
NightView User’s Guide

0890395-210

August 2000

Copyright 2000 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the envelope“Attention: Publications Department .”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

The license management portion of this product is based on:

Élan License Manager
Copyright 1989-1993 Elan Computer Group, Inc.
All rights reserved.

Élan License Manager is a trademark of Élan Computer Group, Inc.

gdb is a trademark of the Free Software Foundation.

NightHawk is a registered trademark and NightSim, NightStar, NightTrace, NightView, and PowerMAX OS are trademarks of Concurrent Com-
puter Corporation.

NFS is a trademark of Sun Microsystems, Inc.

OSF/Motif is a registered trademark of The Open Group.

PowerPC is a registered trademark of IBM Corp. and PowerPC 604 is a trademark of IBM Corp.

UNIX is a registered trademark licensed exclusively by the X/Open Company Ltd.

X Window System and X are trademarks of The Open Group.

HyperHelp is a trademark of Brisol Technology Inc.

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- July 1992 010 NightView 1.1

Previous Release -- January 2000 200 NightView 5.1

Current Release -- August 2000 210 NightView 5.2

tures
d to

tran

and
om-

line
full-
e

-

one
his

re is

and
et
and

to get

m-
Preface

General Information

NightView is a general purpose source-level program debugger. Some of the fea
make it useful for debugging systems of real-time programs, but it can also be use
debug a single ordinary program.

NightView can debug programs written in multiple languages. Ada, C, C++ and For
are supported.

NightView can debug multiple processes on the local system or on different hosts.

NightView has been designed to be as flexible as possible. The NightView comm
interpreter includes macro processing so that you can write your own NightView c
mands.

You communicate with NightView with one of three user interfaces. The command-
interface is useful when no advanced terminal capabilities are present. A simple
screen interface is available forASCII terminals. The graphical user interface provides th
most functionality.

NightView is supported on systems running PowerMAX OSTM. See the Hardware Prereq
uisites section of theNightView Release Notesassociated with your particular version for a
list of supported systems.

Scope of Manual

This document is the user manual for the NightView debugger. It is intended for any
using NightView, regardless of their previous level of experience with debuggers. T
manual describes how to use NightView, by way of tutorial and reference guide. The
also material for system administrators.

Structure of Manual

The manual begins with the short tutorials, Chapter 1 [A Quick Start] on page 1-1
Chapter 2 [A Quick Start - GUI] on page 2-1, giving you just enough information to g
you started. For more complete tutorials, see Chapter 4 [Tutorial] on page 4-1
Chapter 5 [Tutorial - GUI] on page 5-1.

The next section describes the major concepts you will need to understand in order
the best use out of NightView. See Chapter 3 [Concepts] on page 3-1.

More detailed information about the NightView commands is found in Chapter 7 [Co
mand-Line Interface] on page 7-1.
iii

NightView Reference Manual

ter 8

ter 9

, such
ref-

pear
ear

y
an

ages

ons,

nal.

to

(
the

s

The next chapter describes a simple full-screen interface to NightView. See Chap
[Simple Full-Screen Interface] on page 8-1.

The next chapter describes the graphical user interface for NightView. See Chap
[Graphical User Interface] on page 9-1.

This manual also contains several appendixes that may not be of interest to all users
as an implementation overview. A glossary of terms related to NightView and a quick
erence guide are also provided.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify ap
in italic type. Special terms and comments in code may also app
in italic.

list bold User input appears inlist bold type and must be entered exactl
as shown. Names of directories, files, commands, options and m
page references also appear inlist bold type.

list Operating system and program output such as prompts and mess
and listings of files and programs appears inlist type. Keywords
also appear inlist type.

emphasis Words or phrases that require extra emphasis useemphasistype.

window Keyboard sequences and window features such as push butt
radio buttons, menu items, labels, and titles appear inwindow type.

[] Brackets enclose command options and arguments that are optio
Mutually exclusive choices are separated by the pipe (|) character.
You do not type the brackets (or the pipe character) if you choose
specify such options or arguments.

{ } Braces enclose mutually exclusive choices separated by the pipe|)
character, where one choice must be selected. You do not type
braces or the pipe character with the choice.

... An ellipsis follows an item that can be repeated.

::= This symbol meansis defined asin Backus-Naur Form (BNF).

Related Publications

0800032 PowerPC Microprocessor Family: The Programming Environment

0890161 The C Programming Language

0890240 Hf77 FORTRAN Reference Manual

0890288 HAPSE Reference Manual

0890300 X Window System User’s Guide

0890380 OSF/Motif Documentation Set
iv

Preface
0890382 UNIX® System V AT&T C++ Language System Release 2.1

0890398 NightTrace Manual

0890429 System Administration Volume 1

0890460 Compilation Systems Volume 2 (Concepts)

0890475 NightView Pocket Reference

0890497 C++ Reference Manual

0890516 MAXAda Reference Manual

0891019 Harris C Reference Manual

0891055 Élan License ManagerTM Release Notes
v

NightView Reference Manual
vi

Contents

-1
-2
-3
-4
-5

-1
-2
-4
-5
-6

1
-1
3-2
-2

-2
-3
-3
-4
-4
4
-5

-7
-8
-8
-8

9
-9
0
0

10
11
12
Contents

Chapter 1 A Quick Start

Sample Program . 1
Starting Up. 1
Getting Help . 1
Setting a Breakpoint . 1
Finishing up . 1

Chapter 2 A Quick Start - GUI

Sample Program - GUI . 2
Starting Up - GUI . 2
Getting Help - GUI . 2
Setting a Breakpoint - GUI . 2
Finishing up - GUI. 2

Chapter 3 Concepts

Debugging. 3-
Accessing Files . 3
Programs and Processes. .

Multiple Processes . 3
Families . 3
Attaching . 3
Detaching . 3
Core Files . 3
Qualifiers . 3

Dialogues. 3-
Dialogue I/O . 3
Real-Time Debugging . .. 3-5
Remote Dialogues. 3-6
ReadyToDebug . 3

Finding Your Program . 3
Controlling Your Program . 3

Eventpoints . 3
Breakpoints .. 3-9
Monitorpoints . 3-
Patching. 3
Tracing. 3-1
Agentpoints . 3-1

Signals . 3-
Restarting a Program . 3-

Restart Mechanism . 3-
vii

NightView User’s Guide

3
13
-14
-14

5
15
-16
-17
18
18
18
20
20
20
1

2
22
22
23
23
24

5
26
-27
28
28
-29
9
0

30
0
0

31
1
32
2

33
33
33
-33
4
4
4

34

-1
Restart Information . 3-1
Restart Macros . 3-

Exited and Terminated Processes . 3
Process States. 3
Debugger Mechanisms. .. 3-15

/proc . 3-1
Debug Agent . 3-
Operations While the Process Is Executing . 3
Using /proc and the Debug Agent Together . 3

Examining Your Program. 3-
Expression Evaluation . 3-

Ada Expressions . 3-
C Expressions . 3-
C++ Expressions . 3-
Fortran Expressions . 3-

Overloading. 3-2
Program Counter. . .. 3-22
Context . 3-2
Scope. 3-
Stack . 3-
Current Frame . 3-
Registers . 3-

Inline Subprograms . 3-
Interesting Subprograms. 3-24
Monitor Window . 3-2
Errors . 3-
Command Streams . 3
Interrupting the Debugger . 3-
Macros . 3-
Convenience Variables . 3
Logging .. 3-2
Value History . 3-3
Command History . 3-
Initialization Files . 3-3
Optimization. 3-3
Debugging Ada Programs. 3-31

Packages . 3-
Exception Handling . 3-3

Multithreaded Programs. 3-
Using NightView with Other Tools . 3-3
Limitations and Warnings . 3-

Setuid Programs . 3-
Attach Permissions . 3-
Frequency-Based Scheduler . 3
NightTrace Monitor . 3-3
Memory Mapped I/O . 3-3
Blocking Interrupts . 3-3
User-Level Interrupts . 3-
Debugging with Shared Libraries .. 3-35

Chapter 4 Tutorial

About the Tutorial . 4
viii

Contents

-2
-3
-5
-6

-7
-8
-9
0

10
11
1
12
13
14
-15
6

16
-18
19
-20
-20
21
22

23

-24
5

-26
27
28
28
31
32

1
-2
4
-4
-6

-9
-9
0

11
2
2

-14
5

15
Creating a Program . 4
Starting NightView . 4
Getting General and Error Help. 4
Starting Your Program . 4
Debugging All Child Processes. 4-7
Handling Signals . 4
Listing the Source . 4
Setting the First Breakpoints . 4
Listing a Breakpoint . 4-1
Continuing Execution . 4-
Not Entering Functions . 4-
Entering Input .. 4-1
Creating Families. 4-
Continuing Execution Again . 4-
Creating Families Again . 4-
Catching up the Child Process. 4
Verifying Data Values . 4-1
Entering Functions. 4-
Examining the Stack Frames . 4
Moving in the Stack Frames . 4-
Verifying Data Values in Other Stack Frames . 4
Returning to a Stack Frame . 4
Resuming Execution . 4-
Setting the Default Qualifier . 4-
Removing a Breakpoint. 4-22
Setting Conditional Breakpoints . 4-
Attaching an Ignore Count to a Breakpoint.. 4-23
Attaching Commands to a Breakpoint. 4
Automatically Printing Variables. 4-2
Watching Inter-Process Communication . 4
Patching Your Program . 4-
Disabling a Breakpoint . 4-
Examining Eventpoints . 4-
Continuing to Completion . 4-
Leaving the Debugger . 4-

Chapter 5 Tutorial - GUI

About the Tutorial - GUI . 5-
Creating a Program - GUI . 5
Starting NightView - GUI . 5-
Getting General and Error Help - GUI . 5
Starting Your Program - GUI. 5
Debugging All Child Processes - GUI. 5-8
Handling Signals - GUI . 5
Setting the First Breakpoints - GUI . 5
Continuing Execution - GUI . 5-1
Not Entering Functions - GUI . 5-
Entering Input - GUI .. 5-1
Continuing Execution Again - GUI. 5-1
Catching up the Child Process - GUI . 5
Verifying Data Values - GUI . 5-1
Listing the Source - GUI . 5-
ix

NightView User’s Guide

16
-18
19
20
21
22

24

26
7

-28
29
0

31
3

34

-1
-2
-4

7-6
-7
-9
0

12
12
14
-15
-16

7
7
18
8
0

20
1

3

5

7
28
9

-30
0
0
1

Entering Functions - GUI. 5-
Examining the Stack Frames - GUI . 5
Moving in the Stack Frames - GUI . 5-
Verifying Data Values in Other Stack Frames - GUI . 5-
Returning to a Stack Frame - GUI . 5-
Resuming Execution - GUI . 5-
Removing a Breakpoint - GUI .. 5-23
Setting Conditional Breakpoints - GUI . 5-
Attaching an Ignore Count to a Breakpoint - GUI. . .. 5-25
Attaching Commands to a Breakpoint - GUI. 5-
Automatically Printing Variables - GUI. 5-2
Watching Inter-Process Communication - GUI . 5
Patching Your Program - GUI . 5-
Disabling a Breakpoint - GUI . 5-3
Examining Eventpoints - GUI . 5-
Continuing to Completion - GUI . 5-3
Leaving the Debugger - GUI . 5-

Chapter 6 Invoking NightView

Chapter 7 Command-Line Interface

Command Syntax. 7
Selecting Overloaded Entities. 7
Special Expression Syntax . 7

Predefined Convenience Variables .
PowerPC Registers . 7

Location Specifiers . 7
Qualifier Specifiers . 7-1
Eventpoint Specifiers . 7-
Regular Expressions . 7-
Wildcard Patterns . 7-

Repeating Commands . 7
Replying to Debugger Questions . 7
Controlling the Debugger. 7-16

Quitting NightView. 7-1
quit . 7-1

Managing Dialogues . 7-
login . 7-1
debug . 7-2
nodebug . 7-
translate-object-file . 7-2
logout . .. 7-2
on dialogue 7-23
apply on dialogue. 7-2

Dialogue Input and Output. 7-27
! . 7-2
set-show . 7-
show. 7-2

Managing Processes . 7
run . 7-3
set-notify . 7-3
notify . 7-3
x

Contents

2
2

3
3
4
5
6
8
8

9
0
1
2

43
44
4
44
6
6
6
7
8

49
49
0

-50
1

54
54
54
5

6
6
57
8

8
0
61
61
61
62
4

64
5

66
7
0

70
1
2
3

3
4

attach . 7-3
detach . 7-3
kill . 7-3
symbol-file . 7-3
core-file . 7-3
exec-file . 7-3
on program . 7-3
apply on program . 7-3
on restart . 7-3
checkpoint . .. 7-3
family . 7-4
set-children . 7-4
set-exit . 7-4
mreserve . 7-

Setting Modes. 7-
set-log . 7-4
set-language. 7-
set-qualifier . 7-4
set-history . 7-4
set-limits . 7-4
set-prompt . 7-4
set-terminator . 7-4
set-safety . 7-
set-restart . 7-
set-local . 7-5
set-patch-area-size . 7
interest . 7-5
set-auto-frame . 7-
set-overload . 7-
set-search. 7-
set-editor . 7-5

Debugger Environment Control .. 7-56
cd . 7-5
pwd . 7-5

Source Files . 7-
Viewing Source Files . 7-5

list . 7-5
directory . 7-6

Searching . 7-
forward-search. 7-
reverse-search . 7-

Source Line Decorations . 7-
Examining and Modifying. 7-6

backtrace. 7-
print . 7-6
set . 7-
x . 7-6
output . 7-7
echo. 7-
display . 7-7
undisplay . 7-7
redisplay . 7-7
printf . 7-7
load . 7-7
xi

NightView User’s Guide

75
76
7

77
8
9
81
82
3
5

86
7

88
8
89
90
91
1
2

93
4

94
95
96
7
8
9
0

00
1

01
02
05

05
6
7

07
08
8

09
0

10
11
11
12
2
2
3
4
5
6
7
8
9

vector-set. 7-
Manipulating Eventpoints . 7-

Eventpoint Modifiers . 7-7
name . 7-
breakpoint . .. 7-7
patchpoint . .. 7-7
set-trace. 7-
tracepoint . 7-
monitorpoint . 7-8
mcontrol . 7-8
agentpoint . 7-
clear. 7-8
commands . 7-
condition 7-8
delete . 7-
disable . 7-
enable . 7-
ignore . 7-9
tbreak . 7-9
tpatch. 7-

Controlling Execution . 7-9
continue. 7-
resume. 7-
step . 7-
next . 7-9
stepi . 7-9
nexti. 7-9
finish . 7-10
stop . 7-1
jump . 7-10
signal . 7-1
handle . 7-1

Selecting Context . 7-1
frame . 7-1
up . 7-10
down . 7-10
select-context . 7-1

Miscellaneous Commands . 7-1
help . 7-10
refresh . 7-1
shell . 7-11
source . 7-1
delay . 7-1

Info Commands . 7-1
Status Information. 7-1

info log. 7-11
info eventpoint . 7-11
info breakpoint. 7-11
info tracepoint . 7-11
info patchpoint . 7-11
info monitorpoint . 7-11
info agentpoint . 7-11
info frame . 7-11
info directories . 7-11
xii

Contents

19
0
0
0
0
1

22
2
3

3
3
4
4
4
5
6
6
6
6

27
27
7
8
8
28
9
9
9
30
0

33
35

8-1
8-2
-2

-1
1
2
-3
3

-4
-5

-5
-6
-6
7

info convenience . 7-1
info display . 7-12
info history . 7-12
info limits . 7-12
info registers . 7-12
info signal . 7-12
info process . 7-1
info memory . 7-12
info dialogue . 7-12
info family . 7-12
info name. 7-12
info on dialogue. 7-12
info on program. 7-12
info on restart . 7-12
info exception . 7-12

Symbol Table Information . 7-12
info args. 7-12
info locals . 7-12
info variables . 7-12
info address . 7-1
info sources . 7-1
info functions. 7-12
info types . 7-12
info whatis . 7-12
info representation. 7-1
info declaration . 7-12
info files. 7-12
info line . 7-12

Defining and Using Macros. 7-1
define . 7-13
Referencing Macros . 7-1
info macros . 7-1

Chapter 8 Simple Full-Screen Interface

Using the Simple Full-Screen Interface. .
Editing Commands in the Simple Full-Screen Interface .
Monitor Window - Simple Full-Screen . 8

Chapter 9 Graphical User Interface

NightView GUI Concepts . 9
GUI Overview . 9-
GUI Online Help . 9-

Context-Sensitive Help . 9
Help Menu. 9-
Help Buttons . 9
Help Command . 9

GUI Components. 9-5
Text Input Areas . 9
Combo Boxes . 9
Message Areas. 9
File Selection Dialog Box . 9-
xiii

NightView User’s Guide

-9

10
0
11
2
2
12
2
13
14
4
15
5
6
6

-18

9
20
20
0
21
22
4
6
7

-28
8

28
29
29
30
32

34
4

34
35
36
36
36
7

38
-41
List Selection Policies . 9
Dialogues and Dialog Boxes .. 9-10
Keyboard Focus . 9-
Keys . 9-1
Sashes . 9-
Toggle Buttons. 9-1

GUI Command History. 9-1
Understanding the Debug Window . 9-

Debug Window Behavior. 9-1
Single Process Mode . 9-
Group Process Mode . 9-

Confirm Exit Dialog Box . 9-1
Warning and Error Dialog Boxes . 9-

Warning Dialog Box . 9-1
Error Dialog Box . 9-1

Dialogue Window. 9-1
Dialogue Menu Bar.. 9-16

Dialogue NightView Menu . .. 9-16
Dialogue Menu. 9-16
Dialogue Help Menu .. 9-17

Dialogue Identification Area. 9-17
Dialogue Message Area . .. 9-17
Dialogue I/O Area. .. 9-17
Dialogue Interrupt Button.. 9-18
Dialogue Qualifier Area . .. 9-18
Dialogue Command Area .. 9-18
Process Summary . 9
Dialogue Window Dialog Boxes .. 9-19

Program Arguments Dialog Box . 9-1
Debug Window. 9-

Debug Menu Bar. 9-
Debug NightView Menu . 9-2
Debug Process Menu . 9-
Debug Source Menu . 9-
Debug Eventpoint Menu . 9-2
Debug View Menu . 9-2
Debug Help Menu . 9-2

Debug Message Area . 9
Debug Identification Area. 9-2
Debug Source Lock Button. 9-
Debug Source File Name . 9-
Debug Status Area . 9-
Debug Source Display . 9-
Debug Command Buttons. 9-
Debug Interrupt Button . 9-
Debug Qualifier Area . 9-3
Debug Command Area . 9-
Debug Group Area . 9-
Debug Dialog Boxes . 9-

Debug Group Selection Dialog Box . 9-
Debug Source Selection Dialog Box . 9-
Debug File Selection Dialog Box . 9-3
Debug Eventpoint Dialog Boxes . 9-
Debug Eventpoint Summarize/Change Dialog Box 9
xiv

Contents

4
7
7
7

7
8
8
8
8

49
9

1

1
-1
-2
-2

-3

-4
-4
-4
-4
-5
-6
-7
-8

-8
-8
-9
10

-1
-1
-2
-3
-4
-5
-6
-6
-7
7
-7
Remote Login Dialog Box . 9-4
Monitor Window - GUI . 9-4
Global Window . 9-4

Global Menu Bar . 9-4
Global NightView Menu . 9-4
Global Help Menu. 9-4

Global Output Area . 9-4
Global Interrupt Button . 9-4
Global Qualifier Area. 9-4
Global Command Area. 9-

Help Window . 9-4

Appendix A System Resource Requirements

Appendix B Summary of Commands

Appendix C Quick Reference Guide

Invoking NightView . C-
Controlling the Debugger C-1

Quitting NightView . C-
Managing Dialogues. C
Dialogue Input and Output . C
Managing Processes . C
Setting Modes. C
Debugger Environment Control .. C-4

Source Files . C
Viewing Source Files . C
Searching . C

Examining and Modifying. C
Manipulating Eventpoints . C
Controlling Execution . C
Selecting Context. C
Miscellaneous Commands . C
Info Commands . C

Status Information . C
Symbol Table Information . C

Defining and Using Macros. C-

Appendix D GUI Customization

Application Resources . D
NightStar Resources . D

Using NightStar Resources . D
NightStar Font Resources . D
NightStar Color Resources . D

NightView Resources . D
Font Selection . D
Color Selection . D

Monochrome Display . D
Color Display . D-

Window Geometry. D
xv

NightView User’s Guide

-7

-1

-1
-1
-1
-2
2
-3
3
3
-4
4
-5
-5
-6
7

-4
7-6
7-7
-12
-14
-62
-76
Widget Hierarchy . D

Appendix E Implementation Overview

Appendix F Performance Notes

Debug Agent Performance. F

Appendix G Tutorial Files

C Files . G
msg.h . G
main.c . G
parent.c . G
child.c . G-

Fortran Files . G
msg.i . G-
main.f . G-
parent.f . G
child.f . G-

Ada Files . G
main.a . G
parent.a . G
child.a . G-

Appendix H Reporting Bugs

Glossary

Index

Tables

Table 7-1. Special ’$’ Constructs . 7
Table 7-2. Predefined Convenience Variables. .
Table 7-3. PowerPC Registers. .
Table 7-4. Regular Expressions. 7
Table 7-5. Wildcard Patterns . 7
Table 7-6. Source Line Decorations . 7
Table 7-7. Eventpoint Commands. 7
xvi

A Quick Start

the
hical-
ge

ce
to

you
n an

Feel

apter.
am,
1
Chapter 1A Quick Start

1
1
1

This chapter is for people who want to start using the command-line version of
debugger before reading the whole manual. You may also be interested in the grap
user-interface (GUI) version of this chapter in Chapter 2 [A Quick Start - GUI] on pa
2-1. There is a more thorough tutorial in Chapter 4 [Tutorial] on page 4-1.

If you are familiar with the GNU debugger, gdbTM, you should have very few problems
with NightView. The commands are almost all identical. The biggest differen
between NightView and other debuggers is how you tell NightView what program
debug and how you start that program.

If you get any errors, the error message tells which section of the manual can help
determine what went wrong. At any time, you can ask the debugger to display help o
error message by mentioning that section's name as the argument to thehelp command
(see “help” on page 7-108).

The rest of this chapter goes through a sample debug session on a small program.
free to dive right into the debugger. If you get into trouble, use thehelp command to
get out of it.

Sample Program 1

This section lists the program used as an example through the remainder of the ch
The program does not have any bugs in it; it will be used to show how to run a progr
set breakpoints, look at variables, etc. You can copy this file from/usr/lib/
NightView/fact.c into your own directory. The following program is in the file
fact.c :
1-1

NightView User’s Guide

m
(see

t to

that
our
ome
might
1 #include <stdio.h>
2
3 static int factorial(x)
4 int x;
5 {
6 if (x <= 1) {
7 return 1;
8 } else {
9 return x * factorial(x-1);

10 }
11 }
12
13 void
14 main(argc, argv)
15 int argc;
16 char ** argv;
17 {
18 int i, errors;
19 for (i = 1; i < argc; ++i) {
20 long xl;
21 int x;
22 int answer;
23 char * ends = NULL;
24 xl = strtol(argv[i], &ends, 10);
25 x = (int)xl;
26 answer = factorial(x);
27 printf("factorial(%d) == %d\n", x, answer);
28 }
29 exit(0);
30 }

The remainder of this chapter assumes that you compiledfact.c and put the resulting
executable infact :

cc -g -o fact fact.c

Starting Up 1

You can start NightView with or without a program name. If you start it with a progra
name, NightView offers you the chance to debug the program in a dialogue shell
“Dialogues” on page 3-4). If you start NightView without a program name or you wan
debug another program, you must execute the program with therun command (see “run”
on page 7-30) in a dialogue shell.

Below is an example of starting up the debugger with a program name. Note
throughout the quick start, the version and the link time might not match exactly for y
version of NightView. Also, some of the shell output and other messages may not c
out exactly as shown. Some messages might not appear, or additional messages
appear, depending on your environment.
1-2

A Quick Start

you

line

ns

the

t to a
ame

at a
s

efault
e

text
$ nview -nogui ./fact
NightView debugger - Version 5.1, linked Thu Jan 13 10:24:51 EST 2000
Copyright (C) 2000, Concurrent Computer Corporation

In case of confusion, type "help"

Note that you invoked NightView with a program name argument./fact . NightView
responded with information about the debugger.

Now NightView will prompt you for information about running the program.

Do you want to debug program './fact'? y
Type in the arguments you want to supply to program './fact'.
Arguments: 7
New process: local:2347 parent pid: 2340
Process local:2347 is executing /users/bob/fact.
Reading symbols from /users/bob/fact...done
Executable file set to /users/bob/fact
/usr/lib/NightView/ReadyToDebug
$ /usr/lib/NightView /ReadyToDebug
$./fact 7
(local)

NightView requested information about the program and its arguments and
complied.

NightView always runs a special program,/usr/lib/NightView/ReadyToDebug .
This program helps NightView synchronize with the shell. That's why you see that
in the output. You might see only one echo of/usr/lib/NightView/
ReadyToDebug , depending on how quickly the dialogue shell starts. The dollar sig
("$") are prompts from the shell.

NightView automatically created a dialogue namedlocal ; it also displayed the string
local as the prompt, showing that by default, commands apply to that dialogue (or
processes running in that dialogue).

The debugger waited for the new program to get started. Because sending inpu
dialogue is just like typing commands to a shell (the dialogue is really running the s
shell program you normally use), this caused thefact program to be executed with the
single argument7.

If the fact program had required input, you would have used the! command to send the
input to the program. See “!” on page 7-27.

When the dialogue executed the program, NightView got control and informed you th
new process was just started in dialoguelocal and told you that the process id wa
2347.

Because this is the only program running in dialoguelocal , you do not have to do
anything special to cause any commands you type to refer to this process; the d
qualifier is already set tolocal , so commands will automatically apply to the on
process running there.

Getting Help 1

Next you will enter a bogus command. Note that throughout this section, the help
and display size may not exactly match your NightView session.
1-3

NightView User’s Guide

code

ror

y for
w's

e

ram
(local) foo
Error: Unrecognizable command "foo". [E-command_proc003]

NightView responded to the bogus command with an error message and an error
([E-command_proc003]).

Now get NightView to tell you more about the error message.

(local) help
E-command_proc003:
Unrecognizable command "string".

STRING is not a valid NightView command. See "Summary of
Commands".

You typed help without any arguments to see more information about the er
message. NightView showed the extended error information.

In the command-line and and simple screen interfaces, online help is available onl
error messages. Consult a printed manual or view the online help with NightVie
graphical user interface or withnhelp(1) .

If you are familiar withgdb , the remainder of this chapter will be fairly boring becaus
(once you get the program started) NightView andgdb look very much alike (at least for
all the commands demonstrated in this simple example).

Setting a Breakpoint 1

You will now use thelist command to look at the source.

(local) l 1
1 | #include <stdio.h>
2 |
3 | static int factorial(x)
4 | int x;
5 | {
6 * | if (x <= 1) {
7 * | return 1;
8 | } else {
9 * | return x * factorial(x-1);}
10 | }
(local)

You told thelist command (abbreviated tol in this example) to list at line 1.

You now decide where you want to set a breakpoint. An interesting spot in this prog
is the return statement in the recursive routinefactorial where it is about to start
backing out of the recursive calls.

(local) b 7
local:2347 Breakpoint 1 set at fact.c:7
(local)
1-4

A Quick Start

and

7.

e

The return was on line 7, so you used thebreakpoint command (abbreviated tob)
to set a breakpoint on line 7.

Complete descriptions of the commands you used here appear in “list” on page 7-58
“breakpoint” on page 7-78.

Finishing up 1

Now run the program until it reaches the breakpoint.

(local) c
local:2347: at Breakpoint 1, 0x100026fc in factorial(int
x = 1) at fact.c line 7
7 B=| return 1;
(local)

You used thecontinue command (abbreviated toc) without any arguments. This told
the program to start running. It ran until it hit the breakpoint that you had set on line
Note that your process ID and addresses will differ.

Now look at the call stack.

(local) bt
#0 0x100026fc in factorial(int x = 1) at fact.c line 7
#1 0x1000271c in factorial(int x = 2) at fact.c line 9
#2 0x1000271c in factorial(int x = 3) at fact.c line 9
#3 0x1000271c in factorial(int x = 4) at fact.c line 9
#4 0x1000271c in factorial(int x = 5) at fact.c line 9
#5 0x1000271c in factorial(int x = 6) at fact.c line 9
#6 0x1000271c in factorial(int x = 7) at fact.c line 9
#7 0x10002784 in main(int argc = 2, char **argv =
0x2ff7eaec)

at fact.c line 26
(local)

You used thebt (backtrace) command to display the call stack. You saw all th
expected recursive calls (see “backtrace” on page 7-64).

Now look at the value of the variablex .

(local) p x
$1: x = 1
(local)

You used thep (print) command to print the variablex , verifying that it was equal to
1.

Now finish running the program.

(local) c
factorial(7) == 5040
Process local:2347 is about to exit normally
1-5

NightView User’s Guide

ded
ear in
on
#0 0x100027ac in main(int argc = 2, unsigned char
**argv = 0x2ff7eaec)

at fact.c line 29
29 <>| exit(0);
(local)

You used thec (continue) command to allow the process to run to completion.

Exit from NightView.

(local) q
Kill all processes being debugged? y
You are now leaving NightView...
Process local:2347 exited normally
Dialogue local has exited.
$

Finally you typedq (quit) to leave the debugger. Thefact program had not fully
exited, so NightView prompted, asking if the program should be killed. You respon
with y , and the sample session ended. The commands used in this section app
“continue” on page 7-94, “backtrace” on page 7-64, “print” on page 7-65, and “quit”
page 7-17.
1-6

A Quick Start - GUI

UI)
ed in
here

1.

r. If
you

any

the
by

Feel

apter.
am,
2
Chapter 2A Quick Start - GUI

2
2
2

This chapter is for people who want to start using the graphical-user-interface (G
version of the debugger before reading the whole manual. You may also be interest
the command-line version of this chapter in Chapter 1 [A Quick Start] on page 1-1. T
is a more thorough tutorial in Chapter 5 [Tutorial - GUI] on page 5-1.

In this manual, the words click, drag, press, and select always refer to mouse button

This entire manual is available through the online help system built into the debugge
you get any errors, the error message tells which section of the manual can help
determine what went wrong. At any time, you can ask the debugger to display
section of the manual by clicking on theHelp menu or using theH mnemonic. See
“Help Menu” on page 9-3. Click on theTable of Contents menu item or use then
mnemonic. NightView puts up a Help Window that displays the table of contents for
manual. See “Help Window” on page 9-49. You can read this manual section
clicking onA Quick Start - GUI.

The rest of this chapter goes through a sample debug session on a small program.
free to dive right into the debugger. If you get into trouble, use theHelp menu to get out
of it.

Sample Program - GUI 2

This section lists the program used as an example through the remainder of the ch
The program does not have any bugs in it; it will be used to show how to run a progr
set breakpoints, look at variables, etc. You can copy this file from/usr/lib/
NightView/fact.c into your own directory. The following program is in the file
fact.c :
2-1

NightView User’s Guide

m
(see

t to
(see

that
our
own.
ing on
1 #include <stdio.h>
2
3 static int factorial(x)
4 int x;
5 {
6 if (x <= 1) {
7 return 1;
8 } else {
9 return x * factorial(x-1);

10 }
11 }
12
13 void
14 main(argc, argv)
15 int argc;
16 char ** argv;
17 {
18 int i, errors;
19 for (i = 1; i < argc; ++i) {
20 long xl;
21 int x;
22 int answer;
23 char * ends = NULL;
24 xl = strtol(argv[i], &ends, 10);
25 x = (int)xl;
26 answer = factorial(x);
27 printf("factorial(%d) == %d\n", x, answer);
28 }
29 exit(0);
30 }

The remainder of this chapter assumes that you compiledfact.c and put the resulting
executable infact :

cc -g -o fact fact.c

Starting Up - GUI 2

You can start NightView with or without a program name. If you start it with a progra
name, NightView offers you the chance to debug the program in a dialogue shell
“Dialogues” on page 3-4). If you start NightView without a program name or you wan
debug another program, you must execute the program in the dialogue I/O area
“Dialogue I/O Area” on page 9-17). (The dialogue I/O area is labeledDialogue I/O:
Run your programs in this shell.)

Below is an example of starting up the debugger with a program name. Note
throughout the quick start, the version and the link time might not match exactly for y
version of NightView. Also, some of the messages might not come out exactly as sh
Some messages might not appear, or additional messages might appear, depend
your environment.
2-2

A Quick Start - GUI

on
the

w
see

ll.

to

to a
ame

he

bug
ike the

at a
s

$ nview ./fact

NightView displays the Dialogue Window and a dialog box. See “Dialogue Window”
page 9-16 and “Program Arguments Dialog Box” on page 9-19. The dialog box says
following:

To debug program './fact', enter any command-line
arguments you want to supply to the program and press OK.

Press Cancel if you do not want to debug program
'./fact'.

Enter the number7 as an argument and click on theOK button.

The dialogue I/O area displays the following information:

/usr/lib/NightView- release/ReadyToDebug
$ /usr/lib/NightView- release/ReadyToDebug
$./fact 7

NightView always runs a special program,/usr/lib/NightView- release/
ReadyToDebug (releaseis the NightView release level). This program helps NightVie
synchronize with the shell. That's why you see that line in the output. You might
only one echo of/usr/lib/NightView- release/ReadyToDebug , depending on
how quickly the dialogue shell starts. The dollar signs (``$ '') are prompts from the she

When NightView started, it automatically created a dialogue namedlocal ; it also
displayed the stringlocal as the qualifier, showing that by default, commands apply
that dialogue (or the processes running in that dialogue).

Your answers to the dialog box sent the line./fact 7 to the local dialogue and caused
the debugger to wait for the new program to get started. Because sending input
dialogue is just like typing commands to a shell (the dialogue is really running the s
shell program you normally use), this caused thefact program to be executed with the
single argument7.

If the fact program had required input, you would have typed the input into t
dialogue I/O area.

NightView puts up a Debug Window (see “Debug Window” on page 9-20). The de
message area (see “Debug Message Area” on page 9-28) contains a message l
following:

New process: local:2347 parent pid: 2340
Process local:2347 is executing /users/bob/fact.
Reading symbols from /users/bob/fact...done
Executable file set to
/users/bob/fact
Switched to process local:2347.

When the dialogue executed the program, NightView got control and informed you th
new process was just started in dialoguelocal and told you that the process id wa
2347.

The debug identification area displays the program namefact . See “Debug Identifica-
tion Area” on page 9-28. The debug source file name isfact.c . See “Debug Source
2-3

NightView User’s Guide

text

e

ode:

e

f

e

File Name” on page 9-29. The debug status area showsStopped for exec. See “Debug
Status Area” on page 9-29. The source code from filefact.c appears in the debug
source display, centered aroundmain . See “Debug Source Display” on page 9-30.

Getting Help - GUI 2

Next you will enter a bogus command. Note that throughout this section, the help
and display size may not exactly match your NightView session.

The debug command area is labeledCommand:. Click in the debug command area (se
“Debug Command Area” on page 9-34) and issue the following command:

foo

PressReturn to enter the command.

NightView responded to the bogus command with the following message and error c

Error: Unrecognizable command "foo". [E-command_proc003]

Now get NightView to tell you more about the error message. Click on theHelp menu or
use theH mnemonic. See “Help Menu” on page 9-3. Click on theOn Last Error
menu item or use theE mnemonic. NightView puts up a Help Window that displays th
following extended error information:

E-command_proc003

MESSAGE

ERROR: Unrecognizable command "string".

EXPLANATION

string is not a valid NightView command. See Summary of Commands.

Next, dismiss the Help Window by selectingExit from the File menu. See “Help
Window” on page 9-49.

Next you will read about thelist command. Click on theHelp menu or use theH
mnemonic. See “Help Menu” on page 9-3. Click on theOn Commands menu item or
use them mnemonic. NightView puts up the following Help Window with a menu o
NightView commands.

Summary of Commands

This section gives a summary of all the commands in NightView. The table is
organized alphabetically by command. The abbreviations for the commands ar
included with the corresponding commands, rather than alphabetically.
2-4

A Quick Start - GUI

by

roll

.

w
Help

ram

hen

eside
ne
Also, remember that you can abbreviate commands by using a unique prefix.

!

Pass input to a dialogue.

agentpoint

Insert a call to a debug agent at a given location.

(etc.)

Most of the information would not fit on your display. The Help Window showed this
having only a small thumb or slider on the vertical scroll bar. Scroll down to thelist
command by moving the thumb or by clicking on the arrow heads of the vertical sc
bar. Click on thelist command. NightView displayed the following Help Window
with information about thelist command.

list

List a source file. This command has many forms, which are summarized below

list where-spec

List ten lines centered on the line specified bywhere-spec.

list where-spec1, where-spec2

List the lines beginning withwhere-spec1up to and including thewhere-spec2line.

(etc.)

To see more about thelist command, you could move the thumb or click on the arro
heads of the vertical scroll bar. However, rather than reading more, you make the
Window go away by selectingExit from theFile menu.

Setting a Breakpoint - GUI 2

You now decide where you want to set a breakpoint. An interesting spot in this prog
is the return statement in the recursive routinefactorial where it is about to start
backing out of the recursive calls.

Click on the line with the return statement (line 7) in the debug source display. T
click on theBreakpoint debug command button.

The return was on line 7, so you clicked on that line, then clicked on theBreakpoint
debug command button to set a breakpoint on that line. The source line decoration b
line 7 is now aB for breakpoint. See “breakpoint” on page 7-78 and “Source Li
Decorations” on page 7-62.

NightView responds with:

local:2347 Breakpoint 1 set at fact.c:7
2-5

NightView User’s Guide

t

k in

n
area.

ebug

ssage

I/O
Finishing up - GUI 2

Now you want to run the program until it reaches the breakpoint. Click on theResume
button. See “Debug Command Buttons” on page 9-32.

Clicking on Resume told the program to start running. It ran until it hit the breakpoin
that you had set on line 7. The source line decoration beside line 7 is now aB=.

NightView responds with:

local:2347: at Breakpoint 1, 0x100026fc in factorial(int
x = 1) at fact.c line 7

Note that your process ID and addresses will differ. Now look at the call stack. Clic
the debug command area and issue the following command:

bt

You used thebt (backtrace) command to display the call stack. See “backtrace” o
page 7-64. You saw all the following expected recursive calls in the debug message
See “Debug Message Area” on page 9-28. Note that the output may scroll in the d
message area.

