help” on page 9-2.

Debug Message Area

This area displays messages related to the processes represented by this window. The
displayed information includes process status messages, error messages and output from
commands that are processed by this Debug Window.

If the window is in single process mode, NightView displays output from only the
currently selected process plus messages from any commands that are executed in this
window while that process is selected. See “Single Process Mode” on page 9-13.If the
window is in group process mode, then NightView displays output from all the processes
in the group, plus messages from any commands that are executed in this window. See
“Group Process Mode” on page 9-14.

This is a scrolling area. You can use the scroll bar to look at older or newer messages.

You can change the height of this area by moving the sash up or down. See “Sashes” on
page 9-11.

Debug Identification Area

This area shows the name of the executable program that the currently displayed process
is running.

There is also a label showing the qualifier specifier for this process. See “Qualifier
Specifiers” on page 7-10.

Debug Source Lock Button

9-28

The Debug Window contains a source lock button. The source lock button looks like a
little padlock.

You can lock the source display by clicking on the source lock button. The padlock
changes from being unlocked to locked, and the button is highlighted with the selection
color. This indicates that the source display is locked. Click on the button again to
unlock.

A locked source display does not change which file is displayed unless you explicitly
change it. These actions explicitly change the source display:

Graphical User Interface

* |ssuing alist command in the command area of the window.
¢ Using theSource menu.

* |ssuing arup, down or frame command in the command area of the win-
dow.

These events can causewmiockedsource display to change:

* The currently displayed process stops.

* The source file for the currently displayed process changes because of an
action in another window.

Debug Source File Name

This area shows the name of the source file displayed in the debug source display. See
“Debug Source Display” on page 9-30. If there is no source file displayed, then this field
showsNo Source File. If NightView cannot find the source file, this field shows
Cannot find: filename

Debug Status Area
This area shows the status of the currently displayed process. Here are the values that
this field may have:
About to exit

The process hit the exit breakpoint. See “Exited and Terminated Processes” on page
3-14.

Calling function
The process is executing to evaluate a function call.
Exited

The process has exited. See “Exited and Terminated Processes” on page 3-14. This
status does not normally appear, because the process is removed from the Debug Window
when the process exits.

Finish frame

The process is executing until a designated instance of a subprogram returns to its caller.
See “finish” on page 7-100.

New process

This process has just been created ligrk() call in the parent process. The process is
stopped. See “Multiple Processes” on page 3-2.

9-29

NightView User’s Guide

Running

The process is currently executing.

Stepping

The process is executing because of a stepping command. See “step” on page 7-96.
Stopped after finish

The process has completeficish command. See “finish” on page 7-100.
Stopped after step

The process has finished a stepping command. See “step” on page 7-96.
Stopped at breakpoint number

The process hit breakpoint numbarmber See “Breakpoints” on page 3-9.

Stopped by attach

The process has just been attached by the debugger. See “Attaching” on page 3-3.
Stopped by user

The process stopped because sf@p command. See “stop” on page 7-100.
Stopped for exception-name

The process stopped because of the Ada exception nasmedption-name See
“Exception Handling” on page 3-31.

Stopped for exec

The process has jusixec() 'ed a new program image. See “Programs and Processes”
on page 3-2.

Stopped with signal
The process stopped with sigreidinal See “Signals” on page 3-10.
Terminated with signal

The process terminated with sigreignal See “Exited and Terminated Processes” on
page 3-14. This status appears only for core files. See “Core Files” on page 3-4.

Debug Source Display

9-30

The debug source display area lists the program code corresponding to the currently-
selected frame in the currently-selected process. See “Current Frame” on page 3-23. See
“Debug Group Area” on page 9-35. See “list” on page 7-58, for information on how the
current source file is determined.

The text in this area includes the program listing along with line numbers and source

Graphical User Interface

decorations. See “Source Line Decorations” on page 7-62.

The text in this area changes if you use the debug source menu to list other functions or
files.

You can change the height of this area by moving the sash up or down. See “Sashes” on
page 9-11.

There are several special keys that may be used within this area. The function of most
keys is independent of the position of the text cursor in this area. Some keyb, dikd

h, do depend on the position of the text cursor so that NightView can determine the
source line of interest.

The text cursor (an "lI-beam" cursor) can be moved to different locations within this area
by using the arrow keys or by pointing to a source line and clicking mouse button 1.

S
This key is similar to using thetep command with no argument. See “step” on
page 7-96.

S
This key is similar to using thstepi command with no argument. See “stepi” on
page 7-98.

n
This key is similar to using theext command with no argument. See “next” on
page 7-97.

N
This key is similar to using theexti command with no argument. See “nexti” on
page 7-99.

r
This key is similar to using theesume command with no argument. See “resume”
on page 7-95.

h
Run the process until it reaches the line the source window cursor is on. This key is
identical to theRun to Here button. See “Debug Command Buttons” on page
9-32. It combines the actions bfeakpoint , enable/delete , andresume .

f
This key is similar to using thénish command. See “finish” on page 7-100.

u
This key is similar to using thep command with no argument. See “up” on page
7-106.

d

9-31

NightView User’s Guide

This key is similar to using thdown command with no argument. See “down” on
page 7-107.

This key is similar to using thtame 0 command. See “frame” on page 7-105.

>
This key is similar to using thtbtame command with no arguments. See “frame”
on page 7-105.

e
This key is similar to selecting thigdit item in theSource menu. See “Debug
Source Menu” on page 9-22.

p
This key performs the same action as thent button in the debug command but-
tons area. See “Debug Command Buttons” on page 9-32).

b

This key performs the same action as Bieakpoint button (see “Debug Com-
mand Buttons” on page 9-32).

Debug Command Buttons

9-32

The debug command buttons let you control one or more processes by clicking with
mouse button 1. See “Understanding the Debug Window” on page 9-12. Some buttons
may be disabled (dimmed) under certain circumstances.

If the Debug Window is in single process mode, button-activated commands apply only
to the currently displayed process. See “Single Process Mode” on page 9-13. If the Debug
Window is in group process mode, button-activated commands apply to each of the
processes represented in the debug group area list. See “Group Process Mode” on page
9-14.

Resume

Clicking on this button is similar to using thresume command with no argument.
See “resume” on page 7-95.

Step

Clicking on this button is similar to using ttetep command with no argument.
See “step” on page 7-96.

Stepi

Clicking on this button is similar to using thetepi command with no argument.
See “stepi” on page 7-98.

Graphical User Interface

Next

Clicking on this button is similar to using theext command with no argument.
See “next” on page 7-97.

Nexti

Clicking on this button is similar to using threxti command with no argument.
See “nexti” on page 7-99.

Finish

Clicking on this button is similar to using tifaish command. See “finish” on
page 7-100.

Stop

Clicking on this button is similar to using tretop command. See “stop” on page
7-100.

Print

Clicking on this button is similar to using th@int command. See “print” on

page 7-65. You must have selected an expression in the debug source display area
before pressing this button. See “Debug Source Display” on page 9-30. When you
press the button, the value of the selected expression is printed using the default for-
mat for the type of the expression.

Breakpoint

Clicking on this button is similar to using th@eakpoint command with a line
number for the location specifier. See “breakpoint” on page 7-78. You must have
moved the text cursor in the debug source display area to the source line where you
want to set the breakpoint. See “Debug Source Display” on page 9-30. NightView
uses this source line as the location specifier for the breakpoint. See “Location
Specifiers” on page 7-9. When you press this button, a breakpoint is set. You see the
source line decoration change and a message is displayed in the debug message area.
See “Debug Message Area” on page 9-28. You can also set a breakpoint using the
breakpoint dialog box, which provides you with more control and flexibility than the
Breakpoint button. See “Debug Eventpoint Menu” on page 9-24.

Run to Here

Run the process until it reaches the line the source window cursor is on. This allows
you to use th&kun to Here button to quickly skip past chunks of code without sin-
gle stepping through each line.

Clicking on this button combines the actions of three commands: First, it sets a
breakpoint at the source window line where the text cursor is located. See
“Debug Source Display” on page 9-30. Next, it ruersable/delete on that
breakpoint (which will cause it to be deleted when it is hit). Finallyegume s the
process. See “breakpoint” on page 7-78. See “enable” on page 7-91. See “resume”
on page 7-95.

When you press the button, you will see the source line decoration for the break-
point appear and the message area will print a message about the new breakpoint.

9-33

NightView User’s Guide

When the process finally stops at that breakpoint, the breakpoint will be deleted, and
the decoration will disappear. See “Debug Message Area” on page 9-28.

Clear

Clicking on this button is similar to using ttdear command with a line number

for the location specifier. See “clear” on page 7-87. You must have moved the text
cursor in the debug source display area to the source line where you want to clear
eventpoints. See “Debug Source Display” on page 9-30. NightView uses this
source line as the location specifier. See “Location Specifiers” on page 7-9. When
you press this button, any eventpoints that are set at the first instruction of this line
are removed. (If you have eventpoints set at instructions within the line, they will
not be cleared.) You see the source line decoration change and a message is dis-
played in the Debug message area. See “Debug Message Area” on page 9-28.

Debug Interrupt Button

Clicking on this button interrupts whatever the debugger is doing. This is similar to using
the shell interrupt character in the command-line interface. See “Interrupting the
Debugger” on page 3-28.

Debug Qualifier Area

In single process mode, the debug qualifier area is a label that reminds you that
commands entered in the debug command area are implicitly qualified by the currently
displayed process in this Debug Window. See“Debug Command Area” on page 9-34. See
“Single Process Mode” on page 9-13. The label shows the process's qualifier specifier.
See “Qualifier Specifiers” on page 7-10.

In group process mode, any commands that you enter are implicitly qualified by the
qualifier associated with this Debug Window. See “Group Process Mode” on page 9-14.
The qualifier label is replaced by an indicator that you ar&moup Mode. To see the
value of the qualifier, use théiew menu itemShow Qualifier.... See “Debug View
Menu” on page 9-26.

Debug Command Area

9-34

The debug command area in the Debug Window is used to enter NightView commands.
Like the dialogue command area in the Dialogue Window and the global command area
in the Global Window, all the command-line interface commands, exceptfgt , can

be entered in the debug command area.

Input to this area is similar to using the command-line interface. For example, you can
enter an explicit qualifier followed by a command. If you do not specify a qualifier, the
command is implicitly qualified by the currently displayed process (if you are in single
process mode), or by the group of processes represented in this Debug Window (if you
are in group process mode). See “Single Process Mode” on page 9-13. See “Group

Graphical User Interface

Process Mode” on page 9-14.

The debug command area is a combo box. See “Combo Boxes” on page 9-6.

Debug Group Area

The debug group area provides a list of all the processes that are represented in this
Debug Window. Scroll bars appear if the list requires more space than the group area
currently provides. The list is followed by tHewitch To button, which allows you to
switch the currently displayed process to a process that you have selected in the list. The
list selection policy isbrowse which means you can select only one list item at a time.
See “List Selection Policies” on page 9-9.

Each item, or row, in the list contains the following information about one process: the
qualifier specifier of each process, the executable file name, and an abbreviated status
indicator. See “Qualifier Specifiers” on page 7-10. If the status information for a process
changes, it is updated in the list.

To change the currently displayed process, select a list item, then preSsvibeh To

button. Or, you can double-click on a list item to both select the item and switch to it.
The program code for the currently selected process is represented in the source display
area, and the identification area, status area and source file name area contain information
about the currently selected process. See “Debug Source Display” on page 9-30. See
“Debug Identification Area” on page 9-28. See “Debug Source File Name” on page
9-29.

The highlighted item in the group area list normally represents the currently displayed
process in the source display area. This is true unless you select a different list item
(process) and fail to switch to it.

You can cycle through the stopped processes in the group area list by using the button
panel, labeledswitch To Stopped Process, located to the right of the list. If you

click on Auto, NightView determines which process in the list is currently stopped and
has been stopped the longest, highlights it in the list, and automatically switches the
currently displayed process (in the source display area) to this process. (This is similar to
the auto qualifier specifier. See “Qualifier Specifiers” on page 7-10.) The "up arrow"
and "down arrow" buttons cause NightView to automatically select, and switch to, the
next stopped process that is located up in the list, or down in the list, relative to the
currently selected list item. Continuing to click on a directional arrow in this button
panel after the top or bottom list item has been reached causes NightView to "wrap
around" its search in the list for the next stopped process.

You can use th&iew menu itemDisplay Group Area to display this area or to hide
it from view. See “Debug View Menu” on page 9-26.

The size of the Debug Window does not change to accommodate the presence of the
group area; rather, the source display area expands or shrinks depending on whether it
needs to make room for the group area.

The group area can be resized within the Debug Window by adjusting the sash that
separates it from the pane containing the source display. See “Sashes” on page 9-11.

9-35

NightView User’s Guide

Debug Dialog Boxes

This section describes dialog boxes that may appear while you are using the Debug
Window. See “Dialogues and Dialog Boxes” on page 9-10.

Debug Group Selection Dialog Box

This dialog box pops up when you use tNeghtView menu to create a new Debug
Window. See “Debug NightView Menu” on page 9-20. You can select qualifier
specifiers and provide a name for the new window. See “Qualifier Specifiers” on page
7-10.

Select qualifier specifiers.

Select one or more items to define the new Debug Window. If you choose a quali-
fier-specifier such as a dialogue name, the existing processes in that dialogue appear
in the new Debug Window; future processes that start up in that dialogue do not nec-
essarily appear in the new Debug Window unless their parent process is already
there. See “Debug Window Behavior” on page 9-12.

The default list selection policy isxtendedwhich means you can select discontigu-
ous ranges of items. See “List Selection Policies” on page 9-9. This list selection
policy is configurable. See Appendix D [GUI Customization] on page D-1.

Debug Window name.

By default, NightView uses the first selected item in the list for the window's name.
Or, you can type in a name for the new Debug Window. PresRieturn activates
the OK button.

This name appears in the window manager's title bar and as the window's icon label.
Thisis atextinput area. See “Text Input Areas” on page 9-5.
Choose an action button.

When you are satisfied with your choices, click ©K. The dialog box is dismissed
and a new Debug Window is created that contains the items you selected.

Clicking onCancel cancels the action and closes this dialog box.

You can get help for this dialog box by clicking ételp.

Debug Source Selection Dialog Box

This dialog box pops up when you ask to list a function or Ada unit, or ask to list a source
file from the Debug Window'Source menu. See “Debug Source Menu” on page 9-22.

It allows you to change the program code that is listed in the Debug Window by selecting
a function, Ada unit name or source file name from a list. You can interact with other
NightView windows while this dialog box is displayed.

9-36

Graphical User Interface

This dialog box is titledSelect a Function/Unit or Select a Source File,
depending on which menu item you selected, and displays the qualifier of the currently
displayed process.

Enter search criteria.

Enter the regular expression (if you are searching for functions) or wildcard pattern
(if you are searching for source files) you want to search for, then either press
Return or click onSearch. (For a regular expression, an anchored matafois
implied.) See “Regular Expressions” on page 7-12. See “Wildcard Patterns” on
page 7-14.

If you do not want to enter a regular expression or wildcard pattern, you can simply
pressReturn or click onSearch and all functions or files are displayed.

For Ada and C++, the regular expression is only applied to the final component of a
name.

The next time you use this dialog box, this text is redisplayed.
Select a list item.

If NightView finds any functions or source files, their names are displayed in the list
area. Scroll bars appear if the list requires more space than the dialog box currently
provides. If no functions or files are found, a message is displayed in the debug
message area. See “Debug Message Area” on page 9-28. The list ubesvite
selection policy, which means that only one item can be selected at a time. See “List
Selection Policies” on page 9-9.

Select an item in the list. If you double-click on an item in the list, @€ button is
activated.

Choose an action button.

Click on OK to list that function, Ada unit name or source file in the source display
area. See “Debug Source Display” on page 9-30. This button is disabled (dimmed)
if the list is empty.

You can cancel the listing of the selected function or source file by clicking on
Cancel.

You can get help for this dialog box by clicking ételp.

Debug File Selection Dialog Box

This dialog box pops up when you selddst Any File... from the Debug Window's
Source menu. It allows you to list a file of your choice in the Debug Window.

This is a file selection dialog box. See “File Selection Dialog Box” on page 9-7.
Select a file name.

Select the file you want to list. If you double-click on a file name in Hies list,
the OK button is activated.

9-37

NightView User’s Guide

Choose an action button.
If you are satisfied with the file you selected, click @K.
Clicking onCancel cancels the action and closes this dialog box.

You can get help for this dialog box by clicking ételp.

Debug Eventpoint Dialog Boxes

9-38

NightView provides a dialog box for each type of eventpoint. See “Eventpoints” on page
3-8. These dialog boxes pop up when you use the Debug Windovéstpoint menu to

set or change an eventpoint. See “Debug Eventpoint Menu” on page 9-24. You decide
how you want the eventpoint set or changed, then selecDtkebutton and NightView

will set or modify it for you.

All types of eventpoints share common traits; some eventpoints have additional optional
or required information. The eventpoint dialog boxes present the common eventpoint
information first, followed by any data that is specific to a given eventpoint.

NightView provides default settings for new eventpoints, including a default location
specifier. See “Location Specifiers” on page 7-9. In addition, you can enter other
information to define the eventpoint. Required data that must be provided by you before
NightView can set the eventpoint is visually emphasized.

Depending on whether you are setting a new eventpoint, or changing an existing
eventpoint, NightView allows or disallows access to certain fields in the eventpoint
dialog boxes.

Define the eventpoint.
Description (display only)

Each type of eventpoint dialog box displays a label describing which event-
point the dialog box deals with and indicating whether the dialog box allows
you to set or change an eventpoint.

Location

When the dialog box appears, thecation field contains a location speci-
fier.

When setting a new eventpoint, NightView determines this value from the
location of the text insertion cursor in the debug source display area. See
“Debug Source Display” on page 9-30. You can edit this text input area. See
“Text Input Areas” on page 9-5.

When changing an existing eventpoint, NightView displays the location spec-
ifier associated with this eventpoint. You cannot change this location.

Eventpoint Number (display only)

This labeled field is dimmed if NightView has not yet assigned a unique hum-
ber to the eventpoint. See “Eventpoints” on page 3-8.

Graphical User Interface

When changing an existing eventpoint, NightView displays the eventpoint
number.

Enable Options

When setting a new eventpoint, you can choose from several enable options.
By default, the eventpoint is created enabled. This is similar to using the
enable ordisable commands. See “enable” on page 7-91. See “disable”
on page 7-90.

When changing an existing eventpoint, NightView displays the eventpoint's
enabled state. You can select a different enable option by clicking on one of
the choices. These options are dimmed if NightView cannot determine this
state.

Enable

This is the default choice when setting a new eventpoint. The event-
point is enabled.

Enable, disable after next hit
You can have the eventpoint be disabled automatically after the next hit.

For breakpoints, this is similar to using thmeak command, or the
enable/once command. See “threak” on page 7-92.

For patchpoints, this is similar to using thgatch command, or the
enable/once command. See “tpatch” on page 7-93.

Enable, delete after next hit

Valid for breakpoints only. You can have the eventpoint be deleted
automatically after the next hit. This is similar to using #meable/
delete command.

Disable
You can disable the eventpoint.
Condition

You can attach a condition to this eventpoint, or change an existing condition,
by editing this text input field. This is similar to using teendition ~ com-
mand. See “condition” on page 7-88.

If you delete an existing condition, the eventpoint becomes unconditional.
Ignore Count

You can attach an ignore count to this eventpoint, or change an existing ignore
count, by entering a number in this text input area. This is similar to using the
ignore command. See “ignore” on page 7-91.

The default ignore count is zero and is represented by a blank field.

Name

9-39

NightView User’s Guide

When setting a new eventpoint, you can assign a name to it by entering text in
this text input area. The name must consist only of alphanumeric characters
and underscores and must begin with an alphabetic character. The name may
be of arbitrary length. This is similar to using thame command. See
“name” on page 7-77.

You cannot change an existing eventpoint's name using the dialog box. Use
thename command to change eventpoint names.

Commands

Valid for breakpoints and monitorpoints onlggequiredto set monitorpoints.
You can attach commands to this breakpoint or monitorpoint, or change exist-
ing commands, by entering one command per line in this multi-line text input

area. This is similar to using theommands command. See “commands” on
page 7-88.

Evaluate Expression - Go To Location

Valid for patchpoints only; you areequiredto enter either an expression or a
location specifier to set a patchpoint. Select one of the two choices by click-
ing on it. The radio button appears filled for your selection, and the label for
the text input area changes to eitfieraluate or Go to. See “Toggle But-
tons” on page 9-12. Enter the expression or location specifier in the text input

area.

Insert an expression at this location
This field represents thevalargument of one variant of thgatch-
point command. See “patchpoint” on page 7-79. This is the default
choice.

Branch to a different location

This field represents thgoto argument of one variant of thgatch-
point command.

Once set, this field cannot be changed.

Event ID

Valid for tracepoints onlyrequiredto set a tracepoint. This field represents
the event-idargument of théracepoint command. You must enter a trace-
event number or symbolic name. See “tracepoint” on page 7-82.

Once set, this field cannot be changed.

Value

Valid for tracepoints only. This field represents teue= argument of the
tracepoint command. You can enter an expression whose value should be
logged with the trace event.

Once set, this field cannot be changed.

Choose an action button.

9-40

Graphical User Interface

Click on OK to set or change the eventpoint. The dialog box is dismissed.

Click onDelete to delete an existing eventpoint. The dialog box is dismissed. This
button is disabled (dimmed) if this is a new eventpoint.

Clicking onCancel cancels the action and closes this dialog box.

You can get help for this dialog box by clicking ételp. The dialog box is not dis-
missed.

If you are setting a new eventpoint or deleting an existing one, you see the source line
decoration change. NightView displays a message in the Debug message area to tell you
if the eventpoint was set.

If you make an error while entering data, NightView may display an error dialog box and
allow you to re-enter the data. See “Error Dialog Box” on page 9-16. Other warnings or
errors associated with setting or changing this eventpoint are displayed in the debug
message error. See “Debug Message Area” on page 9-28.

You can use thénfo eventpoint command to check the eventpoint settings. See
“info eventpoint” on page 7-112.

Debug Eventpoint Summarize/Change Dialog Box

This dialog ox pops up when you use the Debug WinddgwW&ntpoint menu to select

the Summarize/Change... item. See “Debug Eventpoint Menu” on page 9-24. If the
Debug Window is in single process mode, it shows you a summary of existing
eventpoints for the process. If the Debug Window is in group process mode, the
Qualifier changes to[Group Mode] and the list of eventpoints includes all the
processes in the qualifier. This dialog box also provides several ways for you to change
eventpoints. See “Single Process Mode” on page 9-13. See “Group Process Mode” on
page 9-14.

See “Eventpoints” on page 3-8.
Specify eventpoints to appear in the list.

NightView displays a list of eventpoints according to the selections you make in this
section of the dialog box.

By default, NightView displays all eventpoints that occur for the qualifier. If there is
only one eventpoint, NightView selects it for you in the list.

PressingReturn while the focus is in one of the text input areas causes the default
Update List button to be activated. See “Text Input Areas” on page 9-5.

Choose eventpoints.

You can choose any combination of eventpoints (breakpoints, monitorpoints,
patchpoints, tracepoints, agentpoints) to display in the list by clicking on the
check button (or its label) for each eventpoint you are interested in. See “Tog-
gle Buttons” on page 9-12. Two buttons are also available to help you check
all of the eventpoints@Gheck All) or clear all of the checked eventpoints
(Clear All).

9-41

NightView User’s Guide

9-42

Choose location.

By default, the location field is blank. NightView shows you all eventpoints
for the qualifier regardless of their locations (taking into consideration your
other list specifications).

If you want to see a list of eventpoints found at a given location, type a loca-
tion specifier into this field. See “Location Specifiers” on page 7-9.

If you want NightView to fill in the location field with a location specifier that
corresponds to the location of the text insertion cursor in the source display
area, press thepdate button next to the location field. See “Debug Source
Display” on page 9-30.

The location field is a text input area.
Choose eventpoint name.

If you want to see a list of eventpoints that have a certain name, enter the
name in this field.

If the name field is blank, NightView shows you all eventpoints in the process
regardless of any name (taking into consideration your other list specifica-
tions).

The name field is a text input area.
Qualifier.

The qualifier is displayed to remind you that this list of eventpoints applies to
the process or processes represented by this qualifier. See “Qualifier Specifi-
ers” on page 7-10.

Update the list.

TheUpdate List button updates the list of eventpoints and the qualifier that
represents them. Press this button whenever you want to see the current list of
eventpoints and their status for the Debug Window's current qualifier.

The list of eventpoints is automatically updated when you change an event-
point by using this dialog box. The list is not updated if you create new event-
points or type in commands to change eventpoint characteristics; use the
Update List button if you are unsure of the current state of eventpoints.

Select eventpoints from the list to change.

The eventpoint list displays eventpoiimt numbers, tells you what type of event-
point it is, its enabled state, process and address. Scroll bars appear for the list, if
necessary. Messages related to the list are displayed below the list.

If NightView cannot determine a piece of eventpoint information, that part of the list
will be empty. For example, this situation may occur if the process is running when
NightView tries to determine the enabled state of an eventpoint.