#0 0x100026fc in factorial(int x = 1) at fact.c line 7
#1 0x1000271c in factorial(int x = 2) at fact.c line 9
#2 0x1000271c in factorial(int x = 3) at fact.c line 9
#3 0x1000271c in factorial(int x = 4) at fact.c line 9
#4 0x1000271c in factorial(int x = 5) at fact.c line 9
#5 0x1000271c in factorial(int x = 6) at fact.c line 9
#6 0x1000271c in factorial(int x = 7) at fact.c line 9
#7 0x10002784 in main(int argc = 2, unsigned char **
argv = 0x2ff7eaec) at fact.c line 26

Now look at the value of the variablex . Drag the mouse pointer over the variablex
anywhere it appears in the source display. Click on thePrint button. See “Debug
Command Buttons” on page 9-32.

NightView showed that the value ofx was equal to 1. You saw the following output in
the debug message area.

$1: x = 1

Now finish running the program. Click on theResume button. See “Debug Command
Buttons” on page 9-32.

This allowed the process to run to completion. NightView showed the call toexit(0)
in the debug source display and displayed the following message in the debug me
area.

Process local:2347 is about to exit normally

NightView displays the following message in the dialogue I/O area. See “Dialogue
Area” on page 9-17.

factorial(7) == 5040
2-6

A Quick Start - GUI

w
n

u

Exit from NightView by selecting the dialogue NightView menu or debug NightVie
menu. See “Dialogue NightView Menu” on page 9-16 or “Debug NightView Menu” o
page 9-20. Click onNightView or use theN mnemonic. Click on theExit (Quit
NightView) menu item or use theX mnemonic.

NightView responds with a warning dialog box. The warning dialog box says:

Kill all processes being debugged?

Finally you click on theOK button to leave the debugger. Thefact program had not
fully exited, so NightView prompted, asking if the program should be killed. Yo
responded by clickingOK , and the sample session ended.
2-7

NightView User’s Guide
2-8

Concepts

ugger

The
ized

our
you

Also,

ram
ams.
gram
For
the
ith

our

uage

es:
and
the
3
Chapter 3Concepts

3
3
3

This section describes concepts you will need to understand in order to use the deb
effectively.

Many of the concepts described in this section are also defined in the glossary.
glossary is an alphabetical list of the concepts — the description here is organ
hierarchically.

Debugging 3

The termdebuggeris actually a misnomer. A debugger does not remove bugs from y
program. Instead, it is a tool to help you monitor and examine your program so that
can find the bugs and remove them yourself.

A debugger primarily lets you do two things:

1. start and stop the execution of your program; and,

2. examine and alter the contents of the program's memory.

There are many ways to do these things, so there are lots of debugger commands.
some of the commands control the debugger itself.

NightView is a symbolic debugger. That means that you can talk about your prog
using the same high-level language constructs that you use when you write progr
You can refer to variables, expressions and procedures as they appear in your pro
source. You can also refer to source files and line numbers within those files.
example, you can tell your program to stop at a particular line. In order to use
symbolic capabilities of the debugger, you must compile and link your program w
options that tell the compiler and linker to save the symbolic information along with y
program.

Sometimes, you want to be able to debug at a lower level, referring to machine lang
instructions and registers. NightView lets you do that, too.

Accessing Files 3

During the course of debugging, NightView will likely have to access a number of fil
executable files for programs being debugged, source files for those programs,
possibly object and library files. Those files must all reside, or be accessible from,
system on which NightView is executing.
3-1

NightView User’s Guide

nt to

files
w to
on
the

ee

.

gle

e to a
g one

bug
l
h

this

on
, you
.

her
d in
3-4.)
.

See

re in
If you are debugging processes running on some other system, you will probably wa
have some of that system's files mounted via NFSTM on the system running NightView.
Furthermore, your debugging will probably go much easier if the pathnames to those
(especially the executables) are the same on both systems. This will allow NightVie
find the executable files automatically most of the time. See “Finding Your Program”
page 3-8. If the pathnames of the executable files are different, you can use
translate-object-file command to tell how to translate the names. S
“translate-object-file” on page 7-21.

Programs and Processes 3

It is necessary to distinguish between aprogramand aprocess. A program is something
that you write, compile and link to form a program file. Aprocessis an instance of
execution of a program. There may be several processes running the same program

Multiple Processes 3

The most typical use for NightView is debugging a single program running as a sin
process, but NightView can also be used to debug anapplication consisting of multiple
processes, so the debugger has ways to describe multiple processes. If you com
section of the manual that describes multiple processes, and you are only debuggin
process, you can usually just ignore the parts about multiple processes.

You may inadvertently create multiple processes, even though you only want to de
one. This may happen if your programforks. For example, your program may cal
system . This call works by using thefork service to create another process, whic
then runs a shell. A process created this way is called achild process. Because
NightView has the capability of debugging child processes, you are notified when
happens. If you don't want to debug the child process, then you shoulddetach from it,
which allows it to run without further interference from the debugger. See “detach”
page 7-32. If you know in advance that you don't want to debug any child processes
can use theset-children command to specify this. See “set-children” on page 7-41

If you use pipelines in the dialogue shell, or invoke shell scripts which call many ot
programs, you are likely to get multiple processes which you are not intereste
debugging. (Dialogues are described in a later section, see “Dialogues” on page
Again, if you don't want to debug those other processes, you should detach from them

Another way to determine which processes are debugged is to usedebug andnodebug ,
which let you describe which processes you want to debug by their program names.
“nodebug” on page 7-20.

Families 3

One of the handy things NightView lets you do is group processes together intofamilies.
You do this by giving the family a name and telling the debugger what processes a
3-2

Concepts

gram,
ould

the

up a

nd (

ebug
ing

the

starts
tion.
ch

m the
illing
only

other

d re-
it in
“set-
that family. For example, you might have several processes executing the same pro
and you might want to set a breakpoint at the same source line in all of them. You c
define a family containing all of the processes and then use that family name with
breakpoint command. See “family” on page 7-40.

Attaching 3

Sometimes you want to debug a process that is already running, rather than starting
new process running the same program. You can do this with theattach command
(see “attach” on page 7-32).

In order to attach to a process, you must know its process identifier (orPID). You can get
a list of running processes and theirPIDs by running theps(1) program. You can use
the shell command (see “shell” on page 7-110) to runps(1) . If you want to attach to
a process running on another machine, you may have to use the remote shell comma/
usr/ucb/rsh) to runps(1) on the right machine.

Once you have attached to a process, you can debug it in the same way you would d
a process started normally from a dialogue. An attached process is debugged us/
proc (see “Debugger Mechanisms” on page 3-15).

For the security restrictions onattach , see “Attach Permissions” on page 3-33.

If the process to which you attach is stopped (<CONTROL Z> stops a foreground process in
most shells), then the attach will not take effect until the process is continued from
shell.

Detaching 3

Detaching a process is the inverse of attaching one. When you detach a process it
running independently of the debugger. Nothing it does will get the debugger's atten
Any children it forks will also be ignored by the debugger. You have to explicitly atta
to the process again to make the debugger notice it.

Detaching from an exited or terminated process completely removes the process fro
system. See “Exited and Terminated Processes” on page 3-14. Detaching from or k
a pseudo-process associated with a core file (see “Core Files” on page 3-4) is the
way to make that pseudo-process go away.

Detaching from a process causes NightView to forget all the eventpoint settings and
information it remembers about the process.

NightView typically uses some memory in the debugged process. If you detach an
attach repeatedly, NightView will eventually be unable to find memory where it needs
the process. See Appendix E [Implementation Overview] on page E-1. See also
patch-area-size” on page 7-50.
3-3

NightView User’s Guide

ocess
e the
tc).
age
one
ple,
g a

ged
the

out
r is
ays a

each
of

e the

y be

ew.
ld
a

the
hich

g a
t is a
m in

the
ased

hell.
Core Files 3

A core file is a snapshot image of a process created by the system when the pr
aborts (typical reasons for creating a core file include referencing an address outsid
memory allocated to the process, dividing by zero, floating-point exceptions, e
NightView allows you to debug core files as well as processes (see “core-file” on p
7-34). Since a core file is not actually a running process, all you can do is look at it. N
of the commands which require a running process will work on core files (for exam
you cannotcontinue a core file and you cannot evaluate any expression containin
function call).

If a core file is from a process that used dynamic linking, the core file must be debug
on the same system where the process was running, otherwise information from
libraries may not match the core file.

Qualifiers 3

If you are not debugging multiple processes, you will probably never need to worry ab
command qualifiers, but for multiprocess debugging, they are essential. A qualifie
used to restrict a command so it operates only on specific processes. There is alw
default qualifier in effect, but any command may be given an explicit qualifier.

Most qualified commands act as though the command was specified once for
process (for instance, thebreakpoint command sets a separate breakpoint in each
the processes specified in its qualifier).

Some commands treat the qualifier in special ways, and other commands ignor
qualifier. Any special treatment is described in the section on each command.

Qualifiers are specified as a prefix on the command. The complete description ma
found in “Command Syntax” on page 7-1 and “Qualifier Specifiers” on page 7-10.

Dialogues 3

Dialogues are one of the most important (and unique) concepts in NightVi
Essentially, adialogue is just an ordinary shell where you run commands as you wou
normally run them in the shell (in fact, you are running your normal shell), but in
dialogue, you have the opportunity to debug any or all of the programs you run in
dialogue shell. Most debuggers have special commands to tell the debugger w
program to debug and what arguments to give it. In NightView, the way to debu
program is to run it within a dialogue shell. This means you can debug a program tha
member of a pipe, or is invoked by some other program, and you can run the progra
the debugger using the exact same invocation you would normally use outside
debugger. For instance, if your programs run under the control of the Frequency-B
Scheduler, you could invokertutil or NightSimTM from your dialogue.

The environment variableNIGHTVIEW_ENVis set to1 within a dialogue shell. This
allows you to alter the behavior of programs and scripts running in the dialogue s
3-4

Concepts

file

r set
gue
as

ribing
the

can
tach

t the

iple
rent
of a

ogue
ch

e by

data.
I/O

s may
g to
ll and
he
ith

gue

time
-time
View
ntrol
imize
For example, you may wish to avoid running some programs in a shell initialization
when the shell is a dialogue shell.

Once the shell is started, you can change directory, set environment variables, o
ulimit(2) parameters just like a normal shell. Any processes you start in the dialo
will automatically be debugged, except for programs in the standard directories such/
bin . You may alter this default behavior using thedebug and nodebug commands.
See “debug” on page 7-20 and “nodebug” on page 7-20.

When you start a program in a dialogue shell, the debugger prints a message desc
the new process that just started in the dialogue. The information printed includes
program name, the arguments it received on startup and the process identifier (PID). This
new process is stopped immediately prior to executing any code. At this point you
decide what to do with the process (set breakpoints, etc.) and tell it to continue, or de
from it and let it run without being debugged.

At startup, NightView provides an initial dialogue namedlocal . This initial dialogue
shell inherits the current working directory and environment variables in existence a
time you started the debugger.

You may create additional dialogues at any time (see “login” on page 7-18). Mult
dialogues allow you to debug distributed systems of processes running on diffe
computers. Each dialogue has a name. Unless you specify otherwise, the name
dialogue is the host name of the system to which it is connected. You may use dial
names in command qualifiers to tell NightView to which system you wish to talk, su
as, when you want to run a command in a particular dialogue.

Dialogue I/O 3

You send input to a dialogue shell or to a program you are debugging in the dialogu
using the! command (see “!” on page 7-27) or therun command (see “run” on page
7-30). The qualifier on the command determines which dialogue receives the input
In the graphical user interface, you can send input to a dialogue with the dialogue
area (see “Dialogue I/O Area” on page 9-17) for that dialogue.

Since each dialogue is a separate shell, the programs running in separate dialogue
generate output at any time. In the command-line interface, it would be confusin
have these print at any time. Instead, all the output generated by each dialogue she
the programs running in it is logged by NightView. You can control this log using t
set-show command (see “set-show” on page 7-28), and you can review the log w
the show command (see “show” on page 7-29). In the graphical user interface, dialo
output goes to the dialogue I/O area for that dialogue.

Real-Time Debugging 3

By running NightView on a development system and starting a dialogue on a real-
system you are debugging, you can minimize the impact of the debugger on the real
system. Most of the debugger runs on the development system, and only a Night
control program and the dialogue shell run on the real-time system. You can also co
the CPU, memory, and other resource allocations of debugger processes to help min
3-5

NightView User’s Guide

-6.

am

your

It
with
e

he
w

ell is

tem,
s and

the
the impact of the debugger on critical resources. See “Remote Dialogues” on page 3

Monitorpoints provide a means of monitoring the value of variables in your progr
without stopping it. See “Monitorpoints” on page 3-9.

You may also want to use the debug agent mechanism in addition to/proc . See
“Debugger Mechanisms” on page 3-15. The debug agent allows you to manipulate
process while it is running.

NightTraceTM is another tool you may find useful in debugging real-time programs.
allows you to gather performance information and record limited amounts of data
minimal overhead. NightView provides facilities for using NightTrace from within th
debugger; see “Tracing” on page 3-10.

Remote Dialogues 3

A remote dialogueis a shell, controlled by NightView, running on a system other than t
one on which NightView was initially invoked. We refer to the system where NightVie
was invoked as the "local system", while the system where the remote dialogue sh
running is referred to as the "target" or "remote system".

You may need to use a remote dialogue if:

• you need to debug programs running on multiple target systems simulta-
neously;

• your application uses most of the system's CPU or memory resources, leav-
ing insufficient resources for NightView;

• the source files for your programs are not accessible on the target system;

• you do not wish to install all of NightView on the target system, perhaps to
conserve disk space on the target;

• you need to reduce network traffic on the target system by eliminating
NightView's GUI overhead;

• you need to reduce disk loading on the target system by eliminating Night-
View's reading of source and object files.

When you use a remote dialogue, the NightView user interface runs on the local sys
while another process, named NightView.p, runs on the remote system to acces
control the processes you are debugging. The following activities are performed on
local system in this case:

• all user interaction, including command input/output and window manipu-
lation and updating;

• reading source and object files, including reading and interpreting debug
information in your program;

• evaluation of expressions in commands such asprint andx , except that
retrieving data from a debugged process (such as variable values) is per-
formed on the remote system.
3-6

Concepts

ta to
and

w.
rate

and
to
You

olicy
”

by

cause
es of
the
en a

on
ote
the

not
ame
ol-

iew
1 for

ou
en a

f the

l

n a
hell
run
ace
The activities performed on the remote system are limited to storing and retrieving da
and from a debugged process, controlling execution of a debugged process,
supplying target-dependent information to the local system portion of NightVie
Additionally, NightView sometimes runs the C compiler on the target system to gene
code for eventpoints. See “Eventpoints” on page 3-8.

You may wish to control how the target system allocates resources to NightView.p
the dialogue shell, both to prevent them from interfering with your application and
ensure that they get sufficient resources to give adequate response in NightView.
can control the allocation of CPU and memory resources as well as the scheduling p
and priority through either thelogin command or the remote login dialog. See “login
on page 7-18. See “Remote Login Dialog Box” on page 9-44.

Note that the parameters you specify for the remote dialogue will be inherited
processes you execute within that dialogue shell. You may wish to use therun(1) shell
command when you run your application in the dialogue shell.

There are some things you need to be aware of when you use a remote dialogue. Be
source files and debug information are read on the local system, those files (or copi
them) need to be accessible on the local system. This is particularly true of
executable program file, because that is where the debug information resides. Wh
debugged processexec s a new program, NightView attempts to determine the locati
of the executable program file. See “Finding Your Program” on page 3-8. With a rem
dialogue, NightView assumes that the pathname of the executable program file is
same (or locates identical files) on both systems. If this is not true, then NightView is
able to read debug information for that program until you specify the correct pathn
with the symbol-file command or use object filename translations. See “symb
file” on page 7-33. Also, see “translate-object-file” on page 7-21.

You may need to configure your local and remote systems to be able to use NightV
remote dialogues. See Appendix A [System Resource Requirements] on page A-
more information about configuring systems for NightView.

Creating a new dialogue involves logging into a system (see “login” on page 7-18). Y
may login again as yourself, or as another user (subject to a password check). Wh
dialogue is created, it executes your login shell (or, more accurately, the login shell o
user whom you logged in as).

Logging in runs your.profile or other initialization file appropriate to your norma
login shell. The environment variableNIGHTVIEW_ENVis set to the name of the local
system (that is, the one you are logging infrom) during the shell initialization. Your
.profile should avoid reading from the standard input ifNIGHTVIEW_ENVhas a non-
empty value.

ReadyToDebug 3

The program /usr/lib/NightView-release/ReadyToDebug is a special
program used by NightView to synchronize with the dialogue shell (release is the
NightView release level). You will probably see this program name echoed whe
dialogue shell starts up. When NightView sees this program run, it knows that the s
is through with any initialization. NightView then considers any new processes that
in the shell to be candidates for debugging. This allows the initialization to take pl
3-7

NightView User’s Guide

ram
at

the
,
tell

p. If
by

he

ing.

ints,
the
gger
ple, if
each

with
ary
s, if
nal
and
ugger
head
the

cute
ount
without debugging the programs that might run during that time.

Finding Your Program 3

When a program is started up from a dialogue, NightView is notified that a new prog
is executing, but there is currently no way for NightView to find out exactly wh
program is running.

NightView tries to guess the name of your program by looking at the arguments,
current working directory, and thePATH environment variable of the program. Usually
these correctly identify the program name, but not always. Then NightView can't
what the program name is. Also, sometimes NightView may guess wrong.

NightView prints a message with the name of the program when the program starts u
this name is wrong, then you will need to tell NightView the name of the program
using theexec-file command. See “exec-file” on page 7-35.

Most shells already do this correctly, so you will rarely need to worry about it. T
problem sometimes occurs in programs that run other programs.

Controlling Your Program 3

NightView provides many ways to control the execution of a program you are debugg

Eventpoints 3

An eventpoint is a generic term which includes breakpoints, patchpoints, monitorpo
agentpoints, and tracepoints. All of these are different ways to debug or modify
behavior of your program, and all of them are assigned unique numbers by the debu
when you create them. These numbers are unique across all processes. For exam
you use a command qualifier to set a breakpoint in many processes at once,
breakpoint in each process is assigned a unique eventpoint number.

NightView also allows you to set conditional eventpoints, so the action associated
the eventpoint is taken only if the condition is satisfied. The condition is an arbitr
expression in the language of the routine where the eventpoint is set (in other word
you set a conditional eventpoint in a Fortran subroutine, you would write the conditio
expression in Fortran). NightView actually compiles the conditional expressions
patches them into the program, so evaluating the condition does not require the deb
to take control. This means that setting a conditional eventpoint only adds the over
required to evaluate the condition and the program will run at almost full speed until
condition is satisfied. See “condition” on page 7-88.

You can also specify an ignore count for an eventpoint. This means you must exe
past the eventpoint a certain number of times before it might be taken. The ignore c
3-8

Concepts

, the
on
the

ches

e of
, and
See

set a
s that

rrent

me a
is

or
ow
ger
lues
r

r an
the
w

d by

alues
fore,
r,

ut
nd
to
hat it
is checked prior to the condition, so if you have both ignore counts and conditions
condition will not be checked until the ignore count is down to zero. See “ignore”
page 7-91. Like conditions, the code to implement ignore counts is patched into
program, so the program will execute at nearly full speed until the ignore count rea
zero.

There are several commands to manipulate eventpoints, but not every typ
manipulation makes sense for every type of eventpoint. Deleting, disabling, enabling
attaching ignore counts and conditions works for all types of eventpoints.
“Manipulating Eventpoints” on page 7-76.

Breakpoints 3

A breakpoint is one of the most frequently used features of a debugger. You can
breakpoint at any place in a program you are debugging, and when execution reache
point, the program will stop. You may then use the debugger to examine the cu
values of variables, set additional breakpoints, etc. See “breakpoint” on page 7-78.

You may also specify an arbitrary set of debugger commands to execute each ti
breakpoint is hit (if it is a conditional breakpoint, that means only when the condition
satisfied). See “commands” on page 7-88.

Monitorpoints 3

If you are debugging a real-time program, you may wish to monitor the value of one
more variables without interrupting the execution of your program. Monitorpoints all
you to do this. A monitorpoint is code inserted at a specified location by the debug
that will save the value of one or more expressions, which you specify. The saved va
are then periodically displayed by NightView in a Monitor Window (see “Monito
Window” on page 3-25). You can set a monitorpoint using themonitorpoint
command. See “monitorpoint” on page 7-83.

Note that the expressions you specify are evaluatedevery timeexecution passes the
location of the monitorpoint (unless the monitorpoint is disabled or has a condition o
ignore count). However, NightView may not display every value saved by
monitorpoint. If the monitorpoint location is executed more frequently than NightVie
can update the Monitor Window, you will miss seeing some of the values evaluate
the monitorpoint.

Note that there may be some delay between the time that NightView reads the v
saved by a monitorpoint and the time the values appear on your display. There
values sampled bydifferent monitorpoints cannot reliably be related in time. Howeve
you may be sure that all the values sampled by asinglemonitorpoint were all evaluated at
the same time.

Patching 3

During the course of debugging, you may find a small error you would like to fix, b
you would also like to continue debugging the program without recompiling a
relinking. Thepatchpoint command (see “patchpoint” on page 7-79) allows you
patch in a change to the memory image of the process and continue running. (Note t
3-9

NightView User’s Guide

nly

ify a

ale
ctive
erify

trace
m
) the

in

ints in

lues
st"
e is

erent
not.
ing,

m
5).
the

alled

ives a
ying
ram
doesnot change the disk copy of the program file; recompiling and relinking is the o
way to make a permanent change.)

A patchpoint can cause an expression (including function calls) to be evaluated, mod
variable, or cause the program to branch to a new location.

The load command (see “load” on page 7-74) provides the ability to make larger sc
changes by loading in whole object files. This feature may be used to replace defe
routines, or to load custom designed debugging routines that can do things like v
complex data structures, or search through linked lists.

Tracing 3

The manual for the NightTrace tool describes a library that may be used to generate
records by calling trace routines in your program. If you didn't initially build a progra
with trace calls, (or you did, but decided later additional trace calls were necessary
tracepoint command (see “tracepoint” on page 7-82) may be used to patch
tracepoints. The values traced may then be examined with thentrace tool. For more
information on NightTrace, seentrace(1) .

Because the program runs at full speed through a tracepoint, you can use tracepo
real-time applications where breakpoints are unacceptable.

One significant difference between a tracepoint and a monitorpoint is that va
recorded by a tracepoint are all available for later analysis; values will not be "lo
because of delays in displaying, as they may with a monitorpoint. Another differenc
that tracepoints provide a reliable means of relating values of expressions at diff
points of execution to the times those values were evaluated. Monitorpoints do
However, monitorpoints have the advantage of displaying information as it is happen
whereas tracepoint data may be analyzed only after execution is finished.

Agentpoints 3

NightView allows you to debug a program while it is running, if you modify the progra
slightly to insert calls to a special Debug Agent (see “Debug Agent” on page 3-1
NightView can insert the necessary code in your process for you, using
agentpoint command. See “agentpoint” on page 7-86. These inserted calls are c
agentpoints.

Signals 3

Usually, your process is stopped and the debugger gets control if the process rece
signal. Signals may be generated by error conditions (such as dividing by zero or tr
to write to a write-protected location). Other signals may be generated under prog
control (the program can request the system to send it aSIGALRM periodically, or another
program may explicitly send a signal with thekill(2) system service).

Several ways in which to handle a signal are described in thehandle command (see
“handle” on page 7-102).
3-10

Concepts

(see
in a
f

ance

your
are

).

. If

til it

gle-

ssue

tion.

is dis-

via
is

her
In addition, you may use the debugger to explicitly send a signal to a process
“signal” on page 7-101). This is useful if you need to test the signal handler code
program (however, the debugger itself usesSIGTRAP, so it should not be used in any o
your code).

If you specify nostop , noprint , andpass for a signal, then the system will deliver
the signal to the process normally and bypass the debugger. This avoids any perform
penalty to your program if it makes frequent use of signals.

Signals may cause somewhat different behavior when you are single-stepping
program (see “Controlling Execution” on page 7-94). If a signal occurs while you
single-stepping, NightView's reaction depends on whether you specifiedstop or
nostop andpass or nopass in the handle command (see “handle” on page 7-102
The four possible combinations are explained below.

nostop , pass

The single-step operation continues, but the signal will be passed to the program
you have a signal handler in your program, it will be executedwithoutsingle-step-
ping. When the handler finishes executing, single-stepping will be resumed un
is complete or another signal occurs.

nostop , nopass

The signal has no effect (other than temporarily interrupting execution). The sin
step operation continues until it is completed or another signal occurs.

stop , pass

The single-step operation is terminated and the process is stopped. If you i
another single-step command or acontinue command, or aresume command
with no argument, the signal is passed on to the process when it resumes execu

stop , nopass

The single-step operation is terminated and the process is stopped. The signal
carded.

Some signals can have additional information passed to the signal handler
siginfo(5) . However, NightView has no mechanism for the user to specify th
information, so signals sent to the process using thesignal or resume commands will
have no associatedsiginfo(5) information.

If a process stops with a signal that has associatedsiginfo(5) information, that
information is preserved by NightView whenever possible. If you specifiedpass for that
signal and you continue execution using thecontinue command or theresume
command with no argument, thesiginfo(5) information will be delivered to the
process along with the signal. However, nosiginfo(5) information is ever delivered
if you explicitly specify a signal number on thesignal or resume commands.

Restarting a Program 3

Restarting execution of a program under NightView is different than in many ot
3-11

NightView User’s Guide

s are
rt a

lies
ram.
e.

cess
that
ever,
ution

n it
you

To

:

en
d
y stop
as

ram

not
ns.

etc.
s

your
e

ce of
debuggers, because instead of being executed directly by the debugger, program
executed from a dialogue shell, or by other programs. The typical way you resta
program is to invoke it again in the dialogue shell. See “run” on page 7-30.

When NightView recognizes that a program is being run again, it automatically app
the same eventpoints, and other information, to the new instance of the prog
NightView considers two programs to be the same if they have the same full pathnam

This method of restarting programs was chosen because of NightView's multi-pro
nature. You may actually want to debug multiple copies of the same program, and in
case you may or may not want to have the same eventpoints set in each copy. How
if you are debugging just one instance of one program, you can easily restart its exec
without having to manually duplicate your eventpoint settings.

Occasionally you may wish to run a program again and again without stopping whe
exec s or when it exits. For instance, if a program sometimes dies with a signal,
could run it repeatedly until the signal occurs and then examine where it occurred.
avoid having the process stop when itexec s, put aresume command (see “resume” on
page 7-95) inside anon program command (see “on program” on page 7-36), like this

on program yourprogram do
resume

end on program

The resume command will not actually take effect until after the process has be
initialized, so on program and on restart commands that set eventpoints an
otherwise modify the process work as expected. Note that the process does actuall
when it exec s, but theresume command tells it to start running again as soon
NightView is finished initializing it.

To avoid having the process stop when it exits, use theset-exit command. See “set-
exit” on page 7-42. These two mechanisms, in combination, allow you to run a prog
repeatedly and only stop it if it hits a breakpoint or gets a signal.

The following sections describe the details of how restarting works. Most users will
need to know these details. The normal automatic mechanism handles most situatio

Restart Mechanism 3

At certain times in the execution of a program, NightView takes acheckpointon that
program. A checkpoint saves information about the eventpoints, signal disposition,
This information is called therestart information. Each checkpoint replaces the previou
restart information.

The restart information is stored as a sequence of commands associated with
program name via anon restart command. See “on restart” on page 7-38. Th
commands restore the eventpoints and other information in the new program.

Each time you execute a program, NightView checks to see if anon restart
command matches your program. If one matches, NightView executes the sequen
commands associated with your program.

NightView takes a checkpoint on a process when:
3-12

Concepts

tart

new
nce

his
ile to

nds
ros:
d
the

cros
• It is about to exit, terminate with a signal, or be killed by NightView.

• It is about toexec a new program.

• You enter acheckpoint command. See “checkpoint” on page 7-39.

It is not possible to turn off checkpoints. However, you can control whether res
information is applied. See “set-restart” on page 7-49.

Note that if you have a program that has not yet taken a checkpoint and you start a
instance of that program, then no restart information is applied to the new insta
because there is none for that program.

You can save restart information to a file. See “info on restart” on page 7-124. T
allows you to save the information across debug sessions. Or, you can edit the f
change the restart information. In either case, you would thensource the file to restore
the restart information. See “source” on page 7-110.

Restart Information 3

This section describes the restart information saved during a checkpoint.

• Any memory reservations made with themreserve command. See “mre-
serve” on page 7-43.

• Eventpoints, including any names, conditions, ignore counts and com-
mands associated with each eventpoint. See “Eventpoints” on page 3-8.

• Directory search path. See “directory” on page 7-60.

• Child disposition. See “set-children” on page 7-41.

• Signal and exception disposition. See “handle” on page 7-102.

• Display list. See “display” on page 7-71.

• Symbol file. See “symbol-file” on page 7-33.

• Default language. See “set-language” on page 7-44.

• Whether or not the process will stop before exiting. See “set-exit” on page
7-42.

• The interest level threshold, the interest level forinline , justlines ,
and nodebug , and any explicit interest levels for subprograms. See
“interest” on page 7-51.

Restart Macros 3

If an on restart command is created by a checkpoint, then in addition to comma
to restore eventpoints and other program information, there are two mac
restart_begin_hook , at the beginning of the commands, an
restart_end_hook at the end of the commands. Both macros are called with
name of the program being restarted as an argument.

These macros let you customize restart processing. The initial definition of these ma
3-13

NightView User’s Guide

g,

ros”

stop

lly, it
hus,
The

se to

it
page

ts a
l the

has
point,
ped.

amine
and
See
a

may
tinued.
is

define restart_begin_hook(program_name) apply on program
define restart_end_hook(program_name) echo

This means thaton program commands will be applied before any restart processin
and nothing will be done afterwards. (restart_end_hook is defined asecho because
there is no way to make an empty macro.)

You can define these macros to be anything you wish. See “Defining and Using Mac
on page 7-130. For example, you could definerestart_begin_hook to beecho to
disable theon program processing. See “on program” on page 7-36.

Exited and Terminated Processes 3

When a process terminates normally, it flushes itsI/O buffers, closes any open files, then
calls the exit service. By default, NightView automatically arranges for a process to
when it calls theexit system service. (You may alter this behavior with theset-exit
command. See “set-exit” on page 7-42.) When a process terminates abnorma
receives a signal, which causes the process to stop and NightView to get control. T
you may always examine a program that is about to exit or terminate abnormally.
process will still exist, so you can examine memory and registers.

If you continue execution of a process in one of these states, the process will cea
exist and NightView will forget about all the eventpoints set in that process. ThePID for
that process will be removed from all families (see “Families” on page 3-2) in which
appears. Detaching from such a process has the same effect (see “Detaching” on
3-3).

Process States 3

A process is normally in one of two states; it is eitherrunning, or it is stopped. A process
is said to be stopped when it gets a signal (and it is being debugged) or it hi
breakpoint (meaning that the point of execution reached the breakpoint, and al
conditions on the breakpoint were satisfied). When it is stopped, the debugger
control. The debugger may continue to execute commands attached to that break
but once the debugger initially gets control, the process is considered to be stop
(This is not the same type of stop as job control in the C shell or the Korn shell.)

Some debugger commands require the process to be stopped. It is meaningful to ex
or modify stack locations or variables only if the process is stopped. Monitorpoints
tracepoints provide ways to examine variables without stopping a process.
“Monitorpoints” on page 3-9. See “Tracing” on page 3-10. The first eventpoint in
process must be set while the process is stopped. See “Eventpoints” on page 3-8.

In addition to being stopped or running, a process may be exiting or terminated, or it
be a pseudo-process associated with a core file. A pseudo-process cannot be con
Continuing an exiting or terminated process causes the process to cease existence.
3-14

Concepts

roc

am.
s”

ing

dify
le the

View
alled,
an

gent to

ram
t is
ebug
t get

s of
the

how
” on

, by
h
your
ing /

g an
page
Debugger Mechanisms 3

NightView has two mechanisms it uses to interact with and control your program: /p
and the debug agent. These are described in subsections below.

/proc 3

The primary debugger mechanism is called/proc (or procfs), which is a file system that
allows one program (such as NightView) to control the execution of another progr
NightView uses/proc whenever you start up a program in a Dialogue (see “Dialogue
on page 3-4) or attach to a running process (see “Attaching” on page 3-3).

The /proc mechanism provides for comprehensive control of a process, includ
control over what happens when your program is about to get a signal./proc can read
and write static variables while the process is executing, but it cannot read or mo
stack variables or registers unless the process is stopped. See “Operations Whi
Process Is Executing” on page 3-16.

Debug Agent 3

Another mechanism NightView can use is called adebug agent. A debug agent is a code
subsystem that executes as part of your process and communicates with Night
through shared memory. The debug agent contains a subroutine that, when c
performs an operation on behalf of NightView. When NightView needs to perform
operation using the debug agent, it sends a message to the agent and waits for the a
reply.

The debug agent mechanism allows NightView to examine and control your prog
while it is running. Because you control where in your program the debug agen
called, it can be a less intrusive means of debugging your program. However, the d
agent, by itself, does not provide comprehensive control of your program; you canno
control when your program gets a signal, for example.

The advantages of using the debug agent are much smaller because/proc gives you the
ability to read and modify memory while the process is running. The only advantage
using the debug agent are: 1) the program has greater control of exactly when
overhead of performing debugger operations occurs, and 2) there is no restriction on
the first eventpoint must be set. See “Operations While the Process Is Executing
page 3-16.

NightView allows you to use multiple mechanisms when debugging a single process
allowing you to add a debug agent to your program while you are debugging it wit/
proc . This gives you the advantages of both methods: comprehensive control over
program, along with access to data and code while the program is running. See “Us
proc and the Debug Agent Together” on page 3-17.

You control where the call to the debug agent is placed in your application, by placin
agentpoint in your process. See “Using /proc and the Debug Agent Together” on
3-15

NightView User’s Guide

ully;

n the
, so

ebug
for

cond,
t most
head
uire
your

sually
a

3-17.. To effectively use the debug agent, you will need to choose this location caref
the guidelines that follow will help you do this.

First, the debug agent executes as part of your process, so it has some effect o
performance of your application. The debug agent is very fast and efficient, though
the impact should be minimal. Nevertheless, we recommend you avoid placing the d
agent call in a time-critical location. See “Debug Agent Performance” on page F-1
information about the performance of the debug agent.

Second, the debug agent call must occur fairly frequently, at least a few times a se
to ensure reasonable response time from NightView. Each debug agent call does a
one NightView operation (such as read or write a memory location), to keep the over
per debug-agent call as small as possible. A given NightView command may req
several such operations, each of which requires that the debug agent be called. If
application uses the Frequency-Based Scheduler, a good place to call the agent is u
right before the call tofbswait . You may include multiple calls to the debug agent in
program, if you wish.

Operations While the Process Is Executing 3

This section lists what you can do with either/proc or the debug agent while the
process is executing (i.e., running).

• Examine and modify statically-allocated variables. This includesstatic
and global variables in C, andCOMMONvariables and variables with the
SAVEattribute in Fortran. It does not include variables allocated to regis-
ters or the stack.

• Examine and modify absolute memory locations. This includes accessing
memory referenced by a pointer variable, if the pointer variable is accessi-
ble as noted above.

• Evaluate expressions involving the above items. See “Expression Evalua-
tion” on page 3-18. Note that a function call is not allowed.

For the purposes of establishing the scope and meaning of variable names,
and also the language for the expression, NightView uses the location
where the process was last stopped to determine the context of the expres-
sion (see “Context” on page 3-22). You can use the special forms Night-
View provides to change this context, if you want to access variables local
to a procedure, for instance. See “Special Expression Syntax” on page 7-4.
However, note that the forms that refer to specific stack frames are not
allowed while the process is running, because the state of the stack is inde-
terminate.

• Examine, modify, and disassemble executable code.

• Create, manipulate, and destroy any type of eventpoint. See “Eventpoints”
on page 3-8. You may enable and disable eventpoints, add to or remove
conditions from eventpoints, and modify ignore counts. You may also get
information about eventpoints. See “Manipulating Eventpoints” on page
7-76.
3-16

Concepts

ning

first
ted.

l pro-

d on
ined

ram

u
r
nd

you
tly

tions

iting
se of

ches
There are two rules about manipulating eventpoints while your process is run
with /proc :

- Thefirst eventpoint within a text region must be set while the process
is stopped. A text region is either your program or the dynamic
libraries it references.

- The first monitorpoint must be set while the process is stopped,
regardless of whether other eventpoints have been set in that region.
See “Monitorpoints” on page 3-9.

This is necessary because NightView needs to do special processing when the
eventpoint is created within a text region, or when the first monitorpoint is crea
That special processing requires the process to be stopped.

These restrictions do not apply to the debug agent, which handles the specia
cessing in a different way.

While the process is executing, you may not use forms of commands that depen
knowing the program counter or the value of any machine register. See “Predef
Convenience Variables” on page 7-6.

Note that monitorpoints and tracepoints also provide ways of monitoring your prog
without stopping it. See “Real-Time Debugging” on page 3-5.

Using /proc and the Debug Agent Together 3

Using the debug agent together with/proc is easy. To debug a program this way, yo
first get control of it with /proc , by either running the program in a dialogue shell o
using theattach command. See “Dialogues” on page 3-4, “Attaching” on page 3-3, a
“attach” on page 7-32.

Once you have control of your process, you can use theagentpoint command to insert
the call to the debug agent in your program. Anagentpointis a type of eventpoint (see
“Eventpoints” on page 3-8). You can create multiple agentpoints in your process;
might want to do this if you cannot find one single place that will be executed sufficien
frequently.

For a description of the operations you can do using the debug agent, see “Opera
While the Process Is Executing” on page 3-16.

While your process is executing, NightView uses the debug agent for reading and wr
memory. If the process stops, either because you ask NightView to stop it, or becau
a breakpoint or a signal, NightView automatically switches to using/proc for all access
to the process. When you resume execution again, NightView automatically swit
back to using the debug agent.
3-17

NightView User’s Guide

ped
mand

are
n you
s not

the
ating-
sults
See

bal
rent
rrent
page

that
e new

sions.
nt.

ually
type
, the

calls),
Ada

tions,
Examining Your Program 3

If you specify running processes in the qualifier of a command which requires stop
processes, you get a warning message about each running process, but the com
executes normally on any of the stopped processes in the qualifier.

Expression Evaluation 3

Because NightView is a symbolic debugger supporting multiple languages, you
allowed to evaluate expressions written in different languages, but this does not mea
have access to all the features of each language. (Specific language syntax i
described here; consult the reference manuals for the language for that information.)

One important point to note is that the debugger may not always precisely follow
language semantics when evaluating an expression. In particular, the results of a flo
point expression evaluated by the debugger may not be bit for bit identical to the re
the same expression would give if it were compiled and executed in your program.
“Special Expression Syntax” on page 7-4.

A program written in multiple languages may define identical names for different glo
objects. NightView looks first for the name as defined in the language of the cur
context (see “Context” on page 3-22). If there is no current context, it uses the cu
language setting to determine which symbols to look at first (see “set-language” on
7-44).

The debugger can evaluate arithmetic or logical expressions (essentially anything
may appear on the right hand side of an assignment). The debugger cannot declar
variables.

In general, the debugger cannot execute statements, it can only evaluate expres
However, for Ada and Fortran, the concept of an expression is extended to assignme

In some ways the debugger is more flexible than the compiler. The debugger us
allows you to evaluate expressions or assign new values to variables without the
checking done by the compiler. Unless the expression simply makes no sense
debugger will evaluate it.

Ada Expressions 3

Remember that the debugger handles expressions (plus assignment and procedure
not executable statements. You must leave off the trailing semicolon for an
assignment or procedure call.

Most Ada expression forms are supported, but there are some restrictions and limita
summarized in the list below.

• Data types

All data types are supported, with a few exceptions:
3-18

Concepts

ce-
cord
at is
rted.

the

ent-

en

eter-
- Task types are not fully supported as a data type. They are treated
simply as an address.

- Access to subprogram is not supported.

• Type conversions are supported as defined for the Ada language, and using
the same syntax as that of the language (i.e.type_mark(expression)), with
certain exceptions and additions. As defined by the language, conversions
involving numeric types convert the value of the expression, not the repre-
sentation. For example,float(1) would return1.0 . NightView allows
conversions from a value of any type to any target type, not just those cases
allowed by the Ada language. Note that NightView doesnot perform rep-
resentation changes when converting to or from derived or convertible
array types with differing representations. Conversions involving non-
numeric types are performed by simply interpreting the left justified bit
pattern of the value as the value of the target type with the corresponding
left justified bit pattern. Note that, if the target type is smaller than the
source value, the rightmost bits of the converted value are indeterminate.

• NightView treats user-defined character types (i.e., enumerations which
have character literals as enumeration values) strictly as enumerations, not
as a character type. The chief effect of this is that you cannot use string-lit-
eral notation (e.g.,"abc") to form arrays of these types. In NightView,
string literals are always interpreted as arrays of the built-in typecharac-
ter .

• Aggregate values, such as(a => 1, b => 2) , are not supported. Other
expressions that yield aggregate values are allowed.

• Subprogram calls

A NightView expression can contain subprogram calls (either functions or pro
dures), provided that the arguments are either scalar types, statically-sized re
types, or arrays. Note that this excludes subprograms with a formal argument th
an unconstrained record with discriminants, but unconstrained arrays are suppo
Functions that return arrays or records are supported.

Overloaded operators and functions are supported in NightView with help from
user to select the correct function. See “Overloading” on page 3-21.

• Attributes

Subprograms that rename attributes are not supported.

The following attributes are not supported:'callable , 'count , 'key , 'lock ,
'shm_id , 'terminated , and'unlock .

The 'fore and'aft attributes of fixed-point types may not give correct results.

Other attributes are supported in such commands asprint andset , but they can-
not be used in monitorpoint, patchpoint, or tracepoint expressions, nor in an ev
point conditional expression.

One attribute,’self , is supported as a language addition in the debugger. Wh
used on a tagged type object or access to a tagged type object, the’self attribute
returns the same object with the type set to the actual type of the real object as d
mined from the run time type information provided by the compiler.
3-19

NightView User’s Guide

oint

is an

tes of

sed

te
o
the
• The catenation operator,&, is not implemented.

• Logical operations (e.g., theand operator) on arrays are not supported.

• Relational operations that require ordering (e.g.,<) are not supported for
all arrays; they are supported only for arrays of character. Equality opera-
tions (= and/=) are supported for all arrays.

&variablemay be used as a synonym forvariable'address .

Any exceptions raised in a monitorpoint, a patchpoint, or a tracepoint, or in an eventp
conditional expression are propagated to the program.

C Expressions 3

All C expressions are supported.

The debugger supports array slices in expressions using the following syntax:

array_name[l..u]

where l is the lower bound andu is the upper bound. Thearray_namemay be any
expression that denotes either an array object or a pointer. The type of an array slice
array whose bounds are the values ofl andu, respectively.

C++ Expressions 3

Most C++ expressions are supported, with a few exceptions noted below.

The debugger supports array slices in C++. See also “C Expressions” on page 3-20.

In function calls and assignments, the debugger copies an object by copying the by
the object. No copy constructor or user-defined assignment operator is called.

These C++ features are not supported:

• Exceptions.

• Templates.

Operator and function overloading is supported with additional input from the user u
to select the desired function. See “Overloading” on page 3-21.

A special case form of thedynamic_cast<> function is supported. You may use
dynamic_cast<> , spelled exactly this way (with no type name given as a templa
argument inside the<>). This form of dynamic casting will cast an object or a pointer t
the actual type of that object as determined by run time type information provided by
compiler.

Fortran Expressions 3

All Fortran expressions are supported.
3-20

Concepts

rtran

cedure

and
7-44.

same
ext
ith
tion

hich
ax to

cting
uage
(see

to
r of
This

ed to
the

ent
, if
n or
off
sed,

nnot
load
orrect

xt” on
5th

tion
the

age
bers
Fortran subroutines are treated as if they were functions with no return value. Fo
assignments are supported except for Concurrent Fortran array assignments.

The debugger cannot execute statements of any kind (except assignments and pro
calls), including FortranI/O statements.

Overloading 3

Overloading of functions, procedures, and operators is allowed in location specifiers
expressions in the Ada and C++ language modes. See “set-language” on page
Overloading means that more than one entity with the same name is visible at the
point in the program. NightView will call the appropriate routine if it has enough cont
to determine there is only one choice, otherwise you will need to provide NightView w
additional information in the form of special syntax added to the expression or loca
specifier where the overloaded name is used.

This is typically a two step process. You run the command once and get an error w
displays the possible choices. Then you run the command again with additional synt
request the specific candidate number from that list.

The special syntax used to request candidates from the list is described in “Sele
Overloaded Entities” on page 7-2. Overloaded names are supported in lang
expressions (see “Expression Evaluation” on page 3-18) and location specifiers
“Location Specifiers” on page 7-9), and the same syntax is used for both.

The set-overload command (see “set-overload” on page 7-54) may also be used
make NightView automatically generate overload candidate lists by turning on eithe
the two separate overload modes for routine names and language operators.
automates the first step of the two step process. The special syntax may be us
request overload candidate information for a single function or operator even when
corresponding overload mode is off.

If overloading is on, NightView interprets overloaded entities according to the curr
language. If overloading is off, NightView uses the built-in meaning of all operators
possible, and interprets all function and procedure calls as referring to one functio
procedure it arbitrarily picks from the list of candidates. If operator overloading is
and the built-in operator does not make sense in the context in which it is u
NightView gives an error.

If overloading is on, but a unique meaning for an overloaded operator or routine ca
be determined, NightView gives an error that includes the list of the possible over
candidates. You may then run the command again, adding the syntax to select the c
candidate.

The numbers assigned to the choices are unique for the specific context (see “Conte
page 3-22) where the expression or location specifier appears. If, for example the
item in a list of choices refers to a particular instance of the overloaded func
funcname when you are stopped at one point in your program, you may not assume
5th item will refer to that same instance when you are stopped at a different location.

The one number you can rely on is 1 for overloaded operators. The built in langu
operator is always number 1, and any user or library defined operators have num
greater than 1.
3-21

NightView User’s Guide

ich is
unter
er is

s.
ter-
(Ada,
the

” on
ally

cial
s the

and
rent

the
of the

t be
nal
you
ntax
ther

has a
n for
Program Counter 3

When a process is stopped, it has stopped at one specific place in the program, wh
the address of the next instruction to be executed. This place is where the program co
points. Different machines have different sets of registers, but the program count
always referred to as$pc .

If the currently selected frame is not the most recently called frame, then the$cpc register
points to the instruction that made the call and the$pc register points to the place where
execution will return after the call. In the most recently called frame,$cpc and$pc point
to the same place.

Context 3

The location pointed to by$cpc implies a specific context for evaluating expression
$cpc is located in some procedure (or routine, or function — the terms are used in
changeably throughout this document). This procedure was coded in some language
C, C++, Fortran, or assembler). By default, the language of the routine containing
$cpc is the language used to evaluate any expressions.

Another component of the context is the current stack frame (see “Current Frame
page 3-23). It establishes which instance of a given local variable you are actu
referring to in an expression. NightView provides special syntax (see “Spe
Expression Syntax” on page 7-4) for referencing variables in other contexts beside
current one.

Scope 3

Most languages have scoping rules, with local variables visible only in inner blocks
more widely visible variables in outer blocks. Often the same name is used for diffe
variables in different scopes. Just as the$cpc is located in a particular routine, it is also
located in a particular block of the routine. The variables that are directly visible to
debugger are determined by the language rules and current block nesting structure
program at that point.

When debugging, you may need to look at other variables which would normally no
visible by the strict language rules. NightView makes every effort to make any additio
variables visible for use in expressions (as long as the names do not conflict). If
cannot reference a variable due to a naming conflict, NightView provides special sy
(see “Special Expression Syntax” on page 7-4) for referencing variables visible in o
scopes.

Stack 3

When a process stops, it not only stops at a particular program counter, but it also
current stack. The stack is used to hold local variables and return address informatio
3-22

Concepts

to the

frame

. See

re not

h the
s
Each
tine

rou-

tack
me
of

ine so
ved,
sters
pt

rns to
also

iable
ister

for
each routine. As a routine calls another routine, new entries (calledframes) are made on
the stack. The stack can be examined to show the routines which were called to get
current routine using thebacktrace command (see “backtrace” on page 7-64).

The debugger assigns numbers to each frame. The most recent frame is always
zero.

In a program with multiple threads or Ada tasks, each thread or task has its own stack
“select-context” on page 7-107.

Frames corresponding to uninteresting subprograms are not numbered and they a
shown in a backtrace. See “Interesting Subprograms” on page 3-24.

Current Frame 3

When a process stops, the current frame is initially the stack frame associated wit
most recently called routine (where$cpc points). This frame contains the local variable
for that routine, and these variables may be referenced in expressions you evaluate.
frame also contains the return address indicating the specific point in the older rou
where the$pc will be located when the current frame returns.

You may wish to examine the variables in one of the routines that called the current
tine. To do that, you may use theup command (“up” on page 7-106) or theframe com-
mand (“frame” on page 7-105) to change the current frame. As you move up the s
(towards older routines, or in the same direction a return will go), the new stack fra
becomes thecurrent frame. Any variables referenced are now evaluated in the context
this new frame and new$cpc indicated by the called frame.

NightView also provides special syntax in expressions as an alternative to using theup or
frame commands. See “Special Expression Syntax” on page 7-4.

Registers 3

Each stack frame also contains locations where registers are saved while in one rout
they can be restored when returning to the calling routine. As the current frame is mo
the debugger notices which registers will be saved and restored. If you look at regi
using theinfo registers command, or examine local variables which are being ke
in registers, you see the values as they will be restored when the process finally retu
that frame. Referencing a specific register using the predefined convenience variable
refers to the register relative to the current frame.

When examining a variable allocated to a register, you must be aware that the var
may exist in that register for only a short time. Therefore, the contents of the reg
may not accurately reflect the value of the variable. See “Optimization” on page 3-30
more information.
3-23

NightView User’s Guide

ms is
con-

ugh
the

usual
ame.

, or to
.

e of
e. If
fault

tion

lies
line

rable

ated
.

o not
alk-
k” on
Inline Subprograms 3

Ada and C++ programs can have inline subprograms. The code for these subprogra
expanded directly into the calling program rather than being called with a transfer of
trol. There is usually a time savings, sometimes at a cost in the size of the code.

NightView generally treats inline subprogram calls the same as non-inline calls. Altho
an inline call does not create a stack frame, NightView creates a frame for it to match
semantics of the language and to simplify the model of debugging. You can use the
commands to move up and down the stack frames and view variables within each fr
See “Current Frame” on page 3-23.

You can use single step commands to step into inline subprograms, to step over them
finish them. See “step” on page 7-96, “next” on page 7-97, and “finish” on page 7-100

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
the call.

If you set an eventpoint within an inline subprogram, NightView modifies each instanc
the subprogram. If there are a lot of calls to the subprogram, this may take a long tim
execution is stopped in an inline subprogram and you set an eventpoint using the de
location specifier (which corresponds to$pc), the location specifier refers only tothat
particular instanceof the inline subprogram as opposed to all instances. See “Loca
Specifiers” on page 7-9.

You can set an interest level for individual inline subprograms. The interest level app
to all instances of an inline. You can also set an interest level to avoid seeing any in
subprograms. See “Interesting Subprograms” on page 3-24. This may be desi
depending on how your program uses inline subprograms.

You may not call an inline subprogram in an expression, unless the compiler has cre
an out-of-line instance of the subprogram. See “Expression Evaluation” on page 3-18

Interesting Subprograms 3

NightView considers some subprograms to beinterestingand the rest to beuninteresting.
NightView avoids showing you uninteresting subprograms. Single-step commands d
normally stop in an uninteresting subprogram. See “step” on page 7-96. A stack w
back does not display frames corresponding to uninteresting subprograms. See “Stac
page 3-22.
3-24

Concepts

the
are

sub-
con-

:

e, the

the

ints
on
the
nitor
how

int
em

d you
nitor
In general, subprograms compiled with debug information are usually interesting and
rest are usually uninteresting. NightView gives you control over which subprograms
considered interesting by using theinterest command. See “interest” on page 7-51.

Each process has a currentinterest level threshold. The default threshold is0. NightView
uses rules to decide on the interest level of a subprogram. If the interest level of the
program is greater than or equal to the interest level threshold, then the subprogram is
sidered to be interesting.

NightView uses these rules, in order, to determine the interest level for a subprogram

1. The interest level may be specified for that subprogram with theinter-
est command.

2. If the subprogram is an inline subprogram, the value of theinline inter-
est level is compared to the interest level threshold. If theinline interest
level is less than the interest level threshold, then the interest level for the
subprogram is the minimum value. Otherwise, continue with the next rule.

3. The interest level may be recorded in the debug information for that sub-
program by the compiler. Some compilers have a way of designating an
interest level in the source.

4. If the subprogram has debug information, but no explicit interest level, the
interest level is0.

5. If the subprogram has line number information, but no other debug infor-
mation, the interest level is the value of thejustlines interest level for
that process.

6. If the subprogram has no debug information at all, the interest level is the
value of thenodebug interest level for that process.

In some situations there may be no interesting subprograms on the stack. In that cas
most recently called subprogram is considered interesting.

You can make all subprograms interesting by setting the interest level threshold to
minimum value.

Monitor Window 3

The Monitor Window shows the values of expressions being monitored by monitorpo
(see “Monitorpoints” on page 3-9). When you set a monitorpoint (see “monitorpoint”
page 7-83), the Monitor Window is created if it does not already exist, and
expressions associated with that monitorpoint are automatically displayed in the Mo
Window. The values in the window are updated approximately once a second to s
the values computed the last time each monitorpoint was executed.

The mcontrol command (see “mcontrol” on page 7-85) controls the monitorpo
display. You can remove monitorpoint items from the display window (and add th
back in later). You can change the rate at which the window updates take place, an
can stop updates completely, then start them again later. You can also turn the Mo
Window off to remove it from your screen, then restore it later.
3-25

NightView User’s Guide

top

er.
reen
User

on
alue.

are
the

(by
s
dded

via

time
uted
sents

iew
the
nal or
time

se of
nec-
loca-

See
n

Note that interrupting the debugger implicitly causes the Monitor Window to s
updating. See “Interrupting the Debugger” on page 3-28.

The Monitor Window is not available in the command-line interface of the debugg
You must use either the simple full-screen interface (see Chapter 8 [Simple Full-Sc
Interface] on page 8-1) or the graphical user interface (see Chapter 9 [Graphical
Interface] on page 9-1) in order to take advantage of monitorpoints.

The monitored items are displayed in the Monitor Window using built-in informati
about the precision of the data type to decide how many columns to use for the v
You have some control over this by using the format codes on the print command.

You also have some control over the layout of the items in the window. New items
added across a line, from left to right, until there is not enough space remaining on
line to add the current item. Then a new line is started. If you remove some items
usingmcontrol nodisplay or by removing the monitorpoints), the remaining item
are shifted left and up to pack the display. If you then add the items back, they are a
at the end of the display (not in their original positions).

By default, each item is displayed with an identification string, astale data indicator, then
the value itself laid out left to right. The stale data indicator can be turned on and off
mcontrol . There are 3 possible states that this indicator can denote:

Updated

The monitorpoint location was executed and values were saved since the last
NightView updated the display. Note that the location may have been exec
many times in between successive display updates. The displayed value repre
the value as it existed the last time the monitorpoint location was executed.

Not executed

Execution has not reached the monitorpoint location since the last time NightV
updated the display. This may happen if that location is executed infrequently, if
process gets suspended for some reason, or if the process is stopped by a sig
breakpoint. The displayed value still represents the value as it existed the last
the monitorpoint location was executed.

Executed but not sampled

Execution reached the monitorpoint location, but no values were saved becau
an ignore count or unsatisfied condition. In this case, the displayed value is not
essarily the same as the value of the expression the last time the monitorpoint
tion was executed.

The actual form of the stale data indicator depends on the interface being used.
“Monitor Window - Simple Full-Screen” on page 8-2. See “Monitor Window - GUI” o
page 9-47.

Errors 3

NightView error messages always have this format:
3-26

Concepts

as

lso

lly
lem

There
severity: text[error-message-id]

Theseveritycan be one of:

Caution

Usually just an informational message. It is not serious.

Warning

A little more serious, but NightView tries to finish the current command
you requested.

Error

A serious error. This level of error terminates the current command. It a
terminates a command stream. See “Command Streams” on page 3-27.

Abort

So serious that NightView cannot continue running. This does not usua
indicate that you have done something wrong; either there is a system prob
or there is a bug in NightView.

The textis a brief explanation of the problem.

The error-message-idis a section name you can use with thehelp command to find out
more about the error and possibly how to fix it. Anerror-message-idbegins withE-.

NOTE

Some libraries used by NightView, such as the X Window Sys-
temTM, issue their own error messages in certain circumstances.
These error messagesdo not follow the format described above.
You can recognize these messages because they do not have the
[error-message-id] appended to the message.

Command Streams 3

A command stream is a set of commands that the debugger executes sequentially.
are three kinds of command streams:

• Interactive command streams. These are commands entered directly by the
user.

• A file of commands being read by thesource command is also a com-
mand stream. Execution of thesource command suspends execution of
the command stream it appears in and creates a new one that endures until
the file is exhausted.

• Event-driven command streams. For example, commands attached to a
breakpoint are an event-driven command stream. Each instance of hitting a
3-27

NightView User’s Guide

For
xecute
rent

ch as
as a
ut the
tes a
tream,
ctive

h to
n't

age

m are
mpt

still
ives
gged
the

tor

er in
s of
alled
breakpoint creates a new command stream; the stream terminates when the
commands attached to the breakpoint are finished. These non-interactive
command streams always operate with safety level set tounsafe (see
“set-safety” on page 7-49).

The debugger may interleave the execution of two or more command streams.
instance, it may execute some of the commands attached to one breakpoint, then e
some of the commands attached to a different breakpoint (on behalf of a diffe
process), then execute more of the commands attached to the first breakpoint.

The debugger stops executing a command stream if it encounters a serious error (su
an unknown command, or a badly formed command). A less severe error (such
warning about a process not being stopped) simply generates an error message, b
debugger continues to execute the remaining commands. If a serious error termina
command stream, and that command stream was created by another command s
then the older command stream is also terminated. This goes on until the intera
command stream is reached. The interactive command stream is not terminated.

Interrupting the Debugger 3

The shell interrupt character (normally <CONTROL C>) does not terminate NightView.
Instead, it terminates whatever command is currently executing, if any. You may wis
use it if you accidentally ask NightView to print a large quantity of information you do
want. To type <CONTROL C>, press thec key while holding down the control key.

In the graphical user interface, you can interrupt the debugger by clicking theInterrupt
button in any of the major windows. See Chapter 9 [Graphical User Interface] on p
9-1. See “Debug Interrupt Button” on page 9-34.

If you interrupt the debugger, all command streams except the standard input strea
terminated. The standard input stream is interrupted, but not terminated, so it will pro
for the next command immediately.

Furthermore, any output from debugged processes is temporarily halted (it is
buffered, but not displayed) until after you enter the next debugger command. This g
you a chance to type a command without interference from the debugger or the debu
processes. See “Dialogue I/O” on page 3-5 for more information about controlling
output from debugged processes.

Interrupting the debugger stops the Monitor Window from updating. See “Moni
Window” on page 3-25.

Macros 3

A macro is a named set of text, possibly with arguments, that can be substituted lat
any NightView command. When you define a macro, you specify its name, the name
the formal arguments, and the text to be substituted. The text to be substituted is c
thebodyof the macro.
3-28

Concepts

me,
d for
sing

y, is
, so
only

lso
ons.

bles
y the
, just

s are

local,
not be

agine
ogue

ts are
ience

, using
d, the

so a
and is

that
).

, or
When you reference the macro in a NightView command, you again specify its na
along with the actual arguments. Actual arguments are the text you want substitute
the references to the formal arguments in the macro body. See “Defining and U
Macros” on page 7-130 for details on how to define and reference macros.

Macro expansion, the process of replacing the reference to a macro with its bod
simply a textual substitution. Very little analysis is performed on the substituted text
macros can be a very powerful facility. Furthermore, a macro reference is expanded
when it is needed.

Macros provide a way for you to extend the set of NightView commands. They a
provide a way to define shortcuts for things frequently used in commands or expressi

Convenience Variables 3

NightView provides an unlimited number of convenience variables. These are varia
you can assign values and reference in expressions, but they are managed b
debugger, not stored in your program. You don't have to declare these variables
assign to them. They remember the data type and value last assigned to them.

There are two kinds of convenience variables — global and process local. Variable
global by default, but by using theset-local command (“set-local” on page 7-50) you
can make a variable local to a process. Once you declare a variable name process
each process maintains a separate copy of that convenience variable (a variable can
local in one process, but shared among all other processes). It is possible to im
other types of scoping for convenience variables (such as breakpoint local or dial
local), but process local and global are the only kinds currently implemented.

Because eventpoint conditions and other expressions associated with eventpoin
compiled code executed in the process being debugged, references to conven
variables in these expressions always treat the convenience variable as a constant
the value the variable had at the time the expression was defined. On the other han
commands associated with a breakpoint are always executed by the debugger,
convenience variable referenced in a command gets the value at the time the comm
executed.

Logging 3

Each dialogue retains a buffer showing the output generated by the programs run in
dialogue shell. This output may also be logged to a file (see “set-show” on page 7-28

In addition to the output log for each dialogue, you may log the commands you type
the entire debug session (see “set-log” on page 7-44).
3-29

NightView User’s Guide

o on
age
ssion

here
ce to
iting
His-

revi-
ctive

o the

n of
ee
Value History 3

NightView keeps the results of theprint command (see “print” on page 7-65) on a
value history list. There is only one list for all the processes, and all printed values g
this list regardless of the process. You can review this history (see “info history” on p
7-120), or use previous history values in new expressions (see “Special Expre
Syntax” on page 7-4).

Command History 3

NightView keeps a record of the commands you enter during a debugging session. T
are mechanisms in the simple full-screen interface and in the graphical user interfa
retrieve any of these commands, edit them, and re-enter them if desired. See “Ed
Commands in the Simple Full-Screen Interface” on page 8-2. See “GUI Command
tory” on page 9-12.

NightView does not add a command to the command history if it is the same as the p
ous command. Empty lines are never added. Commands are added only from intera
command streams. See “Command Streams” on page 3-27.

Initialization Files 3

When the debugger starts up, it looks for a file named.NightViewrc in the current
working directory. If it can not find one there, it looks for$home/.NightViewrc . The
file, if found, is then automatically executed as though it appeared as an argument t
source command (see “source” on page 7-110).

You can specify other initialization files, and you may disable the automatic executio
the default initialization files, using options on the NightView command line. S
Chapter 6 [Invoking NightView] on page 6-1.

Optimization 3

The problems of debugging optimized code are described inCompilation Systems
Volume 2 (Concepts).

These are the most common problems, but there are others:

• Machine language code may be moved around so that it does not corre-
spond line for line to the source code in your program.
3-30

Concepts

s in

vels
ften

more
l for

tran
hese

and
lay
y. If

” on

that
tions

dec-
to it.
arted,

h unit
iate

be
• Variables may not have the values you expect. The most common reason
for this is that the value of the variable is not needed at the current location
in your program and the register storing the value of the variable has been
reused for another value.

In general, you must be alert to the possibility that the compiler has changed thing
your program.

Concurrent compilers generate debugging information at high optimization le
because it is more useful than to have nothing; however, the debug information is o
inadequate to describe an optimized program. (Future compilers may generate
accurate debug information.) So, be careful and consult the appropriate manua
details.

Debugging Ada Programs 3

Ada programs employ several concepts that are different from C, C++ and For
programs. NightView provides methods to assist in debugging programs that utilize t
concepts.

Packages 3

Ada packages come in two parts: the specification, which gives the visible interface,
the body, which contains the details. NightView knows what source file to disp
depending on the execution context. For the Ada user, what is displayed is the bod
the unit specification is of interest thelist command with the'specification
modifier on the unit name may be used. (The modifier may be abbreviated.) See “list
page 7-58.

An Ada unit name may be used to specify a location for those NightView commands
need a location specifier. See “Location Specifiers” on page 7-9. For example, loca
are required for commands that manage eventpoints and thelist command. All Ada
unit names recorded in the debug table may be listed with theinfo functions
command.

With Ada programs, declarations are elaborated in linear order. The elaboration of a
laration brings the item into existence, then evaluates and assigns any initial value
Elaboration occurs before any statements are executed. If the program has just st
you can step into the elaboration code of library-level units with thestep command. See
“step” on page 7-96.

Exception Handling 3

Ada exception handling provides a method to catch and handle program errors. Eac
may have exception handlers. Exceptions which occur in a unit without appropr
handling code are propagated to the invoking unit. The unwinding process may
3-31

NightView User’s Guide

The
ser

ro-
t-
ry.

hat
by

is

or

me
y
-step

s

the

run

le,
er.
complex, therefore NightView provides several mechanisms to assist in debugging.
handle /exception command specifies whether to stop execution and notify the u
that an exception has occurred. See “handle” on page 7-102.

Multithreaded Programs 3

NightView gives you facilities for debugging threads, Ada tasks, and Lightweight P
cesses. ALightweight Process(LWP) is a distinct thread of control managed by the opera
ing system. Ada tasks are serviced byLWPs, as are threads created by the threads libra
See “Programming with the Threads Library” in thePowerMAX OS Programming Guide.

When a process containing multiple Ada tasks, threads, orLWPs stops, the operating
system will choose oneLWP to represent the process. This is the execution state t
NightView will present to you by default. Whatever task or thread was being serviced
that LWP is the task or thread you will be viewing. To see other tasks, threads, orLWPs,
use the select-context command (see “select-context” on page 7-107). Th
command allows you to select the Ada task, thread, orLWP whose context you wish to
view.

The select-context command allows you to view the context of an Ada task
thread whether or not it is currently being serviced by anLWP. If the task or thread is
currently being executed by anLWP, the select-context command automatically
selects the context of thatLWP.

It is important to note that NightView doesnot allow you to control the execution of a
task, thread, orLWP independently of the others in that process. When you resu
execution (see “resume” on page 7-95), allLWPs are allowed to execute, and they ma
service any of the threads or Ada tasks that are available to run. If you issue a single
command (see “step” on page 7-96), the selected task, thread, orLWP will be stepped
according to the command, but the otherLWPs may also execute one or more instruction
— they are not restricted to stepping the current line or instruction.

Each time your process stops, NightView automatically sets the current context to
context of theLWP that caused the process to stop. You may then use theselect-
context command to change the context.

Note that anLWP attached to a user-level interrupt cannot be stopped and continues to
when the otherLWPs are stopped. See “User-Level Interrupts” on page 3-34.

Using NightView with Other Tools 3

NightView normally communicates with other programs via KoalaTalk. For examp
other tools can start a debug session for a program, using NightView as a debug serv

This functionality is available only in the graphical user interface.
3-32

Concepts

or the
iew

ocess
g any

anner
he
le to
gram

t

logue

e's

the
will

s an
is
If you want to disable this mode, use-noktalk (see Chapter 6 [Invoking NightView] on
page 6-1 or set theuseKoalaTalk resource toFalse . (See Appendix D [GUI Custom-
ization] on page D-1.)

Limitations and Warnings 3

Setuid Programs 3

Setuid and setgid programs can be run in a dialogue shell. If you are the superuser
owner of the setuid program, you may also debug the program. Otherwise, NightV
issues a warning message telling you that it has automatically detached from the pr
and the program runs without being debugged. In this case, you also cannot debu
child processes of such a program.

One or more privileges may be associated with a program. These behave in a m
similar to setuid programs. If you run NightView with a privilege set that includes t
privileges associated with the program you are attempting to debug, NightView is ab
debug it. Otherwise, NightView automatically detaches from the process and the pro
runs without being debugged.

Note that programs run using theshell command (see “shell” on page 7-110) are no
controlled by the debugger and so may run setuid.

Attach Permissions 3

You are only allowed to attach to processes running as the same user as the dia
specified on theattach command. More precisely, the dialogue's effectiveUID must be
the same as the real and savedUID of the process you want to attach, and the dialogu
effective GID must be the same as the real and savedGID of the process you want to
attach.

An exception to the above rule is made for the superuser or users withP_DACREADand
P_DACWRITEprivileges.. These users are allowed to attach to any process.

Frequency-Based Scheduler 3

When a process running under control of the Frequency-Based Scheduler (FBS) hits a
breakpoint, theFBS stops running. This means that other processes under control of
sameFBS will no longer be scheduled. Any other processes that are currently running
continue to run, but once they do anfbswait(2) call, they will not start running again
until theFBS is restarted (it is as if the clock running the scheduler was stopped).

If you continue the breakpointed process, it will resume running, but once it execute
fbswait(2) call, it will also go to sleep and not wake up until the scheduler
restarted.
3-33

NightView User’s Guide

the

ace

user
ing

n 8-
ay
See

ng

ar *)
print

made
should

step

ugh

There
orrect

are
.

d by
It is your responsibility to start the scheduler running again. This can be done via
resume command of thertcp(1) program (perhaps using NightView'sshell
command), from thertutil(1) program, or by clickingResume in NightSim.

NightTrace Monitor 3

The tracepoint command (see “tracepoint” on page 7-82) can be used to tr
variables in a process. Tracing only works if thentraceud(1) monitor program has
been started prior to adding tracepoints to the process. It is the responsibility of the
to make sure that the monitor is started (it may be started from within NightView us
theshell command, see “shell” on page 7-110).

Memory Mapped I/O 3

Special purpose programs often attach to regions of memory mapped toI/O space. This
memory is sometimes very sensitive to the size of reads and writes (often requiring a
bit or 16-bit reference). With the/proc or debug agent mechanisms, the debugger m
access memory using 8-bit, 16-bit, or 32-bit references. See “/proc” on page 3-15.
also “Debug Agent” on page 3-15. This means you should probably avoid referenciI/
O mapped memory unless the size of access does not matter.

Be especially careful of printing pointers to strings (e.g., variables declared to be (ch
in C or C++), because the debugger automatically dereferences these variables to
the referenced string.

Note that accesses made by tracepoints, monitorpoints, and patchpoints will be
according to the natural data type of the variable accessed, so those accesses
normally work correctly.

Blocking Interrupts 3

If you are debugging a program containing sections of code that raiseIPL and block
interrupts, you can easily get a CPU hung or crash the system by attempting to single
through this code (or by hitting a breakpoint in a section of code which executes withIPL

raised). In particular, the trace library routines do this, so do not try to single step thro
them.

User-Level Interrupts 3

Debugging a process that attaches to a user-level interrupt requires special care.
are certain restrictions you must obey and certain actions you must take to ensure c
operation. Note that this refers to user-level code attached directly to a hardw
interrupt, not an ordinary signal handler, which requires no special treatment to debug

You must never set a breakpoint or an agentpoint in any code that might be execute
3-34

Concepts

ill
,
these
See
the

rrupt.

is at
ded

vel
d in
and
ither

call

r
ee
0).

to
nt.

but
ribes

s of
files
that

or
the

mic
For

ts the
to
the interrupt routine. If a user-level interrupt routine hits a NightView breakpoint, it w
almost certainly crash the system. Youmay, however, set monitorpoints, patchpoints
and tracepoints, but be certain that none of the expressions associated with
eventpoints perform any actions not allowed by user-level interrupt code.
“Eventpoints” on page 3-8. Note that you can set a breakpoint or agentpoint in
process as long as you ensure they are not executed while servicing a user-level inte

You may attach to a process that has attached to user-level interrupts only if there
least one Lightweight Process that is not attached to an interrupt. See “Multithrea
Programs” on page 3-32.

If you set an eventpoint in code that will be executed while servicing a user-le
interrupt, you must make sure that all memory referenced by the eventpoint is locke
physical memory. NightView allocates memory regions where it places the code
data for eventpoints, so those regions must be locked in memory as well. You may e
call themlockall(3C) service, specifyingMCL_CURRENT, after you have set all the
eventpoints that will be executed by user interrupt code, or you may
mlockall(3C) and specifyMCL_FUTURE.

If your process has attached anLWP to a user-level interrupt but also has otherLWPs not
attached to an interrupt, then the non-interruptLWPs can be stopped by NightView, eithe
using thestop command (see “stop” on page 7-100), by hitting a breakpoint (s
“Breakpoints” on page 3-9), or by receiving a signal (see “Signals” on page 3-1
NightView indicates that the process has stopped, but theLWPs serving user-level
interrupts continue to run and service interrupts. Only theLWPs not attached to an
interrupt are stopped.

If you use theselect-context command (see “select-context” on page 7-107)
examine the state of anLWP attached to an interrupt, the context will not be consiste
The registers will probably reflect the values they had when theLWP called the
ienable(2) service. PowerMAX OS does not allow you to stop anLWP attached to a
user-level interrupt.

Debugging with Shared Libraries 3

NightView provides the ability to debug programs that reference shared libraries,
there are a few things you need to know to use this effectively. This section desc
how NightView interacts with shared libraries.

Shared libraries are a mechanism that allows many programs to share librarie
common code without duplicating that code in each executable file. The executable
for those programs contain the names of the shared-library files referenced by
program. These references must beresolvedbefore the program can reference data
functions in the libraries. When the program first starts executing, a routine called
dynamic linkergets control and resolves references to shared libraries.

However, NightView gets control of a processbefore the dynamic linker executes. This
is useful for NightView, but not very useful for you the user, because until the dyna
linker runs, you cannot reference any of the data or functions in the shared libraries.
instance, you could not set a breakpoint in a function residing in a shared library.

Therefore, when NightView detects that the process references shared libraries, it le
dynamic linker execute before giving you control of the process. This allows you
3-35

NightView User’s Guide

ared

hould
ve
your
rly.
of

al.

ams
this
rary

any

es
alled

lls
ence

s

debug the entire program, without needing to know which parts reside in which sh
library.

One consequence of this action, however, concerns signals. If your process s
receive a signal while the dynamic linker is running, NightView will detect it and gi
you an error message. You will not be able to reference the shared-library parts of
program, and most likely the process will not be able to continue executing prope
One source of such a signal is the dynamic linker itself. If it cannot find one or more
the shared-library files referenced by the program, it will abort the process with a sign

Some programs require more flexibility in their use of shared libraries. These progr
call the dlopen(3X) service to load a shared library when it is needed. Because
happens after the program has initialized, NightView is unaware that a new shared lib
has been brought into the program's address space.

However, it is easy to make NightView aware of any dynamically loaded libraries at
time. Once your program has loaded a library or libraries usingdlopen , you can use the
exec-file command to force NightView to reexamine the list of shared librari
referenced by the program. See “exec-file” on page 7-35. After your program has c
dlopen , enter the following command:

exec-file program-name

where program-nameis the name of the program you are running (the one that ca
dlopen). NightView updates its database of shared libraries, and you can then refer
data and procedures in the dynamically loaded libraries.

You can issue thisexec-file command as often as you wish. If your program load
several libraries at various points during its execution, you may want to issue theexec-
file command several times.
3-36

Tutorial

d-
ter-
ted in
on

pects
about

to std-
to

age

this
4
Chapter 4Tutorial

4
4
4

This is the tutorial for the command-line version of NightView. NightView’s comman
line interface runs on all terminals. For more information about the command-line in
face, see Chapter 7 [Command-Line Interface] on page 7-1. You may also be interes
the graphical-user-interface (GUI) version of this chapter in Chapter 5 [Tutorial - GUI]
page 5-1. There is a much shorter tutorial in Chapter 1 [A Quick Start] on page 1-1.

About the Tutorial 4

This tutorial shows only the most common debugger commands and features. It ex
you to know the basics about processes and signals, but you do not need to know
NightView and debugging concepts.

The supplied tutorial program spawns a child process. The parent writes a message
out, sleeps, sends signalSIGUSR1 to the child, and loops. The child writes a message
stdout when it receives the signal.

Become familiar with the tutorial’s source code; see Chapter G [Tutorial Files] on p
G-1 or the files under the/usr/lib/NightView/Tutorial directory. The source
files are:

This tutorial takes at least two hours to do. Each section must be performed in order.

Exercises in this tutorial tell you to do things and ask you questions. Make the most of
tutorial and the manual; follow the steps below:

1. Look up the information.

2. Try to figure out the answer on your own.

C Fortran Ada

msg.h msg.i - Defines constants

main.c main.f main.a Forks a child and calls other rou-
tines

parent.c parent.f parent.a Sends signals to the child

child.c child.f child.a Receives signals from the parent
4-1

NightView User’s Guide

r pro-
fer

ams
sub-

ing on

ate

e

use
3. Apply the provided solution. (Warning: Type the solutions exactly as
they appear or your results may differ from those provided in later steps of
the tutorial. Do not type anything until you see the words "you should
enter" in the tutorial.)

You do not need to follow cross references in this tutorialunlessyou are explicitly told to
read them.