If there is only one item in the list, NightView selects it for you. Otherwise, you
must select the items in the list you are interested in and then choose an action area
button to perform the requested action on each selected eventpoint.

Graphical User Interface

The default list selection policy iExtended, which means you can select discon-
tiguous ranges of items. This list selection policy is configurable. See Appendix D
[GUI Customization] on page D-1. See “List Selection Policies” on page 9-9.

Choose an action button.

The buttons in the action area allow you to make changesl@ctedeventpoints,
dismiss the dialog box, and request help.

Some buttons may be disabled (dimmed) under certain circumstances. For example,
if the list is empty, it does not make sense to use some of the buttons.

The eventpoint summary dialog box is dismissed only if you choos€thee but-

ton.

Change...
Click onChange... to see additional information about an eventpoint and to
change eventpoint characteristics. An eventpoint dialog box is displayed for
each eventpoint you selected in the list. See “Debug Eventpoint Dialog
Boxes” on page 9-38.

Enable
Click on Enable to enable the selected eventpoints. This is similar to using
theenable command. See “enable” on page 7-91.

Disable
Click on Disable to disable the selected eventpoints. This is similar to using
thedisable command. See “disable” on page 7-90.

Delete
Click on Delete to delete selected eventpoints.
Depending on your safety level, NightView may display a warning dialog box
to make sure you want to delete the eventpoints. See “set-safety” on page
7-49. Once deleted, you cannot refer to these eventpoints again. This is simi-
lar to using thedelete command. See “delete” on page 7-89.
If you think you may want to "turn off" an eventpoint temporarily, then use it
again later, you should disable the eventpoint and enable it when you are
ready to use it.

Close
Clicking onClose cancels any action and closes this dialog box. This button
is never disabled (dimmed).

Help

You can get help for this dialog box by clicking ¢telp. This button is never
disabled (dimmed).

Warnings or errors associated with using this dialog box or changing eventpoints are
displayed in dialog boxes or in the debug message area. See “Warning and Error Dialog

9-43

NightView User’s Guide

Boxes” on page 9-15.. See “Debug Message Area” on page 9-28.

You can use thénfo eventpoint command to check eventpoint settings. See “info
eventpoint” on page 7-112.

Remote Login Dialog Box

This dialog box pops up when you use tiNightView menu's Start Remote
Dialogue... item. See “Debug NightView Menu” on page 9-20. This dialog box allows
you to specify the parameters for creating a remote NightView session. See “Remote
Dialogues” on page 3-6. Some of these parameters are required, but most are optional.

The parameters specified in this dialog apply to the NightView processes that execute on
the remote system. These processes include a NightView target program, a dialogue
shell, and (unless you specify otherwise using the(1l) shell command) all the
processes started by that dialogue shell.

Remote host information
Remote host

This is the name or address of the remote system on which you want a remote
dialogue. This field is required information.

Login name

This specifies the user name to use to log into the remote system. This field is
required, but it defaults to the user running NightView.

Password

This specifies the password for the user name specified ibh tftgn name

field. For security, the password you type is not echoed in the window;
instead, an asterisk § replaces each character. You may leave this field
empty if the specified user name does not have a password on the designated
remote system.

Name for new Dialogue

This field specifies the name to give to the dialogue. See “Qualifier Specifi-
ers” on page 7-10. If you leave this field empty, the name of the dialogue will
default to be the same as tRemote host field. If the remote system name

is not a valid dialogue name, an error dialog will appear. See “Warning and
Error Dialog Boxes” on page 9-15. A common reason for the remote system
to be an invalid dialogue name is that the remote system name contains period
(.) characters (e.qg., it includes domain names), or itis an IP address instead of
a name.

Scheduling information
Priority

This field specifies the priority you want applied to the NightView processes
running on the remote system. You will usually want to leave this empty, to
select the default value. However, if your application contains continuously-

9-44

Graphical User Interface

running processes that run at real-time priorities, you may need to set the pri-
ority of NightView or it will not get sufficient CPU time to perform its debug-
ging chores. We suggest that you set this only if the target system has little or
no spare CPU resourcasdyou notice a lack of responsiveness in Night-
View.

Valid values for the priority depend on the scheduling class you select. See the
run(l) command for valid values.

Note that you may need special privileges on the remote system to be able to
specify a priority explicitly.

Nice Value

This is an alternative way to adjust the priority of the remote NightView pro-
cesses. If you specify both priority and nice value, the priority takes prece-
dence. Nice values only apply to tiéme Sharing scheduling class.

Scheduling Class

This option menu selects the scheduling policy for the remote NightView pro-
cesses. You will usually want to leave this at its default selection. However, if
you need greater control over how much CPU resources the remote Night-
View processes get, you may need to select a different scheduling class and
priority.

Time Quantum

This field is enabled only if you select tietound Robin scheduling class.
See theun(1) command man page for more information about time quan-
tum. You may use the units option menu to the right of this field to specify the
time units to apply to the quantum value.

CPU and memory binding information
Binding Type

This option menu selects the kind of CPU binding to apply to the remote
NightView processes. You may wish to use this if you want to isolate the
NightView processes to a particular CPU or set of CPUs.

If you select theBias option, the CPU toggle buttons will be enabled and
allow you to select any set of CPUs. If you selBetclusive, the CPU toggle
buttons are enabled but you are restricted to selecting exactly one CPU. If you
select any other choice in ti@nding Type menu, the CPU toggle buttons
are disabled.

CPU

These toggle buttons allow you to select the CPUs on which the remote Night-
View processes can execute. They are enabled only foBihe or Exclu-

sive binding type options. When these toggle buttons are enabled) khe
button is disabled until you select at least one CPU.

NUMA

9-45

NightView User’s Guide

These option menus allow you to select the memory binding parameters for
the remote NightView processes. You may need to use these to keep Night-
View from interfering with your application's use of certain memory pools.
See theun(l) command and thmemory(7) man pages for more infor-
mation about NUMA policies.

The Default option menu selects the overall memory binding policy. This
policy applies to all pages unless overridden by one of the other more-specific
NUMA option menus. Thd&ext option menu selects the NUMA policy to
apply to text (code) pages, tiivate option menu selects the NUMA policy

to apply to private data pages, and so forth for 8teared andUBlock
option menus.

All of these menus contain th&lobal, Soft Local, andHard Local
options. TheGlobal option specifies that the designated pages should be
placed in global memory. Th8oft Local option specifies that the desig-
nated pages be placed in local memory if space is available, otherwise they
should be placed in global memory. Thiard Local option specifies that

the designated pagesustbe placed in local memory.

For theDefault option menu, selectin@ystem Default specifies that the
NUMA policy will be inherited by the parent process that starts the remote
dialogue processes. For tiext, Private, Shared, andUBlock menus,
choosingDefault specifies that whatever policy was selected byDedault
option menu applies to that class of memory pages.

For example, if you seledefault/Soft Local, Text/Default, Private/
Hard Local, Shared/Global, andUBlock/Default, then text and ublock
pages will be placed in local memory if possible (soft local policy, specified
by theDefault/Soft Local selection), while private data will be forced to
local memory and shared data will be forced to global memory.

Action Buttons
OK

The OK button is enabled if you have specified all the required information.
Required information is the remote host name and login name and, if you
selected a binding type d&ias or Exclusive, at least one CPU must be
selected.

When you press th®K button, the remote dialogue is created and the remote
login dialog is dismissed. If the remote dialogue cannot be created, either an
error dialog box will appear or the remote login dialog disappears and a mes-
sage is displayed in the message area. See “Warning and Error Dialog
Boxes” on page 9-15. See “Debug Message Area” on page 9-28.

Cancel

Pressing the&Cancel button dismisses the dialog box without creating a
remote dialogue.

Help

Pressing théielp button brings up the online help with information about the
remote login dialog.

9-46

Graphical User Interface

Monitor Window - GUI

The Monitor Window is created when you use monitorpoints while running NightView
with the graphical user interface. See “Monitor Window” on page 3-25.

In the GUI, the Monitor Window uses a scrolling area to display monitored values, so
there is essentially no limit to the number of items you can have in the active display. To
remain compatible with the simple full-screen interface, it uses the same item layout
algorithm and assumes a column width for the window to determine how many items to
put on one line. See “Monitor Window - Simple Full-Screen” on page 8-2. The default
value for this column width is 80, but you can set thnitorWindowColumns

resource to any other appropriate value (a common alternative might be 132). See
Appendix D [GUI Customization] on page D-1. Dynamically resizing the window to be
wider does not cause NightView to put more items on one line.

The stale data indicators in the graphical display take the form of icons. A blank icon
indicates updated values, a triangular warning symbol indicates not executed values, and
a triangular warning symbol containing an exclamation point indicates executed but not
sampled values. For more information about stale data indicators, see “Monitor
Window” on page 3-25.

A label at the top of the window indicates the current held or running status and shows
the current delay time in milliseconds between samples. A legend shows a brief
description of the stale data icons.

Global Window

The Global Window provides global interaction and gives you control over dialogues.
There is only one instance of a Global Window for an invocation of NightView.

The Global Window is normally hidden and appears only when you ask to see it or when
no Dialogue Windows exist. You can display the Global Window by choosin@then
Global Window menu item found in theNightView menu of both the Debug and
Dialogue Windows. See “Debug NightView Menu” on page 9-20. See “Dialogue
NightView Menu” on page 9-16.

The following sections describe the parts of the Global Window.

Global Menu Bar

The menu bar in the Global Window allows you to perform global NightView actions
and access the online help system.

Global NightView Menu

Mnemonic:N

9-47

NightView User’s Guide

Global Help Menu

The NightView menu is used to control NightView windows and perform global
NightView actions. TheNightView menu appears in the Debug, Dialogue and Global
windows and has the same menu items in each window.

See “Debug NightView Menu” on page 9-20, for a description of the individual
NightView menu items.

Mnemonic:H

This menu provides ways of getting context-sensitive help, help on the current window,
help on the last error NightView encountered, as well as several other categories of help.
NightView help information is displayed in a Help Window. See “Help Window” on
page 9-49.

TheHelp menu is described in another section. See “Help Menu” on page 9-3.

A general discussion of NightView's online help is also available. See “GUI Online
Help” on page 9-2.

Global Output Area

The output area in the Global Window is similar to the output from the command-line
interface. It shows a combination of the output and messages displayed in the Debug
Window and the Dialogue Window as well as the output and error messages from
commands that are processed by this Global Window.

In contrast, the message area in the Dialogue Window shows only messages and program
output associated with that dialogue, and the message area in the Debug Window shows
only messages associated with processes represented in that window. See “Dialogue
Message Area” on page 9-17, and “Debug Message Area” on page 9-28.

This is a scrolling area. You can use the scroll bar to look at older or newer messages.

Global Interrupt Button

Clicking on this button interrupts whatever the debugger is doing. This is similar to using
the shell interrupt character in the command-line interface. See “Interrupting the
Debugger” on page 3-28.

Global Qualifier Area

9-48

The qualifier area in the Global Window shows the current default qualifier for the global
interactive command stream, which you can access through the global command area (see
“Global Command Area” on page 9-49). You can set the default qualifier using the
set-qualifier command. See “set-qualifier” on page 7-46.

Graphical User Interface

Global Command Area

Help Window

The global command area in the Global Window is used to enter NightView commands.
Like the debug command area in the Debug Window and the dialogue command area in
the Dialogue Window, all the command-line interface commands, excegh&l , can

be entered in the global command area.

Input to this area is similar to using the command-line interface. For example, you can
enter an explicit qualifier followed by a command.

Commands entered in this area are implicitly qualified by the default qualifier. You can
change the default qualifier by using thset-qualifier command. See “Global
Qualifier Area” on page 9-48.

The global command area is a combo box. See “Combo Boxes” on page 9-6.

NightView displays online help in the Help Window. The Help Window allows you to
display any section of thé&lightView User's Guideand provides different methods to
allow you to navigate from one section to another.

NightView uses HyperHely to display help. To learn about HyperHelp, click on the
Help menu of the Help Window and seledelp On HyperHelp.

For a general discussion of NightView's online help, see “GUI Online Help” on page 9-2.

9-49

NightView User’s Guide

9-50

System Resource Requirements

A
System Resource Requirements

This appendix describes system resources used by NightView. System administrators
may want to modify the "System Tuning Parameters" so that their users can use
NightView effectively. SeeSystem Administration Volume 1

This discussion refers to tHecal system and theemotesystem. The local system is the
system where NightView is invoked. The remote system is the system where the
application program is running. In many cases, these are the same system, but they are
distinguished here so that special purpose applications can be dealt with appropriately.
Many system administrators will simply want to make all their systems be able to be both
local and remote systems.

System components

If you are using the remote dialogue feature (see “Remote Dialogues” on page 3-6),
you must have networking installed on both the local and remote systems. You must
also haveelnetd running on the remote system, or you must arrangénetd

torunit. See the man pages for these facilities for more information.

shared memory regions

NightView uses a variety of shared memory regions on both the local and the remote
system. Each shared memory region contributes to the total number of regions and
the total number of shared memory clicks on the system. Most of the shared mem-
ory regions also contribute to the number of shared memory identifiers on the sys-
tem as long as the debugger is running.

Therefore, in order to use NightView, both the local and remote systems must be
configured with shared memory enabled. The maximum number of shared memory
identifiers and the maximum number of shared memory clicks system wide may
need to be increased.

IPC
Make sure the ipc module is configurelétt/conf/sdevice.d/ipc).
SHMMNI

Check the "maximum number of shared memory identifiers" system tunable
using theidtune(1M) utility.

The following information about the particular memory regions used by NightView
is supplied only to aid in fine-tuning of the memory parameters.

Regions on the local system:
Communications among processes which make up the debugger.

One shared memory region per invocation of NightView.

A-1

NightView User’s Guide

Regions on the remote system:
Debug agent

One shared memory region for each process using a debug agent. See
“Debug Agent” on page 3-15. The shared memory identifier for this
region exists as long as the process is running.

Monitorpoints

One shared memory region per invocation of NightView on each remote
system that is using monitorpoints. See “Monitorpoints” on page 3-9.

processes

Each invocation of NightView uses at least one process on the local system. The
remote system uses two processes per dialogue, not including the processes being
debugged.

The maximum number of processes on the systdPROQunable) and the maxi-
mum number of processes per uskAXURunable) may need to be increased for
the local and remote systems.

ptys
NightView uses one pty per dialogue on the remote system.

For the graphical user interface, X server memory may also be a concern. See
Appendix D [GUI Customization] on page D-1.

A-2

Summary of Commands

B
Summary of Commands

This section gives a summary of all the commands in NightView. The table is organized
alphabetically by command. The abbreviations for the commands are included with the
corresponding commands, rather than alphabetically.

Also, remember that you can abbreviate commands by using a unique prefix.
!

Pass input to a dialogue. See “!” on page 7-27 for more information.
agentpoint

Insert a call to a debug agent at a given location. See “agentpoint” on page 7-86 for
more information.

apply on dialogue

Executeon dialogue commands for existing dialogues. See “apply on dialogue”
on page 7-25 for more information.

apply on program

Executeon program commands for existing processes. See “apply on program”
on page 7-38 for more information.

attach

Attach the debugger to a process that is already running. See “attach” on page 7-32
for more information.

backtrace
bt

Print an ordered list of the currently active stack frames. See “backtrace” on page
7-64 for more information.

breakpoint
b

Set a breakpoint. See “breakpoint” on page 7-78 for more information.

cd
Set the debugger’s default working directory. See “cd” on page 7-56 for more infor-
mation.

checkpoint

Take a restart checkpoint now. See “checkpoint” on page 7-39 for more informa-
tion.

B-1

NightView User’s Guide

B-2

clear

Clear all eventpoints at a given location. See “clear” on page 7-87 for more infor-
mation.

commands

Attach commands to a breakpoint or monitorpoint. See “commands” on page 7-88
for more information.

condition

Attach a condition to an eventpoint. See “condition” on page 7-88 for more infor-

mation.
continue
c
Continue execution and wait for something to happen. See “continue” on page 7-94
for more information.
core-file
Create a pseudo-process for debugging an aborted program’s core image file. See
“core-file” on page 7-34 for more information.
debug
Specify names for programs you wish to debug. See “debug” on page 7-20 for more
information.
define
Define a NightView macro. See “define” on page 7-130 for more information.
delay
Delay NightView command execution for a specified time. See “delay” on page
7-111 for more information.
delete
d
Delete an eventpoint. See “delete” on page 7-89 for more information.
detach
Stop debugging a list of processes. See “detach” on page 7-32 for more informa-
tion.
directory
Set the directory search path. See “directory” on page 7-60 for more information.
disable

Disable an eventpoint. See “disable” on page 7-90 for more information.

Summary of Commands

display

Add to the list of expressions to be printed each time the process stops. See “dis-
play” on page 7-71 for more information.

down

Move one or more stack frames toward frames called by the current stack frame.
See “down” on page 7-107 for more information.

echo
Print arbitrary text. See “echo” on page 7-70 for more information.
enable

Enable an eventpoint for a specified duration. See “enable” on page 7-91 for more
information.

exec-file

Specify the location of the executable file corresponding to a process. See “exec-
file” on page 7-35 for more information.

family

Give a name to a family of one or more processes. See “family” on page 7-40 for
more information.

finish

Continue execution until the current function finishes. See “finish” on page 7-100
for more information.

forward-search

fo
Search forward through the current source file for a specified regular expression.
See “forward-search” on page 7-61 for more information.

frame

f
Select a new stack frame or print a description of the current stack frame. See
“frame” on page 7-105 for more information.

handle
Specify how to handle signals and Ada exceptions in the user process. See “handle”
on page 7-102 for more information.

help

Access the online help system. See “help” on page 7-108 for more information.

B-3

NightView User’s Guide

B-4

ignore

Attach an ignore-count to an eventpoint. See “ignore” on page 7-91 for more infor-
mation.

info address

Determine the location of a variable. See “info address” on page 7-127 for more
information.

info agentpoint

Describe current state of agentpoints. See “info agentpoint” on page 7-117 for more
information.

info args

Print description of current routine arguments. See “info args” on page 7-126 for
more information.

info breakpoint
ib

Describe current state of breakpoints. See “info breakpoint” on page 7-113 for more
information.

info convenience

Describe convenience variables. See “info convenience” on page 7-119 for more
information.

info declaration
ptype

Print the declaration of variables or types. See “info declaration” on page 7-129 for
more information.

info dialogue

Print information about active dialogues. See “info dialogue” on page 7-123 for
more information.

info directories

Print the search path used to locate source files. See “info directories” on page
7-119 for more information.

info display

Describe expressions that are automatically displayed. See “info display” on page
7-120 for more information.

info eventpoint

Describe current state of breakpoints, tracepoints, patchpoints, monitorpoints and
agentpoints. See “info eventpoint” on page 7-112 for more information.

info

info

info

info

info

info

info

info

info

info

info

info

Summary of Commands

exception

Print information about Ada exception handling. See “info exception” on page
7-125 for more information.

family

Print information about an existing process family. See “info family” on page 7-123
for more information.

files

Print the names of the executable, symbol table and core files. See “info files” on
page 7-129 for more information.

frame
Describe a stack frame. See “info frame” on page 7-118 for more information.
functions

List names of functions, subroutines, or Ada unit names. See “info functions” on
page 7-127 for more information.

history

Print value history information. See “info history” on page 7-120 for more informa-
tion.

limits

Print information about limits on expression and location output. See “info limits”
on page 7-120 for more information.

line

Describe location of a source line. See “info line” on page 7-129 for more informa-
tion.

locals

Print information about local variables. See “info locals” on page 7-126 for more
information.

log
Describe any open log files. See “info log” on page 7-112 for more information.
macros

Print a description of one or more NightView macros. See “info macros” on page
7-135 for more information.

memory

Print information about the virtual address space. See “info memory” on page 7-122
for more information.

B-5

NightView User’s Guide

B-6

info monitorpoint

Describe current state of monitorpoints. See “info monitorpoint” on page 7-116 for
more information.

info name

Print information about an existing eventpoint-name. See “info name” on page
7-123 for more information.

info on dialogue

Printon dialogue commands. See “info on dialogue” on page 7-124 for more
information.

info on program

Printon program commands. See “info on program” on page 7-124 for more
information.

info on restart

Printon restart commands. See “info on restart” on page 7-124 for more infor-
mation.

info patchpoint

Describe current state of patchpoints. See “info patchpoint” on page 7-115 for more
information.

info process

Describe processes being debugged. See “info process” on page 7-122 for more
information.

info registers

Print information about registers. See “info registers” on page 7-120 for more infor-
mation.

info representation
representation

Describe the storage representation of an expression. See “info representation” on
page 7-128 for more information.

info signal

Print information about signals. See “info signal” on page 7-121 for more informa-
tion.

info sources
List names of source files. See “info sources” on page 7-127 for more information.

info tracepoint

Summary of Commands

Describe current state of tracepoints. See “info tracepoint” on page 7-114 for more
information.

info types

Print type definition information. See “info types” on page 7-128 for more informa-
tion.

info variables

Print global variable information. See “info variables” on page 7-126 for more
information.

info whatis
whatis

Describe the result type of an expression visible in the current context. See “info
whatis” on page 7-128 for more information.

interest

Control which subprograms are interesting. See “interest” on page 7-51 for more
information.

jump

Continue execution at a specific location. See “jump” on page 7-101 for more infor-

mation.
kill
Terminate a list of processes. See “kill” on page 7-33 for more information.
list
I
List a source file. See “list” on page 7-58 for more information.
load
Dynamically load an object file, possibly replacing existing routines. See “load” on
page 7-74 for more information.
login
Login to a new dialogue shell. See “login” on page 7-18 for more information.
logout
Terminate a dialogue. See “logout” on page 7-23 for more information.
mcontrol
hold
release

Control the monitor display window. See “mcontrol” on page 7-85 for more infor-
mation.

B-7

NightView User’s Guide

B-8

monitorpoint

Monitor the values of one or more expressions at a given location. See “monitor-
point” on page 7-83 for more information.

mreserve

Reserve a region of memory in a process. See “mreserve” on page 7-43 for more
information.

name

Give a hame to a group of eventpoints. See “name” on page 7-77 for more informa-

tion.

next

n
Execute one line, stepping over procedures. See “next” on page 7-97 for more
information.

nexti

ni
Execute one instruction, stepping over procedures. See “nexti” on page 7-99 for
more information.

nodebug
Specify names for programs you do not wish to debug. See “nodebug” on page 7-20
for more information.

notify
Ask about pending event notifications. See “notify” on page 7-31 for more informa-
tion.

on dialogue
Specify debugger commands to be executed when a dialogue is created. See “on
dialogue” on page 7-23 for more information.

on program
Specify debugger commands to be executed when a prograrecsed. See “on
program” on page 7-36 for more information.

on restart
Specify debugger commands to be executed when a program is restarted. See “on
restart” on page 7-38 for more information.

output

Print the value of a language expression with minimal output. See “output” on page
7-70 for more information.

Summary of Commands

patchpoint
Install a small patch to a routine. See “patchpoint” on page 7-79 for more informa-
tion.

print

p
Print the value of a language expression. See “print” on page 7-65 for more infor-
mation.

printf

Print the values of language expressions using a format string. See “printf” on page
7-73 for more information.

pwd
Print NightView's current working directory. See “pwd” on page 7-56 for more
information.
quit
q
Stop everything. Exit the debugger. See “quit” on page 7-17 for more information.
redisplay
Enable a display item. See “redisplay” on page 7-73 for more information.
refresh
Refresh the terminal screen. See “refresh” on page 7-109 for more information.
resume

Continue execution. See “resume” on page 7-95 for more information.
reverse-search

Search backwards through the current source file for a specified regular expression.
See “reverse-search” on page 7-61 for more information.

run

Run a program in a dialogue and wait for NightView to start debugging it. See
“run” on page 7-30 for more information.

select-context

Select the context of an Ada task, a thread, or of a Lightweight Process (LWP). See
“select-context” on page 7-107 for more information.

set

Evaluate a language expression without printing its value. See “set” on page 7-66
for more information.

B-9

NightView User’s Guide

B-10

set-auto-frame

Control the positioning of the stack when a process stops. See “set-auto-frame” on
page 7-54 for more information.

set-children

Control whether children should be debugged. See “set-children” on page 7-41 for
more information.

set-editor

Set the mode for editing commands in the simple full-screen interface. See “set-edi-
tor” on page 7-55 for more information.

set-exit

Control whether a process stops before exiting. See “set-exit” on page 7-42 for
more information.

set-history

Specify the number of items to be kept in the value history list. See “set-history” on
page 7-46 for more information.

set-language

Establish a default language context for variables and expressions. See “set-lan-
guage” on page 7-44 for more information.

set-limits

Specify limits on the number of array elements, string characters, or program
addresses printed when examining program data. See “set-limits” on page 7-46 for
more information.

set-local

Define process local convenience variables. See “set-local” on page 7-50 for more
information.

set-log
Log session to file. See “set-log” on page 7-44 for more information.
set-notify

Control how you are notified of events. See “set-notify” on page 7-30 for more
information.

set-overload

Control how NightView treats overloaded operators and routines in expressions.
See “set-overload” on page 7-54 for more information.