This tutorial often displays processIDs. Your processIDs will probably differ from those
shown. Also, the tutorial displays hexadecimal addresses. The addresses for you
gram may differ from those shown. Additionally, the line breaks in your output may dif
from those shown because the lengths of displayed data items may vary.

The code produced when you create your program may vary slightly from the progr
used to prepare this tutorial. In particular, the line shown as the return address from a
program may be different from what is shown here.

Some messages might not appear, or additional messages might appear, depend
your environment.

Creating a Program 4

NightView is mainly used with executables that contain debug information. To cre
such a program, compile source files with a particular option, and link edit them.

Exercise:

Create a directory namednview where you can create files for this tutorial, and mov
into that directory.

Solution:

You should enter:

$ mkdir nview
$ cd nview

Note: do not enter the$. It is part of the shell prompt.

Exercise:

Use the manual to find out what compiler option is necessary for debugging. (Hint:
the index.)

Solution:

From the index,Compiling has this information. The-g compiler option puts debug
information into an executable.
4-2

Tutorial

se?

r-

one
Exercise:

Decide what language program you want to debug. Donot copy the source files from the
/usr/lib/NightView/Tutorial directory, just compile and link these files. Make
themsg program contain debug information. What command or commands did you u

Solution:

For C, you should enter:

$ cc -g -o msg /usr/lib/NightView/Tutorial/*.c

For Fortran, you should enter:

$ f77 -g -o msg /usr/lib/NightView/Tutorial/*.f

For MAXAda, you should enter:

$ /usr/ada/bin/a.mkenv -g
$ /usr/ada/bin/a.path -I obsolescent
$ /usr/ada/bin/a.intro /usr/lib/NightView/Tutorial/*.a
$ /usr/ada/bin/a.partition -create active -main main
msg
$ /usr/ada/bin/a.build -v msg
$ /usr/ada/bin/a.rmenv .

For HAPSE Ada, you should enter:

$ /usr/hapse/bin/a.mklib -g -f
$ /usr/hapse/bin/a.make -v -lib . -o msg main \

-f /usr/lib/NightView/Tutorial/*.a
$ /usr/hapse/bin/a.rmlib

You should now have amsg program with debug information in yournview directory.
Note that for this tutorial, the source files shouldnot be in this directory.

Starting NightView 4

You are ready to start up NightViewwithout the graphical-user interface.

Exercise:

Read how to invoke the command-line interface of NightView. (You can find this info
mation in the manual, on the man page, or by invokingnview with the -help option.)
Start up the command-line interface of NightView.

Solution:

In the index,Starting the debugger, Invoking the debugger, andnview , invoking have
this information. See Chapter 6 [Invoking NightView] on page 6-1. You should enter
of:
4-3

NightView User’s Guide

elp

ams.

tion
see
age

mpt
yed

ll.

e

$ nview -nogui
$ nview -nog

Note that in this tutorialmsg does not appear on thenview invocation line.

NightView responds with:

$ nview -nogui
NightView debugger - Version 5.1, linked Mon Jan 17
13:57:27 EST 2000
Copyright (C) 2000, Concurrent Computer Corporation

In case of confusion, type "help"

Use the ’run’ command to run your program under the
debugger
(local)

These messages include NightView version information, copyright information, h
information, and the command prompt,(local) . Your version number and date may
differ. You will use online help later in this tutorial.

A dialogue contains a shell where you run shell commands and debug running progr
Each dialogue has a name; the default dialogue islocal . The default qualifier is also
local . The default command prompt is the qualifier in parentheses. For informa
about dialogues, see “Dialogues” on page 3-4. For information about qualifiers,
“Qualifiers” on page 3-4. For information about prompts, see “Command Syntax” on p
7-1.

In the command-line interface, NightView sometimes displays the command pro
before it completes its output display. You think NightView may have some undispla
output.

Exercise:

To see the undisplayed output, wait a moment, pressSpace, then pressReturn.

NightView responds with:

/usr/lib/NightView- release/ReadyToDebug
$ /usr/lib/NightView- release/ReadyToDebug
$ (local)

NightView runs theReadyToDebug program and your executable in the dialogue she
You might see only one echo of/usr/lib/NightView- release/ReadyToDebug ,
depending on how quickly the dialogue shell starts (releaseis the NightView release
level). For information aboutReadyToDebug , see “ReadyToDebug” on page 3-7. Not
that in this tutorial the dialogue shell prompt is ‘‘$ ’’. Yours may differ.
4-4

Tutorial

m-
ages.
ight-

ew

refix.
file
Getting General and Error Help 4

This tutorial expects you to look up information in the NightView manual. For the co
mand-line and simple screen interfaces, online help is available only for error mess
For general help you need to read the printed manual or consult the online help via N
View’s graphical user interface or vianhelp(1) . When this tutorial refers to another
section of the manual, use one of those methods to read the section.

Exercise:

Try to use the non-existent "foo" command.

Solution:

You should enter:

(local) foo

Note: do not enter the(local) . It is part of the command prompt.

NightView responds with:

Error: Unrecognizable command "foo". [E-command_proc003]
(local)

Exercise:

Now, invoke help without any arguments.

Solution:

You should enter one of:

(local) help
(local) he

NightView displays additional information about your most recent error and prints a n
command prompt.

Note thathe is not an official abbreviation for thehelp command; however, you may
abbreviate NightView commands and some keywords to the shortest unambiguous p
For more information, see “Command Syntax” on page 7-1. You cannot abbreviate
names, symbolic names, or NightView construct names.

Exercise:

Once again, invoke help without any arguments.

Solution:

You should enter one of:
4-5

NightView User’s Guide

that
ould
s, so

ause
y pro-
e

it

pro-
(local) help
(local) he

Note that NightView does not redisplay the extended error information; it assumes
you have already read that information. If there had been earlier errors, NightView w
display help for the next most recent error now. However, there are no earlier error
NightView gives an error message indicating that.

NightView responds with the command prompt.

Starting Your Program 4

Most NightView commands operate on existing processes in a running program. Bec
you did not specify a program when you started the debugger, there haven’t been an
cesses to debug. You must startmsg now to debug it and to use most of the rest of th
NightView commands in this tutorial.

Exercise:

Read about therun command. Use it to start themsg program and have the program wa
for debugging.

Solution:

You should enter one of:

(local) run ./msg
(local) ru ./msg

The preceding "./" is a safety precaution. Avoid accidentally debugging the wrong
gram by always providing some path information.

NightView responds with:

./msg
New process: local:15625 parent pid: 16428
Process local:15625 is executing /users/bob/nview/msg.
Reading symbols from /users/bob/nview/msg...done
Executable file set to
/users/bob/nview/msg
(local)

If msg was dynamically linked, NightView also displays the following messages:

Program was dynamically linked.
Dynamic linking completed.
The file " file" does not contain symbolic debug
information,
only external symbols will be visible.

The long messagemaynot appear.
4-6

Tutorial

ath

a-

dea
ion;
m

yn-
f this
NightView shows the processID (PID) of the new process and its parent process, the p
where your executable exists, and another local dialogue prompt. YourPIDs and the path
where your executable exists will probably differ from those in this tutorial. For inform
tion about processes, see “Programs and Processes” on page 3-2.

Note that by appending an ampersand (&) to therun command, you could have started
your program in the background of the dialogue shell. This is generally a good i
because it gives you the flexibility to debug multiple programs in one NightView sess
however, in this tutorial, you will be supplying the program with input, so the progra
needs to be running in the foreground.

Note also that although this tutorial does not ask you to do so, you can use therun com-
mand to rerun a program.

Debugging All Child Processes 4

By default, NightView debugs child processes only when they have calledexec(2) . In
themsg program, the child process never callsexec . To be able to debug this child pro-
cess, you must use theset-children commandbeforemsg forks the child process.
Also, you have to issue theset-children commandafter the run command so the
set-children command can be applied to existing processes.

Exercise:

Read about theset-children command. Issue theset-children command so that
the child process inmsg can be debugged.

Solution:

You should enter one of:

(local) set-children all
(local) set-c a

Handling Signals 4

By default, signals stop execution under the debugger. In themsg program, the parent
process sends signalSIGUSR1 to the child process. It then sleeps as a crude way of s
chronizing the sending and receiving of signals. Having execution stop because o
signal is not desirable in this case.

Exercise:

Read about thehandle command. Use it to adjust the default handling of theSIGUSR1
signal so that the process does not stop.
4-7

NightView User’s Guide

nd

rent
n
out
Solution:

You should enter one of:

(local) handle SIGUSR1 nostop
(local) ha usr1 nos

NightView responds with:

Signal handling complete
(local)

Note: you had to issue thehandle commandafter the run command so thehandle
command could be applied to existing processes.

Listing the Source 4

You probably want to look at the source files before debugging them.

Exercise:

Read about thelist command. Notice all the syntax variations for this command, a
use one of them to examine the source file wheremain is defined.

Solution:

You should enter one of:

(local) list main.c:1 (for the C program)
(local) l main.c:1 (for the C program)
(local) list main.f:1 (for the Fortran program)
(local) l main.f:1 (for the Fortran program)
(local) list main.a:1 (for the Ada program)
(local) l main.a:1 (for the Ada program)
(local) list main
(local) l main
(local) list
(local) l

NightView responds by displaying ten numbered source lines. (You will see a diffe
ten source lines depending on how you ran thelist command.) Executable lines have a
asterisk (*) source line decoration beside the line numbers. For more information ab
source line decorations, see “Source Line Decorations” on page 7-62.

The list command is repeatable. PressReturn.

Now you see the next ten lines of the source file.

Keep pressingReturn until you get an end of file message.
4-8

Tutorial

sus-

the

his:
Exercise:

List the source file so the display is centered around line 16.

Solution:

You should enter one of:

(local) list main.c:16 (for the C program)
(local) l main.c:16 (for the C program)
(local) list main.f:16 (for the Fortran program)
(local) l main.f:16 (for the Fortran program)
(local) list main.a:16 (for the Ada program)
(local) l main.a:16 (for the Ada program)
(local) list 16
(local) l 16

NightView responds by listing the lines.

Setting the First Breakpoints 4

A breakpoint is set on the executable statement where you want program execution
pended. The program stops at the breakpointbeforeit executes the instruction where the
breakpoint is set.

Exercise:

Read about thebreakpoint command. Set a separate breakpoint to stop at each of
following places:

• The line that prompts for the number of signals to send

• The call tochild_routine

• The comment before the call toparent_routine

Solution:

For the C program, this part of your debug session should look something like this:

(local) b 18
local:15625 Breakpoint 1 set at main.c:18
(local) b 25
local:15625 Breakpoint 2 set at main.c:25
(local) b 30
local:15625 Breakpoint 3 set at main.c:30

For the Fortran program, this part of your debug session should look something like t

(local) b 15
local:15625 Breakpoint 1 set at main.f:15
4-9

NightView User’s Guide

By

give
the

g a
(local) b 21
local:15625 Breakpoint 2 set at main.f:21
(local) b 23
local:15625 Breakpoint 3 set at main.f:23

For the Ada program, this part of your debug session should look something like this:

(local) b 18
local:15625 Breakpoint 1 set at main.a:18
(local) b 25
local:15625 Breakpoint 2 set at main.a:25
(local) b 27
local:15625 Breakpoint 3 set at main.a:27

Note that the preceding examples could have spelled out thebreakpoint command.
NightView gives each breakpoint an ordinal identification number beginning at 1.
default, breakpoints are set in the current list file,main.c , main.f , or main.a in this
tutorial.

Note that you can put breakpoints only on executable statements. NightView did not
you an error for attempting to put a breakpoint on a comment line. Instead, it put
breakpoint on the executable statement that immediately follows the comment line.

Listing a Breakpoint 4

NightView changes the list display when you set a breakpoint.

Exercise:

Issue thelist command that will relist the current lines.

Solution:

You should enter one of:

(local) list =
(local) l =

NightView redisplays the ten lines you were viewing. Note that if you are displayin
line with a breakpoint on it, that line now has aB (for breakpoint) source line decoration.

Continuing Execution 4

To make use of the breakpoints you set, you must allow themsg program to execute up to
the statement with the breakpoint.
4-10

Tutorial

he

ora-

on’t
f the

the
-

nd

enter
Exercise:

Read about thecontinue command. Use it to continue program execution up to t
statement with the breakpoint.

Solution:

You should enter one of:

(local) continue
(local) c

NightView displays the statement with the breakpoint. Note that the source line dec
tion is now aB=. TheB still indicates a breakpoint, and the= indicates that execution is
stopped there.

Not Entering Functions 4

Execution is stopped at the line that prompts for the number of signals to send. You d
want to enter the code for the output statement (or function) because it is part o
library, not part of your program.

Exercise:

Read about thenext command. Use it to skip over the output statement (or function).

Solution:

You should enter one of:

(local) next
(local) n

The msg program writes the prompt "How many signals should the parent send
child?". NightView displays the next line. The= source line decoration shows that execu
tion is stopped there.

Entering Input 4

You must respond to themsg program prompt "How many signals should the parent se
the child?". By default, NightView interprets all input as debugger commands.

Exercise:

Assume that you want to send ten signals. See what problems arise when you simply
the number ten.
4-11

NightView User’s Guide

for
-5

hat

the
Solution:

You should enter:

(local) 10

NightView responds with an error message.

Exercise:

Read about the! command. Use it to make NightView understand that the 10 is data
themsg program. (For information about Dialogue I/O, see “Dialogue I/O” on page 3
and “!” on page 7-27.)

Solution:

You should enter:

(local) !10

NightView responds with:

(local)

As described in “Starting NightView” on page 4-3, NightView sometimes has output t
does not appear until you pressReturn.

PressSpace, then pressReturn to see your input echoed.

NightView responds with:

10
(local)

Creating Families 4

Naming a process or process group has the following advantages over specifyingPIDs.

• Mnemonic names are often easier to remember and type than numericPIDs.

• You can groupPIDs with a single name so that qualified NightView com-
mands act only on the processes in the group.

• You can write generic NightView command files that use process names
instead of specificPIDs.

In this tutorial, you will want to issue some NightView commands that pertain only to
parent process and others that pertain only to the child process.
4-12

Tutorial

t mul-
Exercise:

Read about thefamily command. Use it to give the nameparent to all processes that
currently exist in your program. (There is only one process so far.)

Solution:

You should enter one of:

(local) family parent all
(local) fa parent all

Note that to name only the parent process, you had to issue this commandbeforeNight-
View executes thefork in themsg program. Note also that at this point, theall argu-
ment represents only one process, the parent process. Later you will see it represen
tiple processes.

You will use theparent family name later in the tutorial.

Continuing Execution Again 4

Before you can examine aspects ofparent_routine andchild_routine , you must
get NightView to stop at the calls to these routines.

Exercise:

Continue executing the program so it stops at the next statement with a breakpoint.

Solution:

You should enter one of:

(local) continue
(local) c

For the C program, NightView responds with:

New process: local:13504 parent pid: 15625
#0 0x10002838 in main() at main.c line 20
20 < | pid = fork();
local:15625: at Breakpoint 3, 0x1000284c in main() at
main.c line 31
31 B=| parent_routine(pid, total_sig);
(local)

For the Fortran program, NightView responds with:

New process: local:13504 parent pid: 15625
#0 0x100038e4 in main() at main.f line 17
4-13

NightView User’s Guide

ling
hich

age

ss

the
17 < | pid = fork()
local:15625: at Breakpoint 3, 0x10003904 in main() at
main.f line 24
24 B=| call parent_routine(pid)
(local)

For the Ada program, NightView responds with:

New process: local:13504 parent pid: 15625
#0 0x10010bc8 in main() at main.a line 21
21 < | pid := posix_1003_1.fork;
local:15625: at Breakpoint 3, 0x10010bdc in main() at
main.a line 28
28 B=| parent_routine(pid, total_sig);
(local)

The first few lines are from the child process. They show that you are currently cal
fork . The< source line decoration indicates that this line made a subprogram call w
has not yet returned. The subprogram that implementsfork is hidden. NightView usu-
ally does not show you system library routines. See “Interesting Subprograms” on p
3-24.

In this example, the child process has processID 13504, and the parent process has proce
ID 15625. Note that your processIDs will differ. Note also that after thefork , only the
parent process continued execution; the child process is still at thefork .

The source line decoration in the parent process is now aB=. TheB still indicates a break-
point and the= indicates that execution is stopped there.

Creating Families Again 4

In this tutorial, you will want to issue some NightView commands that pertain only to
parent process and others that pertain only to the child process.

Exercise:

Use thefamily command to give the namechild to only the newly forked child pro-
cess.

Solution:

You should enter one of:

(local) family child all - parent
(local) fa child all - parent

At this time, theall argument consists of both the parent and childPIDs. In section “Cre-
ating Families” on page 4-12, you created theparent family so it consists of only the
parentPID. Subtraction leaves only the childPID in thechild family.

You will use thechild family name later in the tutorial.
4-14

Tutorial

ug-

int on

ent-
ble,
Note that to name only the child process, you had to issue this commandafter NightView
executes thefork in themsg program.

Catching up the Child Process 4

To individually manipulate the parent and child processes, you must qualify your deb
ger commands.

Exercise:

Read about qualifiers. Get the child process to continue execution up to the breakpo
the call tochild_routine (line 25 in main.c , line 21 in main.f , and line 25 in
main.a).

Solution:

You should enter one of:

(local) (child) continue
(local) (child) c

For the C program, NightView displays:

local:13504: at Breakpoint 5, 0x10002840 in main() at
main.c line 25
25 B=| child_routine(total_sig);
(local)

For the Fortran program, NightView displays:

local:13504: at Breakpoint 4, 0x100038fc in main() at
main.f line 21
21 B=| call child_routine()
(local)

For the Ada program, NightView displays:

local:13504: at Breakpoint 4, 0x10010bd0 in main() at
main.a line 25
25 B=| child_routine(total_sig);
(local)

This breakpoint in the child corresponds to breakpoint 2 in the parent. Inherited ev
points get new identifiers. The order of eventpoint numbers in the child is unpredicta
so you might see a breakpoint number of4, 5, or 6.

Note that you could have qualified the command with the child’s processID number
instead of thechild family name.
4-15

NightView User’s Guide

he
ted

. For
m,
al.

in the
Verifying Data Values 4

You want to look at the value of variables in themsg program.

Exercise:

Read about theprint command. Use it to check that thetotal_sig variable has the
value 10.

Solution:

You should enter one of:

(local) print total_sig
(local) p total_sig

NightView responds with:

Process local:15625:
$1: total_sig = 10
Process local:13504:
$2: total_sig = 10

By default, the 10 is printed in decimal. NightView keeps a history of printed values. T
$1 means that this is the first value in this history. For more information about the prin
value history, see “Value History” on page 3-30.

Note that if you had looked at thetotal_sig variableafter its last use, you might have
seen gibberish. This happens when the location holding a value gets overwritten
more information, see “Optimization” on page 3-30. In the Fortran progra
total_sig was put in COMMON so you could consistently see its value in the tutori

NightView displays values for both processes because there are multiple processes
default qualifierlocal .

Entering Functions 4

At this point, the parent process is about to runparent_routine , and the child process
is about to runchild_routine .

Exercise:

Read about thestep command. Use it to simultaneously enter both routines.

Solution:

You should enter one of:
4-16

Tutorial

ad to
ge

he

ll.
(local) step
(local) s

Note that if you had wanted to enter a routine in only one process, you would have h
qualify thestep command. (For information about qualifiers, see “Qualifiers” on pa
3-4.)

In all the following output descriptions, NightView displays the line you stepped to. T
= source line decoration indicates that execution is stopped there.

For the C program, NightView displays:

#0 0x10002884 in child_routine(int total_sig = 10) at
child.c line 14
#0 0x10002944 in parent_routine(pid_t child_pid =
13504, int total_sig = 10)

at parent.c line 11
14 = | signal(SIGUSR1, signal_handler);
11 = | int isec = 2;
(local)

Line 14 is from the child process. Line 11 is from the parent process.

For the Fortran program, NightView displays:

#0 0x1000393c in child_routine() at child.f line 17
17 = | ireturn = csignal(SIGUSR1, signal_handler,
-1)
#0 0x10003a48 in parent_routine(INTEGER child_pid /
13504 /)

at parent.f line 15
15 = | do 10 sig_ct = 1, total_sig
(local)

Line 17 is from the child process. Line 15 is from the parent process.

For the Ada program, NightView displays:

#0 0x100108fc in child_routine(total_sig : IN integer =
10) at child.a line 26
#0 0x10010578 in parent_routine(child_pid : IN pid_t =
13504,

total_sig : IN integer = 10) at
parent.a line 6
26 = | procedure child_routine(total_sig : integer) is
6 = | procedure parent_routine(child_pid :
posix_1003_1.pid_t; total_sig : integer) is
(local)

Line 26 is from the child process. Line 6 is from the parent process.

NightView tells you when astep command takes you into (or out of) a subprogram ca
The lines that begin with#0 announce that you have enteredchild_routine in the
child process andparent_routine in the parent process.

Note that the order of the lines displayed may vary.
4-17

NightView User’s Guide

k

Examining the Stack Frames 4

It is often helpful to see how you got to a certain point in a program.

Exercise:

Read about thebacktrace command. Use it to display the list of currently active stac
frames.

Solution:

You should enter one of:

(local) backtrace
(local) bt

For the C program, NightView responds with:

Backtrace for process local:13504
#0 0x10002884 in child_routine(int total_sig = 10) at
child.c line 14
#1 0x10002848 in main() at main.c line 25
Backtrace for process local:15625
#0 0x10002944 in parent_routine(pid_t child_pid =
13504, int total_sig = 10)

at parent.c line 11
#1 0x10002854 in main() at main.c line 31
(local)

For the Fortran program, NightView responds:

Backtrace for process local:13504
#0 0x1000393c in child_routine() at child.f line 17
#1 0x10003900 in main() at main.f line 21
Backtrace for process local:15625
#0 0x10003a48 in parent_routine(INTEGER child_pid /
13504 /)

at parent.f line 15
#1 0x10003910 in main() at main.f line 24
(local)

For the Ada program, NightView responds:

Backtrace for process local:13504
#0 0x100108fc in child_routine(total_sig : IN integer =
10) at child.a line 26
#1 0x10010bd8 in main() at main.a line 25
#2 0x10022750 in <anonymous>()
Backtrace for process local:15625
#0 0x10010578 in parent_routine(child_pid : IN pid_t =
13504,

total_sig : IN integer = 10) at
parent.a line 6
4-18

Tutorial

s
ll-

has

run
value

e

#1 0x10010be4 in main() at main.a line 28
#2 0x10022750 in <anonymous>()
(local)

Note the order of the displayed lines may vary.

On lines labeled#0, NightView shows its location within the current routine. On line
labeled#1, NightView shows the location of the call to the current routine within the ca
ing routine.

In the Ada program, stack frame #2 is from the library level elaboration routine, which
no name.

Moving in the Stack Frames 4

You may want to move among the stack frames to examine and modify variables,
functions, etc., in other frames. For example, suppose that you want to examine the
of local variabletracefile in main .

Exercise:

Read about theup command. Qualify theup command so the current stack frame of th
parent process ismain .

Solution:

You should enter:

(local) (parent) up

For the C program, NightView responds with:

Output for process local:15625
#1 0x10002854 in main() at main.c line 31
31 B<| parent_routine(pid, total_sig);
(local)

For the Fortran program, NightView responds with:

Output for process local:15625
#1 0x10003910 in main() at main.f line 24
24 B<| call parent_routine(pid)
(local)

For the Ada program, NightView responds with:

Output for process local:15625
#1 0x10010be4 in main() at main.a line 28
28 B<| parent_routine(pid, total_sig);
(local)
4-19

NightView User’s Guide

s not

e

The< source line decoration indicates that this line made a subprogram call which ha
yet returned.

Note that you could have qualified the command with the parent’s processID number
instead of theparent family name.

Verifying Data Values in Other Stack Frames 4

Frommain , you can examine local variables, run functions, etc.

Exercise:

Qualify aprint command so it displays the value of local variabletracefile in main
only for the parent process.

Solution:

You should enter one of:

(local) (parent) print tracefile
(local) (parent) p tracefile

For the C program, NightView responds with:

$3: tracefile = 0x30003100 "msg_file"
(local)

For the Fortran and Ada programs, NightView responds with:

$3: tracefile = "msg_file"
(local)

Note that you could have qualified the command with the parent’s processID number
instead of theparent family name.

Returning to a Stack Frame 4

You want to return toparent_routine .

Exercise:

Read about thedown command. Qualify thedown command so the current stack fram
of the parent process isparent_routine .
4-20

Tutorial

oon

t.
Solution:

You should enter one of:

(local) (parent) down
(local) (parent) do

For the C program, NightView responds with:

Output for process local:15625
#0 0x10002944 in parent_routine(pid_t child_pid =
13504, int total_sig = 10)

at parent.c line 11
11 = | int isec = 2;
(local)

For the Fortran program, NightView responds with:

Output for process local:15625
#0 0x10003a48 in parent_routine(INTEGER child_pid /
13504 /)

at parent.f line 15
15 = | do 10 sig_ct = 1, total_sig
(local)

For the Ada program, NightView responds with:

Output for process local:15625
#0 0x10010578 in parent_routine(child_pid : IN pid_t =
13504,

total_sig : IN integer = 10) at
parent.a line 6
6 = | procedure parent_routine(child_pid :
posix_1003_1.pid_t; total_sig : integer) is
(local)

Note: it is not meaningful to do adown without doing anup first (as you did in section
“Moving in the Stack Frames” on page 4-19).

Resuming Execution 4

You want to continue the execution of the child process so that it will get signals as s
as they are sent by the parent process. Thecontinue command can do this, but it ties up
the debugger’s input mechanism while waiting for the process. You don’t want to wai

Exercise:

Read about theresume command. Qualify theresume command to resume execution
of thechild process without the waiting that occurs with thecontinue command.
4-21

NightView User’s Guide

alify-
nds in

t
ro-
Solution:

You should enter one of:

(local) (child) resume
(local) (child) res

Note that you could have qualified the command with the child’s processID number
instead of thechild family name.

Setting the Default Qualifier 4

As described in “Starting NightView” on page 4-3, the default qualifier islocal , which
means that unqualified commands affect all processes. It is cumbersome to keep qu
ing commands that operate on a subset of these processes. The rest of the comma
this tutorial apply only to the parent process.

Exercise:

Read about theset-qualifier command. Use it to tell NightView that the defaul
qualifier for the remaining commands is the family that consists of only the parent p
cess.

Solution:

You should enter one of:

(local) set-qualifier parent
(local) set-q parent

NightView changes the prompt to your new qualifier,parent .

Removing a Breakpoint 4

Breakpoint 1 (set in “Setting the First Breakpoints” on page 4-9) is no longer needed.

Exercise:

Read about thedelete command. Use it to remove breakpoint 1.

Solution:

You should enter one of:

(parent) delete 1
(parent) d 1
4-22

Tutorial

w
-

that
nore

ror
Setting Conditional Breakpoints 4

It is often useful to suspend execution conditionally.

Exercise:

Read about thebreakpoint command. Set a breakpoint on the line that displays ho
long the parent is sleeping inparent_routine ; the breakpoint should suspend execu
tion when the value ofisec equals the value oftotal_sig .

Solution:

For the C program, you should enter one of:

(parent) breakpoint 16 if isec == total_sig
(parent) b 16 if isec == total_sig

For the Fortran program, you should enter one of:

(parent) breakpoint 16 if isec .eq. total_sig
(parent) b 16 if isec .eq. total_sig

For the Ada program, you should enter one of:

(parent) breakpoint 15 if isec = total_sig
(parent) b 15 if isec = total_sig

For the C program, NightView responds with:

local:15625 Breakpoint 7 set at parent.c:16

For the Fortran program, NightView responds with:

local:15625 Breakpoint 7 set at parent.f:16

For the Ada program, NightView responds with:

local:15625 Breakpoint 7 set at parent.a:15

Attaching an Ignore Count to a Breakpoint 4

Sometimes you won’t want to monitor each iteration of a loop. For example, assume
a loop runs many times, and somewhere during the loop an error occurs. You could ig
the first half of the loop values to determine in which half of the iterations the er
occurred.
4-23

NightView User’s Guide

, see

rtic-
Exercise:

Read about theignore command. Set abreakpoint command on the line that dis-
plays how long the parent is sleeping inparent_routine . NightView has a predefined
name for the most-recently set breakpoint. For more information about this name
“Eventpoint Specifiers” on page 7-12. Use this name on anignore command on this line
in parent_routine ; ignore the next five iterations.

Solution:

For the C and Fortran programs, you should enter:

(parent) breakpoint 16
(parent) ignore . 5

or

(parent) b 16
(parent) ig . 5

For the Ada program, you should enter:

(parent) breakpoint 15
(parent) ignore . 5

or

(parent) b 15
(parent) ig . 5

For the C program, NightView responds with:

local:15625 Breakpoint 8 set at parent.c:16
Will ignore next 5 crossings of Breakpoint #8 in
local:15625.

For the Fortran program, NightView responds with:

local:15625 Breakpoint 8 set at parent.f:16
Will ignore next 5 crossings of Breakpoint #8 in
local:15625.

For the Ada program, NightView responds with:

local:15625 Breakpoint 8 set at parent.a:15
Will ignore next 5 crossings of Breakpoint #8 in
local:15625.

Attaching Commands to a Breakpoint 4

You can attach arbitrary NightView commands to a breakpoint. They run when that pa
ular breakpoint is hit.
4-24

Tutorial

lue
se

.

cu-
Exercise:

Read about thecommands command. Attach a command stream that prints out the va
of total_sig only when you hit the breakpoint you set in the previous step. Note: u
the NightView predefined name for the most-recently set breakpoint.

Solution:

You should enter one of:

(parent) commands .
(parent) com .

NightView responds with:

Type commands for when the breakpoints are hit, one per
line.
End with a line saying just "end".
>

You should enter:

> print total_sig
> end

or

> p total_sig
> end

Automatically Printing Variables 4

You can create a list of one or more variables to be printed each time execution stops

Exercise:

Read about thedisplay command. Use adisplay command to display the value of
thesig_ct variable.

Solution:

You should enter one of:

(parent) display sig_ct
(parent) disp sig_ct

Note that thisdisplay command runs every time execution stops, and theprint com-
mand from “Attaching Commands to a Breakpoint” on page 4-24 runs only when exe
tion stops at a specific breakpoint.
4-25

NightView User’s Guide

mpt

ight-

t of
ritten
s that
nal

nd-

d
r

Watching Inter-Process Communication 4

You already resumed the execution of the child process, so NightView gave you a pro
and did not wait for the child process.

Exercise:

Now continue execution for the parent process.

Solution:

You should enter one of:

(parent) continue
(parent) c

NightView responds with something like the following:

1. Parent sleeping for 2 seconds
2. Parent sleeping for 2 seconds

Child got ordinal signal #1
3. Parent sleeping for 2 seconds

Process local:13504 received SIGUSR1
Child got ordinal signal #2

4. Parent sleeping for 2 seconds
Process local:13504 received SIGUSR1
Child got ordinal signal #3

5. Parent sleeping for 2 seconds
Process local:13504 received SIGUSR1
Child got ordinal signal #4
Process local:13504 received SIGUSR1
Child got ordinal signal #5
local:15625: at Breakpoint 8, 0x10002950 in parent_routine(

pid_t child_pid = 13504, int total_sig = 10)
at parent.c line 16

16 B=| printf("%d. Parent sleeping for %d seconds\n", sig_ct, isec);
1: sig_ct = 6
(parent)

Note the order of the displayed lines may vary. For the Fortran and Ada programs, N
View prints the argument or arguments toparent_routine differently.

Because of theignore command on breakpoint 8, the parent process sent only five ou
ten signals to the child process before the breakpoint was hit. The source code is w
so that the lines that begin with a number come from the parent process, and the line
begin with the word "Child" come from the child process. The lines that mention sig
SIGUSR1 appear because thehandle command is implicitly set toprint and explicitly
set tonostop . Two lines show where execution stopped; these lines will differ depe
ing on your programming language. Another line shows the value ofsig_ct because of
thedisplay command.

Note that theprint total_sig output did not appear because NightView returne
your prompt before the commands in thecommands command stream completed thei
output.

Exercise:

To see theprint total_sig output, enter a spaceandReturn.
4-26

Tutorial

to the

he
unt
WARNING

If you pressReturn without the space, you will repeat thecon-
tinue command.)

NightView responds with the following:

$4: total_sig = 10
(parent)

Patching Your Program 4

You just watched the parent process sleep for 2 seconds between sending signals
child process. Look at how this is done in the source.

Exercise:

List the source file for theparent_routine so the display is centered around line 13.

Solution:

You should enter one of:

(parent) list parent.c:13 (for the C program)
(parent) l parent.c:13 (for the C program)
(parent) list parent.f:13 (for the Fortran program)
(parent) l parent.f:13 (for the Fortran program)
(parent) list parent.a:13 (for the Ada program)
(parent) l parent.a:13 (for the Ada program)

You will notice that the variableisec always has the value 2. Instead, you could vary t
sleep intervalisec by assigning it a value from 1 through 3, based on the signal co
sig_ct . Hint: In C the%operator, in Fortran themod function, and in Ada therem
operator may be useful.

Exercise:

Read about thepatchpoint command. In the parent process,on the line that displays
how long the parent is sleeping, patch in the assignment expression just described.

Solution:

For the C program, you should enter:

(parent) patchpoint at 16 eval isec = sig_ct % 3 + 1

For the Fortran program, you should enter:

(parent) patchpoint at 16 eval isec = mod(sig_ct , 3) + 1
4-27

NightView User’s Guide

n

ts,
ands,
For the Ada program, you should enter:

(parent) patchpoint at 15 eval isec := sig_ct re m 3 + 1

For the C program, NightView responds with the following:

local:15625 Patchpoint 9 set at parent.c:16

For the Fortran program, NightView responds with the following:

local:15625 Patchpoint 9 set at parent.f:16

For the Ada program, NightView responds with the following:

local:15625 Patchpoint 9 set at parent.a:15

Disabling a Breakpoint 4

You want to runmsg to completion without stopping at breakpoint 8.

Exercise:

Read about thedisable command. Use it to disable breakpoint 8 (set in sectio
“Attaching an Ignore Count to a Breakpoint” on page 4-23).

Solution:

You should enter one of:

(parent) disable 8
(parent) disa 8

Examining Eventpoints 4

An eventpointis a generic term which includes breakpoints, patchpoints, monitorpoin
agentpoints, and tracepoints. You want to examine the locations, associated comm
and statistics related to the eventpoints you have set inmsg.

Exercise:

Read about theinfo eventpoint command. Use it to examine all eventpoints.

Solution:

You should enter one of:

(parent) (local) info eventpoint
4-28

Tutorial
(parent) (local) i ev
(parent) (all) info eventpoint
(parent) (all) i ev

For the C program, NightView responds with the following:

Eventpoints for process local:15625:

ID Typ Enb Where
--- --- --- -------------------

2 B Y main.c:25
3 B Y main.c:30

#crossings=1 #hits=1
7 B Y parent.c:16

only if isec == total_sig
#crossings=6

8 B N parent.c:16
#crossings=6 #hits=1
commands:

print total_sig
9 P Y parent.c:16

eval = isec = sig_ct % 3 + 1

Eventpoints for process local:13504:

ID Typ Enb Where
--- --- --- -------------------

4 B Y main.c:18
#crossings=1 #hits=1

5 B Y main.c:25
#crossings=1 #hits=1

6 B Y main.c:30
(parent)

For the Fortran program, NightView responds with the following:

Eventpoints for process local:15625:

ID Typ Enb Where
--- --- --- -------------------

2 B Y main.f:21
3 B Y main.f:23

#crossings=1 #hits=1
7 B Y parent.f:16

only if isec .eq. total_sig
#crossings=6

8 B N parent.f:16
#crossings=6 #hits=1
commands:

print total_sig
9 P Y parent.f:16

eval = isec = mod(sig_ct, 3) + 1

Eventpoints for process local:13504:
4-29

NightView User’s Guide

oint
reak-

This

The
The
as in

till
oint
ID Typ Enb Where
--- --- --- -------------------

4 B Y main.f:21
#crossings=1 #hits=1

5 B Y main.f:23
6 B Y main.f:15

#crossings=1 #hits=1
(parent)

For the Ada program, NightView responds with the following:

Eventpoints for process local:15625:

ID Typ Enb Where
--- --- --- -------------------

2 B Y main.a:25
3 B Y main.a:27

#crossings=1 #hits=1
7 B Y parent.a:15

only if isec = total_sig
#crossings=6

8 B N parent.a:15
#crossings=6 #hits=1
commands:

print total_sig
9 P Y parent.a:15

eval = isec := sig_ct rem 3 + 1

Eventpoints for process local:13504:

ID Typ Enb Where
--- --- --- -------------------

4 B Y main.a:25
#crossings=1 #hits=1

5 B Y main.a:27
6 B Y main.a:18

#crossings=1 #hits=1
(parent)

NightView displays all eventpoints for processlocal:15625 followed by the event-
points for processlocal:13504 .

Breakpoints 1, 2, and 3 were set in “Setting the First Breakpoints” on page 4-9. Breakp
1 has no entry because it was deleted in “Removing a Breakpoint” on page 4-22. B
points 2 and 3 are still enabled. Breakpoint 3 has been crossed once and hit once.
means that its line has been executed once and stopped on once.

When the child process was forked, it inherited the parent process’s breakpoints.
child’s breakpoints 4, 5, and 6 correspond to the parent’s breakpoints 1, 2, and 3.
order of the eventpoint numbers for inherited eventpoints is not necessarily the same
the parent.

Breakpoint 7 was set in “Setting Conditional Breakpoints” on page 4-23 and is s
enabled; note that NightView displays the condition on this breakpoint. This breakp
4-30

Tutorial

cuted

and
the
en
ecuted
re

note
oint
has been crossed six times without being hit. This means that the line has been exe
six times, but the condition has not been true yet.

Breakpoint 8 was set in “Attaching an Ignore Count to a Breakpoint” on page 4-23
was disabled in “Disabling a Breakpoint” on page 4-28; note that NightView displays
commands (print total_sig) attached to this breakpoint. This breakpoint has be
crossed six times and has been hit only once. This means that the line has been ex
six times, but theignore command has prevented the breakpoint from being hit mo
than once.

Patchpoint 9 was set in “Patching Your Program” on page 4-27 and is still enabled;
that NightView displays the expression associated with this patchpoint. This patchp
has not been crossed or hit yet so these statistics are omitted from the display.

Continuing to Completion 4

There’s nothing else to look at, so you decide to runmsg to completion.

Exercise:

Use thecontinue command to continue execution.

Solution:

You should enter one of:

(parent) continue
(parent) c

NightView responds with something like this:

6. Parent sleeping for 1 seconds
7. Parent sleeping for 2 seconds
Process local:13504 received SIGUSR1
Child got ordinal signal #6
8. Parent sleeping for 3 seconds
Process local:13504 received SIGUSR1
Child got ordinal signal #7
9. Parent sleeping for 1 seconds
Process local:13504 received SIGUSR1
Child got ordinal signal #8
10. Parent sleeping for 2 seconds
Process local:13504 received SIGUSR1
Child got ordinal signal #9
Process local:13504 received SIGUSR1
Child got ordinal signal #10
Process local:15625 is about to exit normally
Process local:13504 is about to exit normally
#1 0x1000285c in main() at main.c line 34
#1 0x1000285c in main() at main.c line 34
4-31

NightView User’s Guide

arent
ote
lines

the
34 <>| exit(0);
34 <>| exit(0);
--> Undisplayed items:

1: (print) sig_ct
(parent)

Note the order of the displayed lines may vary.

The source code is written so that the lines that begin with a number come from the p
process, and the lines that begin with the word "Child" come from the child process. N
that the sleep interval varies from 1 through 3 because of the patch you made. The
that mention signalSIGUSR1 appear because thehandle command is implicitly set to
print and explicitly set tonostop .

The last two lines say thatsig_ct is not displayed. This message appears because of
display command and because thesig_ct variable is not visible at this point in the
parent process. For the Fortran program,sig_ct is displayed, because it is still avail-
able.

Leaving the Debugger 4

The tutorial is over.

Exercise:

Read about thequit command. Use it to leave the debugger.

Solution:

You should enter one of:

(parent) quit
(parent) q

Neither process has completely exited, so NightView asks the following question:

Kill all processes being debugged?

Exercise:

Make the processes go away.

Solution:

You should respond:

Kill all processes being debugged? y

NightView responds with:
4-32

Tutorial
You are now leaving NightView...
Process local:13504 exited normally
Process local:15625 exited normally
Dialogue local has exited.
4-33

NightView User’s Guide
4-34

Tutorial - GUI

t-
the
may

l] on
2-1.

pects
ou do

to std-
to

age

er. If
age

this
5
Chapter 5Tutorial - GUI

5
5
5

This is the tutorial for the graphical user interface (GUI) version of NightView. Nigh
View’s graphical user interface runs only on X servers. For more information about
graphical user interface, see Chapter 9 [Graphical User Interface] on page 9-1. You
also be interested in the command-line version of this chapter in Chapter 4 [Tutoria
page 4-1. There is a much shorter tutorial in Chapter 2 [A Quick Start - GUI] on page

About the Tutorial - GUI 5

This tutorial shows only the most common debugger commands and features. It ex
you to know the basics about window system concepts, processes, and signals, but y
not need to know about NightView and debugging concepts.

The supplied tutorial program spawns a child process. The parent writes a message
out, sleeps, sends signalSIGUSR1 to the child, and loops. The child writes a message
stdout when it receives the signal.

Become familiar with the tutorial’s source code; see Chapter G [Tutorial Files] on p
G-1 or the files under the/usr/lib/NightView/Tutorial directory. The source
files are:

This tutorial takes at least two hours to do. Each section must be performed in ord
you do not have two hours, you may want to see Chapter 2 [A Quick Start - GUI] on p
2-1.

Exercises in this tutorial tell you to do things and ask you questions. Make the most of
tutorial and the manual; follow the steps below:

1. Look up the information.

2. Try to figure out the answer on your own.

3. Apply the provided solution in the correct window. (Warning: Perform
the solutions exactly as indicated, or your results may differ from those

C Fortran Ada

msg.h msg.i - Defines constants

main.c main.f main.a Forks a child and calls other rou-
tines

parent.c parent.f parent.a Sends signals to the child

child.c child.f child.a Receives signals from the parent
5-1

NightView User’s Guide

eing

r pro-
fer

ams
sub-

ing on

tions
ome
Syn-
on-

ield

rd.
Use

ate

e

provided in later steps of the tutorial. Do not do anything until you see the
words "you should" in the tutorial.)

You do not need to follow cross references in this tutorialunlessyou are explicitly told to
read them.

Sometimes NightView displays a status so briefly that it seems to flash before b
replaced by another status. This tutorial documents only the last status displayed.

This tutorial often displays processIDs. Your processIDs will probably differ from those
shown. Also, the tutorial displays hexadecimal addresses. The addresses for you
gram may differ from those shown. Additionally, the line breaks in your output may dif
from those shown because the lengths of displayed data items may vary.

The code produced when you create your program may vary slightly from the progr
used to prepare this tutorial. In particular, the line shown as the return address from a
program may be different from what is shown here.

Some messages might not appear, or additional messages might appear, depend
your environment.

Some of the shortened commands that appear in this tutorial are not official abbrevia
for NightView commands; however, you may abbreviate NightView commands and s
keywords to the shortest unambiguous prefix. For more information, see “Command
tax” on page 7-1. You cannot abbreviate file names, symbolic names, or NightView c
struct names.

Field names that begin with the word "dialogue" are part of the Dialogue Window. F
names that begin with the word "debug" are part of the Debug Window.

You could run this entire tutorial with commands and operations from the keyboa
However, to reduce confusion, use the mouse whenever possible during this tutorial.
mouse button 1 when you are told to click, drag, and select.

Creating a Program - GUI 5

NightView is mainly used with executables that contain debug information. To cre
such a program, compile source files with a particular option, and link edit them.

Exercise:

Create a directory namednview where you can create files for this tutorial, and mov
into that directory.

Solution:

You should enter:

$ mkdir nview
$ cd nview
5-2

Tutorial - GUI

use

se?
Note: do not enter the$. It is part of the shell prompt.

Exercise:

Use the manual to find out what compiler option is necessary for debugging. (Hint:
the index.)

Solution:

From the index,Compiling has this information. The-g compiler option puts debug
information into an executable.

Exercise:

Decide what language program you want to debug. Donot copy the source files from the
/usr/lib/NightView/Tutorial directory, just compile and link these files. Make
themsg program contain debug information. What command or commands did you u

Solution:

For C, you should enter:

$ cc -g -o msg /usr/lib/NightView/Tutorial/*.c

For Fortran, you should enter:

$ f77 -g -o msg /usr/lib/NightView/Tutorial/*.f

For MAXAda, you should enter:

$ /usr/ada/bin/a.mkenv -g
$ /usr/ada/bin/a.path -I obsolescent
$ /usr/ada/bin/a.intro /usr/lib/NightView/Tutorial/*.a
$ /usr/ada/bin/a.partition -create active -main main
msg
$ /usr/ada/bin/a.build -v msg
$ /usr/ada/bin/a.rmenv .

For HAPSE Ada, you should enter:

$ /usr/hapse/bin/a.mklib -g -f
$ /usr/hapse/bin/a.make -v -lib . -o msg main \

-f /usr/lib/NightView/Tutorial/*.a
$ /usr/hapse/bin/a.rmlib

You should now have amsg program with debug information in yournview directory.
Note that for this tutorial, the source files shouldnot be in this directory.
5-3

NightView User’s Guide

or-

ith
ebug

ws,
see

e

ad
each
Starting NightView - GUI 5

You are ready to start up NightViewwith the graphical user interface.

Exercise:

Read how to invoke the graphical user interface of NightView. (You can find this inf
mation in the manual, on the man page, or by invokingnview with the -help option.)
Start up the graphical user interface of NightView.

Solution:

In the index,Starting the debugger, Invoking the debugger, andnview , invoking have
this information. See Chapter 6 [Invoking NightView] on page 6-1. You should enter:

$ nview

Note that in this tutorialmsg does not appear on thenview invocation line.

NightView responds by displaying a Dialogue Window.

A Dialogue Window is used to control a NightView dialogue and for input and output w
the dialogue shell. A dialogue contains a shell where you run shell commands and d
running programs. Each dialogue has a name; the default dialogue islocal . The dialogue
qualifier area shows the command qualifier, for this dialogue,local . For information
about dialogues, see “Dialogues” on page 3-4. For information about Dialogue Windo
see “Dialogue Window” on page 9-16. For information about command qualifiers,
“Qualifiers” on page 3-4.

The dialogue I/O area displays:

/usr/lib/NightView- release/ReadyToDebug
$ /usr/lib/NightView- release/ReadyToDebug
$

NightView runs theReadyToDebug program automatically as part of initialization. You
might see only one echo of/usr/lib/NightView- release/ReadyToDebug ,
depending on how quickly the dialogue shell starts (releaseis the NightView release
level). For information aboutReadyToDebug , see “ReadyToDebug” on page 3-7. Not
that in this tutorial the dialogue shell prompt is ‘‘$ ’’. Yours may differ.

Getting General and Error Help - GUI 5

This tutorial expects you to look up information in the NightView manual. You may re
the hard copy or the similar online manual. The online manual is accessible through
major window’sHelp menu.
5-4

Tutorial - GUI

h-
the
Exercise:

Try to use the non-existent "foo" command.

Solution:

In the dialogue command area, you should enter:

foo

and pressReturn.

NightView displays in the dialogue message area:

Error: Unrecognizable command "foo". [E-command_proc003]

Exercise:

Read about this error message.

Solution:

In the Dialogue Window, you should click on theHelp menu and selectOn Last Error.

The Help Window displays additional information about your most recent error.

Read the information. Note thatSummary of Commands appears highlighted.

Exercise:

Read about getting information about all NightView commands.

Solution:

In the Help Window, you should click onSummary of Commands.

The Help Window displays a list of NightView commands with each command hig
lighted. The vertical and horizontal scroll bars next to the help display let you examine
rest of the help text.

Exercise:

Read about the menu bar in the Dialogue Window.

Solution:

In the Dialogue Window, you should click on theHelp menu and selectOn Context.

NightView changes your pointer to a modified question mark.

Click on the menu bar of the Dialogue Window.
5-5

NightView User’s Guide

ia-

be

n

ause
y pro-
e

pro-

ws,

n-
NightView restores your pointer. The Help Window displays information about the D
logue Window menu bar.

When this tutorial asks you to read about buttons, use this same procedure.

For now, you are finished using help.

Exercise:

Close the Help Window.

Solution:

In the Help Window, you should click on theFile menu and selectExit. (The Help Win-
dow is running a separate program, so only that program will exit. NightView will still
running.)

The Help window goes away.

This tutorial discusses theHelp menu again in “Debugging All Child Processes - GUI” o
page 5-8. For more information about help, see “GUI Online Help” on page 9-2.

Starting Your Program - GUI 5

Most NightView features operate on existing processes in a running program. Bec
you did not specify a program when you started the debugger, there haven’t been an
cesses to debug. You must startmsg now to debug it and to use most of the rest of th
NightView features in this tutorial.

Exercise:

Start themsg program, and have it wait for debugging.

Solution:

In the dialogue I/O area, you should enter:

./msg

and pressReturn.

The preceding "./" is a safety precaution. Avoid accidentally debugging the wrong
gram by always providing some path information.

NightView displays the Principal Debug Window. (You can create other Debug Windo
but you won’t do that for this tutorial.)

The debug identification area shows thatmsg is the executable program the process is ru
ning.
5-6

Tutorial - GUI

ut-
m
s” on

layed

lines
ion
rtical
f the

s

lifier,

ning

se it
er,
be
The debug message area shows:

New Process: local: 15625 parent pid: 17882
Process local:15625 is executing /users/bob/nview/msg.
Reading symbols from /users/bob/nview/msg...done
Executable file set to
/users/bob/nview/msg
Switched to process local:15625.

If msg was dynamically linked, NightView also displays the following messages:

Program was dynamically linked.
Dynamic linking completed.
The file " file" does not contain symbolic debug
information,
only external symbols will be visible.

The long messagemaynot appear.

NightView shows the processID (PID) of the new process and the path where your exec
able exists. YourPID and the path where your executable exists will probably differ fro
those in this tutorial. For information about processes, see “Programs and Processe
page 3-2.

The messageSwitched to process local:15625. indicates that this process is
thecurrently displayed process.

The debug source file name field shows the name of the source file that is being disp
in the debug source display,main.c , main.f , or main.a .

In the debug source display, NightView displays numbered source lines. Executable
have an asterisk (*) source line decoration beside the line numbers. For more informat
about source line decorations, see “Source Line Decorations” on page 7-62. The ve
and horizontal scroll bars next to the debug source display let you examine the rest o
source file.

The debug status area shows the statusStopped for exec. This means that the proces
has justexec(2) ’ed a new program image.

The debug qualifier area shows the qualifier,local:15625 .

The debug group area has an entry for this process. The entry shows the qua
local:15625 , the name of the program this process is running,msg, and the status of
the process,Stopped for exec . See “Debug Group Area” on page 9-35.

TheSwitch To button and the buttons below the labelSwitch To Stopped Process
are disabled (dimmed) because there is only one process present at this time.

The Dialogue Window lists an entry for process 15625 and says the process is run
msg.

Note that by appending an ampersand (&) to the./msg , you could have started your pro-
gram in the background of the dialogue shell. This is generally a good idea becau
gives you the flexibility to debug multiple programs in one NightView session; howev
in this tutorial, you will be supplying the program with input, so the program needs to
running in the foreground.
5-7

NightView User’s Guide

m by

r-
Note also that although this tutorial does not ask you to do so, you can rerun a progra
invoking it again.

Debugging All Child Processes - GUI 5

By default, NightView debugs child processes only when they have calledexec(2) . In
themsg program, the child process never callsexec . To be able to debug this child pro-
cess, you must use theset-children commandbeforemsg forks the child process.
Also, you have to issue theset-children commandafter invoking ./msg so the
set-children command can be applied to existing processes.

Exercise:

Read about theset-children command.

Solution:

You should click on theHelp menu of either window and selectOn Commands. Scroll
down to theset-children command. Click on the highlighted text. Read the info
mation that the Help Window displays about theset-children command.

Exercise:

Use theFile menu to close the Help Window.

Solution:

In the Help Window, you should click on theFile menu and selectExit.

The Help Window goes away.

When this tutorial asks you to read about commands, use this same procedure.

Exercise:

Issue theset-children command so that the child process inmsg can be debugged.

Solution:

In the debug command area, you should enter one of:

set-children all
set-c a

and pressReturn.

NightView echoes this command in the debug message area.
5-8

Tutorial - GUI

yn-
f this

sus-

ate
Handling Signals - GUI 5

By default, signals stop execution under the debugger. In themsg program, the parent
process sends signalSIGUSR1 to the child process. It then sleeps as a crude way of s
chronizing the sending and receiving of signals. Having execution stop because o
signal is not desirable in this case.

Exercise:

Read about thehandle command. Use it to adjust the default handling of theSIGUSR1
signal so that the process does not stop.

Solution:

In the debug command area, you should enter one of the following:

handle SIGUSR1 nostop
ha usr1 nos

and pressReturn.

NightView echoes this command and displays in the debug message area:

Signal handling complete

Note: you had to issue thehandle commandafter invoking ./msg so thehandle
command could be applied to existing processes.

Setting the First Breakpoints - GUI 5

A breakpoint is set on the executable statement where you want program execution
pended. The program stops at the breakpointbeforeit executes the instruction where the
breakpoint is set.

Exercise:

Read about theBreakpoint debug command button in the Debug Window. Set a separ
breakpoint to stop at each of the following places:

• The line that prompts for the number of signals to send

• The call tochild_routine

• The comment before the call toparent_routine
5-9

NightView User’s Guide

bug
n

or-

ing

for-

nts,
tion

give
the
ow-
on.

each

n-
Solution:

You should alternate between clicking on a prospective breakpoint line in the de
source display and clicking on theBreakpoint debug command button. Pause betwee
each click so that NightView can respond.

For the C program, the lines are 18, 25, and 30. NightView displays the following inf
mation in the debug message area.

local:15625 Breakpoint 1 set at main.c:18
local:15625 Breakpoint 2 set at main.c:25
local:15625 Breakpoint 3 set at main.c:30

For the Fortran program, the lines are 15, 21, and 23. NightView displays the follow
information in the debug message area.

local:15625 Breakpoint 1 set at main.f:15
local:15625 Breakpoint 2 set at main.f:21
local:15625 Breakpoint 3 set at main.f:23

For the Ada program, the lines are 18, 25, and 27. NightView displays the following in
mation in the debug message area.

local:15625 Breakpoint 1 set at main.a:18
local:15625 Breakpoint 2 set at main.a:25
local:15625 Breakpoint 3 set at main.a:27

An eventpointis a generic term which includes breakpoints, patchpoints, monitorpoi
agentpoints, and tracepoints. NightView gives each eventpoint an ordinal identifica
number beginning at 1.

Note that you can put breakpoints only on executable statements. NightView did not
you an error for attempting to put a breakpoint on a comment line. Instead, it put
breakpoint on the executable statement that immediately follows the comment line. H
ever, the message in the debug message area has the number of the line you clicked

NightView changes the debug source display when you set a breakpoint. Note that
line with a breakpoint on it now has aB (for breakpoint) source line decoration.

Continuing Execution - GUI 5

To make use of the breakpoints you set, you must allow themsg program to execute up to
the statement with the breakpoint.

Exercise:

Read about theResume debug command button in the Debug Window. Use it to co
tinue program execution up to the statement with the breakpoint.
5-10

Tutorial - GUI

:

on’t
f the

er

the

t line
Solution:

In the Debug Window, you should click on theResume button.

The debug status area shows the statusStopped at breakpoint 1. This means that the
process hit breakpoint number 1. The debug group area shows the same status.

NightView changes the source line decoration on the statement with the breakpoint toB=.
TheB still indicates a breakpoint, and the= indicates that execution is stopped there.

For the C program, NightView displays the following in the debug message area:

local:15625: at Breakpoint 1, 0x10002818 in main() at
main.c line 18

For the Fortran program, NightView displays the following in the debug message area

local:15625: at Breakpoint 1, 0x10003878 in main() at
main.f line 15

For the Ada program, NightView displays the following in the debug message area:

local:15625: at Breakpoint 1, 0x10010b18 in main() at
main.a line 18

Not Entering Functions - GUI 5

Execution is stopped at the line that prompts for the number of signals to send. You d
want to enter the code for the output statement (or function) because it is part o
library, not part of your program.

Exercise:

Read about theNext debug command button in the Debug Window. Use it to skip ov
the output statement (or function).

Solution:

In the Debug Window, you should click on theNext button.

The msg program writes the prompt "How many signals should the parent send
child?" in the dialogue I/O area.

In the debug source display, NightView changes the source line decoration of the nex
to =, which shows that execution is stopped there.

The debug status area and the debug group area show the statusStopped after step.
This means that the process has finished a stepping command.
5-11

NightView User’s Guide

nd

:

Entering Input - GUI 5

You must respond to themsg program prompt "How many signals should the parent se
the child?".

Exercise:

Send ten signals.

Solution:

In the dialogue I/O area, you should enter:

10

and pressReturn.

Continuing Execution Again - GUI 5

Before you can examine aspects ofparent_routine andchild_routine , you must
get NightView to stop at the calls to these routines.

Exercise:

Continue executing the program so it stops at the next statement with a breakpoint.

Solution:

In the Debug Window, you should click on theResume debug command button.

The debug status area and the debug group area show the statusStopped at break-
point 3. This means that the process hit breakpoint number 3.

For the C program, NightView displays the following in the debug message area:

local:15625: at Breakpoint 3, 0x1000284c in main() at
main.c line 31

For the Fortran program, NightView displays the following in the debug message area

local:15625: at Breakpoint 3, 0x10003904 in main() at
main.f line 24

For the Ada program, NightView displays the following in the debug message area:

local:15625: at Breakpoint 3, 0x10010bdc in main() at
main.a line 28
5-12

Tutorial - GUI

e one

pro-

in
The

ss

a rou-
not
he
t yet
The source line decoration is now aB=. TheB still indicates a breakpoint, and the= indi-
cates that execution is stopped there.

The debug group area has a new entry for the child process. The child process is th
with the statusNew Process.

TheSwitch To button and the buttons below the labelSwitch To Stopped Process
are now enabled (not dimmed).

You would like to view the child process in the Debug Window.

Exercise:

Read about the debug group area. Switch to the child process.

Solution:

In the process list of the debug group area, you should click on the entry for the child
cess. Then you should click on theSwitch To button.

Now the Debug Window is displaying the child process.

The debug identification area still shows thatmsg is the executable program the process
this window is running. (The child is executing the same program as the parent.)
qualifier specifier field now shows the qualifier of the child process.

For the C program, the debug message area shows:

Switched to process local:13504.
New process: local:13504 parent pid: 15625
#0 0x10002838 in main() at main.c line 20

For the Fortran program, the debug message area shows:

Switched to process local:13504.
New process: local:13504 parent pid: 15625
#0 0x100038e4 in main() at main.f line 17

For the Ada program, the debug message area shows:

Switched to process local:13504.
New process: local:13504 parent pid: 15625
#0 0x10010bc8 in main() at main.a line 23

In this example, the child process has processID 13504, and the parent process has proce
ID 15625. Note that your processIDs will differ. Note also that after thefork , only the
parent process continued execution; the child process is still at thefork .

The debug source display shows the main program because execution is stopped in
tine (fork(2)) which is hidden because it is uninteresting. NightView usually does
show you system library routines. See “Interesting Subprograms” on page 3-24. T<
source line decoration indicates that this line made a subprogram call which has no
returned.
5-13

NightView User’s Guide

s
ee

to

ck

the

hild
t the

ffer-
The debug status area shows the statusNew process. This means that the process ha
just been created by afork(2) call in the parent process. The process is stopped. S
“Multiple Processes” on page 3-2.

The debug qualifier area shows the qualifier,local:13504 .

The Dialogue Window lists entries for processes 15625 and 13504.

Catching up the Child Process - GUI 5

Exercise:

Get thechild process to continue execution up to the breakpoint on the call
child_routine (line 25 inmain.c , line 21 inmain.f , and line 25 inmain.a).

Solution:

In the Debug Window, with thechild as the currently displayed process, you should cli
on theResume debug command button.

For the C program, NightView displays in the debug message area:

local:13504: at Breakpoint 5, 0x10002840 in main() at
main.c line 25

For the Fortran program, NightView displays in the debug message area:

local:13504: at Breakpoint 4, 0x100038fc in main() at
main.f line 21

For the Ada program, NightView displays in the debug message area:

local:13504: at Breakpoint 4, 0x10010bd0 in main() at
main.a line 25

The debug source file name ismain.c , main.f , or main.a .

NightView puts aB= source line decoration in the debug source display on line 25 for
C and Ada programs and line 21 for the Fortran program.

The debug status area and the debug group area show the statusStopped at break-
point 5. This means that the process hit breakpoint number 5. Breakpoint 5 in the c
corresponds to breakpoint 2 in the parent. Inherited eventpoints get new identifiers, bu
order of the eventpoint identifiers is unpredictable, so your breakpoint may have a di
ent number.
5-14

Tutorial - GUI

at

f the
me,
ears

ted
n

. For
m,
al.

,

he
Verifying Data Values - GUI 5

You want to look at the value of variables in themsg program.

Exercise:

Read about thePrint debug command button in the Debug Window. Use it to check th
the total_sig variable has the value 10.

Solution:

In the debug source display of the Debug Window, start at one side of any instance o
total_sig variable, hold down mouse button 1, drag it across the entire variable na
and release. (Alternatively, you could double click on the variable name where it app
surrounded by spaces.) Only the variable name should be highlighted. Click on thePrint
button.

NightView displays in the debug message area:

$1: total_sig = 10

ThePrint button always prints integers in decimal. NightView keeps a history of prin
values. The$1 means that this is the first value in this history. For more informatio
about the printed value history, see “Value History” on page 3-30.

Note that if you had looked at thetotal_sig variableafter its last use, you might have
seen gibberish. This happens when the location holding a value gets overwritten
more information, see “Optimization” on page 3-30. In the Fortran progra
total_sig was put in COMMON so you could consistently see its value in the tutori

Listing the Source - GUI 5

You want to look at the source code forchild_routine .

Exercise:

Read about the Debug Window’sSource menu’sLis t Function/Unit . . . item in
“Debug Source Menu” on page 9-22. With theparent as the currently displayed process
use this item to display the source code forchild_routine .

Solution:

You should switch to theparent process by clicking on the parent process’s entry in t
debug group area process list and then clicking on theSwitch To button. Then you
should click on theSource menu, and selectList Function/Unit....
5-15

NightView User’s Guide

r

After pressingSwitch To, Switched to process local:15625 appears in the debug
message area. The debug status area showsStopped at breakpoint 3 . The debug
source display shows that execution is stopped at the call toparent_routine .

After clicking in theSource menu, NightView puts up theSelect a Function/Unit
dialog box.

Exercise:

Read about theSearch button in theSelect a Function/Unit dialog box. Use it to
search forchild_routine .

Solution:

In theSelect a Function/Unit dialog box, you should enterchild_routine as the
regular expression, and click on theSearch button. (For more information about regula
expressions, see “Regular Expressions” on page 7-12.)

NightView finds thechild_routine function and puts it in the list.

Exercise:

Read about theOK button in theSelect a Function/Unit dialog box. Use it to change
the debug source display.

Solution:

In theSelect a Function/Unit dialog box, you should click on theOK button.

NightView closes theSelect a Function/Unit dialog box.

NightView changes the debug source file name tochild.c , child.f , or child.a ,
and the debug source display shows the source code.

Entering Functions - GUI 5

At this point, the parent process is about to runparent_routine , and the child process
is about to runchild_routine .

Exercise:

Change to group process mode.

Read “Group Process Mode” on page 9-14.
5-16

Tutorial - GUI

of this

ll.

us area
Solution:

From the debug menu bar, you should selectGroup Process Mode from theView
menu. The debug qualifier area displays[Group Mode] . NightView displays this mes-
sage in the debug message area:Changed to group process mode .

Exercise:

Read about theStep debug command button. Use theStep button tosimultaneously
enter both routines.

Solution:

In the debug command button area, you should click on theStep button.

Because both the parent and child processes are listed in the debug group area
Debug Window, and the Debug Window is in group process mode, theStep button causes
both processes to step.

For the C program, NightView displays in the debug message area:

#0 0x10002884 in child_routine(int total_sig = 10) at
child.c line 14
#0 0x10002944 in parent_routine(pid_t child_pid =
13504, int total_sig = 10)

at parent.c line 11

For the Fortran program, NightView displays in the debug message area:

#0 0x1000393c in child_routine() at child.f line 17
#0 0x10003a48 in parent_routine(INTEGER child_pid /
13504 /)

at parent.f line 15

For the Ada program, NightView displays in the debug message area:

#0 0x100108fc in child_routine(total_sig : IN integer =
10) at child.a line 26
#0 0x10010578 in parent_routine(child_pid : IN pid_t =
13504,

total_sig : IN integer = 10) at
parent.a line 6

NightView tells you when astep command takes you into (or out of) a subprogram ca
The lines that begin with#0 announce that you have enteredchild_routine in the
child process andparent_routine in the parent process.

Note that the order of the lines displayed may vary.

Both theState: fields in the debug group area show the statusStopped after step.
This means that the processes have finished a stepping command. The debug stat
shows the same status for the parent process.

NightView changes the debug source file name toparent.c , parent.f , or par-
ent.a , and the debug source display shows the source code.
5-17

NightView User’s Guide

e.

k

Line 11 ofparent.c , line 15 ofparent.f , or line 6 ofparent.a in the debug source
display has the= source line decoration, which indicates that execution is stopped ther

Examining the Stack Frames - GUI 5

It is often helpful to see how you got to a certain point in a program.

Exercise:

Read about thebacktrace command. Use it to display the list of currently active stac
frames forboth processes.

Solution:

In the debug command area, you should enter one of:

backtrace
bt

and pressReturn.

NightView echoes this command in the debug message area.

For the C program, NightView displays in the debug message area:

Backtrace for process local:15625
#0 0x10002944 in parent_routine(pid_t child_pid =
13504, int total_sig = 10)

at parent.c line 11
#1 0x10002854 in main() at main.c line 31
Backtrace for process local:13504
#0 0x10002884 in child_routine(int total_sig = 10) at
child.c line 14
#1 0x10002848 in main() at main.c line 25

For the Fortran program, NightView displays in the debug message area:

Backtrace for process local:15625
#0 0x10003a48 in parent_routine(INTEGER child_pid /
13504 /)

at parent.f line 15
#1 0x10003910 in main() at main.f line 24
Backtrace for process local:13504
#0 0x1000393c in child_routine() at child.f line 17
#1 0x10003900 in main() at main.f line 21

For the Ada program, NightView displays in the debug message area:

Backtrace for process local:15625
#0 0x10010578 in parent_routine(child_pid : IN pid_t =
13504,
5-18

Tutorial - GUI

s
ll-

has

run
value

ess.

e

total_sig : IN integer = 10) at
parent.a line 6
#1 0x10010be4 in main() at main.a line 28
#2 0x10022750 in <anonymous>()
Backtrace for process local:13504
#0 0x100108fc in child_routine(total_sig : IN integer =
10) at child.a line 26
#1 0x10010bd8 in main() at main.a line 25
#2 0x10022750 in <anonymous>()

On lines labeled#0, NightView shows its location within the current routine. On line
labeled#1, NightView shows the location of the call to the current routine within the ca
ing routine.

In the Ada program, stack frame #2 is from the library level elaboration routine, which
no name.

Moving in the Stack Frames - GUI 5

You may want to move among the stack frames to examine and modify variables,
functions, etc., in other frames. For example, suppose that you want to examine the
of local variabletracefile in main .

Exercise:

Change back to single process mode and make sure theparent process is the currently dis-
played process.

Solution:

From the debug menu bar, you should selectSingle Process Mode from theView
menu. The debug qualifier area displays the qualifier for the currently selected proc
NightView displays these messages in the debug message area:

Changed to single process mode.
Switched to process local:15625.

If the parent process is not the currently displayed process, you should switch to it.

Exercise:

Read about theup command. Use theup command to make the current stack frame of th
parent process bemain .

Solution:

In the debug command area, you should enter:

up
5-19

NightView User’s Guide

will
n line

de a
n line

erna-
e C
e, it
h-
and pressReturn.

NightView echoes this command in the debug message area.

NightView changes the debug source file name tomain.c , main.f , or main.a , and the
debug source display shows the source code.

For the C program, NightView displays in the debug message area:

Output for process local:15625
#1 0x10002854 in main() at main.c line 31

For the Fortran program, NightView displays in the debug message area:

Output for process local:15625
#1 0x10003910 in main() at main.f line 24

For the Ada program, NightView displays in the debug message area:

Output for process local:15625
#1 0x10010be4 in main() at main.a line 28

The > source line decoration in the debug source display indicates that execution
resume there when the called routine returns. This source line decoration appears o
34 of main.c , line 27 ofmain.f , and line 31 ofmain.a .

The < source line decoration in the debug source display indicates that this line ma
subprogram call which has not yet returned. This source line decoration appears o
31 of main.c , line 24 ofmain.f , and line 28 ofmain.a .

Verifying Data Values in Other Stack Frames - GUI 5

Frommain , you can examine local variables, run functions, etc.

Exercise:

Use thePrint debug command button to display the value of local variabletracefile
in main for the parent process.

Solution:

In the debug source display, start at one side of any instance of thetracefile variable,
hold down mouse button 1, drag it across the entire variable name, and release. (Alt
tively, you could double click on the variable name. Note that this does not work in th
source because double clicking would highlight text delimited by spaces; in this cas
would highlight the* with the variable name.) Only the variable name should be hig
lighted. Click on thePrint button.

For the C program, NightView displays in the debug message area:

$2: tracefile = 0x30003100 "msg_file"
5-20

Tutorial - GUI

e

For the Fortran and Ada programs, NightView displays in the debug message area:

$2: tracefile = "msg_file"

Returning to a Stack Frame - GUI 5

You want to return toparent_routine .

Exercise:

Read about thedown command. Use thedown command to make the current stack fram
of the parent process beparent_routine .

Solution:

In the debug command area, you should enter one of:

down
do

and pressReturn.

NightView echoes this command in the debug message area.

For the C program, NightView displays in the debug message area:

Output for process local:15625
#0 0x10002944 in parent_routine(pid_t child_pid =
13504, int total_sig = 10)

at parent.c line 11

For the Fortran program, NightView displays in the debug message area:

Output for process local:15625
#0 0x10003a48 in parent_routine(INTEGER child_pid /
13504 /)

at parent.f line 15

For the Ada program, NightView displays in the debug message area:

Output for process local:15625
#0 0x10010578 in parent_routine(child_pid : IN pid_t =
13504,

total_sig : IN integer = 10) at
parent.a line 6

NightView changes the debug source file name toparent.c , parent.f , or par-
ent.a , and the debug source display shows the source code.
5-21

NightView User’s Guide

pped

oon

e

s.

for

he

are

ger
The= source line decoration in the debug source display indicates that execution sto
there. This source line decoration appears on line 11 ofparent.c , line 15 of par-
ent.f , and line 6 ofparent.a .

Note: it is not meaningful to do adown without doing anup first (as you did in section
“Moving in the Stack Frames - GUI” on page 5-19).

Resuming Execution - GUI 5

You want to continue the execution of the child process so that it will get signals as s
as they are sent by the parent process.

Exercise:

Use theResume debug command button to resume execution of thechild process.

Solution:

You should switch to thechild process by clicking on the child process’s entry in th
debug group area process list and then clicking on theSwitch To button. Then you
should click on theResume button.

After pressingSwitch To , the debug source file shown ischild.c , child.f or
child.a . Switched to process local:13504 appears in the debug message area.

After pressingResume, NightView disables (dims) most of the debug command button

The debug status area and the debug group area show the statusRunning. This means
that the process is currently executing.

Exercise:

The remainder of this tutorial does not deal with the child process directly. Arrange
the remaining commands to affect only the parent process.

Solution:

You should switch to theparent process by clicking on the parent process’s entry in t
debug group area process list and then clicking on theSwitch To button.

After clicking Switch To, the debug source file name, source display area and status
changed to their values for the parent. The debug message area showsSwitched to
local:15625 . The buttons that were dimmed for the child process are no lon
dimmed.
5-22

Tutorial - GUI

er

es-

n

e the

oint
Removing a Breakpoint - GUI 5

Breakpoint 1 (set in “Setting the First Breakpoints - GUI” on page 5-9) is no long
needed.

Exercise:

Read about the Debug Window’sEventpoint menu’sSummarize/Change... item in
“Debug Eventpoint Menu” on page 9-24. Use this item to remove breakpoint 1.

Solution:

You should click on theEventpoint menu. SelectSummarize/Change....

NightView displays the debug eventpoint summarize/change dialog box.

Three eventpoints appear in the eventpoint list. NightView displays the following m
sage below the eventpoint list:3 eventpoints were found.

Exercise:

Read about theDelete button in “Debug Eventpoint Summarize/Change Dialog Box” o
page 9-41. Use it to delete the breakpoint.

Solution:

You should select breakpoint 1 from the eventpoint list, and click on theDelete button.

NightView puts up a warning dialog box.

Exercise:

Read the message in the warning dialog box, allow the delete to proceed, and mak
dialog box go away.

Solution:

In the warning dialog box, you should click on theOK button.

NightView closes the warning dialog box and deletes the breakpoint from the eventp
list.

NightView displays the following message below the eventpoint list:Deleted 1 event-
point: 1.

You have finished removing this breakpoint.

Exercise:

Make the debug eventpoint summarize/change dialog box go away.
5-23

NightView User’s Guide

line
Solution:

In the debug eventpoint summarize/change dialog box, you should click on theClose
button.

NightView closes the window.

Setting Conditional Breakpoints - GUI 5

It is often useful to suspend execution conditionally.

Exercise:

Read about the Debug Window’sEventpoint menu’sSet Breakpoint.. . item in
“Debug Eventpoint Menu” on page 9-24. Use this feature to set a breakpoint on the
that displays how long the parent is sleeping inparent_routine ; the breakpoint
should suspend execution when the value ofisec equals the value oftotal_sig .

Solution:

In the debug source display, you should click on the line. Forparent.c andpar-
ent.f , it is line 16. Forparent.a , it is line 15. You should click on theEventpoint
menu. SelectSet Breakpoint....

NightView displays the breakpoint dialog box.

Do not pressReturn after you enter the following text.

For the C program, you should enter in thecondition text input area:

isec == total_sig

For the Fortran program, you should enter in thecondition text input area:

isec .eq. total_sig

For the Ada program, you should enter in thecondition text input area:

isec = total_sig

You are ready to finish setting the conditional breakpoint.

Exercise:

Save your changes and make the breakpoint dialog box go away.

Solution:

In the breakpoint dialog box, you should click on theOK button.

NightView closes the breakpoint dialog box.
5-24

Tutorial - GUI

that
nore

ror

in
For the C program, NightView displays in the debug message area:

local:15625 Breakpoint 7 set at parent.c:16

For the Fortran program, NightView displays in the debug message area:

local:15625 Breakpoint 7 set at parent.f:16

For the Ada program, NightView displays in the debug message area:

local:15625 Breakpoint 7 set at parent.a:15

The indicated line gets aB source line decoration in the debug source display.

Attaching an Ignore Count to a Breakpoint - GUI 5

Sometimes you won’t want to monitor each iteration of a loop. For example, assume
a loop runs many times, and somewhere during the loop an error occurs. You could ig
the first half of the loop values to determine in which half of the iterations the er
occurred.

Exercise:

Set a breakpoint on the line that displays how long the parent is sleeping
parent_routine , ignoring the next five iterations.

Solution:

In the debug source display, you should click on the line. Forparent.c and par-
ent.f , it is line 16. Forparent.a , it is line 15. You should click on theEventpoint
menu. SelectSet Breakpoint....

NightView displays the breakpoint dialog box.

Enter5 in the ignore count text input area. Donot pressReturn.

You are ready to finish attaching an ignore count to a breakpoint.

Exercise:

Save your changes and make the breakpoint dialog box go away.

Solution:

In the breakpoint dialog box, you should click on theOK button.

NightView closes the breakpoint dialog box.

For the C program, NightView displays in the debug message area:

local:15625 Breakpoint 8 set at parent.c:16
5-25

NightView User’s Guide

rtic-

oint

g

lected
ich

a

For the Fortran program, NightView displays in the debug message area:

local:15625 Breakpoint 8 set at parent.f:16

For the Ada program, NightView displays in the debug message area:

local:15625 Breakpoint 8 set at parent.a:15

Attaching Commands to a Breakpoint - GUI 5

You can attach arbitrary NightView commands to a breakpoint. They run when that pa
ular breakpoint is hit.

Exercise:

Attach a command stream that prints out the value oftotal_sig only when you hit the
breakpoint you set in the previous step (set in “Attaching an Ignore Count to a Breakp
- GUI” on page 5-25).