Summary of Commands

set-patch-area-size

Control the size of patch areas created in your process. See “set-patch-area-size” on
page 7-50 for more information.

set-prompt

Set the string used to prompt for command input. See “set-prompt” on page 7-47
for more information.

set-qualifier

Specify the default list of processes or dialogues that will be affected by subsequent
commands which accept qualifiers. See “set-qualifier” on page 7-46 for more infor-
mation.

set-restart

Control whether restart information is applied. See “set-restart” on page 7-49 for
more information.

set-safety

Control debugger response to dangerous commands. See “set-safety” on page 7-49
for more information.

set-search

Control case sensitivity of regular expressions in NightView. See “set-search” on
page 7-54 for more information.

set-show

Control where dialogue output goes. See “set-show” on page 7-28 for more infor-
mation.

set-terminator

Set the string used to recognize end of dialogue input mode. See “set-terminator” on
page 7-48 for more information.

set-trace

Establish tracing parameters. See “set-trace” on page 7-81 for more information.

shell

Run an arbitrary shell command. See “shell” on page 7-110 for more information.
show

Control dialogue output. See “show” on page 7-29 for more information.
signal

Continue execution with a signal. See “signal” on page 7-101 for more information.

B-11

NightView User’s Guide

B-12

source

Input commands from a source file. See “source” on page 7-110 for more informa-

tion.
step
s
Execute one line, stepping into procedures. See “step” on page 7-96 for more infor-
mation.
stepi
Si
Execute one instruction, stepping into procedures. See “stepi” on page 7-98 for
more information.
stop
Stop a process. See “stop” on page 7-100 for more information.
symbol-file
Establish the file containing symbolic information for a program. See “symbol-file”
on page 7-33 for more information.
tbreak
Set a temporary breakpoint. See “tbreak” on page 7-92 for more information.
tpatch
Set a patchpoint that will execute only once. See “tpatch” on page 7-93 for more
information.
tracepoint

Set a tracepoint. See “tracepoint” on page 7-82 for more information.

translate-object-file

x|
Translate object filenames for a remote dialogue. See “translate-object-file” on
page 7-21 for more information.

undisplay
Disable an item from the display expression list. See “undisplay” on page 7-72 for
more information.

up
Move one or more stack frames toward the caller of the current stack frame. See
“up” on page 7-106 for more information.

vector-set

Set the value of a vector. See “vector-set” on page 7-75 for more information.

Summary of Commands

Print the contents of memory beginning at a given address. See “x” on page 7-67
for more information.

B-13

NightView User’s Guide

B-14

Quick Reference Guide

C

Quick Reference Guide

Invoking NightView

nview [-editor program] [-help] [-ktalk] [-nogui]

[-noktalk] [-nolocal] [-nx] [-prompt string]
[-safety safe-modE [-simplescreen] [-version]
[- Xoption ...] [-x command-filg [-xeditor]

[program-name| corefile-namg

Controlling the Debugger

Quitting NightView

quit

Abbreviation:q

Managing Dialogues

login [/conditional] [/popup] [name= dialogue namg [user= login

namé [others .. machine
debug pattern ...
nodebug pattern ...

translate-object-file [from [to]]

Abbreviation:x|

logout
on dialogue [regexp

on dialogue regexp command

C-1

NightView User’s Guide

on dialogue

regexp do

apply on dialogue

Dialogue Input and Output

I' [inputling

set-show [silent | notify=

[log[= filenamd] [buffer=

mode | continuous=

numbe}

show [number| all | none] ||

Managing Processes

run inputline

set-notify
notify

attach pid
detach

kill
symbol-file
core-file
exec-file

on program

[silent | continuous=

program-name

program-name

[patterri

corefile-name[exec-file=

on program pattern command

on program pattern do

apply on program

on restart
on restart
on restart

checkpoint

C-2

[patterr]

pattern do

pattern command

shell-commangd

modé

program-namg

modé

Setting Modes

Quick Reference Guide

family family-namef[[-] qualifier-spec] ...
set-children { all [resume] | exec | none }
set-exit [stop | nostop]

mreserve start= address{length= bytes| end= addres}

set-log keyword filename

set-language {ada | auto | c | c++ | fortran}

set-qualifier [qualifier-spec ...]
set-history count
set-limits {array= number| string= number| addresses= numbe} ...

set-prompt string

set-terminator string

set-safety [forbid | verify | unsafe]

set-restart [always | never | verify]

set-local identifier ...

set-patch-area-size {data= data-size| eventpoint= eventpoint-size|

monitor= monitor-size | text= text-sizé ...
interest [level [[at] [location-spef]
interest inline[= level
interest justlines[= level

interest nodebug[= level

interest threshold[= level
set-auto-frame args..
set-overload [operator={on | off}] [routine={on | off}]

set-search [sensitive | insensitive]

set-editor mode

C-3

NightView User’s Guide

Debugger Environment Control

cd dirname

pwd

Source Files

Viewing Source Files

list where-spec

list where-specl where-spec2
list , where-spec

list where-spec

list +

list -

list =

list

Abbreviation:|

directory [dirname ...]

Searching

forward-search regexp

Abbreviation:fo

reverse-search regexp

Examining and Modifying
backtrace [number-of-framgs

C-4

Quick Reference Guide

Abbreviation:bt

print [/ print-format-lette} expression

Abbreviation:p

set expression

X [[[repeat-courf size-lette]] x-format-lettef] [addr-expressioh
output [/ print-format-lettetf expression

echo text

display [[/ print-format-lettet expressioh

display /[repeat-courif size-lettel] x-format-lettef addr-expression
undisplay item-number...

redisplay item-number ...

printf format-string, expression...]

load object
vector-set [-value = component component...
vector-set [-value = repeat-countcomponent

Manipulating Eventpoints

name [/fadd] name [[] eventpoint-spéc...

breakpoint [eventpoint-modifigr [name=breakpoint-namk [[at]
location-spet [if conditional-expressidn

Abbreviation:b
patchpoint [eventpoint-modifigr [name= patchpoint-nam [[at]
location-spet eval expression

patchpoint [eventpoint-modifigr [name= patchpoint-nam [[at]
location-spet goto location-spec

set-trace [eventmap= event-map-filg

C-5

NightView User’s Guide

tracepoint [eventpoint-modifigr event-id [name= tracepoint-namg [[at]
location-spet [value= logged-expressign]if conditional-expressidn

monitorpoint [eventpoint-modifi§r [name= monitorpoint-nam [[at]
location-spet

mcontrol {display | nodisplay} [monitorpoint-spec...]
mcontrol delay milliseconds

mcontrol {off | on | stale | nostale | hold | release}
Abbreviation:hold

Abbreviation:release

agentpoint [eventpoint-modifigr [name= agentpoint-namie [[at]
location-spet

clear [[at] location-spet

commands eventpoint-spec

condition eventpoint-sped conditional-expressidn

delete [eventpoint-spec..]

Abbreviation:d

disable [eventpoint-spec..]
enable [/once|/delete] eventpoint-spec..
ignore eventpoint-spec count

tbreak [name= breakpoint-namie [[at] location-spet [if
conditional-expressidn

tpatch [name= patchpoint-nami [[at] location-spef eval expression

tpatch [name= patchpoint-nami [[at] location-spef goto location-spec

Controlling Execution

C-6

continue [count

Abbreviation:c

Quick Reference Guide

resume [sigid]
step [repeat

Abbreviation:s

next [repeat

Abbreviation:n

stepi [repeat

Abbreviation:si

nexti [repeat

Abbreviation:ni

finish

stop

jump [at] location-spec

signal sigid

handle [/signal] sigid keyword...

handle /exception exception-name keyword.
handle /exception unit-name keyword...
handle /exception all keyword ...

handle /unhandled_exception keyword ...

Selecting Context

frame [frame-numbdr

frame *expression[at location-spet

Abbreviation:f

up [number-of-framds

down [number-of-framds

Cc-7

NightView User’s Guide

select-context default
select-context task= expression
select-context thread= expression
select-context Iwp= Iwpid

Miscellaneous Commands

help [sectiod

refresh

shell [shell-command
source command-file

delay [millisecond$

Info Commands

Status Information

info log
info eventpoint [/verbose] [name | numbef ...
info breakpoint [/verbose] [name | numbef ...

Abbreviation:i b

info tracepoint [/verbose] [name | numbef ...
info patchpoint [/verbose] [name | numbef ...
info monitorpoint [/verbose] [name | numbef} ...
info agentpoint [/verbose] [name | numbef ...

info frame [V] [* expression[at location-spef]

info directories

C-8

Quick Reference Guide

info convenience

info display

info history [numbet
info limits

info registers [regexp
info signal [signal ...]

info process

info memory [/verbose]
info dialogue

info family [regexp

info name [regexp

info on dialogue [namé

info on program [prograni

info on restart [output= outnam¢append= outnamé [prograni
info exception exception-name
info exception unit-name

info exception

Symbol Table Information

info args

info locals [regexp
info variables [regexp
info address identifier

info sources [patter
info functions [regexp
info types [regexp

info whatis expression

C-9

NightView User’s Guide

Abbreviation:whatis

info representation expression

Abbreviation:representation

info declaration regexp

Abbreviation:ptype

info files

info line [at] location-spec

Defining and Using Macros

C-10

define macro-namf arg-name[, arg-namé ...)] |

define macro-name[(arg-name|[,

info macros [regexp

arg-namé¢ ...)] as

texd

GUI Customization

D
GUI Customization

This appendix contains information that you need if you want to customize the graphical
user interface.

NightView's behavior may be modified by specifying resources. Resources can be
specified in many ways. A complete discussion of this topic is beyond the scope of this
text. For more information on setting X11 client resources, refer toXtiéindow System
User's Guideor to the X man pag(1) .

NightView's default resources are specified in the filasr/lib/X11/app-
defaults/Nview . Default color resources are specified in the filisr/lib/X11/
app-defaults/Nview-color ; default monochrome resources are specified in the
file /usr/lib/X11/app-defaults/Nview-mono . See “Color Selection” on page
D-6. You can look in these files for examples of ways to customize NightView's
appearance and behavior.

One way to specify resources is to copy the default resource files to your home directory
and change your versions of NightView's resource files. That is the method used in this
appendix.

Application Resources

In addition to the standard resources associated with an X11 or Motif program,
NightView defines speciahpplication resourcegyou can use to customize NightView's
appearance and behavior. See Appendix D [GUI Customization] on page D-1. These
resources affect the entire NightView graphical user interface; they are "global" to the
application.

There are two categories of application resources used by NightView. One set of
application resources applies to all products that are part of the Night{Stzol set. In
addition to these, NightView has its own application resources.

NightStar Resources

NightView is part of the NightStar tool set. To provide a consistent appearance among
these tools and to provide an easy way for you to change the default appearance, special
application resources exist that define fonts and colors. They allow you to change one
resource (instead of many) to affect the font or color for a set of window components that
have similar characteristics. These resources are applied only to certain window
components; many of NightView's window components are unaffected by the NightStar
resources.

D-1

NightView User’s Guide

For example, some textual display areas show only program output and some areas
accept input only from you. Different colors are used for these areas to distinguish them.
If you want to change the color for input fields, for example, you need to change only one
resource in NightView's color resource file. See “NightStar Color Resources” on page
D-4. The next time you run NightView, the color of all the input fields has the new
setting.

Changing theénputBackground line in yourNview-color file to:
*inputBackground: Yellow

causes the background color for all input areas to be yellow. (This assumes that you are
using a color display and that theseNightStarColors resource isTrue . See
“Using NightStar Resources” on page D-2.)

Resource values are specified in the application resource files. See Appendix D [GUI
Customization] on page D-1.

Using NightStar Resources

D-2

The following resources are provided so you can control NightView's appearance as it
applies to the NightStar resources. In most cases, however, the default values for the
following resources should be used.

useNightStarFonts

By default, this resource isrue . It controls whether the NightStar fonts are used
by NightView.

useNightStarColors

By default, this resource iErue . It controls whether the NightStar colors are used
by NightView.

These resources are specified in thesr/lib/X11/app-defaults/Nview
resource file.

If you set one of these resourcesRalse , NightView does not use the corresponding
NightStar resource. Instead, only standard X11 resources are used (such as
*background , *foreground , *fontList , as defined in the resource files), and you

are responsible for explicitly specifying fonts and colors for NightView's window
components.

For example, if you setiseNightStarFonts to False , all of NightView's textual
display would use the font defined for the standéwdtList resource. See “Font
Selection” on page D-6. The NightStar default font is a proportional-width font. Some
of NightView's textual displays require a fixed-width font for proper text alignment, so
this default proportional font is inappropriate for these areas. You would need to specify
a fixed-width font, individually, for some of NightView's display areas. Adding the
following lines to your resource file would tell NightView to use tBe13 fixed-width

font for the text in the Dialogue Window's process summary list, and the Debug

GUI Customization

Window's source display area. See “Widget Hierarchy” on page D-7.

*processSummaryHeadingsLabel*fontList: 6x13
*processSummaryList*fontList: 6x13
*sourceText*fontList: 6x13

If useNightStarFonts is set toTrue , NightView takes care of setting the fonts for

you based on font resource values in the resource file.

NightStar Font Resources

This section describes the special font resources available for NightStar tools. In addition
to these resources, NightStar tools specify an oveiefthult fontthat is used for most of

the textual display. See “Font Selection” on page D-6. NightStar tools use proportional-
width fonts except in areas that depend on text alignment; in these instances a fixed-
width font is important for readability. If you decide to change fonts, make sure that you
choose another fixed-width font for the font resources that fiixedin their names.

NightStar font resources include:
boldFontList
Used for text that is emphasized to attract your attention.
smallFontList
Used for areas that require a smaller font.
NightView does not currently use this font.
infoFontList
Used for areas that display informational messages, warnings, errors.
NightView does not currently use this font. The default font is used for these areas.
fixedFontList
Used for areas that depend on text alignment.

NightView areas that use this font include headings for lists, lists and the display
area in the Monitor Window.

smallFixedFontList
Used for areas that depend on text alignment but require a smaller font.

NightView areas that use this font include message areas in the Dialogue, Debug
and Global Windows; dialogue 1/O area; and Debug source display area.

The /usr/lib/X11/app-defaults/Nview resource file specifies the font values
for NightView.

D-3

NightView User’s Guide

NightStar Color Resources

D-4

This section describes the special color resources available for NightStar tools. In
addition to these resources, NightStar tools specify an ovded#iult colorthat is used

for most of the window areas. See “Color Selection” on page D-6. NightStar tools use
the same color scheme to indicate that they are part of the same tool set and to provide
cues about the usage of different areas in the windows. Each NightStar tool uses a
unique color for its menu bars.

The following NightStar color application resources are defined:

outputBackground
outputForeground

Used for the background and foreground colors in output-only areas.

NightView areas that use these color resources include message areas in the Dia-
logue, Debug and Global Windows; lists; Debug source display area; display area
in the Monitor Window; and text input areas that are used for displaying informa-
tion, such as the eventpoint dialog boxes when used for changing an existing event-
point's attributes.

inputBackground
inputForeground

Used for the background and foreground colors in areas that accept user input.

NightView areas that use these color resources include text entry areas such as the
command areas in the Dialogue, Debug and Global Windows; the dialogue 1/O area,;
and other text input areas in dialog boxes.

distinctBackground
distinctForeground

Used for the background and foreground colors in areasdioatire user input.

NightView areas that use these color resources include fields in the eventpoint dia-
log boxes that require you to enter data before the eventpoint can be successfully set.

feedbackBackground
feedbackForeground

Used for the background and foreground colors of the user feedback area (see “Mes-
sage Areas” on page 9-6) for feedback that does not provide progress information.
These colors default to the same valueoatputBackground andoutput-
Foreground , respectively.

feedbackNotDoneBackground
feedbackNotDoneForeground

Used for the background and foreground colors of the user feedback area for that
portion representing work to be done, in those cases where progress information is
provided.

feedbackDoneBackground

GUI Customization

feedbackDoneForeground

Used for the background and foreground colors of the user feedback area for that
portion representing the amount of work completed, in those cases where progress
information is provided.

We recommend that thieedbackDoneForeground andfeedbackNot-
DoneForeground colors always be the same.

The /usr/lib/X11/app-defaults/Nview-color resource file specifies the
color values for NightView.

NightView Resources

In addition to NightStar resources, NightView has application resources that you can set.
See “NightStar Resources” on page D-1. These resources are not shared by other
NightStar tools.

The following NightView resources are available.
editor

This resource allows you to define the editor that is invoked bySbarce->Edit
menu item. If theeditor resource is not defined (default), then the name of the
editor is taken from the environment varial®@BITOR If there is NOEDITOR vari-
able, thenvi is used. The editor is invoked with the name of the current source file
as the sole argument. See “Debug Source Menu” on page 9-22.

editorTalksX

Setting this resource forue indicates that your editor can communicate with the X
Window System directly. The default value for this resourcEatse . See the
description of theSource->Edit menu item for further information. See “Debug
Source Menu” on page 9-22.

monitorWindowColumns

This resource controls the column width in the Monitor Window. The default value
for this resource is 80. See “Monitor Window - GUI” on page 9-47.

lockButtonSelectColor

This resource controls the selected color of the debug source lock button. See
“Debug Source Lock Button” on page 9-28. The default value for this resource is
#ff0000 (red) and it is set in théusr/lib/X11/app-defaults/Nview-

color file.

useKoalaTalk

Set this resource tBalse if you do not want NightView to communicate with
other tools. See “Using NightView with Other Tools” on page 3-32. The default
value of this resource iSrue .

Resource values are specified in the application resource files. See Appendix D [GUI

D-5

NightView User’s Guide

Font Selection

Color Selection

D-6

Customization] on page D-1.

NightView defines adefault fontto use for most of the textual display in the windows.
This proportional-width font is specified in thaisr/lib/X11/app-defaults/

Nview resource file as the value of the standard MdiftList ~ resource. This font is
used by window components that do not have a font specified for them.

A few of the window components use fonts specified by NightStar font resources. These
fonts are specified in the same resource file as the default font. See “NightStar Font
Resources” on page D-3.

You can change the fonts used by NightView, and you can control whether or not you
use the NightStar fonts. See “Using NightStar Resources” on page D-2. You can, for

example, change the default font by setting the resodoctlist . Changing the
fontList line in yourNview file to:
*fontList: 9x15

causes NightView to use th8x15 font for most of the textual display.

Fonts can take up a lot of memory in your X server. If you are running low on server
memory, you might want to set up your resources so that you use fewer fonts.

NightView defines adefault colorto use for most of the window areas. This color is
specified in thdusr/lib/X11/app-defaults/Nview-color resource file as the
value of the standard X1background resource. This color is used by window
components that do not have a color specified for them.

A few of the window components use colors specified by NightStar color resources.
These colors are specified in the same resource file as the default color. See “NightStar
Color Resources” on page D-4.

You can change the colors used by NightView, and you can control whether or not you
use the NightStar colors. See “Using NightStar Resources” on page D-2.

NightView determines whether you are using a monochrome or color display and
automatically loads the appropriate NightView monochrome or color application defaults
file. This means that you do not have to specify an Xdtomization resource
explicitly. If you do specify this resource (using eitheplor or-mono for the value),
NightView still loads the appropriate application defaults file and uses its resource
values.

GUI Customization

Monochrome Display

The file /usr/lib/X11/app-defaults/Nview-mono has examples of
monochrome resource specifications that were chosen to help distinguish certain fields
using standard X Window System bitmaps.

If you want NightView to have white text on a black background, you can add these
resources to youxview-mono or Nview file.

*background: black *foreground: white

Color Display

The file /usr/lib/X11/app-defaults/Nview-color has examples of color
resource specifications. These resources include the default color and NightStar colors.
See “NightStar Color Resources” on page D-4. The colors in this file were chosen to
help distinguish certain fields and to emphasize areas that accept user input.

If you want to make changes to the colors, change your copy dfitiew-color file.

Window Geometry

If you want to specify window geometries for the individual NightView windows, then
you need to refer to the TopLevelShell widget for each window. See “Widget Hierarchy”
on page D-7. For example,

*globalWindowShell*geometry: +0+0
*dialogueWindowShell*geometry: -0+0
*DebugWindowShell*geometry: +0-0

would put the Global Window in the upper left corner, the Dialogue Window in the upper
right corner, and the Debug Window in the lower left corner.

Widget Hierarchy

Information about the widget hierarchy for the graphical user interface is useful for
modifying the behavior of NightView through the use of standard X11 or Motif
resources. You can get this information by usedjtres(1) . See the man page for
information aboueditres

The widget hierarchy specific to the Monitor Window requires additional explanation not
covered by the functionality o&ditres(1) . The items displayed in the Monitor
Window (in the graphical user interface) are composed of three label gadgets, one each
for the identifier, stale data indicator and value. These labels inherit attributes from their

D-7

NightView User’s Guide

parent (the monitorBulletinBoard). The names of the gadgets are "label", "status" and
"value".

The icons for the various stale data indicators may be changed by changing the resources
updatedStatusPixmap notExecutedStatusPixmap and
notSampledStatusPixmap

D-8

Implementation Overview

E
Implementation Overview

This section gives a very high-level description of how the debugger is implemented.

The user invokesiview . nview is a script that runs eithesnview or xnview .
snview implements the command-line and simple full-screen interfacesiew
implements the graphical user interface. (Users are discouraged from invarkireyv

or xnview directly.) The user interface programs deal with all aspects of the user inter-
face and with managing the symbolic debugging information from executable files. See
Chapter 6 [Invoking NightView] on page 6-1.

NightView runsNightView.p for each dialogue. If the dialogue is on the local
machine, then NightView communicates wilightView.p via a shared memory
region. There is one such shared memory region per invocation of NightView. See “Dia-
logues” on page 3-4. For remote dialogues, NightView establishes a socket connection
with NightView.p

NightView.p is responsible for controlling the user processes by some combination of
the/proc file system and the debug agent. See “Debugger Mechanisms” on page 3-15.

If the debug agent is used, it communicates WiightView.p via a shared memory
region. There is one of these shared memory regions for each process using a debug
agent. See “Debug Agent” on page 3-15.

Monitorpoints communicate withNightView.p via a shared memory region created in
your process. There is one shared memory region for each dialogue using monitorpoints.
See “Monitorpoints” on page 3-9. The shared memory region is placed in your process
somewhere in the ran@xa0000000 to 0xb0000000 , if there is space available in that
range. Otherwise, it is placed anywhere NightView can find space.

Each dialogue runs a shell and controls it usipgpc . This is not to get control of the

shell, but so that the debugger is notified of the shell's children, which are the processes
to be debugged. The shell runs at a pseudo-terminal controlled by the debugger, so that
the debugger can capture the program 1/O.

Eventpoints are implemented by replacing the instruction at the target address by a
branch to a patch area. The patch area contains instructions to implement the particular
eventpoint, emulate the replaced instruction, and return to the target address.

Space for a patch area is acquired by usimgapor by creating a shared memory region

in the process's address space. The debugger usually creates one data patch area, one text
patch area, and one or two eventpoint patch areas. The user can adjust the sizes of the
patch areas. See “set-patch-area-size” on page 7-50. Each region is only created in the
process if necessary.

Eventpoint patch areas must be within 2**25 bytes of the eventpoint target address. Due
to the small amount of memory covered, a complex method is used to determine where
the eventpoint patch areas are placed, in order to cover as much of the code space as
possible without overlapping the user code. The statically-linked portion of the program
usually begins at 0x10000000, so an eventpoint patch area is placed at (0x12000000-

E-1

NightView User’s Guide

E-2

(eventpoint patch area size)), if possible. If that address space is already occupied,
NightView attempts to place the region somewhere within the range 0x10000000 -
0x12000000.

For the dynamically-linked portion of the program, eventpoint patch areas may be placed
at (Oxb0000000-(eventpoint patch area size)) and at (0xb4000000-(2*(eventpoint patch
area size))). Other eventpoint patch areas may be created for some programs. The data
patch area is placed somewhere in the range 0xa0000000 to 0xb00000QO, if space is
available; otherwise it is placed anywhere NightView can find room. The text patch area

is placed in a manner similar to the data patch area.

You can see where NightView has placed patch areas witmfbememory command
(see “info memory” on page 7-122).

The user process is sometimes forced to execute code on behalf of the debugger. This is
how function calls work in evaluated expressions, and it is also used to do some of the
housekeeping chores, e.g., creating memory regions.

Performance Notes

F
Performance Notes

Debug Agent Performance

The performance of the debug agent (see “Debug Agent” on page 3-15) is affected by the
operations it is asked to perform, and by whether NightView is able to tell whether the
memory locations accessed by such operations are valid or not. Reading from or writing
to memory locations that NightView already knows are valid addresses takes much less
time than if the locations are not known to NightView. (Some examples of locations not
known to NightView are addresses in the heap and stack and addresses in shared-memory
regions your program attaches to.)

Writing to memory that contains executable instructions is more expensive than other
forms of reads or writes. You should be aware that NightView must modify the
executable instructions when it creates or deletes an eventpoint. See “Eventpoints” on
page 3-8.