Solution:

You should click on theEventpoint menu. SelectSummarize/Change....

NightView displays the debug eventpoint summarize/change dialog box.

Exercise:

Read about theChange... button in “Debug Eventpoint Summarize/Change Dialo
Box” on page 9-41. Use it to add commands to this breakpoint.

Solution:

Notice that some of the buttons are disabled (dimmed), because you have not yet se
an eventpoint from the eventpoint list. Select breakpoint 8 from the eventpoint list, wh
will enable the buttons, and click on theChange... button.

NightView displays the breakpoint dialog box.

Note that5 is in theignore count text input area from “Attaching an Ignore Count to
Breakpoint - GUI” on page 5-25.

Do not pressReturn after you enter the following text.

In thecommands text input area, you should enter one of:

print total_sig
p total_sig
5-26

Tutorial - GUI

.

en
Exercise:

In the breakpoint dialog box, save your changes and make the dialog box go away.

Solution:

In the breakpoint dialog box, you should click on theOK button.

NightView closes the breakpoint dialog box.

Exercise:

Make the debug eventpoint summarize/change dialog box go away.

Solution:

In the debug eventpoint summarize/change dialog box, you should click on theClose
button.

NightView closes the window.

Automatically Printing Variables - GUI 5

You can create a list of one or more variables to be printed each time execution stops

Exercise:

Read about thedisplay command. Use adisplay command to display the value of
thesig_ct variable.

Solution:

In the debug command area, you should enter one of:

display sig_ct
disp sig_ct

and pressReturn.

NightView echoes this command in the debug message area.

Note that thisdisplay command runs every time execution stops, and theprint com-
mand from “Attaching Commands to a Breakpoint - GUI” on page 5-26 runs only wh
execution stops at a specific breakpoint.
5-27

NightView User’s Guide

the

f ten
n so

s that

es-

ug
Watching Inter-Process Communication - GUI 5

You already resumed the execution of the child process, so NightView did not wait for
child process.

Exercise:

Now continue execution for theparent process.

Solution:

In the Debug Window, you should click on theResume button.

In the dialogue I/O area, NightView responds with something like the following:

1. Parent sleeping for 2 seconds
2. Parent sleeping for 2 seconds

Child got ordinal signal #1
3. Parent sleeping for 2 seconds

Child got ordinal signal #2
4. Parent sleeping for 2 seconds

Child got ordinal signal #3
5. Parent sleeping for 2 seconds

Child got ordinal signal #4
Child got ordinal signal #5

Because of the ignore count on breakpoint 8, the parent process sent only five out o
signals to the child process before the breakpoint was hit. The source code is writte
that the lines that begin with a number come from the parent process, and the line
begin with the word "Child" come from the child process.

The debug status area and the debug group area show the statusStopped at break-
point 8. This means that the process hit breakpoint number 8.

For the C program, NightView displays something like the following in the debug m
sage area:

local:15625: at Breakpoint 8, 0x10002950 in
parent_routine(

pid_t child_pid = 13504, int total_sig
= 10)

at parent.c line 16
1: sig_ct = 6
$3: total_sig = 10

For the Fortran program, NightView displays something like the following in the deb
message area:

local:15625: at Breakpoint 8, 0x105d0 in parent_routine(
INTEGER child_pid / 13504 /) at

parent.f line 16
1: sig_ct = 6
$3: total_sig = 10
5-28

Tutorial - GUI

es-

to the

he
unt
For the Ada program, NightView displays something like the following in the debug m
sage area:

local:15625: at Breakpoint 8, 0x30324 in parent_routine(
child_pid : IN integer = 13504,
total_sig : IN integer = 10) at

parent.a line 15
1: sig_ct = 6
$3: total_sig = 10

Initial lines show where execution stopped. One line shows the value ofsig_ct because
of the display command. Another line shows the value oftotal_sig from the
print command attached to breakpoint 8.

Note that the order of the displayed lines may vary.

Patching Your Program - GUI 5

You just watched the parent process sleep for 2 seconds between sending signals
child process. Look at how this is done in the source.

You will notice that the variableisec always has the value 2. Instead, you could vary t
sleep intervalisec by assigning it a value from 1 through 3, based on the signal co
sig_ct . Hint: in C the%operator, in Fortran themod function, and in Ada therem
operator may be useful.

Exercise:

Read about the Debug Window’sEventpoint menu’sSet Patchpoint .. . item in
“Debug Eventpoint Menu” on page 9-24. In theparent process,on the line that displays
how long the parent is sleeping, patch in the assignment expression just described.

Solution:

You should click on theEventpoint menu. SelectSet Patchpoint....

NightView displays the patchpoint dialog box.

Do not pressReturn after you enter the following text.

For the C program, you should enter in theevaluate text input area:

isec = sig_ct % 3 + 1

For the Fortran program, you should enter in theevaluate text input area:

isec = mod(sig_ct, 3) + 1

For the Ada program, you should enter in theevaluate text input area:

isec := sig_ct rem 3 + 1
5-29

NightView User’s Guide

on

”

You are ready to finish patching your program.

Exercise:

Save your changes and make the patchpoint dialog box go away.

Exercise:

In the patchpoint dialog box, you should click on theOK button.

NightView closes the patchpoint dialog box.

Note that the line in the debug source display with a patchpoint on it now has aBP= (for
breakpoint, patchpoint, and execution stopped here) source line decoration.

For the C program, NightView displays in the debug message area:

local:15625 Patchpoint 9 set at parent.c:16

For the Fortran program, NightView displays in the debug message area:

local:15625 Patchpoint 9 set at parent.f:16

For the Ada program, NightView displays in the debug message area:

local:15625 Patchpoint 9 set at parent.a:15

Disabling a Breakpoint - GUI 5

You want to runmsg to completion without stopping at breakpoint 8.

Exercise:

Disable breakpoint 8 (set in section “Attaching an Ignore Count to a Breakpoint - GUI”
page 5-25).

Solution:

You should click on theEventpoint menu. SelectSummarize/Change....

NightView displays the debug eventpoint summarize/change dialog box.

Exercise:

Read about theDisable button in “Debug Eventpoint Summarize/Change Dialog Box
on page 9-41. Use it to disable the breakpoint.

Solution:

Select breakpoint 8 from the eventpoint list, and click on theDisable button.
5-30

Tutorial - GUI

fol-

set in

ug
pro-
esses
The eventpoint list shows that breakpoint 8 is disabled. NightView also displays the
lowing message below the eventpoint list:Disabled 1 eventpoint: 8.

Exercise:

Make the debug eventpoint summarize/change dialog box go away.

Solution:

In the debug eventpoint summarize/change dialog box, you should click on theClose
button.

NightView closes the debug eventpoint summarize/change dialog box.

Examining Eventpoints - GUI 5

You want to examine the types, locations, and statuses of the eventpoints you have
msg.

Exercise:

Change to group process mode.

Solution:

From the debug menu bar, you should selectGroup Process Mode from theView
menu. The debug qualifier area displays[Group Mode] . NightView displays this mes-
sage in the debug message area:Changed to group process mode.

NightView displays in the debug message area:

Process local:13504 received SIGUSR1
Process local:13504 received SIGUSR1
Process local:13504 received SIGUSR1
Process local:13504 received SIGUSR1
Process local:13504 received SIGUSR1

The lines that mention signalSIGUSR1 appear because thehandle command is implicitly
set toprint and explicitly set tonostop . These messages were saved while the Deb
Window was in single process mode with another process as the currently displayed
cess; now that the Debug Window is in group process mode, messages from all proc
are displayed, including any saved messages.

Exercise:

Examine all eventpoints.
5-31

NightView User’s Guide

5-9.
” on

The
The
as in
Solution:

You should click on theEventpoint menu. SelectSummarize/Change....

NightView displays the debug eventpoint summarize/change dialog box.

For the C program, NightView displays in the eventpoint list:

EvptID Type Enabled Process - Address
------ ---- -------- ----------------------

2 B Enabled local:15625 at main.c:25
3 B Enabled local:15625 at main.c:30
7 B Enabled local:15625 at parent.c:16
8 B Disabled local:15625 at parent.c:16
9 P Enabled local:15625 at parent.c:16
4 B Enabled local:13504 at main.c:18
5 B Enabled local:13504 at main.c:25
6 B Enabled local:13504 at main.c:30

For the Fortran program, NightView displays in the eventpoint list:

EvptID Type Enabled Process - Address
------ ---- -------- ----------------------

2 B Enabled local:15625 at main.f:21
3 B Enabled local:15625 at main.f:23
7 B Enabled local:15625 at parent.f:16
8 B Disabled local:15625 at parent.f:16
9 P Enabled local:15625 at parent.f:16
4 B Enabled local:13504 at main.f:21
5 B Enabled local:13504 at main.f:23
6 B Enabled local:13504 at main.f:15

For the Ada program, NightView displays in the eventpoint list:

EvptID Type Enabled Process - Address
------ ---- -------- ----------------------

2 B Enabled local:15625 at main.a:25
3 B Enabled local:15625 at main.a:27
7 B Enabled local:15625 at parent.a:15
8 B Disabled local:15625 at parent.a:15
9 P Enabled local:15625 at parent.a:15
4 B Enabled local:13504 at main.a:25
5 B Enabled local:13504 at main.a:27
6 B Enabled local:13504 at main.a:18

NightView displays all eventpoints for processlocal:15625 followed by the event-
points for processlocal:13504 .

Breakpoints 1, 2, and 3 were set in “Setting the First Breakpoints - GUI” on page
Breakpoint 1 has no entry because it was deleted in “Removing a Breakpoint - GUI
page 5-23. Breakpoints 2 and 3 are still enabled.

When the child process was forked, it inherited the parent process’s breakpoints.
child’s breakpoints 4, 5, and 6 correspond to the parent’s breakpoints 1, 2, and 3.
order of the eventpoint numbers for inherited eventpoints is not necessarily the same
the parent.
5-32

Tutorial - GUI

till

-25

led.

ess.
Breakpoint 7 was set in “Setting Conditional Breakpoints - GUI” on page 5-24 and is s
enabled.

Breakpoint 8 was set in “Attaching an Ignore Count to a Breakpoint - GUI” on page 5
and was disabled in “Disabling a Breakpoint - GUI” on page 5-30.

Patchpoint 9 was set in “Patching Your Program - GUI” on page 5-29 and is still enab

Exercise:

Make the debug eventpoint summarize/change dialog box go away.

Solution:

In the debug eventpoint summarize/change dialog box, you should click on theClose
button.

NightView closes the debug eventpoint summarize/change dialog box.

Exercise:

Change back to single process mode and make sure theparent process is the currently dis-
played process.

Solution:

From the debug menu bar, you should selectSingle Process Mode from theView
menu. The debug qualifier area displays the qualifier for the currently selected proc
NightView displays these messages in the debug message area:

Changed to single process mode.
Switched to process local:15625.

If the parent process is not the currently displayed process, you should switch to it.

Continuing to Completion - GUI 5

There’s nothing else to look at, so you decide to runmsg to completion.

Exercise:

Continue execution ofmsg.

Solution:

In the Debug Window, you should click on theResume button.

NightView displays in the dialogue I/O area:
5-33

NightView User’s Guide

arent
ote

ching

d Pro-

the
6. Parent sleeping for 1 seconds
7. Parent sleeping for 2 seconds
Child got ordinal signal #6
8. Parent sleeping for 3 seconds
Child got ordinal signal #7
9. Parent sleeping for 1 seconds
Child got ordinal signal #8
10. Parent sleeping for 2 seconds
Child got ordinal signal #9
Child got ordinal signal #10

The source code is written so that the lines that begin with a number come from the p
process, and the lines that begin with the word "Child" come from the child process. N
that the sleep interval varies from 1 through 3 because of the patch you made in “Pat
Your Program - GUI” on page 5-29.

Note the order of the displayed lines may vary.

The debug source display shows the main program, at the call toexit .

The debug status area and the debug group area show the statusAbout to exit . This
means that the process has called the exit system service. See “Exited and Terminate
cesses” on page 3-14. The debug group area shows the same status for the child.

For the C and Ada programs, NightView displays in the debug message area:

Process local:15625 is about to exit normally
--> Undisplayed items:

1: (print) sig_ct

The last two lines say thatsig_ct is not displayed. This message appears because of
display command and because thesig_ct variable is not visible at this point in the
parent process.

For the Fortran program, the variable sig_ct is still available, so it is displayed:

1: sig_ct = 11

Leaving the Debugger - GUI 5

The tutorial is over.

Exercise:

Read about the Debug Window’sNightView menu. Use it to leave the debugger.

Solution:

You should click on theNightView menu of any window. SelectExit (Quit Night-
View).
5-34

Tutorial - GUI

king
Neither process has completely exited, so NightView puts up a warning dialog box, as
the following question:

Kill all processes being debugged?

Exercise:

Make the processes go away.

Solution:

In the warning dialog box, you should click on theOK button.

All windows are removed.
5-35

NightView User’s Guide
5-36

Invoking NightView

nts
and
e to

id

ion

g
n.

er

ee

sing
h-

es”
6
Chapter 6Invoking NightView

6
6
6

This section describes how to start a NightView session.

You can start NightView without any arguments at all, if you wish. The argume
available on the NightView command line control the initial state of the debugger,
optionally allow you to specify the first program to be debugged. The command lin
invoke NightView looks like this:

nview [-editor program] [-help] [-ktalk] [-nogui]
[-noktalk] [-nolocal] [-nx] [-prompt string]
[-safety safe-mode] [-simplescreen] [-version]
[- Xoption ...] [-x command-file] [-xeditor]
[program-name[corefile-name]]

-editor program

Useprogramto edit source files. (See “Edit” on page 9-23.) This option is val
only in the graphical user interface.

-help

Causes NightView to print its command line syntax followed by a brief descript
of each option and then exit with code 0.

-ktalk

Allows NightView to communicate with other tools via KoalaTalk. (See “Usin
NightView with Other Tools” on page 3-32.) This is the default mode of operatio
Use-noktalk to disable this mode. This option is valid only in the graphical us
interface.

-nogui

Prevents NightView from automatically invoking the graphical user interface. S
Chapter 9 [Graphical User Interface] on page 9-1.

-noktalk

Prevents NightView from being used as a debug server via KoalaTalk. (See “U
NightView with Other Tools” on page 3-32.) This option is valid only in the grap
ical user interface.

-nolocal

Prevents NightView from starting a dialogue on the local system. See “Dialogu
on page 3-4. In the graphical user interface, if-nolocal is used, NightView pops
up a Remote Login Dialog Box (see “Remote Login Dialog Box” on page 9-44).
6-1

NightView User’s Guide

ee

to

es

re
on

-
-

3-4
-nx

Prevents NightView from reading commands from the default initialization file. S
“Initialization Files” on page 3-30.

-prompt string

Sets NightView's initial prompt string tostring. See “set-prompt” on page 7-47.

-safety safe-mode

Sets the initial safety level tosafe-mode, which can beforbid , verify , or
unsafe . The default level isverify . This controls the debugger's response
dangerous commands. See “set-safety” on page 7-49.

-simplescreen

Directs NightView to use a simple full-screen interface. This option impli
-nogui . See Chapter 8 [Simple Full-Screen Interface] on page 8-1.

-version

Causes NightView to display its current version and then exit with code 0.

- Xoption

Any standard X Toolkit command line option (seeX(1)). These options are
allowed only when using the graphical user interface.

-x command-file

Directs NightView to read commands fromcommand-filebefore reading commands
from the default initialization file or from standard input. You may supply mo
than one-x option if you like; the files are read in the order of their appearance
the command line.

-xeditor

Use this option if the program specified by-editor communicates with X directly
(seeX(1)). For example, ifnedit(1) is specified by the-editor option, you
should specify-xeditor . However, ifvi(1) is specified as the editor, you
should not use this option becausevi must run from within anxterm(1) . This
option is valid only in the graphical user interface.

program-name

If no corefile-nameargument is specified, then NightView will prompt you for argu
ments to supply toprogram-nameand start debugging that program. If you inad
vertently specified theprogram-nameargument, you will have the opportunity to
cancel its effect when you are prompted for arguments.

corefile-name

When you supply bothprogram-nameandcorefile-namearguments, NightView
starts out by creating a pseudo-process for the given core file, using the givenpro-
gram-nameas the executable image for that core file. See “Core Files” on page
and “core-file” on page 7-34.
6-2

Invoking NightView

ser
ed,

se
t the

re

lkit

iles
e

til it
e

All options may be abbreviated to unique prefixes. For example,

nview -si

invokes NightView with the simple full-screen interface.

If the environment variableDISPLAY is set, or the standard X Toolkit command line
option -display is used, then NightView communicates through a graphical u
interface. In this case, other standard X Toolkit command line options are also allow
e.g.,-xrm resourcestring. See Chapter 9 [Graphical User Interface] on page 9-1.

NightView must be run with the Élan License Manager. If your site has multiple licen
servers, and you need to indicate a server on a particular system, you can se
environment variablePOWERWORKS_ELMHOSTto the name of the server's system befo
invoking NightView. For more information about the license manager, see theÉlan
License Manager Release Notes.

All NightView command line options are case-insensitive. However, note that X Too
options are case-sensitive.

When NightView starts execution, it first attempts to read commands from any f
specified in -x options. It then looks for any initialization files to read (se
“Initialization Files” on page 3-30), unless the-nx option was specified. When those
files have all been processed, NightView reads commands from standard input un
encounters the end of the file or thequit command is executed (see “quit” on pag
7-17).
6-3

NightView User’s Guide
6-4

Command-Line Interface

f you
page
your

nds.
ed to

yword
the

ment
White
ferent

ing
d in

ecific
mand
to all

es, the
n't
see

ecial

be
tion

sitive;
mes,
7
Chapter 7Command-Line Interface

7
7
7

This chapter describes how to interact with NightView through commands.

In some cases, this may be your only means of directing the debugger's actions. I
are using the graphical user interface (see Chapter 9 [Graphical User Interface] on
9-1), however, commands are only one of several ways to control the debugger and
programs.

Command Syntax 7

This section describes the general syntax and conventions of NightView comma
Most commands have three parts. A qualifier appears first (in parentheses) and is us
restrict the command to a certain set of processes or dialogues. Next comes the ke
indicating which command is to be executed. The command arguments follow as
third part. In general, you must separate syntactic items (like keywords and argu
values) with white space, unless they are separated by punctuation characters.
space consists of one or more blank or tab characters. These rules may be dif
within expressions, where the rules of the programming language apply.

Some commands apply to individual processes, others apply to dialogues. Thequalifier
is a prefix that determines the dialogues and/or processes to which the follow
command applies. A qualifier is simply a list of dialogues and/or processes enclose
parentheses. If a command applies only to dialogues, and the qualifier includes sp
processes, the command applies to the dialogues containing the processes. If a com
applies only to processes, but the qualifier includes dialogues, the command applies
processes in those dialogues. If a command affects neither dialogues nor process
qualifier is ignored. You can set a default qualifier that will be applied when you do
provide one. For more information on the syntax and operation of qualifiers,
“Qualifier Specifiers” on page 7-10.

On startup, NightView provides you with a dialogue,local , for debugging on the local
machine. The initial default qualifier is set toall to indicate all dialogues and
processes.

After the qualifier, if any, all commands start with akeyword, which may be abbreviated
to the shortest unambiguous prefix. Many frequently used commands also have sp
abbreviations. Most commands have one or morearguments; some arguments are also
keywords, while others are information you supply. A keyword argument can usually
abbreviated if it is unambiguous; any exceptions to this rule are noted in the sec
describing the command. Both command and argument keywords are case-insen
they can be entered in either upper or lower case. You cannot abbreviate file na
symbolic names, or NightView construct names.

Commands are terminated by the end of the input line.
7-1

NightView User’s Guide

ly
ting

e
t the
s or
).

he
des

the

in a

” on

lways

rms

m-
over-
l be
tion.

ces,
If you enter a line interactively consisting solely of a newline, NightView will usual
repeat the previous command. This is explained more fully later; see “Repea
Commands” on page 7-15.

You can include comment lines with your commands. A comment line starts with th#
character, which must be the first non-blank character on the line, and terminates a
end of the input line. Comments are most useful when you write debugger source file
macros (see “Defining and Using Macros” on page 7-130 and “source” on page 7-110

NightView prompts you for input. The format of the prompt may be controlled by t
set-prompt command (see “set-prompt” on page 7-47). The default prompt inclu
the names of all the dialogues in the default qualifier and looks like this:

(local)

Some NightView commands require multiple lines of input. For these commands,
command-line and simple full-screen interfaces change the prompt to> to remind you
that you are entering a multi-line command.

>

To terminate NightView, use thequit command, which can be abbreviatedq (see “quit”
on page 7-17).

The subsections below explain some common syntactic constructs that are used
variety of NightView commands.

Selecting Overloaded Entities 7

For general information about function and operator overloading, see “Overloading
page 3-21.

The special overloading syntax used in both expressions and location specifiers is a
introduced by a number sign character (#) used as a suffix directly following the entity (an
operator in an expression or a function or procedure name). The# is followed by addi-
tional information indicating the specific kind of overload request. There are three fo
of # syntax:

1. #?

A number sign followed by a question mark is a query. It always makes the co
mand it appears in fail, but the error message shows all the possible choices for
loading the name or operator (even if there is only 1 choice). The choices wil
numbered starting at 1, and the number may be used to select the specific func

2. ##

Two number signs in a row act just as ifset-overload were on for that one
name. If there is only one possible choice, it is used; if there are multiple choi
the command fails and the error message shows the list.
7-2

Command-Line Interface

er-

t are
these
he

eding
3. #<digits>

A number sign followed by a number is the syntax used to pick a specific ov
loaded function or operator from the list printed in the error message.

In C++, the function call and subscript operators don’t appear in a single location, bu
"spread out" with arguments or subscripts between the parenthesis or brackets. In
cases the final bracket or parenthesis is the character which should be suffixed with t#.
For example:

function#5(12,3)

This picks the 5th instance of the namefunction from a list of overloaded functions.

object(12,3)#5

This, on the other hand, picks the 5th version of an overloadedoperator() function
call operator applied to theobject variable.

The following example shows a use of the overloaded "+" operator in Ada. The#? is first
used to do a query, then the desired operator is selected with#1 when the expression is
evaluated again.

(local) print a +#? b
Warning: local:5865 Cannot evaluate argument expression:
Reason follows [E-print_cmd007]
Unresolved overloaded functions or operators:

#1 native language operator +
#2 interval_timer.a:294

FUNCTION "+"(l : IN time, r : IN time)
RETURN time

#3 interval_timer.a:328
FUNCTION "+"(l : IN time, r : IN integer)

RETURN time
#4 interval_timer.a:375

FUNCTION "+"(l : IN time, r : IN time)
RETURN long_float

#5 interval_timer.a:391
FUNCTION "+"(l : IN time, r : IN time)

RETURN float
#6 interval_timer.a:407

FUNCTION "+"(l : IN time, r : IN time)
RETURN duration

(local) print a+#1 b
$1: a +#1 b = 11

The following example shows that theset-overload command may be used to turn on
automatic overloading, in which case you will see the same error message without ne
the#? syntax.

(local) set-overload operator=on
Overload mode set to operator=on routine=off
(local) print a + b
Warning: local:5865 Cannot evaluate argument expression:
7-3

NightView User’s Guide

” on
ntax
s.

the
ge

ue

ee
Reason follows [E-print_cmd007]

#1 native language operator +
#2 interval_timer.a:294

FUNCTION "+"(l : IN time, r : IN time)
RETURN time

etc...

Overloaded procedures may also be referenced with similar syntax.

(local) set ada.text_io.put#?("Hello world")
Warning: local:5865 Unable to evaluate expression
" ada.text_io.put#?("Hello world")": Problem follows [E-
set_cmd007]
Unresolved overloaded functions or operators:
#1 phase2/predefined/text_io_b.pp:1247

PROCEDURE text_io.put(file : IN file_ptr, item : IN
character)
#2 phase2/predefined/text_io_b.pp:1269

PROCEDURE text_io.put(item : IN character)
#3 phase2/predefined/text_io_b.pp:1469

PROCEDURE text_io.put(file : IN file_ptr, item : IN
string)
#4 phase2/predefined/text_io_b.pp:1491

PROCEDURE text_io.put(item : IN string)
(local) set ada.text_io.put#4("Hello world")

Special Expression Syntax 7

For general information about expression evaluation, see “Expression Evaluation
page 3-18. In addition to the standard language syntax, NightView offers a special sy
for referencing convenience variables and variables from other scopes or stack frame

The special constructs all start with ’$’ as shown in the following table.

Table 7-1. Special ’$’ Constructs

$

A simple ’$’ by itself is a special convenience variable which always refers to
last value history entry (see “print” on page 7-65). See “Value History” on pa
3-30.

$$

The name ’$$’ refers to the value history entry immediately prior to ’$’. See “Val
History” on page 3-30.

$number

A ’$’ followed by a number refers to that number entry in the value history. S
“Value History” on page 3-30.
7-4

Command-Line Interface

ory
he
ou
.

fined
nve-

ined

iven
are
ble

r
then

le

me.

ver-

wn,

num-
rs by

te
-

${- number}

A ’$’ followed by a negative number enclosed in braces refers to value hist
entries prior to the most recent one. ’${-0}’ is a complicated way to refer to t
same thing as ’$’, and ’${-1}’ is the same as ’$$’. This syntax is useful when y
want to reference values farther back than -1. See “Value History” on page 3-30

$identifier

This is the standard syntax for convenience variables. Many names are prede
(for instance, all the machine registers may be referenced using predefined co
nience variables). See “Convenience Variables” on page 3-29, and “Predef
Convenience Variables” on page 7-6.

${ file: line expression}

This syntax is used to evaluate the expression in the context specified by the g
file and line number. This is most useful for referencing static variables which
not visible in the current context. If you reference a local stack or register varia
from some other context, the results are not defined.

${+ number: routine expression}

This syntax is used to go up the stack (see “up” on page 7-106) until you seenumber
previous occurrences ofroutine relative to the current frame. (It does not matte
what the current routine name is, this construct always backs up the frame first,
starts looking for frames associated with the given routine.) The givenexpressionis
then evaluated in that context. For example, ’${+1:fred x}’ refers to the variab
named ’x’ in the first routine namedfred above the current routine.

${+ number expression}

This syntax simply refers to previous stack frames, regardless of the routine na
The immediately previous frame is ’+1’.

${- number: routine expression}

This syntax is useful only if you have changed your current frame with theup com-
mand. This allows you to refer to frames down the stack and is analogous to the
sion above which uses the ’+’ syntax.

${- number expression}

This is also analogous to the corresponding ’+’ syntax, but refers to frames do
rather than up the stack.

${= number expression}

This syntax evaluates the expression in the context of the given absolute frame
ber, regardless of the current frame. You can determine absolute frame numbe
using thebacktrace command (see “backtrace” on page 7-64).

${* frame-addr expression}

This syntax usesframe-addr, which must be a numeric constant, as an absolu
frame address. It evaluatesexpressionin the context of this frame address, regard
7-5

NightView User’s Guide

ress,

o
ame.
e

s they
shift

iated
may

cause
to

(see
a

you
ition
ions
tructs

ame,
able.

new
’$$’
7-4).

ss of
t
ess
etc.
ge
n-
ge

the
less of the current frame. If there is no frame on the current stack with this add
the results are undefined.

You may wish to use this form indisplay expressions (see “display” on page 7-71) t
refer to a specific stack frame regardless of where it appears relative to the current fr
You can use theinfo frame command (see “info frame” on page 7-118) to get th
frame address for any stack frame.

The above constructs may be used freely in any language expression. This mean
may be nested (in case you want to do something like back up the stack frame, then
to a different local scope in that routine). Because different frames may be assoc
with routines in different languages, the expressions evaluated in any given context
be expressions in different languages. This might not always make sense be
different languages support different data types. If NightView cannot figure out how
evaluate a mixed language expression, it returns an error.

If you use any of these constructs in a conditional expression for an eventpoint
“condition” on page 7-88) or in a patchpoint (see “patchpoint” on page 7-79) or in
monitorpoint (see “monitorpoint” on page 7-83), they are evaluated at the time
establish the conditional, patchpoint, or monitorpoint expression, not when the cond
or patchpoint or monitorpoint itself is evaluated. This is because conditional express
and patchpoints are compiled into your program by the debugger, and these cons
must be evaluated at that time.

In the rare case of a user program which contains variables that have a ’$’ in their n
the user program variable is always referenced in preference to the convenience vari

Predefined Convenience Variables 7

You may create any number of convenience variables simply by assigning values to
names, but some variables are predefined and have special values. The ’$’ and
variables have already been documented (see “Special Expression Syntax” on page
The following special variables are all automatically defined on a per process basis.

Table 7-2. Predefined Convenience Variables

$_

This variable holds the address of the last item dumped with thex command (see
“x” on page 7-67). It is also set by the eventpoint status commands to the addre
the last eventpoint listed, and theinfo line command to the address of the firs
executable instruction in the line. If you were dumping words, it holds the addr
of the last word. If you were dumping bytes, it holds the address of the last byte,
See “x” on page 7-67, “info eventpoint” on page 7-112, “info breakpoint” on pa
7-113, “info tracepoint” on page 7-114, “info patchpoint” on page 7-115, “info mo
itorpoint” on page 7-116, “info agentpoint” on page 7-117, and “info line” on pa
7-129.

$__

This variable holds the contents of the last item printed by thex command. If you
were dumping words, it holds the last word. If you were dumping bytes, it holds
last byte, etc.
7-6

Command-Line Interface

r, but
m

ram

0

ere
ly
edi-
sig-
g

ived
e
ways
age

nd
wing

rs on
$pc

This variable provides access to the program counter. This is a machine registe
every machine has a$pc , so this name is common to all machines. When a progra
is stopped,$pc is the location where it stopped. On any given machine,$pc may
not map directly onto a specific machine register (RISCmachines often have multiple
program counters), but it always represents the address at which the prog
stopped. See “Program Counter” on page 3-22.

$cpc

$cpc is similar to$pc . In frame 0, if there are no hidden frames below frame
(because of uninteresting subprograms),$cpc has the same value as$pc . See
“Interesting Subprograms” on page 3-24. In other frames (including frame 0 if th
are hidden frames below it),$cpc is the address of the instruction that is current
executing. In most cases, this is the call instruction that caused the frame imm
ately below the current frame to be created. For the frame immediately above a
nal-handler stack frame,$cpc is the address of the instruction that was executin
when the signal occurred.

$sp

Most machines have a stack pointer. The stack pointer is always called$sp .

$fp

Most machines either have a frame pointer, or have an implicit frame pointer der
from information in the program. The$fp variable always represents the fram
address (even if it is not a specific hardware register), and local variables are al
described with some offset from the frame pointer (see “info address” on p
7-127).

PowerPC Registers 7

The PowerPC machines are based on the IBM/Motorola PowerPC 604TM architecture
(seePowerPC Microprocessor Family: The Programming Environmentsfor architectural
details). See “info registers” on page 7-120.

In addition to the common register definitions for stack pointer, frame pointer, a
program counter, the PowerPC machines support the registers shown in the follo
table.

Table 7-3. PowerPC Registers

$r0 through$r31

These names map onto the 32 general purpose registers (note that$sp is the same as
$r1 , and$fp will typically be either$r1 or $r2 , depending on the kind of code
generated by the compiler).

$f0 through$f31

These names map onto the 32 floating-point registers. The floating point registe
the PowerPC always hold double precision format values.
7-7

NightView User’s Guide

ndi-

not
s, it

do

“vec-

used
$lr

The link register.

$ctr

The counter register.

$cr

The condition register.

$crf0 through$crf7

These names map onto the eight individual condition fields contained in the co
tion register$cr .

$fpscr

The floating point status and condition register.

$xer

The integer exception register.

$srr0 through$srr1

The exception state save and restore register. (The$srr0 register is the same as the
$pc register).

$mq

The $mq register does not really exist on the machine, and the compilers will
generate references to it, but for backward compatibility with older architecture
is emulated by the operating system, and you can refer to it in the debugger.

Note that the floating point registers are not normally displayed by theinfo
registers command, if you want to display all the floating-point registers, you can
so with the following command:

info registers f.*

The Power Hawk 700 Series supports additional registers:

$v0 through$v31

Vector registers. To change the value of these registers with the debugger, see
tor-set” on page 7-75.

$vrsave

This register describes which vector registers are in use by the program. This is
by the operating system when context-switching. Avoid modifying this register.

$vscr

Vector status and control register.
7-8

Command-Line Interface

ble

i-

is

me,

be

ny
urn

uage
Location Specifiers 7

A location-specis used in various commands to specify a location in the executa
program. It can be any of the following:

function_nameor unit_name['specification |'body]

specifies the beginning of the named function or Ada unit. Note that'specifi-
cation and'body are meaningful only with an Ada unit. If a unit name is spec
fied and neither'specification nor 'body are given, then'body is assumed.
'specification and'body may be abbreviated to unique prefixes.

file_name: line_number

specifies the first instruction generated for the given line in the given file

file_name: function_name

specifies the beginning of the specified function declared in the given file (this
required forstatic functions that are not globally visible).

line_number

specifies the first instruction generated for the given line in the current file

line_number: unit_name['specification |'body]

specifies an Ada unit name, which may be specified as a fully expanded unit na
preceded by the line number in the source file. If neither'specification nor
'body are given, then'body is assumed.'specification and'body may be
abbreviated to unique prefixes.

Note that when specifying a line number and aunit nameas a location specifier that
the line number comesfirst; whereas when specifying afilenamewith a line number,
the line number islast.

* expression

specifies the address given byexpression

If a location specifier is omitted, then the location used is the next instruction to
executed in the current stack frame. See “Current Frame” on page 3-23.

Function names always refer to the location of the first instruction following a
prologue code (theprologue is code that allocates local stack space, saves the ret
address, etc.). To refer to the actual entry point of a function, use the*expressionform
and write an expression that evaluates to the function entry point address (in C lang
mode, this would look like*&function).
7-9

NightView User’s Guide

ry if

over-
lect-

++
ouble
e
nction

it
ed or

s. A
e
refix

her
NOTE

A location specifier may sometimes designate multiple locations;
for instance, a line number within an Ada procedure that has been
expanded inline several times will designate every location where
that procedure was expanded. If such a location specifier is used
to set an eventpoint (see “Manipulating Eventpoints” on page
7-76), NightView will set the eventpoint at each of the corre-
sponding locations. An eventpoint set at multiple locations is still
considered to be a single eventpoint. If you wish to set an event-
point at some subset of the locations that are implied by a particu-
lar location specifier, theinfo line command may be used to
determine the locations corresponding to the particular location
specifier. The*expression form of location specifier may then
be used to designate the proper location.

Wherever afile_nameappears, it may be enclosed in double quotes. This is necessa
the file_namecontains special characters.

Wherever a function name appears in a location specifier, it may also appear with an
loading suffix to distinguish between multiple functions with the same name (see “Se
ing Overloaded Entities” on page 7-2). The names of operator functions in Ada or C
may also be used as function names. In Ada, the operator name must appear in d
quotes, and in C++ the keywordoperator should be followed by the operator name (th
same syntax used to declare operator functions in the language). Because the fu
name form of operator functions is always used in location specifiers, the onlyset-
overload mode which affects location specifiers is theroutinemode (see “set-overload”
on page 7-54).

All commands that accept alocation-specargument allow the keywordat to precede the
location-spec. In most cases, theat keyword is optional, but a few commands require
to be present. The syntax of each command indicates whether the keyword is requir
optional.

Qualifier Specifiers 7

Qualifiers are used to apply NightView commands to specific processes or dialogue
qualifier is simply a list ofqualifier specifiers, each specifier representing one or mor
processes or dialogues. You can supply a qualifier explicitly, in parentheses as a p
to the command, or implicitly, by using theset-qualifier command (see “set-
qualifier” on page 7-46). In a prefix qualifier, the list of specifiers is separated by eit
blanks or tabs.

Eachqualifier specifiercan be any one of the following items:

family-name

A name given by you to a set of processes, called afamily. See “family” on page
7-40.
7-10

Command-Line Interface

the
me

ify a
at

y

t it is

ues

been

ge

ame,

eds
in the
est
dialogue-name

The name of a dialogue in your NightView session. This is usually the name of
system on which the dialogue is running, but you may also specify a different na
(see “login” on page 7-18). In contexts where the qualifier is being used to spec
set of processes, adialogue-namerefers to all the processes being debugged in th
dialogue.

PID

The numeric value of the processID of one of the processes being debugged b
NightView. You can use this form only if the processID is unique among all the pro-
cesses being debugged. This may not be true if you have multiple dialogues, bu
always true if you have only one dialogue.

dialogue-name:PID

This is how you specify a particular process when processes in different dialog
have the same processID.

all

This keyword designates all processes or dialogues known to NightView.

auto

This keyword designates the one process that is currently stopped and has
stopped for the longest time. You may want to specifyauto as your default quali-
fier if you want to work on only one process at a time (see “set-qualifier” on pa
7-46). NightView gives you an error message if you useauto when there are no
processes stopped.

Note that, because a qualifier specifier can be either a family name or a dialogue n
you cannot have a dialogue with the same name as a process family.

In general, the specifiers in a qualifier are notevaluateduntil a qualified command
requests the information. A qualifier is evaluated when a command qualified by it ne
the information; that is, when the command is applied to the processes or dialogues
qualifier. Certain NightView commands ignore their qualifier, so they do not requ
evaluation of the specifiers in the qualifier. This has several effects on you:

• A family-nameappearing in a qualifier may remain undefined until a com-
mand requires evaluation of the qualifier. You may also change the defini-
tion of a family-namecurrently in use in a qualifier; such a change will
affect the next command that evaluates that qualifier.

• Evaluating adialogue-nameyields all the processes in the dialogue at the
time of the evaluation. Since evaluation is generally delayed until the last
possible moment, using adialogue-nameis usually a good way to refer-
ence all the currently-existing processes in a dialogue.

• The specifiersall andauto are evaluated at the time a command is actu-
ally executed.
7-11

NightView User’s Guide

7-77).
oints
ames

a set
-

ular
(see
e a

ther

. For
Eventpoint Specifiers 7

Eventpoints may be grouped together and assigned a name (see “name” on page
In addition, the name ’.’ is a reserved name that always refers to the set of eventp
most recently created by a single command. Eventpoint numbers and eventpoint n
are the two different types ofeventpoint specifiers. Eventpoint specifiers that refer only to
breakpoints may also be calledbreakpoint specifiers(tracepoint specifiers, patch
specifiers, agentpoint specifiers, andmonitorpoint specifiersare similarly defined).

Regular Expressions 7

A regexpis used by many of the commands to specify a pattern used to match against
of names (like variable names or register names in theinfo commands). Regular expres
sions may be case-sensitive or case-insensitive depending on theset-search command
(see “set-search” on page 7-54).

Regular expressions are similar to wildcard patterns, but are more flexible. Reg
expressions and wildcard patterns are used for different things in the debugger
“Wildcard Patterns” on page 7-14). The descriptions of the commands tell if they tak
regular expression or a wildcard pattern.

The regular expression syntax recognized is similar to that recognized by many o
common tools, but the details (as always) vary somewhat.

Table 7-4. Regular Expressions

.

A dot matches any character except a newline.

*

A star matches zero or more occurrences of the preceding regular expression
example,.* matches zero or more of any character except a newline.

+

A plus matches one or more occurrences of the preceding regular expression.

{ m}

Matches exactlym occurrences of the preceding regular expression.

{ m,}

Matchesm or more occurrences of the preceding regular expression.

{ m, n}

Matches fromm to n occurrences of the preceding regular expression.
7-12

Command-Line Interface

ck-

ters
rs in

ding

st

(

ause
he
l

es its

se a

ood
^

A caret matches at the beginning of a string.

$

A dollar sign matches at the end of a string.

()

Parentheses are used to group regular expressions.

[]

Brackets define a set of characters, any one of which will match. Within the bra
ets, additional special characters are recognized:

^

If the first character inside the brackets is a caret, then the set of charac
matched will be the inverse of the set specified by the remaining characte
the brackets.

-

A range of characters may be matched by specifying the starting and en
characters in the range separated by a dash.

To define a set that includes a- character, specify the dash as the first or la
character in the set.

Any other character matches itself.

To literally match one of the special characters defined above, use a backslash\)
character in front of it (to literally match a backslash, use two of them (\\)).

Them andn match counts above must be positive integers less than 256.

Most commands that use regular expressions do not require the use of ’^’ and ’$’ bec
they implicitly assume that ananchoredmatch is called for. Other commands (such as t
forward-search and reverse-search commands) assume that only a partia
match is called for (and does not imply ananchoredmatch). The description of each
command that uses regular expressions specifies whether or not it implicitly assum
regular expressions are to be anchored.

If you do not need the full expressive power of regular expressions, you can just u
normal string.

Examples:

r[1-5]

This example matches the strings 'r1', 'r2', 'r3', 'r4', and 'r5'. This might be a g
expression to match register names.

child_pid
7-13

NightView User’s Guide

n to

t for

a
tmost
onent

e
he

e.
This example matches only the string 'child_pid'. This might be a good expressio
match a program variable name.

Wildcard Patterns 7

Wildcard patterns are used by the commandsdebug , nodebug andon program . See
“debug” on page 7-20, “nodebug” on page 7-20, and “on program” on page 7-36.

Wildcard patterns are similar to regular expressions, but are usually more convenien
representing file names. See “Regular Expressions” on page 7-12.

If the wildcard pattern starts with a/ , it is assumed to be a pattern that must match
complete absolute path name. Otherwise the pattern is matched against the righ
(trailing) components of the program name. Patterns are always matched to comp
boundaries. Spaces and tabs are not allowed in wildcard patterns.

Wildcards are similar to wildcards insh .

Table 7-5. Wildcard Patterns

*

Matches zero or more characters (but does not match a/).

{[chars]}

Matches any of the characters in the set. A dash (-) can be used to separate a rang
of characters and a leading bang (!) matches any characters except the ones in t
set (but not a/).

?

Matches any single character (except a/).

Any other character matches itself.

Unlike sh , a * matches a leading dot (.) in a file name.

If you do not need the full expressive power of wildcards, you can just use the file nam

Examples:

/bin/*

This matches any file in the directory/bin .

test*

This matches any file that begins with the letterstest , in any directory.

*.c

This matches any source file that ends with.c , in any directory. This might be a good
expression to match file names.
7-14

Command-Line Interface

er
ious
e in
e

result
on-

n of a

d
t of

nd.

-35.

ated
/usr/bob/myprog

This matches only the file/usr/bob/myprog .

Repeating Commands 7

A line typed from an interactive terminal consisting solely of a newline (no oth
characters, including blanks) generally causes NightView to repeat the prev
command. Note that the blank line must come from an interactive device; a blank lin
a macro or in a disk file read by thesource command does not cause repetition. Th
command that gets repeated may, however, come from a macro.

Not all commands can be repeated in this manner. In general, commands whose
would not be any different when repeated will not repeat. Typing a blank line after a n
repeating command has no effect; it acts the same as a comment. If the descriptio
command does not say it is repeatable, then it isn't.

A few commands, such aslist or x , alter their behavior slightly when repeated: instea
of exactly repeating the command, they typically repeat the action on a different se
data. These differences in behavior are documented in the description of the comma

In the following examples, assume all commands were entered interactively.

(local) list func:20
(local)
(local)

In this example, lines 16-25 (approximately) of functionfunc would be listed by the
list command. Repeating this command lists the next set of 10 lines, lines 26
Note thatlist is one of the commands whose behavior changes when it is repeated.

(local) define mac(ln) as
> list func:@ln
> end define
(local) @mac(20)
(local)
(local)

This example is equivalent to the previous one. It demonstrates that the repe
command may come from a macro.

(local) define mac(vn) as
> x/20x @vn
> echo
> end define
(local) @mac(xstruct)
(local)
(local)

This example demonstrates how to write a macro that does not repeat at all. Sinceecho
is a non-repeating command, entering a blank line after the@mac(xstruct) line does
nothing.
7-15

NightView User’s Guide

k the
n the
for
case
The

See

trol
Replying to Debugger Questions 7

This section describes how to respond when the debugger asks you a question.

Certain forms of some debugger commands are considered unsafe and will chec
debugger's safety-level (see “set-safety” on page 7-49) before executing. Whe
safety-level isverify , these commands will ask a question of the user and wait
verification. The possible responses to the question are always "yes" and "no" (
insensitive). These responses may be abbreviated to their first letter if desired.
response must be terminated by a carriage return.

A "yes" response indicates that the unsafe action is to be performed.

A "no" response indicates that the unsafe action isnot to be performed.

In the graphical user interface, the debugger pops up a warning dialog box.
“Warning Dialog Box” on page 9-15.

Controlling the Debugger 7

This section describes how to exit NightView, and the commands used to con
debugged processes and your interaction with them.
7-16

Command-Line Interface

7-49)
ged.
fety
y
6).

d not
d but

are
Quitting NightView 7

quit 7

Stop everything. Exit the debugger.

quit

Abbreviation: q

This command terminates the debugger. If the safety level (see “set-safety” on page
is forbid , you will not be allowed to quit unless there are no processes being debug
In other safety levels, any active processes will be killed when you quit. If the sa
level is verify , you will be prompted for confirmation before quitting causes an
debugged processes to be killed (see “Replying to Debugger Questions” on page 7-1

The processes killed include all active processes started in any dialogue shell an
explicitly detached. NightView detaches from any processes that are being controlle
are not being debugged by you because of anodebug command. See “Detaching” on
page 3-3. See “nodebug” on page 7-20.

Processes started using theshell command are independent of the debugger, and
not affected by aquit .
7-17

NightView User’s Guide

ing
ve as

icular
(see

e:

is
nd

n

is

you
ning
ust

mily
ha-
, or

ay
Managing Dialogues 7

A dialogue is an interaction with a particular host system for the purpose of debugg
one or more processes on that system under a particular user name. You may ha
many dialogues as you wish; there can even be more than one dialogue with a part
host system. Dialogues are described in more detail in the Concepts chapter
“Dialogues” on page 3-4).

login 7

Login to a new dialogue shell.

login [/conditional] [/popup] [name= dialogue name]
[user= login name] [others ...] machine

NOTE

If present, the options/conditional and/popup must appear
before the machine name and before any keywords.

The login command takes many keyword parameters. The most commonly used ar

/conditional

Ignore thislogin command if a dialogue with this name already exists. Th
is useful from macros (see “Defining and Using Macros” on page 7-130) a
for other programs that communicate with NightView.

/popup

Pop up the Remote Login Dialog Box (see “Remote Login Dialog Box” o
page 9-44) initialized with the machine name and the values of thename=and
user= keywords. No other keywords are allowed with this option. Th
option is meaningful only in the graphical user interface.

name=dialogue name

Give this parameter to specify a name for the dialogue you are creating. If
leave it off, the dialogue name is the same as the name of the machine run
the dialogue. To run multiple dialogue shells on the same machine you m
give them unique names. No dialogue name may be the same as a fa
name (see “family” on page 7-40). A dialogue name must start with an alp
betic character and may be followed by any number of alphabetic, numeric
underscore characters.

user= login name

Login as this user. Normally your current user name is used, but you m
login as any user.
7-18

Command-Line Interface

d the
e,

u to

e
You

licy

ed

The
ogue

ote
machine

Specify the machine where the programs to be debugged are located an
dialogue shell will run. This is a required parameter. It may be a host nam
with or without domain qualification, or it may be an IP address.

The following parameters are less frequently used, but are provided to allow yo
control the execution environment of the remote dialogue.

nice= nice value

The dialogue normally runs with normal interactive priority. A positive nic
value lowers the priority (makes other programs seem more important).
must have special privileges to specify a negative nice value.

cpu= cpu list

Set the CPU bias for the dialogue.

memory=flags

Control what sort of memory (local or global) will be used for the dialogue.

priority= value

Specify the priority of the remote dialogue processes. The scheduling po
determines what values may be specified for the priority.

scheduling= sched_keywords

Control the scheduling policy that will be used for the dialogue. The allow
keywords are:sched_fifo , fifo , sched_rr , rr , sched_other , and
other .

quantum= time

Control the time slice quantum size for the process.

The cpu , memory, scheduling , priority , andquantum parameters all accept the
same arguments as the corresponding options on therun(1) command — see the man
page for details.

Any programs started in the dialogue shell will inherit all the above parameters.
run(1) command can control all these parameters, and may be used within the dial
shell to debug programs and change the parameters.

When you use thelogin command you are asked for a password. See “Rem
Dialogues” on page 3-6 for a general discussion of how to use remote dialogues.

Example:

(afamily) login fred
To begin a remote debug session on 'fred', enter the
password for user 'wilma'.
Password: enter wilma's password
(afamily) login user=barney name=fredII fred
To begin a remote debug session on 'fred', enter the
7-19

NightView User’s Guide

this

aces

hich
ified

of

be
en the

iated

list.
password for user 'barney'.
Password: enter barney's password
(afamily)

The above example shows the creation of two new dialogues. The firstlogin command
starts a dialogue on a machine namedfred and logs in as the current user (wilma in this
example). This dialogue is namedfred , because no explicit name was given.

The second creates a dialogue on machinefred namedfredII . In this case the user
logged intofred is barney .

The login command is creating a new dialogue, so the qualifier has no effect on
command.

debug 7

Specify names for programs you wish to debug.

debug pattern ...

pattern

A wildcard pattern matching the name of a program to be debugged. Sp
and tabs are not allowed inpattern. See “Wildcard Patterns” on page 7-14.

This command and its inverse (see “nodebug” on page 7-20) allow you to control w
programs get debugged. The list of programs applies to the individual dialogues spec
in the debug command qualifier (different dialogues may have different lists
programs to be debugged).

The debug and nodebug commands work by remembering the list ofdebug and
nodebug commands. When a new file needs to be checked to see if it should
debugged, the name is first compared to the pattern in the most recent command, th
pattern in the next most recent command, and so on.

The first pattern that matches the file name determines what to do with the assoc
process. If the matching pattern is on adebug command, then the process will be
debugged. If it was on anodebug command, then the process will not be debugged.

The pattern* matches everything, so the list of patterns is always reset when* appears
as an argument. Since each dialogue always starts with eitherdebug * or nodebug *
in the list, it is impossible to pick a file name that does not match at some point in the

The default pattern list for a dialogue is:

nodebug /usr/ccs/lib/* /usr/ccs/bin/* /sbin/* /usr/sbin/* /bin/*
/usr/bin/* /usr/ucb/* /usr/bin/X11/* /usr/lib/*

debug *

To print the list ofdebug andnodebug patterns, see “info dialogue” on page 7-123.

nodebug 7

Specify names for programs you do not wish to debug.
7-20

Command-Line Interface

d the

void

re

es
nodebug pattern ...

pattern

A wildcard pattern matching the name of a program to avoid debugging.

This command is typically used in combination with thedebug command to control
which programs are debugged in a dialogue. The complete syntax of wildcards an
algorithm used to match files is described in thedebug command (see “debug” on page
7-20).

Example:

(afamily) nodebug *
(afamily) debug x*

This example usesnodebug * to turn off all debugging. It then usesdebug to turn on
debugging for any programs started where the basename begins with the letterx .

Note that even if one command is not debugged, its children may be debugged. To a
debugging a command as well as any children, you must use thedetach command (see
“detach” on page 7-32).

To print the list ofdebug andnodebug patterns, see “info dialogue” on page 7-123.

translate-object-file 7

Translate object filenames for a remote dialogue.

translate-object-file [from [to]]

Abbreviation: xl

from

The filename or filename prefix as seen by the remote system.

to

The filename or filename prefix as seen by the local system.

If both from and to are present, a translation is added. If onlyfrom is present, the
translation exactly matchingfrom is removed. If neither is present, all translations a
removed.

NOTE

from andto arenot wildcard patterns or regular expressions. See
“Wildcard Patterns” on page 7-14. See “Regular Expressions” on
page 7-12.

The translate-object-file command manages translations for object filenam
7-21

NightView User’s Guide

e
ary
ared

The
eated
gs.

the

.

e

for each dialogue in the qualifier. Translations are useful when:

• An object file is visible from both systems, but its position in the file sys-
tem is different. For example,/usr on systemfred may be mounted as
/fred/usr on the local system.

• An object file is not visible from the local system, but you have a copy of
the file. For example, you might have a development directory from which
the image on the remote system is created.

• The object file on the remote system has been stripped, but you have a copy
with debugging information.

Object filenames fromexec-file and load commands are subject to object filenam
translation. See “exec-file” on page 7-35. See “load” on page 7-74. Dynamic libr
names are also subject to object filename translation. See “Debugging with Sh
Libraries” on page 3-35. Object filenames fromsymbol-file commands arenot
subject to object filename translation. See “symbol-file” on page 7-33.

NightView attempts to match translations to the initial characters of the filename.
longest matching translation is used. Filename component boundaries are not tr
specially. If you want to match to component boundaries, include slashes in the strin

If an exec-file command fails because you don't have any translations or
translations are wrong, you can re-issue theexec-file command again after fixing the
translations.

Examples:

(fred) xl /wilma/pebbles/ pebbles/

This command translates any object filename beginning with the string/wilma/
pebbles/ to the same filename with/wilma/pebbles/ replaced bypebbles/ .
For example, /wilma/pebbles/hair becomes pebbles/hair . Note that
pebbles/hair will be evaluated relative to NightView's current working directory
See “pwd” on page 7-56.

(fred) xl /betty/ /barney/
(fred) xl /betty/bam /dino/bam

These commands translate any object filename beginning with the string/betty/ to the
same filename with/betty/ replaced by /barney/ and any object filename
beginning with the string/betty/bam to the same filename with/betty/bam
replaced by/dino/bam . NightView picks /betty/bam in preference to/betty/
because/betty/bam is longer. For example,

/betty/dress becomes/barney/dress
/betty/bambam becomes/dino/bambam
/betty/bambino becomes/dino/bambino

A good place to put atranslate-object-file command is in anon dialogue
command in your.NightViewrc file. See “on dialogue” on page 7-23. Also, se
“Initialization Files” on page 3-30.
7-22

Command-Line Interface

. If
led

lying

ny
of a

0.

gger.
e it

ues.
Example:

(all) on dialogue fred.* do
> xl /usr/ /fred/usr/
> end on dialogue

This command translates the directory/usr to the directory /usr/fred for any
dialogues whose name begins withfred .

logout 7

Terminate a dialogue.

logout

The logout command terminates any dialogues named in the command qualifier
your safety-level isunsafe thenall processes being debugged in the dialogues are kil
(see “set-safety” on page 7-49). If your safety-level isverify then you are prompted for
confirmation before the logout causes any debugged processes to be killed (see “Rep
to Debugger Questions” on page 7-16). If your safety-level isforbid , then the logout
does not occur. If you want any processes to continue running, you mustdetach them
prior to using logout (see “detach” on page 7-32). NightView detaches from a
processes that are being controlled but are not being debugged by you because
nodebug command. See “Detaching” on page 3-3. Also, see “nodebug” on page 7-2

If the dialogue shell is still running atlogout time, it is killed (you may send an exit
command to the shell to terminate it normally prior to logging out).

Example:

(adialogue) detach
(adialogue) !exit
(adialogue) logout

The example shows how to avoid having any processes killed. Thedetach command
allows all processes in the dialogue to continue running independently of the debu
The !exit command sends an exit command to the dialogue shell to terminat
normally, then thelogout command terminates the debugger dialogue.

on dialogue 7

Specify debugger commands to be executed when a dialogue is created.

on dialogue [regexp]

on dialogue regexp command

on dialogue regexp do

regexp

A regular expression to match against the names of newly created dialog
See “Regular Expressions” on page 7-12.
7-23

NightView User’s Guide

ame

e

gger
iew.

ently
ame

If no

e

f
acro

ular

y
d.

will

e
ing

d

command

A debugger command to be executed when a new dialogue whose n
matchesregexpis created.

In the third form of theon dialogue command, the debugger commands to b
executed must begin on the line following thedo keyword. The list of debugger
commands to execute is terminated when a line containing only the wordsend on
dialogue is encountered.

Theon dialogue command allows a user-specified sequence of one or more debu
commands to be executed immediately after creating a new dialogue within NightV
When a new dialogue is created, the list of allon dialogue regular expressions is
checked to see if any of them match the name of the new dialogue. The most rec
specifiedon dialogue command whose regular expression matches the dialogue n
will have its commands executed.

In its first form (given only a regular expression), theon dialogue command will
remove any commands that were associated with the given regular expression.
regular expression is given, thenall previously definedon dialogue commands are
removed. If your safety level is set toforbid , you are not allowed to remove allon
dialogue commands. If your safety level is set toverify , NightView requests
verification before removing allon dialogue commands. See “set-safety” on pag
7-49.

In its second and third forms, theon dialogue command will associate a sequence o
one or more user-specified debugger commands with the given regular expression. M
invocations arenot expanded when reading the commands to associate with the reg
expression.

If dialoguelocal is started up automatically by NightView, then it will existbeforeany
commands in your.NightViewrc file are read. In this case, NightView automaticall
runs theon dialogue command after all the initialization files have been processe
See “apply on dialogue” on page 7-25. See “Initialization Files” on page 3-30.

The default qualifier for all commands associated with the given regular expression
be the newly created dialogue.

The commands specified byon dialogue are event-triggered commands: they hav
an implied safety level (which may be different from the safety level that was set us
set-safety).

If you wish to list all on dialogue commands, or see whichon dialogue
commands would be executed for a particular dialogue name, you should use theinfo
on dialogue command.

Example:

(local) on dialogue ben.* nodebug /usr/bin/*

After issuing the above command, if we now create a new dialogue namedben_hur ,
then we will automatically set it up so that programs residing in the directory name/
usr/bin are not debugged by NightView.
7-24

Command-Line Interface

ories
n

der

ers
ed

ogue
e

r

Now suppose we do the following:

(local) on dialogue .*jerry do
> nodebug /usr/remote/*
> nodebug /usr/local/*
> end on dialogue

At this point, if we create another dialogue namedben_n_jerry , then this newly
created dialogue will automatically be set up so that programs residing in the direct
/usr/remote and /usr/local are not debugged by NightView. Note that eve
though the nameben_n_jerry also matches the regular expressionben.* , this
dialoguewill try to debug programs that reside in the directory/usr/bin . This is
becauseon dialogue regular expressions are matched in reverse-chronological or
(most recent first), and only the first match found is used.

(local) info on dialogue ben_n_jerry
on dialogue .*jerry do

nodebug /usr/remote/*
nodebug /usr/local/*

end on dialogue

If we were to now issue the command:

(local) on dialogue .*jerry

Then this would remove.*jerry (and its associated commands) from the debugg
on dialogue command list. Now, if we create yet another dialogue nam
benny_and_jerry , then this third dialogue willnot automatically debug programs
that reside in the directory/usr/bin , but it will debug programs that reside in/usr/
remote and/usr/local (just like the first one did).

(local) info on dialogue benny_and_jerry
on dialogue ben.* do
nodebug /usr/bin/*
end on dialogue

apply on dialogue 7

Executeon dialogue commands for existing dialogues.

apply on dialogue

The apply on dialogue command allowson dialogue commands to be
executed for existing dialogues. See “on dialogue” on page 7-23. For each dial
specified by the qualifier, theon dialogue commands which would match the nam
of the dialogue are immediately executed on behalf of the dialogue.

When the debugger automatically creates alocal dialogue, it does anon dialogue
command with a qualifier of(local) after processing all the initialization files. See
“Initialization Files” on page 3-30. Because dialoguelocal exists before the
customization commands in the user's.NightViewrc file are interpreted by the
debugger, theon dialogue command by itself cannot initialize the environment fo
dialogue local (since it only applies to dialogues that will be createdafter theapply on
dialogue command is issued). The automaticon dialogue executes anyon
7-25

NightView User’s Guide
dialogue commands that refer to dialoguelocal .
7-26

Command-Line Interface

output
g the

ed

ue

nput
like

e. It
and

ed as
fault

the

ee
ull-

ing
sing
Dialogue Input and Output 7

Because each dialogue is a separate shell, each dialogue has its own input and
streams. NightView has several options for sending input to dialogues and managin
output data generated by the dialogue shell and the programs being run within it.

! 7

Pass input to a dialogue.

! [input line]

input line

If input line is specified, it is passed to the dialogue (or dialogues) determin
by the command qualifier.

If input line is not specified, then this command switches to a special dialog
input mode.

If the qualifier for this command specifies more than one dialogue, then the same i
data is sent to all the dialogues. This can make sense if you are doing something
debugging two versions of the same program and you want to see where they diverg
is up to you to insure that the input is sensible to all the dialogues (or that the comm
qualifier only refers to one dialogue).

When you use the! command without aninput lineargument to switch to dialogue input
mode, everything you type goes to the specified dialogues. Nothing you type is treat
a debugger command until a special terminator string is recognized. The de
terminator string is ``-.'' (note that this is not the same as the ``~.'' used byrlogin(1)
or cu(1)). See “set-terminator” on page 7-48, for information on how to change
terminator string.

The ! command without aninput line argument cannot be used inside a macro (s
“Defining and Using Macros” on page 7-130), nor can it be used in the graphical or f
screen user interfaces.

Macros arenotexpanded when reading the input (or arguments) to this command.

This command does not care if it is talking to the dialogue shell or to a program runn
in the shell. If you start a program that requests input, you can pass the input to it u
this command.

See “Repeating Commands” on page 7-15.

Example:

(afamily) !pwd
(afamily) !
PATH=/extra/progs:$PATH
ulimit -m 200
ulimit -d 100
ulimit -s 100
7-27

NightView User’s Guide

ue
t up
ill be

ram

rst

d

as

not
pt
er is

e

is
-.
(afamily)

The first line just sends apwd command to the dialogue. The second switches to dialog
input mode and then several lines of input are sent directly to the dialogue to se
environment variables and limits on the amount of memory subsequent processes w
allowed to use. The final "-. " switches back to normal command input mode.

Note that if you just want to send a program name to the shell and wait for that prog
to start, you may want to use therun command instead. See “run” on page 7-30.

set-show 7

Control where dialogue output goes.

set-show [silent | notify =mode | continuous =mode]
[log[=filename]] [buffer =number]

silent

Just buffer the dialogue output, do not display it. Theshow command may be
used to see what has accumulated (see “show” on page 7-29).

notify= mode

Do not display the dialogue output, but do print a notice when output fi
becomes available.

continuous= mode

Display dialogue output when it is generated.

The notify and continuous modes both accept one of the following keywor
arguments:

immediate

In immediate mode the notification or actual output is displayed as soon
output becomes available.

atprompt

In the atprompt mode, the output is displayed only when the debugger is
requesting input. This is typically immediately prior to printing a new prom
to request additional commands, but it also prints output when the debugg
waiting for some event and has not yet prompted for new input.

Additional parameters on theset-show command control logging to a file and the siz
of the internal buffer.

log [=filename]

The log parameter without the=filenameoption turns off logging to a file and
resumes buffering a limited amount of output in memory. When a file name
7-28

Command-Line Interface

g

he
es).
ile,
ace

nds,
be

m

of
the

nt to
is to

t in
than
ed
specified, the output from the dialogue is logged to that file until the lo
parameter is changed.

buffer= number

The buffer parameter is used to set the size of the buffer holding all t
most recent output from the dialogue. The default size is 10240 (10K byt
When the buffer fills up, the oldest output is discarded. When logging to a f
this parameter does not have any effect — a log file may grow until disk sp
is exhausted.

This command only logs the output from dialogues. It does not log debugger comma
nor does it directly log the input to a dialogue; however, the input will normally
echoed by the system, so it will be logged as output from the dialogue.

To log the entire debug session, see “set-log” on page 7-44.

Each dialogue starts off in the default mode:

(all) set-show buffer=10240 continuous=atprompt

show 7

Control dialogue output.

show [number | all | none] [| shell-command]

number

The number of old output lines you wish to see again.

all

Specifyingall instead of a number means show all the buffered output fro
the dialogue shell.

none

Thenone keyword is used to tell the debugger you are not interested in any
the buffered output. It pretends you have already seen any data currently in
buffer.

| shell-command

You may use a vertical bar (shell pipe operator) to request the output be se
an arbitrary shell command, rather than being displayed. You may use th
run the output through a pager or filter of some kind.

The debugger always internally buffers output generated by dialogues. Theshow com-
mand displays any buffered output from a dialogue which you have not yet seen. Thenum-
ber or all arguments tell the debugger to display that many lines of previous outpu
addition to the new output (so the total number of lines displayed may be greater
number). The set-show command is used to control when dialogue output is print
without a specific request via theshow command (see “set-show” on page 7-28).
7-29

NightView User’s Guide

e
e
e

er
until

nal,
e

the
ut
Managing Processes 7

run 7

Run a program in a dialogue and wait for NightView to start debugging it.

run input line

input line

The shell command that will start a program (or programs) to debug.

This command is very similar to the! command (see “!” on page 7-27): it sends th
specified input line to the dialogue shell (or shells) specified by the qualifier. Th
difference betweenrun and! is thatrun waits for a new process to be debugged in on
of the dialogues specified by the qualifier.

NOTE

Even if the qualifier specifies multiple dialogues, therun com-
mand terminates as soon as one new process has started.

The run command does not check the giveninput line for validity; it simply passes it
unchanged to the dialogue shell, just like the! command. If it does not start a new
process to be debugged, thenrun will just continue waiting forever (or until you type
<CONTROL C>). If you issue arun command that starts more than one program,run
will only wait until one of them starts up and is noticed by NightView. The oth
programs will start up and be debugged, but you probably won't know about them
after you have entered the next command.

If you just want to send input to a program that is reading from the shell's input termi
or you want to start up a program or programs without waiting for them, just use th!
command.

If you want to run the same program again, use therun command again. See “Restarting
a Program” on page 3-11. If you want multiple programs to run concurrently, end
shell commands with& (ampersand). (You can't do this if your program expects inp
from you.)

set-notify 7

Control how you are notified of events.

set-notify [silent | continuous =mode]

silent

Only report events when explicitly requested.
7-30

Command-Line Interface

ens.

r is
w
en
ew

sses
ays

see
ed
the
cause

the

isplay

aved

the
d

est
bout

h

continuous= mode

Display events when they happen.

Thecontinuous mode accepts one of the following keyword arguments:

immediate

In immediate mode the notification is displayed as soon as the event happ

atprompt

In the atprompt mode, the notification is displayed only when the debugge
not requesting input. This is typically immediately prior to printing a ne
prompt to request additional commands, but it also prints notifications wh
the debugger is waiting for some event and has not yet prompted for n
input.

This command controls how the debugger tells you what is happening to the proce
you are debugging. Individual processes may be set to notify you in different w
(using the command qualifier).

Events that might cause notification include hitting a breakpoint, getting a signal (but
“handle” on page 7-102), or ’exec ’ing a new program. New processes to be debugg
also cause notification, but this notification is controlled by the notification setting of
parent of the new process. Processes created directly by the dialogue shell always
notification in the default notify mode. When a process exits, you will be notified by
process' dialogue (but see “show” on page 7-29 and “set-show” on page 7-28).

The output generated by any commands attached to a breakpoint or any automatic d
expressions is also controlled byset-notify . If you set notify mode tosilent for a
process, all debugger output associated with that process will be buffered up and s
until you ask to see it.

Any change to the notify mode of a process takes place immediately, so changing
mode fromsilent to continuous may also result in large amounts of accumulate
event notifications and other buffered output being generated.

The notify command (see “notify” on page 7-31) can be used to explicitly requ
notification of any events that have been saved up (this is the only way to find out a
events that have happened in a process where the notify mode issilent).

If no arguments are given to thenotify command, then the current notify mode of eac
process in the qualifier is printed.

The default notify mode is:

(all) set-notify continuous=atprompt

notify 7

Ask about pending event notifications.

notify
7-31

NightView User’s Guide

y” on
not
y the

m a
and

pt
quired

f the
put
ut for
to the

See
itly

are

amed
are

when
n
on

t be
esses

ss
If you have been suppressing event notification on certain processes (see “set-notif
page 7-30), thenotify command may be used to request any notifications that have
yet been printed. It only tells you about pending events in the processes specified b
command qualifier.

attach 7

Attach the debugger to a process that is already running.

attach PID

PID

The processID of the running process.

This command allows a program to be debugged even if it was not started fro
debugger dialogue shell (see “Attaching” on page 3-3). The qualifier on this comm
must specify a single dialogue indicating which machine is running the specifiedPID. An
error is reported if the qualifier implies multiple dialogues. It is also an error to attem
to attach to a program already being debugged, or to attach any of the processes re
to run the debugger.

Since the program to which you are attaching is already running independently o
debugger, you will not be able to send it input through the normal dialogue in
mechanism (see “!” on page 7-27) or see the output it generates (the input and outp
the process remain connected to the same streams they were connected to prior
attach).

Once you attach to a process, any future children it forks will also be debugged.
“set-children” on page 7-41. Children created prior to the attach must be explic
attached if you want to debug them.

See “Attach Permissions” on page 3-33 for a description of what processes you
allowed to attach.

detach 7

Stop debugging a list of processes.

detach

The detach command terminates the debugger's connection to all the processes n
in the command qualifier. Any breakpoints or monitorpoints set in those processes
removed, but patchpoints, tracepoints, and agentpoints remain if they are enabled
you execute thedetach command. See “breakpoint” on page 7-78, “patchpoint” o
page 7-79, “monitorpoint” on page 7-83, “agentpoint” on page 7-86, and “tracepoint”
page 7-82.

The processes are allowed to continue running normally and the debugger will no
notified of any subsequent events that occur in those processes. If any of the proc
fork or exec new programs, the debugger will not see them.

When the safety level isunsafe (see “set-safety” on page 7-49), detaching a proce
7-32

Command-Line Interface

borts
when

7-20.

ing
age

is
e
ns

ams
ma-

t-

le”

ut
the

g a
d

uld
u may
that was stopped while evaluating a debugger expression containing a function call a
any expression evaluation in progress. This returns the process to the state it was in
you asked to evaluate the expression. Atverify safety level, it asks first, and at safety
level forbid , it refuses to let you detach the process.

For another way of avoiding debugging certain processes, see “nodebug” on page
Also, see “set-children” on page 7-41.

kill 7

Terminate a list of processes.

kill

Thekill command terminates all the processes named in the command qualifier.

In the Graphical User Interface, if you use a ’Kill’ button (as opposed to manually typ
the kill command) the debugger will check your safety level (see “set-safety” on p
7-49) before permitting you to kill the desired processes. If your safety level isforbid
then you will not be permitted to kill the selected processes. If your safety level
verify then you will be prompted for verification (see “Warning Dialog Box” on pag
9-15). If your safety level isunsafe then the processes are terminated with no questio
asked.

symbol-file 7

Establish the file containing symbolic information for a program.

symbol-file program-name

program-name

This must be the name of an executable file corresponding to the progr
running in the specified processes. It should contain symbolic debug infor
tion for the program.

If program-nameis a relative pathname, it is interpreted relative to Nigh
View's current working directory.

program-nameis not subject to object filename translations. See “translate-object-fi
on page 7-21.

A symbol file is an executable file from which NightView obtains information abo
symbols in a program being debugged. Normally, the symbol file is the same as
program's executable file, but it may be different if, for example, you are debuggin
stripped program (seestrip(1)). In this case, you need to specify an unstrippe
version of the program in thesymbol-file command, if you want to access
information symbolically.

The symbol-file command is applied to each process in the qualifier. You sho
make sure that each of those processes is running the same program; otherwise, yo
get unpredictable results from the debugger when you examine variables or memory.
7-33

NightView User’s Guide

tain

's

file.

t-

ated
ore

a

it in

h
mines

actly
r the

d by
to
file

ly

le

wo
and
r core
ry,

the
Note: If you have not specified a symbol file for a process, NightView attempts to ob
the information from the executable file (see “exec-file” on page 7-35).

In some situations, an object filename translation is more appropriate than asymbol-
file command. See “translate-object-file” on page 7-21.

core-file 7

Create a pseudo-process for debugging an aborted program's core image file.

core-file corefile-name[exec-file= program-name]

corefile-name

The name of a core file.

If corefile-nameis a relative pathname, it is interpreted relative to NightView
current working directory.

exec-file= program-name

Specifies the name of the executable program that created the given core

If program-nameis a relative pathname, it is interpreted relative to Nigh
View's current working directory.

A core file is a copy of a process's memory made when a process is termin
abnormally. You can examine these core files using NightView by specifying the c
file name in thecore-file command. NightView responds with a processID (PID)
corresponding to a newly-createdpseudo-process. This is not a real executing process;
pseudo-process is merely a mechanism for dealing with core files in NightView. ThePID

NightView assigns does not correspond to any running process, but you can use
qualifiers, and you can also include it in process families using thefamily command.
See “family” on page 7-40.

The qualifier for thecore-file command is used only to determine with whic
dialogue the pseudo-process should be associated. (Among other things, this deter
the type of machine that created the core file.) Thus, the qualifier should specify ex
one dialogue; otherwise, NightView issues an error message and refuses to hono
command.

If you specify theexec-file= program-nameoption, it is equivalent to executing an
exec-file command (see “exec-file” on page 7-35) on the pseudo-process create
the core-file command. This is seldom required, since NightView attempts
determine the location of the executable program from information saved in the core
(see “Finding Your Program” on page 3-8). If NightView is unable to correct
determine the executable program, you will need to specify theexec-file= program-
nameoption or use theexec-file command to specify the name of the executab
program.

When debugging a core file, NightView uses the executable program file for t
purposes. NightView uses this file to obtain symbolic information about variables
procedures in your program, just as it does when debugging normal processes. Fo
files, NightView also must use this file to obtain the contents of read-only memo
including the machine instructions of the program. If NightView is unable to locate
7-34

Command-Line Interface

lute
the

f a
This

till
file
ram

sing
the

the

t-

e-

the
ose

range
sses
tems.

to
See

ge
ally
can
executable program, then you will only be able to examine writable memory by abso
address. You can specify the file, or files, NightView should use by specifying
exec-file= program-nameoption or by using theexec-file and symbol-file
commands (see “exec-file” on page 7-35 and “symbol-file” on page 7-33).

Note that, unlike other debuggers, NightView allows you to examine the core file o
process at the same time you are executing the program that produced the core file.
allows you to try executing your program again to try to find the problem, while s
accessing information from the core file. For instance, you may find from the core
that a certain global variable has an incorrect value. You could then run the prog
again, stopping it at interesting points to check the value of that global variable. By u
an appropriate qualifier, you can easily print out the values of variables in both
running program and the core file for easy comparison.

exec-file 7

Specify the location of the executable file corresponding to a process.

exec-file program-name

program-name

Specifies the file containing the executable program corresponding to
specified processes.

If program-nameis a relative pathname, it is interpreted relative to Nigh
View's current working directory.

program-nameis subject to object filename translations. See “translat
object-file” on page 7-21.

This command tells NightView where to find the executable file corresponding to
processes specified by the qualifier. Obviously, you should ensure that all th
processes are, in fact, running the same program; otherwise, you may get st
behavior. (NOTE: NightView does not do this verification for you because the proce
may be executing different copies of the same program on several different sys
NightView would not be able to tell that these were the same program.)

You usually use this command in conjunction with thecore-file command (see
“core-file” on page 7-34). You may also need to use it if NightView is unable
determine the executable file corresponding to a new process being debugged.
“Finding Your Program” on page 3-8.

If you do not explicitly specify a symbol file for a process (see “symbol-file” on pa
7-33), NightView uses the executable file. Since the symbolic information is usu
contained in the executable file anyway, this is most often what you want. You
specify the executable file and symbol file in any order for a given process.

When a new executable file is specified, anyon program commands that match the
new file name are executed. See “on program” on page 7-36.

Examples:

(local) core-file ./mycore
New process: local:65536
7-35

NightView User’s Guide

ly

table

ted
o

gger
gged

f
the

most
file
/users/bob/mycore
was last modified on Wed Nov 18 17:48:38 1992
Core file indicates the executable file is /users/bob/
myprog
Executable file set to
/users/bob/myprog
Pseudo-process assigned PID 65536
Process 65536 terminated with SIGQUIT
(local) family mycore 65536
(local) (mycore) exec-file ./stripped_prog
(local) (mycore) symbol-file ./full_prog

The first command creates a new pseudo-process for the filemycore in NightView's
current directory. NightView assigns this pseudo-processPID number 65536. The
family command then gives the namemycore to this pseudo-process. Theexec-
file command then establishes the filestripped_prog as the executable file for that
process, while thesymbol-file command establishesfull_prog as the name of the
symbol file.

on program 7

Specify debugger commands to be executed when a program is ’exec’ed.

on program [pattern]

on program pattern command

on program pattern do

pattern

A wildcard pattern to match against the executable file names of new
’exec ’ed programs. See “Wildcard Patterns” on page 7-14.

command

A debugger command to be executed when a new program whose execu
file name matchespatternis ’exec ’ed.

In the third form of theon program command, the debugger commands to be execu
must begin on the line following thedo keyword. The list of debugger commands t
execute is terminated when a line containing only the wordsend on program is
encountered.