The effect of debug-agent calls on the performance of the debugged program has been
measured on a NightHaWki800 system running CX/UX 7.1. All pages of the debugged
program were locked in memory, and the program was isolatedceudrom which all
interrupts were excluded; the program was also running at the highest possible priority.
Various statistics from this measurement, separated according to the types of operation
performed, are set forth below. Times are approximate and may vary under different
circumstances.

Calls to the agent when there is nothing to do:
Maximum
278 microseconds per call
Minimum
35 microseconds per call
Average
38 microseconds per call

Calls to agent when it performs only reads and writes of data (maximum of 160 bytes per
operation):

Maximum
1194 microseconds per call

Calls to agent when it performs a mix of operations, including writes to executable

F-1

NightView User’s Guide

instructions:
Maximum

1816 microseconds per call

F-2

Tutorial Files

G
Tutorial Files

The following sections show source listings for the files used in the tutorials. These files
all reside under théusr/lib/NightView/Tutorial directory.

C Files
msg.h
1 #include <stdio.h>
2 #include <sys/types.h>
3 #include <signal.h>
main.c

1 #include "msg.h"

2

3 /* This program spawns a child process and sends

4 * signals from the parent to the child.

5 *

6 */

7

8 main()

9

10 int total_sig;

11 pid_t pid;

12 char *tracefile = "msg_file";

13 extern void parent_routine();

14 extern void child_routine();

15 extern void signal_handler();

16

17 signal(SIGUSR1, signal_handler);

18 printf("How many signals should the parent send
the child?\n");

19 scanf("%d", &total_sig);

20 pid = fork();

21

22 if(pid == 0)

23 {

24 I* It's the child */

25 child_routine(total_sig);

G-1

NightView User’s Guide

26 }
27
28 else
29 {
30 [* It's the parent */
31 parent_routine(pid, total_sig);
32 }
33
34 exit(0);
35 }
parent.c

1 #include "msg.h"
2
3 /[Every time the parent sends the child a signal,
4 * the parent writes a message.
5 */
6
7 void parent_routine(child_pid, total sig)
8 pid_t child_pid;
9 int total_sig;
10 {
11 int isec = 2;
12 int sig_ct;
13
14 for(sig_ct = 1; sig_ct <= total_sig; ++sig_ct)
15 {
16 printf("%d. Parent sleeping for %d

seconds\n", sig_ct, isec);
17 sleep(isec);
18 kill(child_pid, SIGUSR1);
19 }
20 }

child.c

1 #include "msg.h"
2
3 /* Every time the child receives a signal from
4 * the parent, the child writes a message.
5 */
6
7 int sig_ct_child = 0;
8
9 void child_routine(total_sig)
10 int total_sig;

G-2

Fortran Files

msg.i

main.f

Tutorial Files

11 {

12 extern void signal_handler();

13

14 signal(SIGUSR1, signal_handler);

15

16 while(sig_ct_child < total_sig)

17 {

18 pause();

19 printf("Child got ordinal signal #%d\n",
sig_ct_child);

20 }

21}

22

23

24

25 /[Count how many signals have been received */

26

27 void signal_handler(sig_num)

28 int sig_num;

29 {

30 signal(SIGUSR1, signal_handler);

31 ++sig_ct_child;

32 }

1 C Constants for main.f, parentf, and child.f

2

3 integer SIGUSR1

4 parameter (SIGUSR1=30)

1 C This program spawns a child process and sends

2 C signals from the parent to the child.

3 C

4

5 program main

6 common /msg_comm/ total sig

7 integer total_sig

8 integer pid

9 integer fork

10 character *8 tracefile

11 external parent_routine

12 external child_routine

G-3

NightView User’s Guide

13
14 tracefile = "msg_file"
15 write(6,*) "How many signals should the
parent send the child?"
16 read(5,*) total_sig
17 pid = fork()
18
19 if(pid .eq. 0) then
20 C It's the child
21 call child_routine()
22 else
23 C It's the parent
24 call parent_routine(pid)
25 end if
26
27 call exit
28 end
parent.f
1 C Every time the parent sends the child a signal,
2 C the parent writes a message.
3
4 subroutine parent_routine(child_pid)
5 common /msg_comm/ total_sig
6 integer child_pid
7 integer total_sig
8 integer isec
9 integer ireturn
10 integer sig_ct
11 integer kill
12 include "msg.i"
13 data isec/2/
14
15 do 10 sig_ct = 1, total_sig
16 write(6,*) sig_ct, ". Parent sleeping
for", isec, "seconds"
17 call sleep(isec)
18 ireturn = Kkill(child_pid, SIGUSR1)
19 10 continue
20
21 return
22 end
child.f
1 C Every time the child receives a signal from

G-4

Ada Files

main.a

©CoOo~NOOUPA~,WN

10
11
12
13
14
15
16
17

18
19
20
21
1)
22
sig_ct_child
23
24
25
26
27
28
29

30 C

31
32
33
34
35
36
37
38
39

Tutorial Files

the parent, the child writes a message

subroutine child_routine()

common /msg_comm/ total_sig
common /sig_comm/ sig_ct_child
integer total_sig

integer sig_ct_child

integer ireturn

integer csignal

cexternal pause

integer pause

external signal_handler

integer signal_handler

include "msg.i"

ireturn = csignal(SIGUSR1, signal_handler, -1

while(sig_ct_child .It. total_sig)
ireturn = pause()
ireturn = csignal(SIGUSR1, signal_handler,

write(6,*) "Child got ordinal signal #",
end while

return
end

Count how many signals have been received

integer function signal_handler()
common /sig_comm/ sig_ct_child
integer sig_ct_child

data sig_ct_child /0/

sig_ct_child = sig_ct _child + 1
return
end

-- This program spawns a child process and sends
-- signals from the parent to the child

with child_routine;

G-5

NightView User’s Guide

5 with parent_routine;

6 with text io;

7 with posix_1003 1;

8 procedure main is

9

10 pid . posix_1003_1.pid_t;

11 total_sig : integer;

12 tracefile : constant string := "msg_file";

13 buffer . string (1..80) ;

14 last : natural ;

15

16 begin

17

18 text_io.put_line("How many signals should the
parent send the child?");

19 text_io.get_line (buffer, last) ;

20 total_sig := integer'value(buffer(1..last)) ;

21 pid := posix_1003_1.fork;

22

23 if (pid = 0) then

24 -- It's the child

25 child_routine(total_sig);

26 else

27 - It's the parent

28 parent_routine(pid, total_sig);

29 end fif;

30

31 end main;

parent.a

-- Every time the parent sends the child a signal,
-- the parent writes a message.

with posix_1003 1;

with text_io;

procedure parent_routine(child_pid :
posix_1003_1.pid_t;total_sig : integer) is

OO, WN PP

7

8 isec . integer = 2;

9 sig_ct . integer = 1;

10 stat . integer;

11

12 begin

13

14 while sig_ct <= total_sig loop

15 text_io.put_line(integerimage(sig_ct) & "
Parent sleeping for "

16 & integer'image(isec) & " seconds");

17 delay duration(isec);

G-6

child.a

Tutorial Files

18 stat := posix_1003_1.kill(child_pid,
posix_1003_1.SIGUSR1);

19 sig ct := sig_ct + 1;

20 end loop;

21

22 end parent_routine;

1 - Every time the child receives a signal from
2 -- the parent, the child writes a message.
3

4 package child_signal_handler is

5

6 sig_ct_child . integer;

7

8 procedure signal_handler;

9

10 end child_signal_handler;

11

12 package body child_signal_handler is

13

14 procedure signal_handler is

15 begin

16 sig_ct_child := sig_ct_child + 1;
17 end signal_handler;

18

19 end child_signal_handler;

20

21 with system;

22 with posix_1003_1;

23 with text io;

24 with child_signal_handler;

25

26 procedure child_routine(total_sig : integer) is

27 -

28 act : posix_1003_1.sigaction_t;

29 stuff : integer;

30 -

31 begin

32 -

33 act.sa_handler :=
child_signal_handler.signal_handler'address;

34 stuff :=
posix_1003_1.sigemptyset(act.sa_mask’'address);

35 act.sa_flags := 0;

36 child_signal_handler.sig_ct_child := 0;

37 stuff :=
posix_1003_1.sigaction(posix_1003_1.SIGUSR1, act'address);

38 while child_signal_handler.sig_ct_child <

total_sig loop

G-7

NightView User’s Guide

39 stuff :=
posix_1003_1.sigsuspend(act.sa_mask’'address);

40 text_io.put_line("Child got ordinal signal #"
&

41
integer'image(child_signal_handler.sig_ct_child));

42 end loop;

43 -

44 end child_routine;

45

G-8

Reporting Bugs

H
Reporting Bugs

This section describes how to report bugs in NightView. It is important to report
problems, otherwise we might never know about them. You can report a problem by
calling the Concurrent Software Support Center. For more information, see the section
Direct Software Suppoih the release notes for the current release.

It is also important to report a problem in a way that helps us understand and reproduce
the problem.

Here is a list of things you should tell us in a problem report.

What version of NightView are you using? You can get this by running
nview -v or by activatingOn Version in theHelp menu in thesul.

What type of machine are you running on, and what is the version of the
operating system? Use the commaméme -a to get this information.

Are you using thesul, the simple-screen interface, or the command line
interface? Sometimes this is not obvious from the description of the prob-
lem.

Try to be very explicit about what you see happen when the problem
occurs. Do you get any error messages? Exactly what incorrect behavior
do you see? How will we know when we have reproduced the problem?

Try to isolate the problem to a small test program and a small series of
actions in the debugger. This is not always possible, but to the extent that
you can isolate the problem, that will help us reproduce and fix it.

Be explicit about exactly how to reproduce the problem. Try not to leave
out any facts, even if you think you know the cause of the problem.

H-1

NightView User’s Guide

H-2

accelerator

Ada task

agentpoint

anchored match

application

application resource

attaching

breakpoint

Glossary

This glossary defines terms used in NightView. Termgatics are defined here.

A special key used to select a menu item quickly in the graphical user interface. See also
mnemonic See “Keys” on page 9-10.

Ada tasks are entities whose executions proceed in parallel. Different tasks proceed inde-
pendently, except at points where they synchronize.

A call to thedebug agen{see “Debug Agent” on page 3-15) inserted by NightView at
your direction. You can set an agentpoint with #gentpoint command. See “agent-
point” on page 7-86. Agentpoints may be conditional.

The entire string must match the regular expression. Put another Wag,implied at the
beginning of the regular expression, anfl @ implied at the end of the regular expression.
See “Regular Expressions” on page 7-12.

A group of related processes. The processes may be running the same program or differ-
ent programs.

Application resources are application-specific resources defined for an X11 or Motif
application. They allow you to customize the appearance or behavior of the application.
Application resources affect the entire application. See “Application Resources” on page
D-1.

Attaching to a process means that the debugger will have control over it. This is how you
debug processes that already exist. See “attach” on page 7-32.

A breakpoint is a place in your program where execution will stop. You can set a break-
point with thebreakpoint command. See “Breakpoints” on page 3-9. Breakpoints

Glossary-1

NightView User’s Guide

breakpoint commands

checkpoint

child process

command history

command-line interface

command stream

conditional breakpoint

context

Glossary-2

may be conditional, seeonditional breakpoint Breakpoints may have debugger com-
mands associated with them, dweakpoint commands

A set of debugger commands to be executed when a breakpoint is hibré&dgoint

A checkpoint saves information about the eventpoints, signal disposition, and other infor-
mation, for a program. This information is used when a programessarted See
“Restarting a Program” on page 3-11.

When a procesforks, a new process is created that looks just like the old process. The
new process is called a child process and the old process is called the parent process. A
process may have many child processes, but only one parent process. You can control
whether the child process is debugged with sle¢-children command. See “set-
children” on page 7-41.

NightView keeps a history of all the commands you enter. You can retreive commands,
edit them, and re-enter them. See “Command History” on page 3-30.

A command-line interface deals with only one line at a time. This kind of interface can be
used from a terminal or from other programs that expect simple behavior, such as a shell
running in emacs. Contrast this witifal-screen interfacend agraphical user interface

See Chapter 7 [Command-Line Interface] on page 7-1.

A command stream is a set of commands executed sequentially by NightView. The com-
mands attached to a breakpoint form a command stream, as do the commands you type as
input to NightView. Execution of commands in one command stream may be interleaved
with the execution of commands from another command stream. See “Command
Streams” on page 3-27.

A breakpoint may have a language expression associated with it. The breakpoint is ""hit”
only if the expression evaluates teUE when the breakpoint is encountered. ®eeak-
point.

Context refers to the information the debugger uses to determine how to evaluate an
expression. The main components of the context ar@tbgram counterwhich deter-
mines thescope and thestack Context determines the language (i.e., Ada, C, C++ or
Fortran) as well as the type and location of variables in the program. NightView allows

convenience variables

core file

crossing count

current frame

Glossary

you to specify the context to be used in interpreting an expression. See “Context” on page
3-22.

A convenience variable is a variable maintained by the debugger to hold the value of an
expression. The type of a convenience variable is determined by the type of the expres-
sion assigned to it. See “Convenience Variables” on page 3-29.

A core file is a snapshot of a process’s memory created by the operating system when the
process is aborted. You can examine this process state using NightView. See “Core
Files” on page 3-4.

A crossing count is the number of times program execution has crossed an eventpoint
since the program has started execution. This count is updated even if the ignore count or
condition was not satisfied. The crossing count is not updated if the eventpoint is dis-
abled.

The current frame is one of the frames on the stack of a stopped process. It is often the
same as theurrently executing framebut other frames can be selected using upe

down, andframe commands. The current frame is used to determinectimgextfor
evaluating an expression. See “Current Frame” on page 3-23.

currently executing frame

debugger

debug agent

debug session

The currently executing frame is the stack frame associated with the most recently called
routine in a stopped process. Contrast this withrent frame

A debugger is a tool to help you debug programs. A debugger lets you control the execu-
tion of your program and look at your program’s memory.

A debug agent is a module supplied with NightView that enables debugging while your
process is running. The debug agent communicates with NightView through shared mem-
ory. See “Debug Agent” on page 3-15.

A debug session is one invocation of NightView; it lasts until you exit from the debugger.
See Chapter 6 [Invoking NightView] on page 6-1. See “Quitting NightView” on page
7-17.

Glossary-3

NightView User’s Guide

Debug Window

default color

default font

detaching

dialogue

Dialogue Window

disassembly

display item

DWARF

Glossary-4

In the graphical user interface, a Debug Window allows you to manipulate and debug one
or more processes. See afgocess See “Debug Window” on page 9-20.

The default color is specified by the XHackground resource and applies only to the
graphical user interface. See “Color Selection” on page D-6.

The default font is specified by the MotibntList resource and applies only to the
graphical user interface. See “Font Selection” on page D-6.

Detaching from a process means that the debugger no longer has control over that process
and any future children that are created by that process. The debugger still has control
over previously created children. See “detach” on page 7-32.

NightView provides dialogues as a means of starting processes, via a shell, and communi-
cating with those processes. See “Dialogues” on page 3-4. Seeeaiste dialogue

In the graphical user interface, a Dialogue Window provides you with a way to interact
with a NightView dialogue. See alstialogue See “Dialogue Window” on page 9-16.

A symbolic representation of the raw machine language that makes up your program. To
disassemble part of your program, usexheommand with theé format. See “X” on page
7-67.

A display item is an expression or memory location whose value or contents are to be
printed out whenever the associated process stops. NightView assigns a unique number to
each display item in each process. See “display” on page 7-71 and “info display” on page
7-120.

DWARF is the standard format for symbolic debugging information used ®sithfiles.
SeeELF

ELF

event-map file

eventpoint

eventpoint modifier

exception

family

focus

fork

frame

Glossary

Executable and Linking Format. This is a standard for the format and contents of an exe-
cutable file. It also determines the form and content of information about your program
available to the debugger.

An event-map file lets you associate or map symbuohce-event tagand numeridrace-
eventiDs. This file appears on th@race invocation line when performindlightTrace
tracing. Sedrace.

An eventpoint is a generic name given to the various kinds of modifications NightView
can insert at a particular location of a process. The different kinds of eventpoints are:
breakpoint monitorpoint tracepoint patchpoint andagentpoint See “Eventpoints” on
page 3-8.

An eventpoint modifier modifies the meaning of an eventpoint command. The only event-
point modifier is/disabled . The modifier/disabled tells NightView to create the
eventpoint, but leave it disabled initially. See “Eventpoint Modifiers” on page 7-77.

An Ada exception is an error or other exceptional situation that arises during program exe-
cution. Normal program execution is abandoned, and special actions are executed. Exe-
cuting these actions is called handling the exception. An exception can also be caused by a
raise statement. When an exception arises, control can be transferred to a user written han-
dler at the end of a block statement, body of a subprogram, package or task unit. If a han-
dler is not present in the frame of context in which the exception arises, execution of this
sequence of statements is abandoned. The exception will be propagated to the innermost
enclosing frame of context if possible. See “handle” on page 7-102. See “info exception”
on page 7-125.

A group of related processes. See “family” on page 7-40.

Seekeyboard focus

Create a new process. The debugger informs you when your process forkilSqeo-
cess

Seestack frame

Glossary-5

NightView User’s Guide

full-screen interface

Global Window

graphical user interface

group process mode

GUI

Help Window

hit a breakpoint

hit an eventpoint

Glossary-6

A full-screen interface uses the capabilities of a terminal to control the display of informa-
tion on the entire screen, rather than just writing to the terminal one line at a time. Contrast
this with acommand-line interfacand agraphical user interface See Chapter 8 [Simple
Full-Screen Interface] on page 8-1.

In the graphical user interface, the Global Window shows all of NightView’s output mes-
sages and allows you to control the debugger if all other windows are closed. See “Global
Window” on page 9-47.

A graphical user interface may be used on a graphics display. This kind of display allows
much more flexibility and functionality than a text display. Contrast this witlommand-

line interfaceand afull-screen interface See Chapter 9 [Graphical User Interface] on
page 9-1.

In the graphical user interface, a Debug Window can operate in group process mode. This
means that you can issue commands that apply to all the processes in the Debug Window.
See als®ebug WindowSee “Group Process Mode” on page 9-14.

A graphical user interface

In the graphical user interface, the Help Window displays NightView’s online help infor-
mation. You can choose to look at any part of thightView User’s Guide See also
online help systemSee “Help Window” on page 9-49.

A breakpoint is hit when execution reaches the breakpoint location and the ignore count
and conditions, if any, are satisfied. Thus, hitting a breakpoint stops the process. See
“Breakpoints” on page 3-9.

An eventpoint is hit when execution reaches the eventpoint location and the ignore count
and conditions, if any, are satisfied. Thus, hitting an eventpoint causes that eventpoint to
perform its specified action; e.g., a breakpoint stops the process, a monitorpoint evaluates
its expressions and saves their values, a tracepoint logs a trace event, and so on. See
eventpointbreakpoinf monitorpoint tracepoint

ignore count

initialization file

inline subprogram

inline interest level

interest level

interest level threshold

keyboard focus

macro

Glossary

An ignore count causes NightView to skip an eventpoint the gexnttimes that execu-
tion reaches the eventpoint. You use theore command to attach an ignore count to
an eventpoint. See “ignore” on page 7-91.

An initialization file is a file containing NightView commands that are executed before
NightView reads commands from standard input. NightView has a default initialization
file, and you can specify others on the NightView invocation line. See “Initialization
Files” on page 3-30.

A subprogram that is expanded directly into the calling program. See “Inline Subpro-
grams” on page 3-24.

The level that determines if any inline subprograms are interesting. You may sgéan
est levelfor individual inline subprograms to override this level. See “Inline Subpro-
grams” on page 3-24. You can change or query this level withritegest command.
See “interest” on page 7-51.

Each subprogram has an associated interest level. NightView compares the interest level
to theinterest level thresholtb determine if the subprogram is interesting. NightView
generally avoids showing you uninteresting subprograms. See “Interesting Subprograms”
on page 3-24. You can change or query the interest level witinteeest command.

See “interest” on page 7-51.

Each process has an interest level threshold. lfrtherest levelof a subprogram is less
than the interest level threshold, the subprogram is considered to be uninteresting. See
“Interesting Subprograms” on page 3-24.

The keyboard focus determines which field receives keyboard input in the graphical user
interface. See “Keyboard Focus” on page 9-10.

A macro is a hamed set of text, possibly with arguments, that can be substituted in a
NightView command by referencing the name. This is a means of extending the facilities
provided by NightView. See “Defining and Using Macros” on page 7-130.

Glossary7

NightView User’s Guide

mnemonic

monitorpoint

NightTrace

NightView

online help system

overloading

patch

patch area

patchpoint

Glossary-8

A mnemonic is a way of selecting a menu or a menu item quickly in the graphical user
interface. See alsaccelerator See “Keys” on page 9-10.

A monitorpoint is a location in a debugged process where one or more expressions are
evaluated and the values saved. The saved values are displayed periodically by Night-
View. Monitorpoints thus provide a means of viewing program data while the program is
executing. See “Monitorpoints” on page 3-9 and “monitorpoint” on page 7-83.

An interactive debugging and performance analysis tool that lets you examine trace events
logged by user applications and the kernel. Saee See theNightTrace Manuafor
details.

A pretty good debugger.

All of the NightView User’s Guidés available to you, online, through NightView’s online
help system. In the graphical user interface, help information is displayed in the Help
Window. See alstielp Window See “help” on page 7-108. See “GUI Online Help” on
page 9-2.

Overloading means that more than one entity with the same name is visible at some point
in the program. See “Overloading” on page 3-21.

A patch is an expression (or a branch) inserted into a debugged process to alter its behav-
ior (usually to fix a bug). Sepatchpoint See “Patching” on page 3-9.

NightView creates regions, known as patch areas, in your process. This is where Night-
View puts code and data that is inserted into your process. See Appendix E [Implementa-
tion Overview] on page E-1. See “set-patch-area-size” on page 7-50.

A patchpoint is a location in a debugged process where a patch is insertegatSeeSee
“Patching” on page 3-9.

pattern

Glossary

A pattern is used in thdebug andnodebug commands to control which programs will
be debugged in a particuldialogue Patterns are similar to shell wildcard patterns. See
“debug” on page 7-20.

Principal Debug Window

PID

procedure

process

process state

program

program counter

qualifier

In the graphical user interface, this is the only Debug Window you see unless you decide
to create additional Debug Windows. It contains all processes that appear in a NightView
session. The Principal Debug Window remains available throughout the NightView ses-
sion. See alsaser-created Debug Windovsee “Debug Window Behavior” on page 9-12.

A process identifier. This is an integer from 1 to 30000 which uniquely identifies a pro-
cess on a particular system. In some situations, NightView may createrfalseoutside
the normal range, to identify false processes, e.qg., core files.

Seeroutine

The execution of a program. Many processes may be executing the same program. See
“Programs and Processes” on page 3-2.

A process state describes whether the process is actively executing and what you can do
with the process using NightView. The two most common process statesrar@gand
stopped See “Process States” on page 3-14.

A file containing instructions and data. A program is usually created withdfi® pro-
gram. An executing program representpracess See “Programs and Processes” on
page 3-2.

The program counter is a register that locates the instruction that is to be executed next.
See “Program Counter” on page 3-22.

A qualifier specifies the set of processes or dialogues that a command affects. See “Qual-
ifiers” on page 3-4.

Glossary-9

NightView User’s Guide

registers

remote dialogue

restarted

routine

scope

shell

signal

single process mode

stack

Glossary-10

Registers are special storage locations indhe for holding frequently accessed data. In
NightView, you can access most of these registers using specially-named convenience
variables. See “Predefined Convenience Variables” on page 7-6.

A remote dialogue is dialoguestarted on a system other than the one on which Night-
View was invoked. See “Remote Dialogues” on page 3-6.

When a program is run again in the same debug session, it is consideredetstdrged
Information from the most recewheckpoints applied to the process. See “Restarting a
Program” on page 3-11.

Routine is a generic term denoting a function or subroutine in a program. Different lan-
guages use different terms for this concept; other similar terms are subprogram and proce-
dure.

A scope is a section of your program where a particular set of variables can be referenced.
Scope forms a part of thepntext See “Scope” on page 3-22.

The shell is the program the system normally executes when you log in. There are several
varieties of shell: Bourne shell, C shell, and Korn shell are some examples. In NightView,
eachdialogueyou create executes an instance of your login shell.

A signal is a notification of some event to your process. This event may be external to
your process, or it may be the result of an erroneous action by the process itself. Night-
View allows you to control how signals are delivered to your process. See “Signals” on

page 3-10.

In the graphical user interface, the Debug Window can operate in single process mode.
This means that you can issue commands that apply only to the currently displayed pro-
cess in the Debug Window. See aBebug WindowSee “Single Process Mode” on page
9-13.

An area of memory used to hold local variables and return information for each active rou-
tine. The stack consists of a sequencestafck frames Calling a routine pushes a new

stack frame

stale data indicator

symbol file

thread

trace

trace-event ID

trace-event tag

tracepoint

Glossary

frame onto the stack; returning from the routine removes that frame from the stack. See
“Stack” on page 3-22.

A stack frame is a contiguous set of locations in the process’ stack that corresponds to the
execution of an active routine. The stack frame holds the local automatic variables of the
routine, and it also holds information needed to return to the calling routine. See “Stack”
on page 3-22.

A stale data indicator is a character or icon displayed with a monitored value to indicate
the validity and reliability of that value. Sewonitorpoint

An executable file containing symbolic debug information. Normally, the symbol file is
the same as the program’s executable file, but it may be different if, for example, you are
debugging a stripped program. See “symbol-file” on page 7-33.

Each instance of execution of a program contains one or more threads of execution. Some
programs have a single thread. Ada programs, through the use of tasking, have multiple
parallel threads. See “Multithreaded Programs” on page 3-32.

The collection of data produced by executitngcepointsin a process is called a trace.
SeeNightTrace

An integer that identifies &lightTracetrace event. User trace evens are in the range 0
through 4095, inclusive. Sevent-map fileandtrace-event tag

A symbolic name that identifiesMdightTracetrace event. It is mapped to a numetriace-
eventD in anevent-map file

A tracepoint is a call to one of thaetrace(3X) library routines for recording the time
when execution reached the tracepoint. You can insert a tracepoint in your source, or you
can use NightView to insert them after starting your process. See “Tracing” on page 3-10.

user-created Debug Window

In the graphical user interface, a user-created Debug Window initially contains processes
that are defined by you. This type of Debug Window can not be empty. When the last

Glossary-11

NightView User’s Guide

process in the window exits, this type of Debug Window is automatically closed by Night-
View. See alsd’rincipal Debug Window See “Debug Window Behavior” on page 9-12.

value history

The value history is a list of values you have printed in your NightView session. You can
view this list, and you can reference the values in other expressions. See “Value History”
on page 3-30.

Glossary-12

- (family
- (list

or name argument) 7-40, 7-77
argument) 7-58, 7-59

Symbols

I 1-3, 3-5, 4-11, 7-27, 7-30, 7-48, 7-134
lexit 7-23

(comment) 7-2

$ 7-4,7-50, 7-66

$ prompt 1-3, 2-3, 4-4,5-4

$$ 7-4

$_7-6

$_ 76

$cpec 3-22, 3-23, 7-7, 7-52, 7-63, 7-105, 7-106, 7-118,

7-119
$fp 7-7,7-105, 7-118
$pc 3-17, 3-22, 3-23, 7-7, 7-69, 7-106
$sp 7-7
& 3-20, 4-7,5-7,7-9, 7-30, 7-127
'‘body 7-9
'specification 7-9
(local) prompt 1-3, 4-4
* (source line decoration) 7-63
+ (list argument) 7-58, 7-59
. 7-12
-. (input terminator) 7-27, 7-48
.NightViewrc file 3-30, 7-22, 7-24, 7-25
.profile file 3-7
/disabled eventpoint modifier 7-77, Glossary-5
/etc/conf/sdevice.d/ipc file A-1
/proc 3-3, 3-6, 3-15, 3-17, 3-34, E-1
[Tutorial 4-3
Just/lib/NightView/Tutorial 5-3
{usr/lib/NightView- releaséReadyToDebug
1-3, 2-3,3-7,4-4,5-4
{usr/ucb/rsh 3-3
< (source line decoration) 7-63
= (list argument) 7-58
= (source line decoration) 7-62
= key 9-32
> prompt 7-2,7-84,7-88, 7-131
> (source line decoration) 7-62
@ (macro invocation) 7-133

Index

@ (source line decoration) 7-63
\ 7-70

\n 7-70

| (show argument) 7-29

A

A (source line decoration) 7-62
Abbreviations
b (breakpoint) 7-78
bt (backtrace) 7-64
¢ (continue) 7-94
command 7-1, 7-134
d (delete) 7-89
f (frame) 7-105
hold (mcontrol hold
i b (info breakpoint
I (list) 7-58
n (next) 7-97
ni (nexti) 7-99
p (print) 7-65
ptype (info declaration
g (quit) 7-17
release (mcontrol release) 7-85
representation (info representation
7-129
s (step) 7-96
si (stepi) 7-98
whatis (info whatis
x| (translate-object-file
Abnormal termination 7-34
Abort 3-26
Accelerator 9-10, 9-11, 9-14, Glossary-1
Ctrl+A 9-26
Ctrl+B 9-25
Ctrl+D 9-26
Ctrl+G 9-27
Ctrl+L 9-27
Ctrl+M 9-25
Ctrl+P 9-25
Ctrl+Q 9-21
Ctrl+S 9-26
Ctrl+T 9-25

) 7-85
) 7-113

) 7-129

) 7-128
) 7-21

)

Index-1

NightView User’s Guide

Ctrl+U 9-26
Access vector 3-33
Accessing files 3-1
Actual argument
macro 7-131, 7-133, 7-134
Ada iii, 3-18, 3-22, 3-31, 4-3, 4-10, 4-15, 4-17, 4-18,
4-19, 4-20, 4-21, 4-23, 4-24, 4-27, 4-30, 5-3,
5-10, 5-11, 5-13, 5-14, 5-17, 5-18, 5-20, 5-21,
5-24, 5-25, 5-26, 5-32, 7-44, 7-80, 7-93, 9-23,
9-37, Glossary-2
Ada elaboration 3-31
Ada exception 3-20, 7-103, 7-125, Glossary-5
Ada exception handling 3-31, 7-102, 7-105, 7-125
Ada expressions 3-18
Ada packages 3-31
Adatask 3-32,7-100, 7-107, Glossary-1, Glossary-11
Ada unit 7-9, 7-59, 7-103, 7-125, 7-127
Add mode 9-10
Address
printing 7-127
Addresses limits 7-120
printing 7-46
addr-expression7-69, 7-71
Agentpoint 3-8, 3-10, 3-15, 3-17, 7-32, 7-62, 7-76, 7-86,
Glossary-1, Glossary-5
changing 9-38
clearing 7-87
condition on 3-13, 7-88, 7-113, 7-118, 9-39
deleting 7-89, 9-41, 9-43
disabling 7-90, 9-39, 9-43
displaying 7-112, 7-117
enabling 7-91, 9-39, 9-43
hitting 7-118, 9-39
ignoring 3-13, 7-91, 7-113, 7-118, 9-39, Glossary-7
named 3-13, 7-77, 7-86, 9-39
saving 3-13
setting 7-74, 7-86, 9-38
state 7-118, 9-39
temporary 9-39
agentpoint 3-10, 3-15, 3-17, 7-86, 7-117
Agentpoint crossing count Glossary-3
Agentpoint Dialog Box 9-26, 9-38
Aggregate item 7-66, 7-120
Alt key 9-11
Anchored match 7-13,7-61, 7-120, 7-123,7-126, 7-127,
7-128, 7-129, 7-135, 9-23, 9-37, Glossary-1
Application 3-2, Glossary-1
Application resources D-1, D-5, Glossary-1

apply on dialogue 7-24, 7-25
apply on program 7-38
Argument

actual 7-131

command 7-1
macro 7-131, 7-133

Index-2

printing 7-122, 7-126
Array 7-66, 7-120
printing 7-46
Array slices 3-20
Assignment 3-18, 7-80
attach 3-3, 3-33, 7-32, 7-42
Attaching 3-3, 3-33, 3-34, 7-32, 9-30, Glossary-1
Attaching commands to a dialogue 7-24
Attaching commands to a program 7-36, 7-39

b (breakpoint) 1-4,2-5,4-9, 7-78
B (source line decoration) 7-62
b key 9-32
Background process 7-110
background resource D-4, D-7
Backspace key 9-6
backtrace 1-5, 2-6, 3-22, 4-18, 5-18, 7-5, 7-64,
7-105, 7-106, 7-108
Blank line 7-15, 7-59
Body
macro 3-28, 7-131, 7-135
boldFontList resource D-3
Branch instruction 7-80, 7-93
Breakpoint 3-8, 3-9, 3-14, 3-33, 4-15, 5-14, 7-62, 7-63,
7-76, 7-81, 7-96, 7-102, 9-30, 9-32, 9-33,
Glossary-1, Glossary-5
changing 9-38
clearing 7-87
commands on 3-13, 3-27, 3-29, 4-24, 5-26, 7-88,
7-113, 7-114, 9-40, Glossary-2
condition on 3-13, 4-23, 5-24, 7-79, 7-88, 7-113,
7-114, 9-39, Glossary-2
deleting 4-22,5-23, 7-32, 7-89, 9-41, 9-43
disabling 4-28, 5-30, 7-90, 9-39, 9-43
displaying 4-28, 5-31, 7-112, 7-113
enabling 7-91, 9-39, 9-43
hitting 3-14, 7-31, 7-71, 7-94, 7-95, 7-114, 9-39,
Glossary-6
ignoring 3-13, 4-23,5-25,7-79, 7-91, 7-113,7-114,
9-39, Glossary-7
named 3-13, 7-77,7-78, 7-92, 9-39
saving 3-13
setting 1-4, 2-5, 4-9, 4-23, 5-9, 5-24, 5-25, 7-74,
7-78,7-92,9-32, 9-33, 9-38
state 7-114, 9-39
temporary 7-92, 9-39
breakpoint 1-4, 2-5, 3-2, 3-4, 4-9, 4-23, 4-24, 7-78,
7-92,7-113, 9-31, 9-32, 9-33
Breakpoint button 5-9, 9-32, 9-33
Breakpoint crossing count Glossary-3

Breakpoint Dialog Box 5-24, 5-25, 5-26, 9-25, 9-33,
9-38
Browse selection policy 9-9, 9-35, 9-37
bt 1-5,2-6
bt (backtrace) 7-64
Buffered output 3-28
Building a program 1-2, 2-2, 4-2, 5-3
Busy feedback 9-6, D-4
Busy indication 9-6, D-4
Button
Breakpoint 5-9,9-32, 9-33
Cancel 2-3,5-33,9-9, 9-15, 9-19, 9-36, 9-37,
9-38, 9-41
Change... 5-26, 9-43
check 9-12, 9-26, 9-41
Check All 9-41
Clear 9-34
Clear All 9-41
Close 5-8,5-24,5-27, 5-31, 9-43
Delete 5-23,9-41, 9-43
Detach 9-19
dimmed 5-22, 9-32, 9-37, 9-41, 9-43
Disable 5-30
disabled 5-22,9-14, 9-32, 9-37, 9-41, 9-43
Dismiss 9-5
Filter 9-8, 9-9
Finish 9-33
Help 9-4,9-9, 9-15, 9-16, 9-19, 9-36, 9-37, 9-38,
9-41, 9-43
Interrupt 9-18, 9-34, 9-48
Kill 7-33,9-19
Next 5-11, 9-33
Nexti 9-33
OK 2-3, 2-7,5-16, 5-23, 5-24, 5-25, 5-27, 5-30,

5-35, 9-8, 9-9,9-15, 9-16, 9-19, 9-36, 9-37,

9-41
Print 2-6, 5-15, 5-20, 9-32, 9-33
radio 9-12, 9-14, 9-27, 9-40
Resume 2-6, 5-10, 5-12, 5-22, 5-28, 5-33, 9-32
Run to Here 9-31, 9-33
Search 5-16, 9-37
source lock 9-28
Step 5-17,9-32
Stepi 9-32
Stop 9-14,9-33
Switch To 5-7,5-13,9-13
toggle 9-12, 9-14, 9-26, 9-27, 9-40, 9-41
Update 9-42
Update List 9-42

Index

C

¢ (continue) 1-5,7-94
C language iii, 3-20, 3-22, 3-31, 3-34, 7-44,7-48, 7-65,
7-66, 7-70, 7-73, 7-80, 7-93, 7-127, 7-132,
Glossary-2
C string 3-34, 7-66
C++ iii, 3-20, 3-22, 3-31, 3-34, 7-44, 7-65, 7-80, 7-93,
7-132,9-23, 9-37, Glossary-2
Calling macros 7-133
Cancel button 2-3, 5-33, 9-9, 9-15, 9-19, 9-36, 9-37,
9-38,9-41
Cautions 3-26
cc option
-g 1-2,2-2,4-2,5-3
cd 7-56
Change... button 5-26, 9-43
Changing a breakpoint 9-38
Changing a monitorpoint 9-38
Changing a patchpoint 9-38
Changing a tracepoint 9-38
Changing an agentpoint 9-38
Changing an eventpoint 9-38
Changing eventpoints 5-26, 5-30, 9-38, 9-41, D-4
Character string 7-66, 7-120
printing 7-46
Check All button 9-41
Check button 9-12, 9-26, 9-41
Checkpoint 3-12, 3-13, 7-36, 7-39, Glossary-2,
Glossary-10
checkpoint 3-13, 7-39
Child process 3-2, 3-3, 4-1, 4-7, 4-14, 4-15, 5-1, 5-8,
5-13, 5-14, 7-21, 7-32, 7-42, Glossary-2
clear 7-76,7-87,7-89, 9-34
Clear All button 9-41
Clear button 9-34
Clearing agentpoints 7-87
Clearing breakpoints 7-87
Clearing eventpoints 7-87, 9-34
Clearing monitorpoints 7-87
Clearing patchpoints 7-87
Clearing terminal 7-109
Clearing tracepoints 7-87
Clicking
double 5-15, 5-20, 9-8, 9-37
Clicking on objects 5-2, 5-5, 5-8, 5-15, 5-23, 5-24, 5-25,
5-26, 5-29, 5-30, 5-32, 5-34, 9-1
Close button 5-8, 5-24, 5-27, 5-31, 9-43
Color
default D-4, D-6, D-7, Glossary-4
Color display 9-5, D-7
Color resources D-4, D-6
Combo boxes 9-5, 9-18, 9-35, 9-49

Index-3

NightView User’s Guide

Command abbreviations 7-1, 7-134
b (breakpoint) 7-78
bt (backtrace) 7-64
¢ (continue) 7-94
d (delete) 7-89
f (frame) 7-105
hold (mcontrol hold
i b (info breakpoint
| (list) 7-58
n (next) 7-97
ni (nexti) 7-99
p (print) 7-65
ptype (info declaration
g (quit) 7-17
release (mcontrol release) 7-85
representation (info representation)
7-129
s (step) 7-96
si (stepi) 7-98
whatis (info whatis
x| (translate-object-file
Command arguments 7-1
Command case 7-1
Command execution
delaying 7-111
Command file 7-110
Command history 3-30, 9-5
Command input 7-110, 7-111
Command prompt 4-4, 4-12
Command qualifier 3-4, 4-22,5-4,7-1, 7-10, 7-46, 9-18,
9-34, Glossary-9
Command repetition 4-14, 7-2, 7-15, 7-59
Command replacement 7-134
Command stream 3-27, 3-28, 3-30, 7-95, 7-96, 7-102,
7-110, 7-111, Glossary-2
event-driven 3-27
Command summary 5-5, 9-4, B-1
Command syntax 7-1
Command-line interface iii, 1-1, 3-26, 4-1, 4-3, 5-1, 5-4,
7-2,7-84,7-88, 7-103, 7-131, 8-1, 9-1, 9-18,
9-34, 9-48, 9-49, Glossary-2
Command-line user interface 7-109
Commands
I 7-27
agentpoint 7-86
apply on dialogue 7-25
apply on program 7-38
attach 7-32
backtrace 7-64
breakpoint 7-78
cd 7-56
checkpoint 7-39
clear 7-87
commands 7-88

) 7-85
) 7-113

) 7-129

) 7-128
) 7-21

Index-4

condition 7-88
continue 7-94
core-file 7-34
debug 7-20
define 7-130
delay 7-111
delete 7-89
detach 7-32
directory 7-60
disable 7-90
display 7-71
down 7-107
echo 7-70
enable 7-91
exec-file 7-35
family 7-40
finish 7-100
forward-search 7-61
frame 7-105
handle 7-102
help 7-108
ignore 7-91
info address
info agenpoint
info args 7-126
info breakpoint

7-127
7-117

7-113

info convenience 7-119
info declaration 7-129
info dialogue 7-123
info directories 7-119
info display 7-120

info eventpoint 7-112
info exception 7-125
info family 7-123

info files 7-129

info frame 7-118

info functions 7-127
info history 7-120

info limits 7-120

info line 7-129

info locals 7-126

info log 7-112

inffo macros 7-135

info memory 7-122

info monitorpoint 7-116
info name 7-123

info on dialogue 7-124
info on program 7-124

info on restart 7-124

info patchpoint 7-115

info process 7-122

info registers 7-120

info representation 7-128

info signal 7-121

info sources 7-127

info tracepoint 7-114
info types 7-128
info variables 7-126

info whatis 7-128
interest 7-51
jump 7-101

ki 7-33

list 7-58

load 7-74

login 7-18
logout 7-23
mcontrol 7-85
monitorpoint 7-83
mreserve 7-43
name 7-77

next 7-97

nexti 7-99
nodebug 7-20
notify 7-31

on dialogue 7-23
on program 7-36
on restart 7-38
output 7-70
patchpoint 7-79
print 7-65,7-73
pwd 7-56

quit 7-17
redisplay 7-73
refresh 7-109
resume 7-95

reverse-search 7-61
run 7-30

select-context 7-107
set 7-66

set-auto-frame 7-54

set-children 7-41
set-editor 7-55
set-exit 7-42
set-history 7-46
set-language 7-44
set-limits 7-46

set-local 7-50

set-log 7-44

set-notify 7-30
set-overload 7-54
set-patch-area-size 7-50
set-prompt 7-47

set-qualifier 7-46
set-restart 7-49

set-safety 7-49
set-search 7-54
set-show 7-28
set-terminator 7-48

Index

set-trace 7-81
shell 7-110
show 7-29
signal 7-101
source 7-110
step 7-96
stepi 7-98
stop 7-100
symbol-file 7-33
tbreak 7-92
tpatch 7-93
tracepoint 7-82
translate-object-file 7-21
undisplay 7-72
up 7-106
vector-set 7-75
X 7-67
commands 3-9, 4-24, 7-76, 7-88
Commands attached to a dialogue 7-24
Commands attached to a program 7-36, 7-39
Commands on breakpoint 3-13, 5-26, 7-78, 7-79, 7-88,
9-40, Glossary-2
Commands on eventpoint 9-40
Commands on monitorpoint 3-13, 7-83, 7-88, 9-40
Comments 7-2, 7-131
Compilation
by debugger 3-8, 3-29, 7-6
Compiling 1-2, 2-2, 3-10, 3-31, 4-2, 5-3
Condition
agentpoint 3-13, 7-113, 7-118, 9-39
breakpoint 3-13, 5-24, 7-113, 7-114, 9-39,
Glossary-2
eventpoint 3-8, 3-13, 7-6, 7-88, 7-92, 7-113, 9-39
monitorpoint 3-13, 7-113, 7-117, 9-39
patchpoint 3-13, 7-6, 7-113, 7-116, 9-39
tracepoint 3-13, 7-113, 7-115, 9-39
condition 7-76,7-81, 7-86, 7-88
Condition removal 7-89, 9-39
conditional-expressior8-20, 7-78, 7-82, 7-88, 7-92
Configuration
kernel A-1
Confirm Exit Dialog Box 9-14
Context 3-16, 3-21, 3-22, 3-31, 3-32, 7-5, 7-44, 7-59,
7-100, 7-122, 7-127, 7-128, 7-129, Glossary-2,
Glossary-5
Context-sensitive help 9-3
continue 1-5, 3-4, 3-11, 4-10, 4-15, 4-31, 7-94, 7-95,
7-96, 7-102
Continuing execution 1-5, 2-6, 3-32, 4-10, 4-15, 4-21,
4-31,5-10, 5-14, 5-22, 5-33, 7-94, 7-95, 7-100,
7-101, 7-108, 9-32
Convenience variable 3-29, 7-4, 7-6, 7-66, Glossary-3
global 3-29, 7-50, 7-119
predefined 3-23, 7-5, 7-6, 7-113, 7-114, 7-115,

Index-5

NightView User’s Guide

7-116, 7-117, 7-118, 7-120, 7-130
process local 3-29, 7-6, 7-50, 7-119

Core file 3-3, 3-4, 3-14, 6-2, 7-34, 7-129, 9-30,
Glossary-3

core-file 7-34, 7-56

cprs 9-7

CPU bias 7-19

CPU hang 3-34

Cross reference

help 5-5

Crossing count Glossary-3

Ctrl key 9-6, 9-11

Ctrl+/ key 9-9

Ctrl+\ key 9-9

Current frame 3-23, 7-97, 7-98, 7-99

Current source file 7-59, 7-61

Current stack frame 3-22, 3-23, 4-19, 4-20, 4-31, 5-19,
5-21, 5-33, 7-62, 7-78, 7-80, 7-82, 7-84, 7-86,
7-87,7-93, 7-100, 7-105, 7-107, 7-108, 7-118,
7-121, Glossary-3

Current working directory 7-56, 9-7

Currently displayed process 5-7

customization resource D-6, D-7

D

d (delete) 7-89
d key 9-31
Data definitions
global 7-74
static 7-74
Data type
printing 7-128
debug 3-2,3-5, 7-14, 7-20, 7-21, 7-123
Debug agent 3-6, 3-10, 3-15, 3-34, 7-86, A-2, F-1,
Glossary-1, Glossary-3
Debug command area 2-4, 2-6, 5-8, 5-9, 5-18, 5-19,
5-21, 5-27, 9-14, 9-34, 9-49, D-4
Debug command button area 5-17
Debug Eventpoint Dialog Boxes 9-38
DebugEventpoint menu 5-23, 5-24, 5-25, 5-26, 5-29,
5-30, 5-32, 9-24, 9-38, 9-41
Debug Eventpoint Summarize/Change Dialog Box
5-23, 5-26, 5-30, 5-32, 9-26
Debug File Selection Dialog Box 9-37
Debug group area 5-7, 5-11, 5-12, 5-13, 5-14, 5-17,
5-22, 5-28, 5-34, 9-13, 9-14, 9-26, 9-27, 9-32,
9-35
Debug Group Selection Dialog Box 9-36
DebugHelp menu 9-27
Debug identification area 2-3, 5-6, 5-13, 9-28
Debug information 4-3, 5-3, 7-33, 9-7

Index-6

Debuglinterrupt button 9-34
Debug menu bar 9-20
Debug message area 2-3, 2-6, 5-7, 5-8, 5-9, 5-10, 5-11,
5-12,5-13, 5-14, 5-15, 5-17, 5-18, 5-20, 5-21,
5-25, 5-27, 5-28, 5-30, 5-31, 5-34, 9-14, 9-28,
9-37,9-48, D-3, D-4
DebugNightView menu 2-7, 5-34, 9-20, 9-36
Debug qualifier area 5-7, 5-14, 9-14, 9-34
Debug session Glossary-3
Debug source display 2-3, 2-5, 2-6, 5-7, 5-10, 5-11,
5-14, 5-15, 5-16, 5-17, 5-20, 5-21, 5-24, 5-25,
5-26, 5-30, 9-22, 9-23, 9-24, 9-29, 9-30, 9-33,
9-37,9-38,9-42, D-3, D-4
Debug source file name 2-3, 5-7, 5-13, 5-20, 5-21, 5-34,
9-29
Debug source lock button 9-28
DebugSource menu 5-15, 9-22, 9-31, 9-32, 9-36, D-5
Debug Source Selection Dialog Box 9-23, 9-36
Debug status area 2-3, 5-7,5-11, 5-12, 5-14,5-17, 5-22,
5-28, 5-34, 9-29
Debug status message 9-28
Debug table 7-126, 7-127
DebugView menu 5-17, 5-19, 5-31, 5-33, 9-14, 9-26
Debug Window 2-3, 5-6, 5-9, 5-10, 5-11, 5-12, 5-14,
5-15, 5-17, 5-22, 5-23, 5-24, 5-28, 5-29, 9-1,
9-6, 9-11, 9-12, 9-13, 9-14, 9-16, 9-19, 9-20,
9-26, 9-27, 9-28, 9-29, 9-32, 9-34, 9-35, 9-36,
9-37,9-47, 9-48, 9-49, Glossary-4
Principal 5-6
user-created Glossary-11
Debugger 3-1, Glossary-3
gdb 1-1,1-4
NightView iii, 3-1
symbolic 3-1
Debugging
multiple processes 3-2
real-time 3-5
single process 3-2
Declaration
printing 7-129
Default color D-4, D-6, D-7, Glossary-4
Default font D-2, D-3, D-6, Glossary-4
define 7-130, 7-133
Defining a macro 7-131
delay 7-111
delete 4-22,7-76,7-87, 7-89
Delete button 5-23, 9-41, 9-43
Delete key 9-6
Deleting agentpoints 7-89, 9-41, 9-43
Deleting breakpoints 4-22, 5-23, 7-89, 9-41, 9-43
Deleting eventpoints 7-89, 9-41, 9-43
Deleting monitorpoints 7-89, 9-41, 9-43
Deleting patchpoints 7-89, 9-41, 9-43
Deleting tracepoints 7-89, 9-41, 9-43

Deselecting objects 9-9, 9-10
detach 7-21,7-23, 7-32,9-19, 9-22
Detach button 9-19

Detaching 3-2, 3-14, 7-17, 7-23, 7-32, 7-83, 9-19, 9-22,

Glossary-4
Dialog Box 2-3, 2-7,9-10, 9-19
Agentpoint 9-26, 9-38
Breakpoint 5-24, 5-25, 5-26, 9-25, 9-33, 9-38
Confirm Exit 9-14

Debug Eventpoint Summarize/Change 5-23, 5-26,

5-30, 5-32, 9-26
Debug File Selection 9-37
Debug Group Selection 9-36
Debug Source Selection 9-23, 9-36
Error 9-15, 9-16
Eventpoint 9-38
File Selection 9-7, 9-23
Monitorpoint 9-25, 9-38
Patchpoint 5-29, 9-25, 9-38
Program Arguments 9-19
Select a Function/Unit 5-16, 9-23, 9-37
Select a Source File 9-23, 9-37
Tracepoint 9-25, 9-38
Warning 5-23, 5-35, 9-5, 9-15, 9-17, 9-21, 9-22
Dialog Boxes
Debug Eventpoint 9-38
Dialogue 3-4, 3-5, 3-6, 3-15, 3-17, 4-4, 5-4, 5-7, 5-11,
5-12, 5-14,7-11,7-18, 7-19, 7-32, 7-124, 9-10,
9-21, 9-44, A-1, A-2, E-1, Glossary-4
commands on 7-24
local 3-5,7-1
local - withon dialogue
printing 7-123
remote 3-5, 3-6, 7-19, 9-21, 9-44, A-1
starting 7-18
terminating 7-23
Dialogue command area 5-5, 9-18, 9-34, D-4
DialogueDialogue menu 9-16
DialogueHelp menu 9-17
Dialogue /O 9-2
Dialogue I/O Area 3-5
Dialogue 1/O area 2-2, 2-3, 2-6, 5-4, 5-6, 5-11, 5-12,
5-28, 5-33, 9-17, 9-19, D-3, D-4
Dialogue identification area 9-17
Dialogue input 7-27, 7-30, 7-48
Dialoguelnterrupt button 9-18
Dialogue menu
Dialogue 9-16
Dialogue menu 9-16
Dialogue menu bar 9-16
Dialogue message area 5-5, 9-17, 9-48, D-3, D-4
Dialogue name 7-20
DialogueNightView menu 2-7, 9-16
Dialogue output 3-5, 7-27, 7-29

7-24,7-25

Index

Dialogue prompt 6-2
Dialogue qualifier area 5-4, 9-18
Dialogue shell 1-2, 2-2, 3-4, 3-5, 3-15, 5-6, 9-2, 9-17,
E-1
login 7-18
logout 7-23
Dialogue Window 2-3, 5-4, 5-7,5-11, 5-12, 5-14, 9-1,
9-6, 9-13, 9-16, 9-17, 9-18, 9-19, 9-20, 9-21,
9-34,9-47, 9-48, Glossary-4
Dimmed button 5-22, 9-32, 9-37, 9-41, 9-43
Dimmed label 9-38, 9-39
Dimmed menu item 9-21
Directory
current 7-56, 9-7
directory 3-13, 7-56, 7-59, 7-60
Directory searching 3-13, 7-59, 7-60, 7-119
disable 4-28, 7-76, 7-90
Disable button 5-30
Disabled button 5-22, 9-32, 9-37, 9-41, 9-43
Disabled menu item 9-21
Disabling a breakpoint 4-23, 4-28, 5-25, 5-30, 7-90,
7-91, 9-39, 9-43
Disabling a monitorpoint 7-91, 9-39, 9-43
Disabling a patchpoint 7-91, 9-39, 9-43
Disabling a tracepoint 7-91, 9-39, 9-43
Disabling an agentpoint 7-91, 9-39, 9-43
Disabling an eventpoint 7-90, 7-91, 9-39, 9-43
Disassembly 7-68, 7-97, 7-98, 7-99, Glossary-4
Dismiss button 9-5
Display
color 9-5, D-7
monochrome D-7
display 3-13, 4-25,5-27,7-6,7-71,7-72,7-73, 7-99,
7-120
Display Ada exception handling 7-125
Display addresses limits 7-46, 7-120
Display agentpoint 7-112, 7-117
Display arguments 7-122, 7-126
Display array 7-46
Display breakpoint 4-28, 5-31, 7-112, 7-113
Display checkpoint information 7-124
Display convenience variables 7-119
Display declaration 7-129
Display dialogue information 7-123
Displaydisplay variables 7-120
DISPLAY environment variable 6-3
Display eventpoint 4-28, 5-31, 7-112, 7-123
Display expression 7-120, 7-128
Display expression limits 7-120
Display family information 7-123
Display file names 7-129
Display function names 7-127
Display global variable 7-126
Display item Glossary-4

Index-7

NightView User’s Guide

Display line number 7-129
Display local variables 7-126
Display log file information 7-112
Display macro 7-135
Display monitorpoint 7-112, 7-116
Displayon program commands 7-124
Displayon restart commands 7-124
Display patchpoint 4-28, 5-31, 7-112, 7-115
Display process information 7-122
Display search path 7-119
Display source file 4-8, 4-10, 7-58
Display source file names 7-127
Display stack frame

all 4-18, 5-18, 7-64

one 7-118
Display string limits 7-46
Display tracepoint 7-112, 7-114
Display type 7-129
Display type information 7-128
Display value history 7-120

Display variable 1-5, 2-6, 3-13, 4-16, 4-20, 4-25, 5-15,

5-20, 5-27, 7-65, 7-129
Display variable address 7-127
displayGroupToggleButton
displayGroupToggleButton.set
distinctBackground resource D-4
distinctForeground resource D-4
Documentation

online 1-1,1-4, 2-1, 2-4, 4-5, 5-4, 7-108, 9-2,

Glossary-6, Glossary-8
Double clicking 5-15, 5-20, 9-8, 9-37
down 4-20, 5-21, 7-106, 7-107, 7-108, 9-31
DWARF 3-31, 7-44, Glossary-4
Dynamic linker 3-35

resource 9-13
resource 9-26

enable 7-76, 7-77,7-90, 7-91, 9-31, 9-33
Enabling a breakpoint 7-91, 9-39, 9-43
Enabling a monitorpoint 7-91, 9-39, 9-43
Enabling a patchpoint 7-91, 9-39, 9-43
Enabling a tracepoint 7-91, 9-39, 9-43
Enabling an agentpoint 7-91, 9-39, 9-43
Enabling an eventpoint 7-91, 9-39, 9-43
end define 7-131
End key 9-6, 9-11
end on dialogue 7-24
end on program 7-36
end on restart 7-39
Entry point 7-74
Environment variable
DISPLAY 6-3
EDITOR 8-2,9-24, D-5
NIGHTVIEW_ENV3-4, 3-5, 3-7
PATH 3-8
POWERWORKS_ELMHOST 6-3
SHELL 7-110
TERM 8-1
VISUAL 8-2
Error
abort 3-26
caution 3-26
warning 3-26
Error Dialog Box 9-15, 9-16
Error message 7-119, 9-6, 9-17, 9-28, 9-48

Errors 1-4, 2-4, 3-26, 3-31, 4-5, 5-5, 9-3, 9-15, 9-16,

Glossary-5
Esc key 9-6, 9-11
Evaluation of expressions 3-16, 7-66
Event notification 7-30, 7-32
Event-driven command streams 3-27

Dynamically loaded library 3-4, 3-17, 3-35, 3-36, 7-22, Event-map file 7-81, 7-82, Glossary-5
7-122 Eventpoint 3-8, 3-12,3-13,3-14, 3-34,7-12, 7-74, 7-76,
7-81, 7-90, 7-114, 7-115, 7-117, 9-24, 9-38,
9-41, Glossary-5
changing 9-38

E clearing 7-87,9-34
commands on 9-40
e key 9-32 conditionon 3-8, 3-13, 3-29, 7-6, 7-88, 7-92, 7-113,
echo 7-15,7-70,7-134 9-39
Editor deleting 7-89, 9-41, 9-43

emacs 7-55, 8-2
gmacs 7-55, 8-2
vi 7-55,8-2,9-24
EDITOR environment variable 8-2, 9-24, D-5
editor resource 9-23, D-5
editorTalksX resource 9-24, D-5
editres D-7
Elaboration 3-31
ELF 3-31, 7-60, Glossary-5
emacs editor 7-55, 8-2

disabling 7-90, 9-39, 9-43
displaying 4-28, 5-31, 7-112
enabling 7-91, 9-39, 9-43

hitting 7-113, 9-39, Glossary-6
ignoring 3-8, 3-13, 7-91, 7-113, 9-39
named 3-13, 9-39

naming 7-12, 7-77

printing 7-123

removing 7-87

saving 3-13

Index-8

setting 3-3, 9-38
state 7-112, 9-39
Eventpoint crossing count Glossary-3
Eventpoint Dialog Boxes 9-38, D-4
Eventpoint ID 9-38
Eventpoint menu
Debug 9-24, 9-38, 9-41
Eventpoint menu 9-24, 9-38, 9-41
Eventpoint modifier 7-77, Glossary-5
/disabled 7-77, Glossary-5
Eventpoint number 3-8, 9-38
Eventpoint state 9-41
Eventpoint summary 5-23, 5-26, 5-30, 5-32, 9-24, 9-26,
9-38, 9-41
Eventpoints
changing 5-26, 5-30, 9-38, 9-41, D-4
Event-triggered commands 7-24, 7-37
Exception 7-97, 7-98, 7-99, 7-100
Ada 3-20, 7-103, 7-125, Glossary-5
Exception handling 3-31, 7-102, 7-105, 7-125
saving 3-13
exec 3-13,4-7,5-8, 7-32, 7-36, 7-39, 7-42, 9-30
exec-file 3-8, 3-36, 7-22, 7-34, 7-35, 7-36, 7-56
Executable
stripped 7-22, 7-33
Executable and linking format Glossary-5
Executable file 3-1, 7-33, 7-34, 7-35, 7-126, 7-129
Execution
continuing 1-5, 2-6, 3-32, 4-10, 4-15, 4-21, 4-31,
5-10, 5-14, 5-22, 5-33, 7-94, 7-95, 7-100,
7-101, 7-108, 9-32
restarting 3-12, 3-13, 7-36, 7-39, 7-42, Glossary-2,
Glossary-10
resuming 1-5, 2-6, 4-10, 4-15, 4-21, 4-31, 5-10,
5-14, 5-22, 5-33, 7-94, 9-32
starting 1-2, 2-2, 3-12
stopping 1-4, 2-5, 3-32, 3-35, 4-9, 4-23, 5-9, 5-24,
5-25, 7-78
Exit messages 5-35, 9-17
Exiting 1-6, 2-7, 3-13, 4-32, 5-34, 7-17, 7-42
Explicit focus policy 9-10
Expression 3-22, 7-45
Ada 3-18
conditional 3-20, 4-23, 5-24,7-79, 7-82, 7-83
displaying 7-120
evaluation 3-16, 3-18, 7-66
floating-point 3-18
insertion 7-79, 7-93
language 7-71, 7-73, 7-80
logging 7-82, 9-40
memory address 7-71
patchpoint 7-82, 9-40
printing 1-5, 4-16, 4-20, 4-25, 5-15, 5-20, 5-27,
7-65, 7-71, 7-116, 7-128, 9-33

Index

regular 5-16, 7-12, 7-23, 7-54, 7-61, 7-120, 7-123,
7-126, 7-127, 7-128, 7-129, 7-135, 9-23,
9-37
regular examples 7-13
syntax 7-4
Expression Evaluation 3-21
Expression limits 7-120
Expressions
monitoring 7-6, 7-84
Extended selection policy 9-9, 9-19, 9-36, 9-43
External data definitions 7-74
External variable 7-106
printing 7-126

f (frame) 7-105
f key 9-31
F1key 9-2,9-3, 9-15, 9-16
fact program 1-1,2-1
Family 3-2, 3-14, 4-12, 4-14, 4-22, 7-10, 7-18, 7-40,
7-46,7-77,7-101, 7-123, Glossary-5
printing 7-123

family 4-12,4-14,7-34, 7-36, 7-40
FBS 3-16, 3-33

fbswait 3-16, 3-33

Feedback 9-6, D-4
feedbackBackground resource D-4

feedbackDoneBackground resource D-4
feedbackDoneForeground resource D-4
feedbackForeground resource D-4
feedbackNotDoneBackground resource D-4
feedbackNotDoneForeground resource D-4
File

.NightViewrc

.profile 3-7

/etc/conf/sdevice.d/ipc

commands 7-110

core 3-3, 3-4, 3-14, 6-2, 7-34, 7-129, 9-30,

Glossary-3

event-map 7-81, 7-82, Glossary-5

executable 3-1, 7-33, 7-34, 7-35, 7-126, 7-129

filter 9-8

initialization 6-2, 6-3, 7-110, Glossary-7

library 3-1

log 7-44,7-112

Nview D-1, D-7

Nview-color D-1, D-7

Nview-mono D-1, D-7

object 3-1, 3-10, 7-74

ReadyToDebug 1-3,2-3, 3-7, 4-4,5-4

source 3-1, 4-8, 4-10, 5-1, 5-7, 5-10, 5-11, 5-14,

3-30, 7-22, 7-24, 7-25

A-1

Index-9

NightView User’s Guide

5-15, 5-16, 5-17, 5-20, 5-21, 5-24, 5-25,
5-30, 7-58, 7-59, 7-60, 7-110, 7-119,
7-127, 7-130, 9-22, 9-23, 9-30
symbol 7-33, 7-35
trace event-map 7-81, 7-82, Glossary-5
File access 3-1
File name
printing 7-129
File Selection Dialog Box 9-7,9-23
Filter
file 9-8
Filter button 9-8, 9-9

finish 4-31, 7-100, 7-108, 9-30, 9-31, 9-33
Finish button 9-33
fixedFontList resource D-3
Floating-point expressions 3-18
Focus
keyboard 9-2, 9-5, 9-10, Glossary-5, Glossary-7
Focus policy
explicit 9-10
pointer 9-10
Font

default D-2, D-3, D-6, Glossary-4
fontList ~ resource D-6
Fonts D-3, D-6
forbid safety level 6-2, 7-17, 7-23, 7-33, 7-40, 7-49,
7-89, 7-90
foreground resource D-4, D-7
Forking 3-2, 3-3, 4-7, 4-14, 5-8, 5-13, 7-32, 9-29,
Glossary-5
Formal argument
macro 7-130, 7-133
Fortran iii, 3-8, 3-21, 3-22, 3-31, 4-1, 4-3, 4-15, 4-17,
4-18, 4-19, 4-20, 4-21, 4-23, 4-24, 4-27, 4-29,
5-1, 5-3, 5-10, 5-13, 5-17, 5-18, 5-20, 5-21,
5-24,5-25, 5-26, 5-32, 7-44, 7-65, 7-66, 7-80,
7-93, 7-132, Glossary-2
forward-search 7-13, 7-59, 7-61
Frame
displaying 7-118
stack 3-22, 3-23, 4-19, 4-20, 4-31, 5-19, 5-21, 5-33,
7-5,7-59, 7-62, 7-74, 7-78, 7-80, 7-82,
7-84, 7-86, 7-87, 7-93, 7-100, 7-105,
7-107, 7-108, 7-118, 7-121, 7-127,
Glossary-3, Glossary-5, Glossary-11
stack - printing 4-18, 5-18, 7-64
frame 3-23, 7-96, 7-100, 7-105, 7-108, 9-32
Frame pointer 7-7,7-105, 7-118

Full-screen user interface 7-109
Function 4-11, 4-16, 5-11, 5-16, 7-96, 7-97, 7-98, 7-99,
7-100, 7-119
static - location of 7-9
Function arguments
printing 7-126
Function name
list 7-127

G

-g option 1-2,2-2,4-2,5-3
gdb 1-1,1-4
Geometry
window D-7
geometry resource D-7
GID 3-33
Global command area 9-18, 9-34, 9-48, 9-49, D-4
Global data definitions 7-74
GlobalHelp menu 9-48
Globallnterrupt button 9-48
Global menu bar 9-47
Global message area D-3, D-4
GlobalNightView menu 9-47
Global output area 9-48
Global qualifier area 9-48
Global variable 3-16, 7-106
printing 7-126
Global Window 9-2, 9-6, 9-13, 9-16, 9-18, 9-20, 9-21,
9-34, 9-47, 9-48, 9-49, Glossary-6
gmacs editor 7-55, 8-2
Graphical user interface iii, 2-1, 3-26, 3-28, 6-1, 6-3,
7-1,7-33,7-103, 7-109, 9-1, 9-47, A-2, D-1,
Glossary-6
Group ID 3-33
Group process mode 5-16, 5-31, 9-12, 9-14, 9-20, 9-21,
9-22,9-27,9-28, 9-32, 9-34, 9-41, Glossary-6
GUI 2-1, 3-26, 3-28, 6-1, 6-3, 7-1, 7-33, 7-103, 9-1,
9-47, A-2, D-1, Glossary-6
Guide
command summary B-1

Frame zero 7-7,7-52,7-62, 7-101, 7-105, 7-107, 7-121h key 9-31

Frames
hidden 7-7,7-52, 7-62, 7-101
Frequency-Based Scheduler 3-16, 3-33
Full-screen interface iii, 1-1, 3-26, 6-2, 7-2, 7-84, 7-88,
7-110, 7-131, 8-1, 8-2, 9-1, Glossary-6

Index-10

handle 3-10, 3-11, 3-13, 3-31, 4-7, 5-9, 7-94, 7-102,
7-121
Help
context-sensitive 9-3
cross reference 5-5

help 1-1, 1-4,3-27, 4-5, 7-108, 9-2, 9-3, 9-5,
Glossary-6, Glossary-8

Help button 9-4,9-9, 9-15, 9-16, 9-19, 9-36, 9-37, 9-38,

9-41, 9-43
Help menu
Debug 9-27
Dialogue 9-17
Global 9-48

Help menu 2-1, 2-4, 5-4,5-5, 5-8, 9-2, 9-3, 9-17, 9-27,

9-48
Help system
movement 9-2, 9-49
Help Window 2-1, 2-4, 2-5, 5-5, 5-8, 9-2, 9-5, 9-17,
9-19, 9-28, 9-48, 9-49, D-3, D-4, Glossary-6
Help window
exiting 2-4, 2-5
Hidden frames 7-7, 7-52, 7-62, 7-101
Highlighting 9-9, 9-10, 9-15, 9-19, 9-35
History
command 3-30, 9-5

value 3-30, 4-16, 5-15, 7-4, 7-46, 7-66, 7-70, 7-120,

Glossary-12
Hit a breakpoint 9-39
Hit a monitorpoint 9-39
Hit a patchpoint 9-39
Hit a tracepoint 9-39
Hit an agentpoint 9-39
Hit an eventpoint 9-39
hold (mcontrol hold
Hollerith data 7-65
Home key 9-5,9-11

) 7-85

i b (info breakpoint
/O 3-5

Iconifying windows 9-2
ID

) 7-113

group 3-33
process 3-3, 3-5, 3-14, 4-7,5-7, 5-13, 7-11,
Glossary-9
trace-event 7-81, 7-82, 9-40, Glossary-11
user 3-33
idtune utility A-1
ignore 4-23,7-76, 7-81, 7-86, 7-91, Glossary-7
Ignore count Glossary-7
Ignoring agentpoints 3-13, 7-91, 7-113, 7-118, 9-39,
Glossary-7

Index

Glossary-7
Ignoring patchpoints 3-13, 7-81, 7-86, 7-91, 7-113,
7-116, 9-39, Glossary-7
Ignoring tracepoints 3-13, 7-83, 7-91, 7-113, 7-115,
9-39, Glossary-7
inetd A-1
info address
info agentpoint
info args 7-126
info breakpoint

7-127
7-112, 7-117

7-112,7-113

info convenience 7-119

info declaration 7-129

info dialogue 7-20, 7-21, 7-51, 7-123
info directories 7-60, 7-119

7-72,7-73,7-120
4-28, 7-90, 7-112

info display
info eventpoint

info exception 7-105, 7-125
info family 7-123

info files 7-129

info frame 7-6,7-118

info functions 3-31, 7-127
info history 7-120

info limits 7-47,7-120
info line 7-59, 7-129

info locals 7-126

info log 7-112

info macros 7-135

info memory 7-51, 7-122

info monitorpoint 7-112,7-116

info name 7-123

info on dialogue 7-24,7-124

info on program 7-37,7-124

info on restart 3-13, 7-39, 7-52, 7-124
info patchpoint 7-112,7-115

info process 7-122

info registers 3-23,7-7,7-119, 7-120
info representation 7-128

info signal 7-102,7-121

info sources 7-127

info tracepoint 7-112,7-114

info types 7-128

info variables 7-126

info whatis 7-128

infoFontList resource D-3

Initial scan of object file 9-7

Initialization file 6-2, 6-3, 7-110, Glossary-7
Initialize tracing 7-81

Initializing process 9-7

Inline interest level 7-52

Inline subprograms 3-24

Ignoring breakpoints 3-13, 4-23, 5-25, 7-79, 7-91, 7-95, Input

7-113, 7-114, 9-39, Glossary-7
Ignoring eventpoints 3-8, 3-13, 7-91, 7-113, 9-39
Ignoring monitorpoints 3-13, 7-91, 7-117, 9-39,

dialogue 7-27, 7-30, 7-48
program 1-3, 2-3, 3-5, 4-11, 5-12, 7-27, 7-48
shell 9-17

Index-11

NightView User’s Guide

Input area 5-24, 5-25, 5-26, 5-29, 9-5, 9-19
editing 9-5, 9-11
text 9-36

Input command 7-110

Input terminator 7-27, 7-48

inputBackground resource D-4
inputForeground resource D-4
Instruction

branch 7-80, 7-93
interest 3-25, 7-51, 7-54, Glossary-7
Interest level
inline 7-52
justlines 3-13, 3-25, 7-52
nodebug 3-13, 3-25, 7-52
subprogram 3-13, 3-24, 7-51, Glossary-7
Interest level threshold 3-13, 3-25, 7-52, Glossary-7
Interesting subprograms 3-13, 3-23, 3-24, 4-14, 5-13,
7-7,7-52,7-97, 7-99, Glossary-7
Interface
command-line iii, 1-1, 3-26, 4-1, 4-3, 5-1, 5-4, 7-2,
7-84,7-88, 7-103, 7-131, 8-1, 9-1, 9-18,
9-34, 9-48, 9-49, Glossary-2
full-screen iii, 1-1, 3-26, 6-2, 7-2, 7-84, 7-88, 7-110,
7-131, 8-1, 8-2, 9-1, Glossary-6
graphical user iii, 2-1, 3-26, 3-28, 6-1, 6-3, 7-1,
7-33, 7-103, 9-1, 9-47, A-2, D-1,
Glossary-6
Interrupt
user-level 3-32, 3-34
Interrupt button 9-18, 9-34, 9-48
Interrupting the debugger 3-26, 3-28, 7-85, 9-18, 9-34,
9-48
Interrupts 3-34
Invoking the debugger 1-2, 2-2, 3-30, 4-3, 5-4, 6-1
IPC configuration A-1
IPL register 3-34

Job control 3-14
jump 7-101
Justlines interest level 3-13, 3-25, 7-52

K

Kernel configuration A-1
Key

= 9-32

> 9-32

Alt 9-11

Index-12

b 9-32
Backspace 9-6
Ctrl 9-6, 9-11
Ctrl+/ 9-9
Ctrl+\ 9-9
d 9-31
Delete 9-6
e 9-32
End 9-6,9-11
Esc 9-6,9-11
f 9-31
F1 9-2,9-3,9-15,9-16
h 9-31
Home 9-5,9-11
N 9-31
n 9-31
p 9-32
Page Down 9-11
Page Up 9-11
r 9-31
Return 4-4, 4-8, 4-12, 4-26, 5-5, 5-6, 5-8, 5-9,
5-12,5-18, 5-19, 5-21, 5-24, 5-25, 5-26,
5-27,5-29, 7-15,7-16, 7-59, 8-1, 9-6, 9-19,
9-36, 9-37, 9-41
S 9-31
s 9-31
Shift+F8 9-10
Shift+Tab 9-11
Space 4-4,4-12
Tab 9-11
u 9-31
virtual 9-10
Keyboard activation 9-1
Keyboard focus 9-2, 9-5, 9-10, Glossary-7
Keyboard selection 9-1
keyboardFocusPolicy
kil 3-10
kil 7-33,9-19, 9-22
Kill button 7-33, 9-19
Killing processes 3-13, 7-17, 7-33, 9-19, 9-22

resource 9-10

I (list
Label
dimmed 9-38, 9-39
Language 7-82,7-100
machine 3-1, 3-31
Language expression 7-71, 7-73, 7-80
Language support iii, 3-18, 3-22, 4-1, 5-1, 7-44, 7-122
Library
dynamically loaded 3-4, 3-17, 3-35, 3-36, 7-22,

) 1-4, 7-58

7-122
shared 3-4, 3-17, 3-35, 3-36, 7-22, 7-122
Library file 3-1
Lightweight Process 3-32, 3-35, 7-100, 7-107
Limits
addresses 7-120
expression 7-120

Line decorations 2-5, 2-6, 4-8, 4-10, 4-11, 4-14, 4-17,

5-7, 5-10, 5-11, 5-13, 5-14, 5-18, 5-20, 5-22,

5-25, 5-30, 7-59, 7-62, 7-97, 7-98, 9-24, 9-30,

9-33,9-34
Line number
printing 7-129
Linking 1-2,2-2,4-2,5-3,7-83
dynamic Glossary-5

list 1-4,3-31, 4-8, 4-10, 7-15, 7-56, 7-58, 7-60, 7-61

List function names 7-127
List mode 9-30
List selection policy
Browse 9-9
Extended 9-9, 9-19, 9-43
Multiple 9-9, 9-19
Single 9-9
List source file 4-8, 4-10, 7-58
List source file names 7-127
load 3-10, 7-22, 7-74
local dialogue 1-3, 2-3, 3-5, 4-4,7-1, 7-37
with on dialogue 7-24, 7-25
Local system 3-6, A-1
Local variable 3-16, 7-5
printing 7-126
Location
in executable program 7-9
printing 7-46, 7-127
Location specifier 7-9, 9-24, 9-33, 9-34, 9-38, 9-40,
9-42
Location Specifiers 3-21
Log
dialogue 7-29
Log file 7-44,7-112
Logging
session 7-44
login 3-7,7-18
Logout 7-23
logout 7-23,9-17
LWP 3-32, 3-35, 7-100, 7-107

M

M (source line decoration) 7-62
Machine language 3-1, 3-31
Macro 3-13, 3-28, 7-15, 7-27, 7-130, Glossary-7

Index

actual arguments 7-133
argument 7-130, 7-133
definition 7-131
example 7-15
formal arguments 7-130, 7-133
printing 7-135
recursion 7-131
referencing 7-133
replacing 7-131
restart_begin_hook
restart_end_hook
string 7-133
Macro body 3-28, 7-131, 7-135
Macro expansion 7-24, 7-37
Manual
online 1-1, 1-4, 2-1, 2-4, 4-5, 5-4, 7-108, 9-2,
Glossary-6, Glossary-8
Manual section 4-5, 5-4, 7-108
MAXURonfiguration parameter A-2
mcontrol 3-25, 7-85, 8-2
Memory 7-106
global 7-19
local 7-19
output 7-69, 7-71
shared 3-15, 7-50, A-1, E-1, Glossary-3
static 7-127
X server A-2, D-6
memory 9-46
Memory address expression 7-71
Memory layout 7-122
Memory mapped I/O 3-34
Menu
DebugEventpoint 5-23, 5-24, 5-25, 5-26, 5-29,
5-30, 5-32, 9-24, 9-38, 9-41
DebugHelp 9-27
DebugNightView 2-7,5-34, 9-20, 9-36
DebugSource 5-15, 9-22, 9-31, 9-32, 9-36, D-5
DebugView 5-17,5-19, 5-31, 5-33, 9-14, 9-26
Dialogue 9-16
DialogueDialogue 9-16
DialogueHelp 9-17
DialogueNightView 2-7,9-16
Eventpoint 9-24, 9-38, 9-41
GlobalHelp 9-48
GlobalNightView 9-47
Help 2-1, 2-4,5-4, 5-5, 5-8, 9-2, 9-3, 9-17, 9-27,
9-48
NightView 9-16, 9-20, 9-36, 9-47
Source 9-22,9-31, 9-32, 9-36
View 9-14, 9-26
Menu bar 5-5, 9-11
Debug 9-20
Dialogue 9-16
Global 9-47

3-13, 7-36
3-13

Index-13

NightView User’s Guide

Menu item
dimmed 9-21
disabled 9-21
Message
error 7-119, 9-6, 9-17, 9-28, 9-48
exit 5-35, 9-17
output 9-6, 9-48
process status 9-28
mmap E-1
Mnemonic 9-10, Glossary-8
A 9-23,9-26
B 9-25
C 9-3,9-21
D 9-16, 9-20, 9-22, 9-26
E 2-4,9-3,9-23,9-24
F 9-22
G 9-21,9-27
H 2-1, 2-4,9-3,9-17, 9-27, 9-48
| 9-4
K 9-4,9-22
L 9-17,9-27
M 9-4,9-25
m 2-4
menu 9-11
menu item 9-11
N 2-7,9-4, 9-16, 9-20, 9-47

n 2-1
P 9-11, 9-20, 9-21, 9-25
Q 9-4,9-21
R 9-21
S 9-22,9-23,9-26
T 9-4,9-25
U 9-26
V 9-4,9-26
W 9-4
X 2-7,9-21
Mode
add 9-10

group process 5-16, 5-31, 9-12, 9-14, 9-20, 9-21,
9-22, 9-27, 9-28, 9-32, 9-34, 9-41,
Glossary-6
list 9-30
normal 9-10
single process 9-12, 9-13, 9-14, 9-20, 9-21, 9-22,
9-26, 9-28, 9-32, 9-34, 9-41, Glossary-10
Monitor refresh rate 7-86
Monitor Window 3-25, 7-85, 8-2, 9-2, 9-47
GUI 9-2,9-47, D-4, D-5, D-7
simple full-screen 8-2
Monitoring expressions 7-6, 7-84
Monitorpoint 3-8, 3-9, 3-10, 3-14, 3-20, 3-25, 3-34,
7-32,7-50, 7-62, 7-76, 7-84, 7-85, A-2,
Glossary-5, Glossary-8
changing 9-38

Index-14

clearing 7-87
commands on 3-13, 7-88, 7-113, 7-117, 9-40
condition on 3-13, 7-88, 7-113, 7-117, 9-39
deleting 7-89, 9-41, 9-43
disabling 7-90, 9-39, 9-43
displaying 7-112, 7-116
enabling 7-91, 9-39, 9-43
hitting 7-117, 9-39
ignoring 3-13,7-91, 7-113, 7-117, 9-39, Glossary-7
named 3-13, 7-77, 7-84, 9-39
saving 3-13
setting 7-74, 7-83, 9-38
state 7-117, 9-39
temporary 9-39
monitorpoint 3-9, 3-25, 7-83, 7-116, Glossary-8
Monitorpoint crossing count Glossary-3
Monitorpoint Dialog Box 9-25, 9-38
monitorWindowColumns resource 9-47, D-5
Monochrome display D-7
Motif 9-1
Mouse 9-1
Mouse button 1 2-1, 5-2, 5-15, 5-20, 9-1, 9-3, 9-9, 9-11,
9-31, 9-32
mreserve 7-43
msg program 4-3, 4-7, 4-10, 4-21, 5-3, 5-8, 5-10, 5-22
Multiple processes iii, 3-2, 3-4, 7-106, 7-119, 7-121,
7-127,8-1
Multiple selection policy 9-9, 9-19

n (next) 7-97

N key 9-31

n key 9-31

name 7-76, 7-77, 7-80, 7-93

Named agentpoint 3-13, 7-86, 9-39
Named breakpoint 3-13, 7-77, 7-78, 7-92, 9-39
Named eventpoint 3-13, 7-12, 7-77, 9-39
Named monitorpoint 3-13, 7-84, 9-39
Named patchpoint 3-13, 7-80, 7-93, 9-39
Named process 4-12, 4-14

Named tracepoint 3-13, 7-82, 9-39
networking A-1

Newline 7-15, 7-59

next 4-11, 7-96, 7-97, 7-99, 7-108, 9-31, 9-33
Next button 5-11, 9-33

nexti 7-97,7-98, 7-99, 7-108, 9-31, 9-33
Nexti button 9-33

NFS 3-2

ni (nexti) 7-99

nice value 7-19

NightSim 3-34

NightStar tool set D-1
NightTrace Glossary-8
NightTrace 3-6, 3-10, 7-82, 7-83
NightView iii, 3-1, Glossary-8
NightView menu
Debug 9-20, 9-36
Dialogue 9-16
Global 9-47
NightView menu 9-16, 9-20, 9-36, 9-47
NightView version 1-2, 4-4, 6-2,9-4, H-1
NIGHTVIEW_EN\environment variable 3-4, 3-5, 3-7
nodebug 3-2, 3-5, 7-14, 7-17, 7-20, 7-21, 7-23, 7-25
Nodebug interest level 3-13, 3-25, 7-52
-nogui option 1-2, 4-3, 6-1
Normal mode 9-10
Notification of events 7-28, 7-30, 7-32, 7-104, 8-1
notify ~ 7-31
NPROConfiguration parameter A-2
ntrace 3-10, 7-81
ntraceud 3-34, 7-83
nview
exiting 1-6, 2-7, 4-32, 5-34, 7-17
invoking 1-2, 2-2, 3-30, 4-3, 5-4, 6-1
nview 1-2,2-2,8-1
Nview file D-1, D-7

nview option
-help 4-3,5-4
-nogui 1-2,4-3, 6-1

-simplescreen 8-1
nview options 6-1
Nview-color file D-1, D-7

Nview-mono file D-1, D-7

O

Object activation 5-2, 5-23, 5-26, 5-30, 9-1
Object deselection 9-9, 9-10
Object file 3-1, 7-74
initial scan 9-7
Object filename translations 7-21, 7-33, 7-35, 7-74,
7-123
Object selection 5-2, 5-5, 5-8, 5-15, 5-23, 5-24, 5-25,
5-26, 5-29, 5-30, 5-32, 5-34, 9-1
OK button 2-3, 2-7, 5-16, 5-23, 5-24, 5-25, 5-27, 5-30,
5-35, 9-8, 9-9, 9-15, 9-16, 9-19, 9-36, 9-37,
9-41
on dialogue
with local dialogue 7-24, 7-25
on dialogue 7-22,7-23,7-25,7-124
on program 3-13, 3-14, 7-14, 7-35, 7-36, 7-38, 7-39,
7-124

on restart 3-12, 3-13, 7-36, 7-38, 7-124

Index

oneWindowPerProcess resource 9-13
Online documentation 1-1, 1-4, 2-1, 2-4, 4-5,5-4, 7-108,
9-2, Glossary-6, Glossary-8
Online help system Glossary-8
Optimization 3-30, 7-97, 7-98
Option
-g 1-2,2-2,4-2,5-3
-help 4-3,5-4
-nogui 1-2,4-3,6-1
-simplescreen 8-1
-X 6-3
-Xrm 6-3
Options
nview 6-1
Output 3-5
buffered 3-28
dialogue 3-5, 7-29
logging 3-29
memory 7-69, 7-71
messages 9-6, 9-48
program 9-17
session 7-44
shell 9-17
suppressed 8-1
text 7-70
output 7-70
Output addresses limits 7-46
Output array 7-46
Output string limits 7-46
Output variable 1-5, 2-6, 4-16, 4-20, 4-25, 5-15, 5-20,

5-27, 7-65
outputBackground resource D-4
outputForeground resource D-4

Overloading 3-21, Glossary-8

p (print) 1-5, 7-65
P (source line decoration) 7-62
p key 9-32
Packages
Ada 3-31
Page Down key 9-11
Page Up key 9-11
Pane 9-11
Parent process 4-14, 4-15, 5-13, 5-14
Patch Glossary-8
patch area Glossary-8
Patchpoint 3-8, 3-20, 3-34, 7-32, 7-62, 7-63, 7-76,
Glossary-5, Glossary-8
changing 9-38
clearing 7-87

Index-15

NightView User’s Guide

condition on 3-13, 7-6, 7-81, 7-86, 7-88, 7-113,
7-116, 9-39

deleting 7-89, 9-41, 9-43

disabling 7-90, 9-39, 9-43

displaying 4-28, 5-31, 7-112, 7-115

enabling 7-91, 9-39, 9-43

hitting 7-116, 9-39

ignoring 3-13, 7-81, 7-86, 7-91, 7-113, 7-116, 9-39,

Glossary-7

named 3-13, 7-77, 7-93, 9-39

saving 3-13

setting 4-27, 5-29, 7-74, 7-79, 7-93, 9-38

state 7-116, 9-39

temporary 7-93, 9-39
patchpoint 3-10, 4-27, 7-79, 7-115
Patchpoint crossing count Glossary-3
Patchpoint Dialog Box 5-29, 9-25, 9-38
Patchpoints named 7-80
PATH environment variable 3-8
Pattern

wildcard 7-14, 7-20, 7-36, 7-39, 7-127, 9-23, 9-37

wildcard examples 7-14

Pattern matching 7-12, 7-20, 7-21, 7-55, 7-61, 7-123,

Glossary-9

Pattern matching examples 7-13

PID 3-3, 3-5, 3-14, 4-7,5-7, 5-13, 7-11, Glossary-9

Pipelines 3-2, 3-4

Pointer

question mark 5-5, 9-3

Pointer focus policy 9-10

PowerMAX OS iii, 3-3, 3-6, 3-11, 3-16, 3-17, 3-30,
3-34, 7-104

PowerPC iii

PowerPC 604 7-7

PowerPC registers 7-7

POWERWORKS_ELMHOST environment variable
6-3

Predefined convenience variable 3-23, 7-5, 7-6, 7-113,

7-114, 7-115, 7-116, 7-117, 7-118, 7-120,
7-130

Principal Debug Window 5-6, 9-12, 9-13, 9-20,
Glossary-9

print

command attached to monitorpoint 7-84

print 1-5, 3-30, 4-16, 4-20, 7-45, 7-65, 7-66, 7-70,
7-71,7-73, 7-84, 7-106, 7-127, 7-133, 9-32,
9-33

Print Ada exception handling 7-125

Print addresses limits 7-46, 7-120

Print agentpoint 7-112, 7-117

Print arguments 7-122, 7-126

Print array 7-46

Print breakpoint 4-28, 5-31, 7-112,7-113

Print button 2-6, 5-15, 5-20, 9-32, 9-33

Index-16

Print checkpoint information 7-124
Print convenience variables 7-119
Print current directory 7-56

Print declaration 7-129

Print dialogue information 7-123
Printdisplay variables 7-120
Print eventpoint 4-28, 5-31, 7-112
Print eventpoint information 7-123

Print expression 1-5, 4-16, 4-20, 4-25, 5-15, 5-20, 5-27,

7-65, 7-71,7-128

Print expression limits 7-120
Print family information 7-123
Print file names 7-129
Print function names 7-127
Print global variable 7-126
Print line number 7-129
Print local variables 7-126
Print log file information 7-112
Print macro 7-135
Print monitorpoint 7-116
Printon dialogue commands 7-124
Printon program commands 7-124
Printon restart commands 7-124
Print patchpoint 4-28, 5-31, 7-112, 7-115
Print process information 7-122
Print registers 7-120
Print search path 7-119
Print signal 7-121
Print source file names 7-127
Print stack frame

all 4-18, 5-18, 7-64

one 7-118
Print string limits 7-46
Print text 7-70
Print tracepoint 7-112, 7-114
Print type information 7-128, 7-129
Print value history 7-120
Print variable 7-129
Print variable address 7-127
printf 7-131, 7-134

Procedure 4-11, 4-16, 5-11, 5-16, 7-96, 7-97, 7-98, 7-99,

7-100, 7-119, Glossary-9
Procedure arguments
printing 7-126
Procedure call 3-19, 7-80
Procedure name
list 7-127
Process 3-2,9-12, 9-21, A-2, E-1, Glossary-9
abnormal termination 7-34
attachingto 7-32
background 7-110

child 3-2, 3-3, 4-1, 4-7, 4-14, 4-15, 5-1, 5-8, 5-13,

5-14,7-21,7-32, 7-42, Glossary-2
currently displayed 5-7

exiting 3-13, 3-14, 7-42
initializing 9-7
killing 3-13, 7-17
multiple 3-2, 3-4, 8-1
naming 4-12, 4-14
parent 4-14,4-15, 5-13, 5-14
printing 7-122
pseudo 3-3, 3-14, 6-2, 7-34, 7-36
running 3-14, 3-18
single 3-2
stopped 3-14, 3-18, 3-22, 3-23
stopping 7-100
stopping debugging 7-32
terminated 3-14
terminating 3-13, 3-14
Process families 3-2
Process ID 3-3, 3-5, 3-14, 4-7, 5-7,5-13, 7-11,
Glossary-9
Process mode
group 5-16,5-31, 9-12, 9-14, 9-20, 9-21, 9-22, 9-27,
9-28, 9-32, 9-34, Glossary-6
single 9-12, 9-13, 9-14, 9-20, 9-21, 9-22, 9-26,
9-28, 9-32, 9-34, Glossary-10
process mode
group 9-41
single 9-34, 9-41
Process selection 9-18
Process state 3-14, 7-122, Glossary-9
Process summary 9-18
Processes
multiple iii, 7-106, 7-119, 7-121, 7-127
procfs 3-15
Program 3-2, Glossary-9
commands on 7-36
compiling 1-2, 2-2, 3-31, 4-2, 5-3
fact 1-1,2-1
msg 4-3, 4-7, 4-10, 4-21, 5-3, 5-8, 5-10, 5-22
restarting 3-12, 3-13, 7-36, 7-39, 7-42, Glossary-2,
Glossary-10
running 1-2, 4-6, 5-6, 7-28, 7-30
setuid 3-3
starting 3-12
Program arguments 1-3, 2-3, 6-1, 9-19
Program Arguments Dialog Box 9-19
Program counter 3-17, 3-22, 3-23, 7-7, 7-101, 7-120,
Glossary-9
Program I/O E-1
Program input 1-3, 2-3, 3-5, 4-11, 5-12, 7-27, 7-48
Program location
specifying 7-9

Program name 1-1, 2-1, 3-8, 4-3, 4-7,5-3, 5-8, 6-2, 9-19,

9-28
Program output 3-5, 3-28, 3-29, 9-17
Progress bar 9-7, D-4

Index

Progress indication 9-7, D-4
Prologue 7-9
Prompt 7-2, 7-48

$ 1-3,2-3,4-4,5-4

(local) 1-3,4-4

> 7-84,7-88, 7-131

command 4-4,4-12

dialogue 6-2, 7-2

shell 1-3,2-3,4-4,5-4
ps 3-3
Pseudo process 3-3, 3-14, 6-2, 7-34, 7-36
Pseudo terminal A-2
pty A-2
ptype (info declaration
pwd 7-56

) 7-129

Q

g (quit) 1-6,7-2, 7-17

Qualifier 3-4, 4-15, 4-22,5-4,7-1,7-10, 7-46, 9-18,
9-27,9-34, 9-36, 9-42, Glossary-9

Quick command summary B-1

quit 6-3

quit 1-6,4-32,7-2,7-17,9-21

Quitting 1-6, 2-7, 4-32, 5-34, 7-17

R

r key 9-31
Radio button 9-12, 9-14, 9-27, 9-40
raise 3-31
ReadyToDebug 1-3,2-3, 3-7, 4-4,5-4
Real-time debugging 3-5
Recursion
macro 7-131
redisplay 7-72,7-73
Referencing macros 7-133
refresh ~ 7-109
Refreshing terminal 7-109
regexp7-12, 7-61, 7-120, 7-123, 7-126, 7-128, 7-129,
7-135
Register
IPL 3-34
Register variable 7-5
Registers 3-1, 3-17, 3-22, 3-23, 7-5, 7-7, 7-101, 7-106,
7-119, 7-127, Glossary-10
printing 7-120
Regular expression 5-16, 7-12, 7-23, 7-54, 7-61, 7-120,
7-123,7-126,7-127,7-128,7-129, 7-135, 9-23,
9-37

Index-I7

NightView User’s Guide

Regular expression examples 7-13
release (mcontrol release) 7-85
Remote dialogue 3-5, 3-6, 7-19, 9-21, 9-44, A-1,
Glossary-10
Remote system 3-6, A-1
Repeating commands 4-14, 7-2, 7-15, 7-59
Replacing commands 7-134
representation (info representation)
7-129
Rerunning a program 3-12, 3-13, 7-36, 7-39, 7-42
Resizing windows 9-11
Resource
background D-4, D-7
boldFontList D-3
customization D-6, D-7
displayGroupToggleButton 9-13
displayGroupToggleButton.set 9-26
distinctBackground D-4
distinctForeground D-4
editor 9-23,D-5
editorTalksX 9-24, D-5
feedbackBackground D-4
feedbackDoneBackground D-4
feedbackDoneForeground D-4
feedbackForeground D-4
feedbackNotDoneBackground D-4
feedbackNotDoneForeground D-4
fixedFontList D-3
fontList D-6
foreground D-4, D-7
geometry D-7
infoFontList D-3
inputBackground D-4
inputForeground D-4
keyboardFocusPolicy 9-10
monitorwindowColumns ~ 9-47, D-5
oneWindowPerProcess 9-13
outputBackground D-4
outputForeground D-4
selectColor 9-12
selectionPolicy 9-9
smallFixedFontList D-3
smallFontList D-3
useNightStarColors D-2
useNightStarFonts D-2

Resources
application D-1, D-5, Glossary-1
color D-4, D-6
system A-1
X A-2,D-1,D-6
Restart

commands on 7-39
restart_begin_hook
restart_end_hook

macro 3-13, 7-36
macro 3-13

Index-18

Restarting a program 3-13, 7-36, 7-42
Restarting execution 3-12, 3-13, 7-36, 7-39, 7-42,
Glossary-2, Glossary-10
resume 3-11, 3-32, 3-34, 4-21, 7-88, 7-94, 7-95, 9-31,
9-32,9-33
Resume button 2-6,5-10, 5-12, 5-22, 5-28, 5-33, 9-32
Resuming execution 1-5, 2-6, 4-10, 4-15, 4-21, 4-31,
5-10, 5-14, 5-22, 5-33, 7-94, 9-32
Return key 4-4, 4-8, 4-12, 4-26, 5-5, 5-6, 5-8, 5-9,
5-12,5-18, 5-19, 5-21, 5-24, 5-25, 5-26, 5-27,
5-29, 7-15, 7-16, 7-59, 8-1, 9-6, 9-19, 9-36,
9-37,9-41
reverse-search
rlogin 7-19
Root user 3-33
Routine 4-11, 4-16, 5-11, 5-16, 7-96, 7-97, 7-98, 7-99,
7-100, 7-119, Glossary-10
trace_open_thread 7-83
trace_start 7-83
Routine arguments
printing 7-126
Routine name
list 7-127
Routine replacement 7-74
rcp 3-34
rtutil 3-34
run 3-7,7-19, 9-44, 9-45, 9-46
run 1-2, 3-5, 4-6, 7-28, 7-30, 7-134
Run a program 1-2, 3-12, 4-6, 5-6, 7-28, 7-30
Run to Here button 9-31, 9-33

7-13, 7-59, 7-61

s (step) 7-96
S key 9-31
s key 9-31
Safety level
forbid 6-2, 7-17, 7-23, 7-33, 7-40, 7-49, 7-89,
7-90
unsafe 3-27,6-2,7-16, 7-23, 7-32, 7-33, 7-49,
7-89, 7-90
verify 6-2, 7-16, 7-17, 7-23, 7-33, 7-40, 7-49,
7-89, 7-90
Sash 9-11, 9-17, 9-18, 9-19, 9-28, 9-31
Saving agentpoints 3-13
Saving breakpoints 3-13
Saving eventpoints 3-13
Saving exception handling 3-13
Saving monitorpoints 3-13
Saving patchpoints 3-13
Saving tracepoints 3-13
Scheduler

frequency-based 3-16, 3-33
Scope 3-22, 3-29, 7-78, 7-82, 7-126, Glossary-10
Script
debugger 7-110, 7-111
Scroll bar 2-5, 5-5, 5-7, 9-17, 9-18, 9-28, 9-35, 9-37,
9-48
Search button 9-37
Searching
function 9-23
path 7-59, 7-60, 7-119
regular expression 5-16, 7-61, 9-37
wildcard pattern 9-23, 9-37
Section
manual 4-5, 5-4, 7-108
Select a Function/Unit Dialog Box 5-16, 9-23, 9-37
Select a Source File Dialog Box 9-23, 9-37

selectColor resource 9-12
select-context 3-32, 7-100, 7-107
Selection

object 5-2,5-5, 5-8, 5-15, 5-23, 5-24, 5-25, 5-26,
5-29, 5-30, 5-32, 5-34, 9-1
process 9-18
Selection policy
Browse 9-9, 9-35, 9-37
Extended 9-9, 9-19, 9-36, 9-43
Multiple 9-9, 9-19
Single 9-9
selectionPolicy resource 9-9
Semicolon 7-80, 7-93
Session
debug Glossary-3
Session logging 7-44

set 7-66

set-auto-frame 7-54

set-children 3-2,3-13,4-7,5-8, 7-41

set-editor 7-55, 8-2

set-exit 7-42

set-history 7-46

set-language 3-13, 7-44, 7-122

set-limits 7-46, 7-47,7-66, 7-68, 7-112, 7-113,
7-114,7-115, 7-116, 7-117

set-local 3-29, 7-50

set-log 7-44,7-112

set-notify 7-30

set-overload 3-21,7-54

set-patch-area-size 7-50, 7-123, E-1,

Glossary-8
set-prompt 7-2, 7-47
set-qualifier 4-22,7-10, 7-46, 9-48, 9-49
set-restart 3-13, 7-49
set-safety 7-24,7-37,7-49
set-search 7-54

set-show 3-5, 7-28, 7-29, 7-44, 7-112
set-terminator 7-48

Index

Setting a breakpoint 1-4, 2-5, 4-9, 4-23, 5-9, 5-24, 5-25,
7-78,7-92,9-32, 9-33, 9-38
Setting a conditional agentpoint 7-113, 7-118, 9-39
Setting a conditional breakpoint 3-8, 5-24,7-113, 7-114,
9-39, Glossary-2
Setting a conditional eventpoint 7-6, 7-88, 7-92, 7-113,
9-39
Setting a conditional monitorpoint 7-113, 7-117, 9-39
Setting a conditional patchpoint 7-6, 7-113, 7-116, 9-39
Setting a conditional tracepoint 7-113, 7-115, 9-39
Setting a monitorpoint 7-83, 9-38
Setting a patchpoint 4-27, 5-29, 7-79, 7-93, 9-38
Setting a tracepoint 7-83, 9-38
Setting an agentpoint 7-86, 9-38
Setting an eventpoint 9-38
set-trace 7-81,7-82
Setuid programs 3-3
Shared library 3-4, 3-17, 3-35, 3-36, 7-22, 7-122
Shared memory 3-15, 7-50, A-1, E-1, Glossary-3
Shell Glossary-10
dialogue 3-4, 3-5, 3-15, 3-17, 5-6, 9-17, E-1
shell 3-3, 3-34, 7-17, 7-56, 7-110, 7-134, 8-1, 9-18,
9-34,9-49
SHELL environment variable 7-110
Shell /O 9-17
Shell prompt 1-3, 2-3, 4-4, 5-4
Shift+F8 key 9-10
Shift+Tab key 9-11
SHMMNCEonfiguration parameter A-1
show 3-5, 7-28, 7-29
si (stepi) 7-98
SIGADA 7-104
SIGALRM 7-104
siginfo 3-11
SIGINT 7-104
signal 3-11, 7-88, 7-94, 7-101
Signals 3-10, 3-13, 3-34, 4-1, 4-7, 5-1, 5-9, 7-31, 7-37,
7-71,7-94, 7-95, 7-97, 7-98, 7-99, 7-100,
7-101, 7-103, Glossary-10
printing 7-121
SIGQUIT 7-104
SIGTRAP 3-11, 7-101
SIGUSR1 4-1, 4-7, 4-26, 4-32, 5-1, 5-9
Simple full-screen interface iii, 1-1, 3-26, 6-2,7-2, 7-84,
7-88, 7-110, 7-131, 8-1, 8-2, 9-1, Glossary-6
editing commands 8-2
-simplescreen option 8-1
Single process 3-2
Single process mode 9-12,9-13, 9-14, 9-20, 9-21, 9-22,
9-26, 9-28, 9-32, 9-34, 9-41, Glossary-10
Single selection policy 9-9
Single stepping 3-11, 3-32, 3-34, 4-11, 4-16, 5-11, 5-16,
7-96, 7-97, 7-98, 7-99, 7-100, 9-30, 9-31, 9-32
smallFixedFontList resource D-3

Index-19

NightView User’s Guide

smallFontList resource D-3
source 3-13, 3-27, 3-30, 7-15, 7-110, 7-125
Source display area 9-22, 9-37
Source file 3-1, 5-1, 5-7, 5-10, 5-11, 5-14, 5-15, 5-16,
5-17, 5-20, 5-21, 5-24, 5-25, 5-30, 7-110,
7-130, 9-22, 9-23, 9-30
current 7-59, 7-61
displaying 4-8, 4-10, 7-58
list 7-127
search path for 7-59, 7-60, 7-119
Source line decorations 2-5, 2-6, 4-8, 4-10, 4-11, 4-14,
4-17,5-7, 5-10, 5-11, 5-13, 5-14, 5-18, 5-20,
5-22, 5-25, 5-30, 7-59, 7-62, 7-97, 7-98, 9-24,
9-30, 9-33, 9-34
Source listing 1-4, 2-3, 4-8, 4-10, 7-15, 7-58
Source menu
Debug 9-22, 9-31, 9-32, 9-36
Source menu 9-22, 9-31, 9-32, 9-36
Space key 4-4,4-12
Stack Glossary-10
Stack examination 1-5, 2-6, 4-18, 5-18, 7-64
Stack frame 7-5, 7-59, 7-74, 7-127, Glossary-5,
Glossary-11
current 3-22, 3-23, 4-19, 4-20, 4-31, 5-19, 5-21,
5-33, 7-62, 7-78, 7-80, 7-82, 7-84, 7-86,
7-87,7-93, 7-100, 7-105, 7-107, 7-108,
7-118, 7-121, Glossary-3
displaying 7-118
printing 4-18, 5-18, 7-64
Stack pointer 7-7, 7-120
Stack variable 3-16
Stale data indicator 3-26, 8-2, 9-47, Glossary-11
Starting execution 1-2, 2-2, 3-12
Starting the debugger 1-2, 2-2, 3-30, 4-3, 5-4, 6-1
Starting tracing 7-81
State
agentpoint 7-118, 9-39
breakpoint 7-114, 9-39
eventpoint 7-112, 9-39
monitorpoint 7-117, 9-39
patchpoint 7-116, 9-39
process 3-14,7-122, Glossary-9
tracepoint 7-115, 9-39
Static data definitions 7-74
Static function
specifying location of 7-9
Static memory 7-127
Static variable 3-16, 7-5
Status information 7-111
step 3-24,3-31, 3-32, 4-16, 5-16, 7-94, 7-96, 7-98,
7-99, 7-108, 9-31, 9-32
Step button 5-17, 9-32
stepi 7-97, 7-98, 7-108, 9-31, 9-32
Stepi button 9-32

Index-20

stop 3-35, 7-100, 9-30, 9-33
Stop button 9-14, 9-33
Stopping a process 7-100, 9-33
Stopping execution 1-4, 2-5, 3-32, 3-35, 4-9, 4-23, 5-9,
5-24,5-25,7-78
Stream
command Glossary-2
String
C 3-34,7-66
character 7-66, 7-120
macro 7-133
String limits
printing 7-46
strip 7-33
Stripped executable 7-22, 7-33
stty 8-1
Subprogram 4-11, 4-16, 5-11, 5-16, 7-96, 7-97, 7-98,
7-99, 7-100, 7-119
Subprogram arguments
printing 7-126
Subprogram interest level 3-13, 3-24, 7-51, Glossary-7
Subprogram name
list 7-127
Subprograms
inline 3-24
interesting 3-13, 3-23, 3-24, 4-14, 5-13, 7-7, 7-52,
7-97,7-99, Glossary-7
uninteresting 3-13, 3-23, 3-24, 4-14, 5-13, 7-7,
7-52,7-97, 7-99
Subroutine 4-11, 4-16, 5-11, 5-16, 7-96, 7-97, 7-98,
7-99, 7-100, 7-119
Subroutine arguments
printing 7-126
Subroutine call 3-21, 7-80
Subroutine name
list 7-127
Substitution
text 7-130
Summary of commands 5-5, 9-4, B-1
Summary of eventpoints 5-23, 5-26, 5-30, 5-32, 9-24,
9-26, 9-38, 9-41
Superuser 3-33
Switch To button 5-7, 5-13, 9-13
Symbol file 3-13, 7-33, 7-35, Glossary-11
Symbol table 7-74, 7-111, 7-126, 7-127, 7-129
symbol-file 3-7,3-13,7-22,7-33, 7-34, 7-56
Symbolic debug information 7-33, 9-7
Symbolic debugger iii, 3-1
Symbols
undefined 7-74
Syntax
command 7-1
expression 7-4
qualifier 7-1

System
local 3-6, A-1
remote 3-6, A-1
system 3-2,7-42
System crash 3-34
System resources A-1
System tuning A-1

T (source line decoration) 7-62
Tab key 9-11
Tag

trace-event 7-81, 7-82, Glossary-11
Task 3-32, 7-100, 7-107

Ada Glossary-1, Glossary-11
tbreak 7-76, 7-92
telnetd A-1
Temporary agentpoint 9-39
Temporary breakpoint 7-92, 9-39
Temporary monitorpoint 9-39
Temporary patchpoint 7-93, 9-39
Temporary tracepoint 9-39
TERM environment variable 8-1
Terminal refresh 7-109

Terminating a process 3-13, 3-14, 7-33, 9-19, 9-22

Termination

abnormal 7-34
Terminator

input 7-27, 7-48
Text

printing 7-70
Text cursor 9-31, 9-33, 9-34
Text fonts D-3, D-6

Text input area 5-24, 5-25, 5-26, 5-29, 9-5, 9-19, 9-36,

9-38, 9-39, 9-40, 9-41, D-4

editing 9-5, 9-11
Text substitution 7-130
Thread 3-32, 7-100, 7-107, Glossary-11
Threshold

interest level 3-13, 3-25, 7-52
Toggle button 9-12, 9-14, 9-26, 9-27, 9-40, 9-41
tool set

NightStar D-1
tpatch 7-76, 7-93
Trace Glossary-11
Trace initialization 7-81
trace_open_thread routine 7-83
trace_start routine 7-83
Trace-event ID 7-81, 7-82, 9-40, Glossary-11
Trace-event map file 7-81, 7-82, Glossary-5
Trace-eventtag 7-81, 7-82, Glossary-11

Index

Tracepoint 3-8, 3-10, 3-14, 3-20, 3-34, 7-32, 7-62, 7-63,
7-76, 7-81, Glossary-5, Glossary-11
changing 9-38
clearing 7-87
condition on 3-13, 7-88, 7-113, 7-115, 9-39
deleting 7-89, 9-41, 9-43
disabling 7-90, 9-39, 9-43
displaying 7-112, 7-114
enabling 7-91, 9-39, 9-43
hitting 7-115, 9-39
ignoring 3-13, 7-83, 7-91, 7-113, 7-115, 9-39,
Glossary-7
named 3-13, 7-77, 7-82, 9-39
saving 3-13
setting 7-74, 7-83, 9-38
state 7-115, 9-39
temporary 9-39
tracepoint 3-10, 3-34,7-81, 7-82, 7-114
Tracepoint crossing count Glossary-3
Tracepoint Dialog Box 9-25, 9-38
Tracing 3-6, 3-10, 3-34
translate-object-file 3-7,7-21,7-34
Translating type definitions 9-7
Translations
object filename 7-21, 7-33, 7-35, 7-74, 7-123
Tuning
system A-1
Tutorial
command-line 4-1, 5-1
Type definition
printing 7-128, 7-129
Type definitions
translating 9-7
Type resolution 9-7

u key 9-31

uUiD 3-33

ulimit 3-5

Undefined symbols 7-74

undisplay 7-72,7-73

Uninteresting subprograms 3-13, 3-23, 3-24,4-14, 5-13,
7-7,7-52,7-97, 7-99

unsafe safety level 3-27, 6-2, 7-16, 7-23, 7-32, 7-33,
7-49, 7-89, 7-90

up 3-23, 4-19, 5-19, 7-5, 7-106, 7-108, 9-31

Update button 9-42

Update List button 9-42

useNightStarColors resource D-2
useNightStarFonts resource D-2
User 7-123

Index-21

NightView User’s Guide

User ID 3-33
User interface

command-line iii, 1-1, 3-26, 4-1, 4-3, 5-1, 5-4, 7-2,

Widget hierarchy D-7
Wildcard pattern 7-14, 7-20, 7-36, 7-39, 7-127, 9-23,

9-37

7-84, 7-88, 7-103, 7-109, 7-131, 8-1, 9-1, Wildcard pattern examples 7-14

9-34, 9-48, 9-49, Glossary-2

wildcard_pattern7-127

full-screen iii, 1-1, 3-26, 6-2, 7-2, 7-84, 7-88, 7-109, Window

7-110, 7-131, 8-1, 8-2, 9-1, Glossary-6
graphical iii, 2-1, 3-26, 3-28, 6-1, 6-3, 7-1, 7-33,
7-103, 7-109, 9-1, 9-47, A-2, D-1,
Glossary-6
User-created Debug Window Glossary-11
User-level interrupt 3-32, 3-34

\%

Value history 3-30, 4-16, 5-15, 7-4, 7-46, 7-66, 7-70,

7-120, Glossary-12
Variable
assignment 3-18

Debug 2-3, 5-6, 5-9, 5-10, 5-11, 5-12, 5-14, 5-15,
5-17,5-22,5-23, 5-24, 5-28,5-29, 9-1, 9-6,
9-11,9-12,9-13, 9-14, 9-16, 9-19, 9-20,
9-26, 9-27, 9-28, 9-29, 9-32, 9-34, 9-35,
9-36, 9-37, 9-47, 9-48, 9-49, Glossary-4

Dialogue 2-3,5-4,5-7,5-11, 5-12, 5-14, 9-1, 9-6,
9-13,9-16, 9-17, 9-18, 9-19, 9-20, 9-21,
9-34, 9-47, 9-48, Glossary-4

Global 9-2, 9-6, 9-13, 9-16, 9-18, 9-20, 9-21, 9-34,
9-47, 9-48, 9-49, Glossary-6

Help 2-1, 2-4, 2-5, 5-5, 5-8, 9-2, 9-5, 9-17, 9-19,
9-28, 9-48, 9-49, D-3, D-4, Glossary-6

iconifying 9-2

Monitor 3-25, 7-85, 8-2, 9-2, 9-47, D-4, D-5, D-7

Principal Debug 5-6, 9-12, 9-13, 9-20, Glossary-9

vector-set
verify

convenience 3-29, 7-4, 7-5, 7-6, 7-50, 7-66, 7-119,
Glossary-3

declaration 3-18

global 3-16, 7-106

local 3-16, 3-22, 3-23, 7-5

predefined convenience 3-23, 7-5, 7-6, 7-113,
7-114, 7-115, 7-116, 7-117, 7-118, 7-120,
7-130

printing 7-126, 7-129

register 3-16, 7-5

static 3-16, 7-5

7-75

safety level 6-2, 7-16, 7-17, 7-23, 7-33, 7-40,

7-49, 7-89, 7-90

Version

NightView 1-2, 4-4, 6-2, 9-4, H-1

vi editor 7-55, 8-2, 9-24
View menu

Debug 9-14, 9-26

View menu 9-14, 9-26

Virtual address space 7-122
Virtual keys 9-10

Virtual memory 7-122

VISUAL environment variable 8-2

W

Warning Dialog Box 5-23, 5-35, 9-5, 9-15, 9-17, 9-21,

9-22

Warnings 3-26
whatis (info whatis

) 7-128

Index-22

user-created Debug Glossary-11
Window geometry D-7
Window resizing 9-11

X

X 9-1
X 7-6,7-15,7-67,7-71, 7-113, 7-114, 7-115, 7-1186,
7-117,7-118, 7-130

-X option 6-3

X resource
background D-4, D-7
customization D-6, D-7
displayGroupToggleButton
displayGroupToggleButton.set
editor 9-23
editorTalksX
fontList D-6
foreground D-4, D-7
geometry D-7
keyboardFocusPolicy
monitorWindowColumns
oneWindowPerProcess
selectColor 9-12
selectionPolicy 9-9

X resources A-2,D-1,D-6

X server memory A-2, D-6

X Window System 3-27, 9-1

x| (translate-object-file

-xrm option 6-3

9-13
9-26

9-24

9-10
9-47
9-13

) 7-21

Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

<
Q
=3
<
D
=

0890395

	NightView User’s Guide
	Preface
	Contents
	A Quick Start
	Sample Program
	Starting Up
	Getting Help
	Setting a Breakpoint
	Finishing up

	A Quick Start - GUI
	Sample Program - GUI
	Starting Up - GUI
	Getting Help - GUI
	Setting a Breakpoint - GUI
	Finishing up - GUI

	Concepts
	Debugging
	Accessing Files
	Programs and Processes
	Multiple Processes
	Families
	Attaching
	Detaching
	Core Files
	Qualifiers

	Dialogues
	Dialogue I/O
	Real-Time Debugging
	Remote Dialogues
	ReadyToDebug

	Finding Your Program
	Controlling Your Program
	Eventpoints
	Breakpoints
	Monitorpoints
	Patching
	Tracing
	Agentpoints

	Signals
	Restarting a Program
	Restart Mechanism
	Restart Information
	Restart Macros

	Exited and Terminated Processes

	Process States
	Debugger Mechanisms
	/proc
	Debug Agent
	Operations While the Process Is Executing
	Using /proc and the Debug Agent Together

	Examining Your Program
	Expression Evaluation
	Ada Expressions
	C Expressions
	C++ Expressions
	Fortran Expressions

	Overloading
	Program Counter
	Context
	Scope
	Stack
	Current Frame
	Registers

	Inline Subprograms
	Interesting Subprograms
	Monitor Window
	Errors
	Command Streams
	Interrupting the Debugger
	Macros
	Convenience Variables
	Logging
	Value History
	Command History
	Initialization Files
	Optimization
	Debugging Ada Programs
	Packages
	Exception Handling

	Multithreaded Programs
	Using NightView with Other Tools
	Limitations and Warnings
	Setuid Programs
	Attach Permissions
	Frequency-Based Scheduler
	NightTrace Monitor
	Memory Mapped I/O
	Blocking Interrupts
	User-Level Interrupts
	Debugging with Shared Libraries

	Tutorial
	About the Tutorial
	Creating a Program
	Starting NightView
	Getting General and Error Help
	Starting Your Program
	Debugging All Child Processes
	Handling Signals
	Listing the Source
	Setting the First Breakpoints
	Listing a Breakpoint
	Continuing Execution
	Not Entering Functions
	Entering Input
	Creating Families
	Continuing Execution Again
	Creating Families Again
	Catching up the Child Process
	Verifying Data Values
	Entering Functions
	Examining the Stack Frames
	Moving in the Stack Frames
	Verifying Data Values in Other Stack Frames
	Returning to a Stack Frame
	Resuming Execution
	Setting the Default Qualifier
	Removing a Breakpoint
	Setting Conditional Breakpoints
	Attaching an Ignore Count to a Breakpoint
	Attaching Commands to a Breakpoint
	Automatically Printing Variables
	Watching Inter-Process Communication
	Patching Your Program
	Disabling a Breakpoint
	Examining Eventpoints
	Continuing to Completion
	Leaving the Debugger

	Tutorial - GUI
	About the Tutorial - GUI
	Creating a Program - GUI
	Starting NightView - GUI
	Getting General and Error Help - GUI
	Starting Your Program - GUI
	Debugging All Child Processes - GUI
	Handling Signals - GUI
	Setting the First Breakpoints - GUI
	Continuing Execution - GUI
	Not Entering Functions - GUI
	Entering Input - GUI
	Continuing Execution Again - GUI
	Catching up the Child Process - GUI
	Verifying Data Values - GUI
	Listing the Source - GUI
	Entering Functions - GUI
	Examining the Stack Frames - GUI
	Moving in the Stack Frames - GUI
	Verifying Data Values in Other Stack Frames - GUI
	Returning to a Stack Frame - GUI
	Resuming Execution - GUI
	Removing a Breakpoint - GUI
	Setting Conditional Breakpoints - GUI
	Attaching an Ignore Count to a Breakpoint - GUI
	Attaching Commands to a Breakpoint - GUI
	Automatically Printing Variables - GUI
	Watching Inter-Process Communication - GUI
	Patching Your Program - GUI
	Disabling a Breakpoint - GUI
	Examining Eventpoints - GUI
	Continuing to Completion - GUI
	Leaving the Debugger - GUI

	Invoking NightView
	Command-Line Interface
	Command Syntax
	Selecting Overloaded Entities
	Special Expression Syntax
	Predefined Convenience Variables
	PowerPC Registers

	Location Specifiers
	Qualifier Specifiers
	Eventpoint Specifiers
	Regular Expressions
	Wildcard Patterns

	Repeating Commands
	Replying to Debugger Questions
	Controlling the Debugger
	Quitting NightView
	quit

	Managing Dialogues
	login
	debug
	nodebug
	translate-object-file
	logout
	on dialogue
	apply on dialogue

	Dialogue Input and Output
	!
	set-show
	show

	Managing Processes
	run
	set-notify
	notify
	attach
	detach
	kill
	symbol-file
	core-file
	exec-file
	on program
	apply on program
	on restart
	checkpoint
	family
	set-children
	set-exit
	mreserve

	Setting Modes
	set-log
	set-language
	set-qualifier
	set-history
	set-limits
	set-prompt
	set-terminator
	set-safety
	set-restart
	set-local
	set-patch-area-size
	interest
	set-auto-frame
	set-overload
	set-search
	set-editor

	Debugger Environment Control
	cd
	pwd

	Source Files
	Viewing Source Files
	list
	directory

	Searching
	forward-search
	reverse-search

	Source Line Decorations

	Examining and Modifying
	backtrace
	print
	set
	x
	output
	echo
	display
	undisplay
	redisplay
	printf
	load
	vector-set

	Manipulating Eventpoints
	Eventpoint Modifiers
	name
	breakpoint
	patchpoint
	set-trace
	tracepoint
	monitorpoint
	mcontrol
	agentpoint
	clear
	commands
	condition
	delete
	disable
	enable
	ignore
	tbreak
	tpatch

	Controlling Execution
	continue
	resume
	step
	next
	stepi
	nexti
	finish
	stop
	jump
	signal
	handle

	Selecting Context
	frame
	up
	down
	select-context

	Miscellaneous Commands
	help
	refresh
	shell
	source
	delay

	Info Commands
	Status Information
	info log
	info eventpoint
	info breakpoint
	info tracepoint
	info patchpoint
	info monitorpoint
	info agentpoint
	info frame
	info directories
	info convenience
	info display
	info history
	info limits
	info registers
	info signal
	info process
	info memory
	info dialogue
	info family
	info name
	info on dialogue
	info on program
	info on restart
	info exception

	Symbol Table Information
	info args
	info locals
	info variables
	info address
	info sources
	info functions
	info types
	info whatis
	info representation
	info declaration
	info files
	info line

	Defining and Using Macros
	define
	Referencing Macros
	info macros

	Simple Full-Screen Interface
	Using the Simple Full-Screen Interface
	Editing Commands in the Simple Full-Screen Interface
	Monitor Window - Simple Full-Screen

	Graphical User Interface
	NightView GUI Concepts
	GUI Overview
	GUI Online Help
	Context-Sensitive Help
	Help Menu
	Help Buttons
	Help Command

	GUI Components
	Text Input Areas
	Combo Boxes
	Message Areas
	File Selection Dialog Box
	List Selection Policies
	Dialogues and Dialog Boxes
	Keyboard Focus
	Keys
	Sashes
	Toggle Buttons

	GUI Command History
	Understanding the Debug Window
	Debug Window Behavior
	Single Process Mode
	Group Process Mode

	Confirm Exit Dialog Box
	Warning and Error Dialog Boxes
	Warning Dialog Box
	Error Dialog Box

	Dialogue Window
	Dialogue Menu Bar
	Dialogue NightView Menu
	Dialogue Menu
	Dialogue Help Menu

	Dialogue Identification Area
	Dialogue Message Area
	Dialogue I/O Area
	Dialogue Interrupt Button
	Dialogue Qualifier Area
	Dialogue Command Area
	Process Summary
	Dialogue Window Dialog Boxes
	Program Arguments Dialog Box

	Debug Window
	Debug Menu Bar
	Debug NightView Menu
	Debug Process Menu
	Debug Source Menu
	Debug Eventpoint Menu
	Debug View Menu
	Debug Help Menu

	Debug Message Area
	Debug Identification Area
	Debug Source Lock Button
	Debug Source File Name
	Debug Status Area
	Debug Source Display
	Debug Command Buttons
	Debug Interrupt Button
	Debug Qualifier Area
	Debug Command Area
	Debug Group Area
	Debug Dialog Boxes
	Debug Group Selection Dialog Box
	Debug Source Selection Dialog Box
	Debug File Selection Dialog Box
	Debug Eventpoint Dialog Boxes
	Debug Eventpoint Summarize/Change Dialog Box
	Remote Login Dialog Box

	Monitor Window - GUI
	Global Window
	Global Menu Bar
	Global NightView Menu
	Global Help Menu

	Global Output Area
	Global Interrupt Button
	Global Qualifier Area
	Global Command Area

	Help Window

	System Resource Requirements
	Summary of Commands
	Quick Reference Guide
	Invoking NightView
	Controlling the Debugger
	Quitting NightView
	Managing Dialogues
	Dialogue Input and Output
	Managing Processes
	Setting Modes
	Debugger Environment Control

	Source Files
	Viewing Source Files
	Searching

	Examining and Modifying
	Manipulating Eventpoints
	Controlling Execution
	Selecting Context
	Miscellaneous Commands
	Info Commands
	Status Information
	Symbol Table Information

	Defining and Using Macros

	GUI Customization
	Application Resources
	NightStar Resources
	Using NightStar Resources
	NightStar Font Resources
	NightStar Color Resources

	NightView Resources

	Font Selection
	Color Selection
	Monochrome Display
	Color Display

	Window Geometry
	Widget Hierarchy

	Implementation Overview
	Performance Notes
	Debug Agent Performance

	Tutorial Files
	C Files
	msg.h
	main.c
	parent.c
	child.c

	Fortran Files
	msg.i
	main.f
	parent.f
	child.f

	Ada Files
	main.a
	parent.a
	child.a

	Reporting Bugs
	Glossary
	Index