The on program command allows a user-specified sequence of one or more debu
commands to be executed immediately after ’exec’ing a program that is being debu
by NightView. When a debugged process performs an ’exec’ (or theexec-file
command is used to change the location of the executable file name), the list oon
program patterns for that process's controlling dialogue is checked to see if any of
patterns match the executable file name of the program that was just ’exec’ed. The
recently specifiedon program command whose pattern matches the executable
name of the newly ’exec’ed program will have its commands executed.

on program processing is related toon restart processing. When a program
7-36

Command-Line Interface

ands

t

in the

to

f
logue

the

n
ing
the

e

l
ame
exec s (or theexec-file command is used), NightView first checks theon restart
patterns. See “on restart” on page 7-38. If a match is found, then the comm
associated with the matching pattern are executed. In this case, noon program
patterns are checked. However,on restart commands created by a checkpoin
always begin with a call to the macrorestart_begin_hook . The initial definition of
this macro invokes theapply on program command. So, by default,on program
patterns are checked and matching commands are runbefore the on restart
commands are run. See “Restarting a Program” on page 3-11.

If no match is found in theon restart patterns, then NightView checks theon
program patterns.

In its first form (given only a pattern), theon program command will remove any
commands that were associated with the given pattern for each dialogue specified
qualifier. If no pattern is given, thenall previously definedon program commands are
removed from each dialogue specified in the qualifier. If your safety level is set
forbid , you are not allowed to remove allon program commands. If your safety
level is set to verify , NightView requests verification before removing allon
program commands. See “set-safety” on page 7-49.

In its second and third forms, theon program command will associate a sequence o
one or more user-specified debugger commands with the given pattern for each dia
specified by the qualifier. Macro invocations arenot expanded when reading the
commands to associate with the pattern.

The default qualifier for all commands associated with the given pattern will be
process performing the ’exec’.

The commands specified byon program are event-triggered commands: they have a
implied safety level (which may be different from the safety level that was set us
set-safety), and may be terminated automatically if they resume execution of
’exec’ing process. See “Command Streams” on page 3-27.

If you wish to list all on program commands, or see whichon program commands
would be executed for a particular program name, you should use theinfo on
program command.

Example:

(local) on program ren* break main.c:24

After issuing the above command, if we now run a program in dialoguelocal named
ren_n_stimpy , then we will automatically set a breakpoint in it at line 24 of the fil
main.c .

Now suppose we do the following:

(local) on program *stimpy do
> handle 5 noprint nostop
> handle 6 noprint nopass
> end on program

At this point, if we runren_n_stimpy again, then this newly ’exec’ed program wil
handle signals 5 and 6 in the specified manner. Note that even though the n
ren_n_stimpy also matches the patternren* that a breakpoint willnot automatically
be set at line 24 ofmain.c in this new invocation ofren_n_stimpy . This is because
7-37

NightView User’s Guide

rst),

ed by
e

on program patterns are matched in reverse-chronological order (most recent fi
and only the first match found is used.

(local) info on program ren_n_stimpy
on program *stimpy do

handle 5 noprint nostop
handle 6 noprint nopass

end on program

If we were to now issue the command:

(local) on program *stimpy

Then this would remove*stimpy (and its associated commands) from theon
program list for dialoguelocal . Now, if we run ren_n_stimpy a third time, then
this third invocation will automatically have a breakpoint set at line 24 ofmain.c (just
like the first one did).

(local) info on program ren_n_stimpy
on program ren* do
break main.c:24
end on program

apply on program 7

Executeon program commands for existing processes.

apply on program

The apply on program command allowson program commands to be executed
for existing processes. (See “on program” on page 7-36). For each process specifi
the qualifier, theon program commands which would match the executable file nam
of the process are immediately executed on behalf of the process.

Example:

Suppose I want to set a breakpoint at the subroutine namedmain in all programs both
new and old that are debugged in dialoguelocal . Using theon program andapply
on program commands, this could be accomplished as follows:

(local) on program * b main
(local) apply on program

on restart 7

Specify debugger commands to be executed when a program is restarted.

on restart [pattern]

on restart pattern command

on restart pattern do
7-38

Command-Line Interface

ly

table

ted
o

ger
y use

ese

ch

s
3-11.
se.
tart

es to
t sure
save
.

pattern

A wildcard pattern to match against the executable file names of new
exec ed programs. See “Wildcard Patterns” on page 7-14.

command

A debugger command to be executed when a new program whose execu
file name matchespatternis exec ed.

In the third form of theon restart command, the debugger commands to be execu
must begin on the line following thedo keyword. The list of debugger commands t
execute is terminated when a line containing only the wordsend on restart is
encountered.

The on restart command is primarily intended to be used internally by the debug
as part of the restart processing. See “Restarting a Program” on page 3-11. You ma
on restart explicitly, if desired, but you should be wary of conflicts with the
debugger's use. The debugger createson restart commands as a result of a
checkpoint.

on restart is virtually identical toon program in form and function. See “on
program” on page 7-36 for a description of the parameters and functionality of th
commands. That section also describes the interaction of these two commands.

If you wish to list all on restart commands, or see whichon restart commands
would be executed for a particular program name, use theinfo on restart
command. See “info on restart” on page 7-124.

checkpoint 7

Take a restart checkpoint now.

checkpoint

The checkpoint command saves restart information for the program running in ea
process in the qualifier.

In most cases, you do not need to use thecheckpoint command, because checkpoint
are taken automatically at certain times. See “Restarting a Program” on page
checkpoint gives you a way to explicitly take a checkpoint at a time you choo
Note that any later checkpoints (either explicit or automatic) will replace the res
information.

Example:

In this example, you are debugging a complex program. You know some good plac
set breakpoints, and you know that you need some more to find the bug, but are no
yet where they should be. You set your known breakpoints, take a checkpoint, and
the restart information to a file. Then you experiment with some different breakpoints

(local) # set known good breakpoints
(local) breakpoint fred.c:123
set other known breakpoints ...
7-39

NightView User’s Guide

kill
hen

is
the

f any
nu-
acter.

ily

it is

the

is
ee

see

wing
(local) checkpoint
(local) info on restart output=restart_info

(local) # now try experimental breakpoints
(local) breakpoint pebbles.c:456
set other experimental breakpoints ...

You decide to start the program again and want only the known breakpoints. You
your process, which takes a checkpoint, including the experimental breakpoints. T
you source the file containing the restart information. The restart information
replaced with only the known breakpoints. When you restart your program, only
known breakpoints are restored.

(local) kill
(local) source restart_info
restart program

family 7

Give a name to a family of one or more processes.

family family-name [[-] qualifier-spec] ...

family-name

The family name to be defined. This must not be the same as the name o
dialogue you currently have. The family-name must consist only of alpha
meric characters and underscores and must begin with an alphabetic char
The family-name may be of arbitrary length.

qualifier-spec

Identifies one or more processes to be included or excluded in the fam
named byfamily-name. See “Qualifier Specifiers” on page 7-10.

The total set of processes is accumulated by scanning thequalifier-specarguments left to
right. An argument is added to the set unless it is preceded by a ’-’, in which case
subtracted from the set accumulated so far.

If no qualifier-specis included, then this command removes any previous definition of
family-name. If your safety level is set toforbid , you are not allowed to remove the
definition of a family-namethat is present in the default qualifier. If your safety level
set toverify , NightView requests verification before removing such a definition. S
“set-safety” on page 7-49.

If one or morequalifier-specarguments are supplied, they are immediately evaluated (
“Qualifier Specifiers” on page 7-10) and thefamily-name is defined as the list of
processes indicated by those arguments. Evaluation of the arguments has the follo
implications:

• Any family-nameappearing in the argument list must be defined. Subse-
quent changes made to the definition of thatfamily-namewill have no
7-40

Command-Line Interface

the

on

the
se,

l the

-
you
set-
effect on the processes implied by thefamily-namebeing defined in the
family command.

• The processes denoted by anydialogue-nameappearing in the argument
list are just those that exist at the time thefamily command is executed.

• The argumentall denotes only those processes that exist at the time the
family command is executed.

• The argumentauto denotes the process that has been stopped the longest
at the time thefamily command is executed.

Any qualifier applied to this command has no effect.

Note that you may use afamily-namein a qualifier before it is actually defined, but you
must define thefamily-namebefore executing any command that needs to know what
family-namerefers to.

Examples:

(local) family fam1 12 25 18
(local) family fam2 fam1 99
(local) family fam1 fam1 16

The first command gives the namefam1 to the processes identified byPIDs 12, 18, and
25. The second command gives the namefam2 to the three processes infam1 plus
process 99. The third command extends the definition offam1to include process 16; thus
fam1 is a synonym for four processes: 12, 16, 18, and 25. Note that extendingfam1has
no effect onfam2, which still consists of processes 12, 18, 25, and 99.

Using the families defined in the previous examples, the use of a minus sign
arguments can be illustrated by the following examples:

(local) family fam3 fam1 fam2 -12
(local) family fam3 fam1 -12 fam2

The first command definesfam3to be the processes 16, 18, 25, and 99. In contrast,
second command definesfam3 to be the processes 12, 16, 18, 25, and 99. In this ca
the argument-12 removed process 12 from the set accumulated fromfam1, but the
fam2 argument adds that process back in. In general, it is a good idea to put al
subtracted arguments at the end of the list.

set-children 7

Control whether children should be debugged.

set-children { all [resume] | exec | none }

all

Debug all children. If the optional keywordresume is specified, then a child
process isresume d automatically after NightView has prepared it for debug
ging. This is useful if your program creates many child processes that
want to debug, but all you need to do is inherit the eventpoints and debug
tings from the parent process. See “Multiple Processes” on page 3-2.
7-41

NightView User’s Guide

the
be

ect

gging.

lly.

by

will
xited

te for
state

te

. See

d

exec

Debug children only when they have calledexec(2) (that is, when they are
running a different program). The program name is checked against
debug/nodebug list for the controlling dialogue to see if the program should
debugged. See “debug” on page 7-20. This is the default setting for dir
children of the dialogue shell and processes debugged with theattach com-
mand. See “attach” on page 7-32.

none

Ignore all children.

Sometimes you are not interested in the child processes of the process you are debu
For example, your program may make many calls tosystem(3) which you are not
interested in debugging. Theset-children command gives you a way of controlling
which children will be debugged without having to detach from each one individua
See “detach” on page 7-32.

The set-children command applies to future children of the processes specified
the qualifier. Existing children are not affected.

This mode is inherited by future children.

set-exit 7

Control whether a process stops before exiting.

set-exit [stop | nostop]

stop

The process will stop if theexit system service is called.

nostop

The process willnot stop before exiting.

The set-exit command controls whether the processes specified by the qualifier
stop before exiting. The default state for a process is to stop before exiting. See “E
and Terminated Processes” on page 3-14.

If no arguments are specified to the command, the command prints the current sta
each process in the qualifier. If an argument is specified, the command changes the
of each process in the qualifier accordingly and then prints the new state.

Note that theset-exit mode is inherited by a child process if a process forks. No
also that the mode persists for the entire life of the process, even across anexec system
call, until modified by anotherset-exit command. In the case of anexec , an on
program or on restart command might specify aset-exit command that
changes the mode. See “on program” on page 7-36 and “on restart” on page 7-38
also “Restarting a Program” on page 3-11.

If you also want a process to automatically resume execution after anexec , put a
resume command in anon program specification. See “resume” on page 7-95 an
7-42

Command-Line Interface

the
hat

iew
gram

ny

See
” on

ory

sting

start
any
“on program” on page 7-36.

mreserve 7

Reserve a region of memory in a process.

mreserve start= address {length= bytes | end= address}

start= address

Specify the start address of the region.

length= bytes

Specify the length of the region in bytes.

end= address

Specify the end address of the region.

The start= addressparameter is required. You must specify either alength or an
end address.

Themreserve command reserves a region of memory for each process specified by
qualifier. This means that NightView will not allocate space for patch areas in t
region. See Appendix E [Implementation Overview] on page E-1.

This command does not directly affect the process. It is only an indication to NightV
to avoid placing patch areas in the specified region, presumably because your pro
will be using that region later in its execution.

mreserve only affectsfutureallocations. You should reserve memory before using a
commands that allocate space in the process, including eventpoint commands, theload
command, or any command with an expression that involves a function call.
“Eventpoints” on page 3-8. See “load” on page 7-74. See “Expression Evaluation
page 3-18.

You should exercise some caution with this command. It is possible to reserve mem
in such a way that NightView cannot function.

For convenience, you are allowed to specify reservations that overlap or contain exi
regions in your process.

Memory reservations are printed as part of theinfo memory command. See “info
memory” on page 7-122.

Memory reservations are remembered as part of the restart information. See “Re
Information” on page 3-13. During restart, memory reservations are applied before
commands that would allocate space in the process.
7-43

NightView User’s Guide

om-

, the
the

the
uld

on

bug

sion
Setting Modes 7

set-log 7

Log session to file.

set-log keyword filename

keyword

Thekeywordparameter must be one of the following:

all

Log entire session (commands as well as the output generated by c
mands).

commands

Log just commands typed.

close

Close a log file.

filename

Name of the log file.

This command starts logging the debugger session to a file. If the file already exists
log information is appended to it. You may log just the commands (by using
commands keyword) or the entire session (all keyword) to a file (if the named file is
already an open log file, specifying a different keyword simply changes the mode of
log). You may open multiple log files (although more than one of each type of log wo
be rather redundant).

The close keyword is used to close the log associated with the file. (See “info log”
page 7-112).

The qualifier does not have any effect on this command. Any logs are global to the de
session.

Note that this command logs everything that happens during the debug ses
(essentially, everything you see on your terminal). Theset-show command may be
used to log output from a single dialogue (see “set-show” on page 7-28).

set-language 7

Establish a default language context for variables and expressions.

set-language {ada | auto | c | c++ | fortran}
7-44

Command-Line Interface

s not

few
the

an-
d by

sions;
s the
r) in

n is
ada

Indicates that the default language should be Ada.

auto

Indicates that the default language should be determined automatically.

c

Indicates that the default language should be C.

c++

Indicates that the default language should be C++.

fortran

Indicates that the default language should be Fortran.

The arguments to this command can be in any mixture of upper and lower case.

For each process specified by the qualifier,set-language sets the default language
used to interpret expressions and variables in commands. If a default language ha
been established, or if the default has been set toauto , NightView decides the language
in one of two ways. If the object file containsDWARF, then it contains the language
information. Otherwise, NightView infers the language from the extension (the last
characters) of the source file name associated with the frame selected when
expression or variable is mentioned. The following extensions are recognized:

.a

The language is assumed to be Ada.

.c

The language is assumed to be C.

.C

The language is assumed to be C++.

.f

The language is assumed to be Fortran.

.s

Although this indicates an assembler source file, NightView uses the C l
guage for such files. C expressions include nearly all the operators allowe
the assembler, plus much more.

The language determines the meaning of operators and constants in expres
determines the syntax of some kinds of expressions (e.g., C type casts); control
visibility of variable names; and controls the significance of case (upper versus lowe
variable names. The language also controls the formatting of output from theprint
command (see “print” on page 7-65), especially the way the type of an expressio
7-45

NightView User’s Guide

uent

see

fier

ore
many

esses

le-

ac-
the
indicated.

set-qualifier 7

Specify the default list of processes or dialogues that will be affected by subseq
commands which accept qualifiers.

set-qualifier [qualifier-spec...]

qualifier-spec

Specifies a process or dialogue to be included in the default qualifier list (
“Qualifier Specifiers” on page 7-10). Any family names in thequalifier-spec
are evaluated at the time of each command, not at the time ofset-quali-
fier .

If no argument is specified, the default qualifier is set to null, meaning that a quali
must be supplied to subsequent commands that require qualification.

set-history 7

Specify the number of items to be kept in the value history list.

set-history count

count

The number of items to be kept in the value history.

The qualifier is ignored on this command. The default history list size is 1000. If m
history items than that are created, the oldest ones are discarded. No matter how
items are in the list, each new history item gets the next highest number.

set-limits 7

Specify limits on the number of array elements, string characters, or program addr
printed when examining program data.

set-limits {array= number | string= number | addresses= number} ...

array= number

Thearray keyword parameter specifies the maximum number of array e
ments to be printed. If you want unlimited output, specify zero as the limit.

string= number

The string keyword parameter specifies the maximum number of char
ters of a string to be printed. If you want unlimited output, specify zero as
limit.
7-46

Command-Line Interface

of
” on

ated

ulti-
e
ws

d out

ring
b-

ely

ay
ily

ult

ier
addresses= number

The addresses keyword parameter specifies the maximum number
addresses to be printed for a particular location (See “Location Specifiers
page 7-9). If you want unlimited output, specify zero as the limit.

Thearray , string , andaddresses keywords may be specified in any order.

The qualifier is ignored on this command. The limits set byset-limits apply to all
output of variables or expressions or program locations. If a printed value is trunc
because of these limits, the value will be followed by ellipses.

Note that the limitation on array elements applies to each dimension of a m
dimensional array. If you print a50 x 20 two-dimensional array, and you have th
array limit set to5, then you will see the first 5 elements of the each of the first 5 ro
(or columns, for Fortran).

The default limits are 100 array elements, 100 characters, and 10 addresses. To fin
what the current limits are, use theinfo limits command (See “info limits” on page
7-120).

set-prompt 7

Set the string used to prompt for command input.

set-prompt string

string

Specify the string the debugger uses to prompt for command input. The st
must be enclosed in double quotes. If you include any of the following su
strings in the prompt, they will be expanded by the debugger immediat
prior to printing the prompt.

%q

Expands to the current default qualifier. This prints out the same w
the qualifier was defined. If you used a family name, it shows the fam
name (not the individualPIDs), etc. If the default qualifier isauto , it
prints the current automatically selectedPID.

%p

Expands to the complete list ofPIDs implied by the current default qual-
ifier.

%d

Expands to the complete list of dialogues implied by the current defa
qualifier.

%a

Expands to the complete list of dialogues, if the current default qualif
is all . Otherwise, this expands to the current default qualifier.
7-47

NightView User’s Guide

uage

amily

a

ues

e

is
on a

the
ing

are

the
%%

Expands to the single character%.

The string argument may also include the escape sequences recognized in C lang
strings, such as ’\n’ to indicate a newline.

The string `(̀%a) '' is the default prompt.

The qualifier on theset-prompt command is ignored.

Examples:

(afamily) set-prompt "%p> "
local:2047,2048>

The above example shows what happens when the default qualifier is a process f
namedafamily assumed to contain twoPIDs (2047 and 2048), both in dialoguelocal .
The initial prompt is "(%q) " and theset-prompt command changes it to expand to
list of PIDs.

(afamily) set-prompt "Dialogues: %d\nProcesses: %p>"
Dialogues: mach1,mach2
Processes: mach1:15 mach2:15,549,2047,2048>

The above example prints two lines as a prompt, the first containing a list of dialog
and the second containing a list of processes.

set-terminator 7

Set the string used to recognize end of dialogue input mode.

set-terminator string

string

Define thestring used to terminate dialogue input mode (see “!” on pag
7-27).

When the! command is used to switch all input to a dialogue, the terminator string
recognized to switch input back to the debugger. The terminator string must appear
line by itself to be recognized. The default string is "-. " (different from rlogin and
cu).

Unlike normal debugger commands, this string must be typed exactly as specified in
set-terminator command. The case of the letters must match, and the full str
must be typed.

Only one terminator string is defined. The qualifier on this command is ignored.

Leading and trailing whitespace in the specified terminator string is ignored. Macros
not expanded when reading the new terminator string.

If no terminator string is given, then the current terminator string is printed, otherwise
new terminator string is printed.
7-48

Command-Line Interface

om-

out
ns”

e

ou

s is

n to

t

alifier
set-safety 7

Control debugger response to dangerous commands.

set-safety [forbid | verify | unsafe]

forbid

In forbid mode, the debugger simply refuses to execute a dangerous c
mand and explains why it will not execute. (You may have tried toquit while
processes were still running, etc.).

verify

In verify mode, the debugger tells you what dangerous thing you are ab
to do and asks if you really meant that (see “Replying to Debugger Questio
on page 7-16). If you answeryes , it goes ahead and does it. This is th
default safety level of the debugger.

unsafe

In unsafe mode, the debugger simply tells you what it did. It assumes y
meant what you said and does not try to stop you.

If no mode is specified then theset-safety command prints the current safety level.

The qualifier on theset-safety command is ignored.

set-restart 7

Control whether restart information is applied.

set-restart [always | never | verify]

always

Restart information is unconditionally applied when a program starts. Thi
the default mode.

never

Restart information is never applied when a program starts.

verify

When a program starts, you are asked whether to apply restart informatio
it.

If no keyword is specified then theset-restart command prints the current restar
mode.

The restart mode is a global mode, not a per-process or per-dialogue mode. The qu
on theset-restart command is ignored.

See “Restarting a Program” on page 3-11.
7-49

NightView User’s Guide

or-

was

nique

le to
ther

s.

ory

s.

int

y

xt and
ions,
r the
set-local 7

Define process local convenience variables.

set-local identifier ...

identifier

The name of a convenience variable (the leading ’$’ on each identifier, n
mally used to reference convenience variables, is optional).

Each named identifier is defined to be a process local convenience variable.

A process local variable always has a unique value in each process. If the variable
already defined as a global at the time it appears in aset-local command, then each
process gets a separate copy of the current global value, but future changes will be u
for each process.

The command qualifier does not have any effect on this command. It is not possib
define a variable to be local for only one process, but globally shared among o
processes.

set-patch-area-size 7

Control the size of patch areas created in your process.

set-patch-area-size {data= data-size | eventpoint= eventpoint-size|
monitor= monitor-size | text= text-size} ...

data= data-size

Thedata keyword parameter specifies the size of the data area in kilobyte

monitor= monitor-size

The monitor keyword parameter specifies the size of the shared mem
region used by all monitorpoints in this dialogue, in kilobytes.

text= text-size

The text keyword parameter specifies the size of the text area in kilobyte

eventpoint= eventpoint-size

The eventpoint keyword parameter specifies the size of the eventpo
areas in kilobytes.

The data , monitor , text , andeventpoint keywords may be abbreviated and ma
be specified in any order.

NightView creates some regions in your process, and uses these regions to store te
data. There is usually one data region, one text region, one or more eventpoint reg
and, if there are any monitorpoints in the process, one shared memory region fo
monitorpoints. These regions are calledpatch areas. See Appendix E [Implementation
Overview] on page E-1.
7-50

Command-Line Interface

have
t and
hose
ake
stem
aller.

cesses
the

s are
area,

calls
ons

hared
, and

oint
the

patch
ared

on
You can adjust the sizes of the patch areas with this command. For example, if you
a lot of conditional eventpoints, then you may need to make the size of the eventpoin
text regions larger so that NightView has room to allocate all the code necessary for t
eventpoints. Similarly, if you have a lot of monitorpoints, then you may need to m
the size of the monitorpoint shared memory region larger. On the other hand, if sy
memory resources are scarce, then you may need to make some of these regions sm

The patch area size values are associated with each dialogue and apply to all pro
within the dialogue. This command sets the values for each dialogue specified in
qualifier.

Note that these values only apply to patch areas created in the future. Existing region
not changed. Therefore, if you want to debug a program and use a large text or data
you need to specify that before you run your program (i.e., before the process
exec). (For fork , the child process inherits its regions from the parent, so the regi
are the same size in the child and the parent.)

Each process has its own data, eventpoint and text areas, but the monitorpoint s
memory region is shared by all the processes that have monitorpoints in the dialogue
by the dialogue itself. Therefore, if you want to change the size of the monitorp
shared memory region, you need to do so before creating any monitorpoints in
dialogue. See “Monitorpoints” on page 3-9.

The initial values of the patch area sizes are 512 kilobytes each for the data and text
areas, 256 kilobytes for the eventpoint areas, and 32 kilobytes for the monitorpoint sh
memory region. This is adequate for most applications.

Use info dialogue to see the current patch area size values. (see “info dialogue”
page 7-123).

You can see information about the patch areas in an existing process with theinfo
memory command (see “info memory” on page 7-122).

interest 7

Control which subprograms are interesting.

interest [level] [[at] [location-spec]]

Set or query the interest level for a subprogram.

interest inline[= level]

interest justlines[= level]

interest nodebug[= level]

interest threshold[= level]

Set or query the interest keyword values.

level

Specify a level for the subprogram defined bylocation-spec, or a value for the
specified keyword.level is a signed integer or the keywordsminimum or
7-51

NightView User’s Guide

the

vel

ion

ion
vel
lue

er a

ich
bpro-

om-

h the
y an
l

estart
lev-

the
3. If
maximum. If this argument is not present, then this command queries
level of the subprogram or the specified keyword.

[at] location-spec

Set or query the interest level for the subprogram specified bylocation-spec.
See “Location Specifiers” on page 7-9. If nolocation-specis present, it
defaults to*$cpc . If the at keyword is present, it must be followed by a
location-spec. If no level is specified, then theat keyword is required to dis-
tinguish some forms of location specifiers from alevel.

inline

Set or query the inline interest level. If this level is less than the interest le
threshold, then all inline subprograms have theminimum interest level unless
their interest level has been explicitly set withinterest level location-spec.
The initial value of this level is0.

justlines

Set or query the interest level for subprograms with line number informat
but no other debug information. The initial value is-2 .

nodebug

Set or query the interest level for subprograms with no debug informat
(e.g., system library routines). Without debug information, the interest le
cannot be specified for individual subprograms, so NightView uses the va
specified by this form. The initial value is-4 .

threshold

Set or query the interest level threshold NightView uses to decide wheth
subprogram is interesting. The initial value is0.

The interest command sets or queries the information NightView uses to decide wh
subprograms are interesting for each process in the qualifier. See “Interesting Su
grams” on page 3-24.

Theminimum keyword specifies the lowest possible interest level. Themaximum key-
word specifies the highest possible interest level.

A query prints the interest information requested. If an interest level is being set, the c
mand prints the new interest level.

Some compilers provide a means to specify the interest level of a subprogram throug
debug information. If the subprogram has debug information, but it does not specif
interest level, the default level is0. The interest command overrides an interest leve
set at compile time.

The interest levels and the interest level threshold are remembered as part of the r
information. See “Restart Information” on page 3-13. For a way to see all the interest
els that have been explicitly set, see “info on restart” on page 7-124.

If an interest level or the interest level threshold is changed, then NightView checks
current frame to see if it has become uninteresting. See “Current Frame” on page 3-2
7-52

Command-Line Interface

rma-
not

en or

ter-

k
e

it has, then the current frame is reset to frame 0 of the current context and frame info
tion is printed. See “select-context” on page 7-107. Even if the current frame does
have to be reset, it gets a different frame number if frames below it have become hidd
unhidden.

Examples:

(local) run fact 7
...process startup information...
(local) interest
local:6729: Interest level is -4 (uninteresting) for
0x100024d0 (nodebug)

You query the interest level, using the default location specifier of*$cpc . The program
begins in the C runtime startup routine, which has no debug information, so it is unin
esting.

(local) breakpoint 26
local:6729 Breakpoint 1 set at fact.c:26
(local) continue
local:6729: at Breakpoint 1, 0x10002780 in main(int argc
= 2, unsigned char ** argv = 0x2ff7eae4) at fact.c line
26
26 B=| answer = factorial(x);
(local) step
#0 0x100026f4 in factorial(int x = 7) at fact.c line 6
6 = | if (x <= 1) {
(local) interest -1
local:6729: Interest level set to -1 (uninteresting) for
factorial
#0 0x10002780 in main(int argc = 2, unsigned char **
argv = 0x2ff7eae4 at fact.c line 26S
26 B<>| answer = factorial(x);

You step into thefactorial function, then decide that it is not interesting. You mar
factorial uninteresting, using the default location specifier. Your current fram
becomes uninteresting, so it is reset to frame 0. Frame 0 is now the frame formain ,
becausefactorial is not interesting. The source decorations for line 26 show that$pc
and$cpc are within that line. See “Source Line Decorations” on page 7-62.

(local) interest threshold=-1
local:6729: threshold interest level set to -1
(local) frame
Output for process local:6729
#1 0x10002780 in main(int argc = 2, unsigned char **
argv = 0x2ff7eae4) at fact.c line 26
26 B<>| answer = factorial(x);

You change the interest level threshold, which makesfactorial interesting again. Your
current frame is still interesting, so it is not reset to frame 0. Theframe command shows
that your current frame is still the frame formain , but now that frame is frame number 1.
7-53

NightView User’s Guide

ight

rs,
3-18.
ures
eval-

ion

ting

21.
peci-
set-auto-frame 7

Control the positioning of the stack when a process stops.

set-auto-frame args ...

The functionality of this command has been subsumed by theinterest command. See
“interest” on page 7-51. This command has been retained for compatibility, but it m
be removed in some future release.

set-overload 7

Control how NightView treats overloaded operators and routines in expressions.

set-overload [operator={on | off}] [routine={on | off}]

operator={on | off}

Turn operator overloadingon or off .

routine={on | off}

Turn routine overloadingon or off .

The set-overload command determines how NightView treats overloaded operato
functions, and procedures in expressions. See “Expression Evaluation” on page
This behavior can be controlled for operators separately from functions and proced
using the keywords on the command. The specified settings apply to all expressions
uated by NightView. The qualifier is ignored by theset-overload command. The
routine mode also controls overloading of function names which appear in locat
specifiers.

After setting the specified overloading modes, theset-overload command prints the
new settings. If no arguments are specified, the command simply prints the exis
overloading modes.

For a discussion of how overloading works in NightView see “Overloading” on page 3-
For the details of the syntax used to specify overloading in expressions and location s
fiers see “Selecting Overloaded Entities” on page 7-2.

set-search 7

Control case sensitivity of regular expressions in NightView.

set-search [sensitive | insensitive]

sensitive

Make regular expressions case sensitive (this is the default setting).

insensitive

Make regular expressions case insensitive.
7-54

Command-Line Interface

see
ialog

ot

itive.
ssion.

nsi-
atch

sim-
The set-search command controls case sensitivity for the regular expressions (
“Regular Expressions” on page 7-12) used by several commands as well as some d
boxes in the graphical interface.

When theset-search command is run with no argument, it reports (but does n
change) the current mode setting.

When thesensitive argument is specified, regular expressions become case sens
The case of alphabetic characters must match exactly as written in the regular expre
This is the defaultset-search mode.

When theinsensitive argument is specified, regular expressions become case inse
tive. Either the upper case or the lower case form of an alphabetic character will m
both the upper and lower case form of that same character.

set-editor 7

Set the mode for editing commands in the simple full-screen interface.

set-editor mode

mode

One ofemacs, gmacs or vi .

Determine which kind of keystroke commands are available to edit commands in the
ple full-screen interface.

See “Editing Commands in the Simple Full-Screen Interface” on page 8-2.
7-55

NightView User’s Guide

ry.
and

” on

y

this
ells,
are

ge
Debugger Environment Control 7

cd 7

Set the debugger's default working directory.

cd dirname

dirname

The name of the directory.

Thecd command changes the working directory of NightView to the specified directo
You usually use this command to control the search for source files, core files,
program files. It affects the behavior of the following commands:

• shell (see “shell” on page 7-110)

• list (see “list” on page 7-58)

• directory (see “directory” on page 7-60)

• symbol-file (see “symbol-file” on page 7-33)

• core-file (see “core-file” on page 7-34)

• exec-file (see “exec-file” on page 7-35)

The cd command does not affect commands executed in dialogue shells (see “login
page 7-18). Also, the qualifier does not have any effect on this command.

You can use thepwd command to find out what NightView's current working director
is. See “pwd” on page 7-56.

pwd 7

Print NightView's current working directory.

pwd

This command prints the current working directory of the debugger. Note that
directory may not be the same as the current working directory of your dialogue sh
nor need it be the same as the current working directory of any program you
debugging.

You can use thecd command to set the current working directory. (see “cd” on pa
7-56).

The qualifier does not have any effect on this command.
7-56

Command-Line Interface

urce
Source Files 7

This section describes commands to view source files and to search for text in so
files.
7-57

NightView User’s Guide

, list

tab-
ecu-
just

rs”

wo
.

Viewing Source Files 7

list 7

List a source file. This command has many forms, which are summarized below.

list where-spec

List ten lines centered on the line specified bywhere-spec.

list where-spec1, where-spec2

List the lines beginning withwhere-spec1up to and including thewhere-spec2line.

list , where-spec

List ten lines ending at the line specified bywhere-spec.

list where-spec,

List the ten lines starting atwhere-spec. Note the comma.

list +

List the ten lines just after the lines last listed.

list -

List the ten lines immediately preceding the lines last listed.

list =

List the last set of lines listed. If the previous command was a search command
the ten lines around the line found by the search.

list

If a list command has not been given since the current source file was last es
lished (see below), this form lists the ten lines centered around the line where ex
tion is stopped in the current source file. Otherwise, this form lists the ten lines
after the last lines listed.

Abbreviation: l

Eachwhere-specargument can be any one of the following forms.

[at] location-spec

Specifies a location in the program or a source file (See “Location Specifie
on page 7-9). No matter which form oflocation-specyou use, it is always
translated into a source line specification for this command. If you give t
arguments on thelist command, they cannot specify different source files
7-58

Command-Line Interface

ith-
; if

file

fies
d by a
nd

le is
tops
ped.
t the
ocess
f the
e

last

the

on
t ten

e

[at] file_name

Specifies the first line of the file. Thefile_namemay be a quoted or unquoted
string, but be aware that an unquoted string may be ambiguous. A string w
out quotes will be interpreted first as a function name or an Ada unit name
no such function or Ada unit exists, the string will then be interpreted as a
name.

+n

Specifies the line that isn lines after the last line in the last group listed (see
below). If this is the secondwhere-spec, it specifies the linen lines after the
first argument.

- n

Like +n, except it specifies the linen linesbeforethe last line in the last group
listed (see below). If this is the secondwhere-spec, it specifies the linen lines
before the first argument.

The list command is applied to each process in the qualifier. If the qualifier speci
more than one process, you get one listing for each process; each listing is precede
notation indicating which process the listing is for. The specified source file is fou
using the directory search path you established using thedirectory command (see
“directory” on page 7-60). Note that each program has its own directory search path.

NightView maintains, for each process, a current source file. The current source fi
usually the most recent file listed or searched. However, when the process s
execution, the current source file is automatically set to the file where execution stop
The context selection commands (see “Selecting Context” on page 7-105) also se
current source file to the one associated with the selected stack frame. When a pr
first starts execution, the current source file is the one containing the main program. I
first argument to thelist command does not explicitly specify a source file, then th
current source file is used.

When you list one or more lines in a source file, NightView remembers the first and
line of that group. If you subsequently give alist command that uses a relativewhere-
specor contains just a+ or - argument, those arguments are interpreted relative to
lines in the last group listed. Arguments containing a+ are relative to the last line in the
group, and arguments containing a- are relative to the first line in the group. This also
affects the forward-search and reverse-search commands. See “forward-
search” on page 7-61 and “reverse-search” on page 7-61.

Repeating thelist command by entering a blank line behaves differently depending
the form of list you used last. In most cases, repeating the command lists the nex
lines following the last line in the last group. However, if you used thelist - form
last, then repetition lists the ten lines preceding the first line in the last group.

The listed source lines are preceded bysource decorations. (see “Source Line
Decorations” on page 7-62).

You can use theinfo line command to determine the location in your program of th
code for a particular source line. (see “info line” on page 7-129).
7-59

NightView User’s Guide

lute
ry

ight-
on

cess
earch
e

file
in

ath
ng
es

its

ebug
tance.

a

urce
ul to

f

directory 7

Set the directory search path.

directory [dirname ...]

dirname

The name of a directory to include in the search path. If this is not an abso
pathname, it is interpreted relative to NightView's current working directo
and transformed into an absolute pathname. Thus, if you later change N
View's working directory, the search path will not be affected. See “cd”
page 7-56 and “pwd” on page 7-56.

Thedirectory command sets the directory search path for the program in each pro
in the qualifier. The arguments are used in order as the elements of the directory s
path. Subsequentdirectory commands contribute directories to the head of th
current search path.

The directory search path is used for displaying source files. When you list a source
(see “list” on page 7-58), NightView looks for the source file in each of the directories
the search path, starting at the beginning of the search path each time.

If no directory command has been specified for the program, the search p
implicitly contains the path to the executable file and NightView's current worki
directory. Once adirectory command is specified for the program, these directori
are no longer implicit in the search path.

If you enter adirectory command with no arguments, the search path is reset to
initial state.

The directory search path is associated with a program, not with a process. If you d
multiple instances of a program, the directory search path is the same for each ins
If your process callsexec(2) , the directory search path is implicitly set for the new
program.

Use the info directories command to display the directory search path for
program. See “info directories” on page 7-119.

For ELF programs, the debugging information contains absolute pathnames to so
files, so the directory search path may not be needed. It is still sometimes usef
indicate that a source tree is not where the debugging information indicates.

Example:

Suppose your ELF program was compiled from two source files:/usr/bob/src/
main/main.c and /usr/bob/src/doit/doit.c . You want to debug your
program, but you have moved the source files to/usr/joe/main/main.c and /
usr/joe/doit/doit.c . Enter adirectory command to indicate the new root o
the source tree:

(local) directory /usr/joe
7-60

Command-Line Interface

y the
see

ular
ent

ge is
, see

“set-

y the
and

und,

, a
rrent

“set-
Searching 7

forward-search 7

Search forward through the current source file for a specified regular expression.

forward-search regexp

regexp

The regular expression to search for.No anchored match is implied. (see
“Regular Expressions” on page 7-12).

The search command is applied to the current source file of each process specified b
qualifier. The search starts at the line following the last line in the last group listed (
“list” on page 7-58) and proceeds forward through the file to the end. If the reg
expression is found, the containing source line is listed. This will affect subsequ
list commands that specify relative arguments.

If the end of the file is encountered without finding the regular expression, a messa
printed indicating the search was unsuccessful. For a definition of current source file
“list” on page 7-58.

The regular expression case sensitivity depends on the current search mode (see
search” on page 7-54).

reverse-search 7

Search backwards through the current source file for a specified regular expression.

reverse-search regexp

regexp

The regular expression to search for.No anchored match is implied. (see
“Regular Expressions” on page 7-12).

The search command is applied to the current source file of each process specified b
qualifier. The search starts at the line preceding the last line in the last group listed
proceeds backwards through the file to the beginning. If the regular expression is fo
the containing source line is listed. This will affect subsequentlist commands that
specify relative arguments. (see “list” on page 7-58).

If the beginning of the file is encountered without finding the regular expression
message is printed indicating the search was unsuccessful. For a definition of cu
source file, see “list” on page 7-58.

The regular expression case sensitivity depends on the current search mode (see
search” on page 7-54).
7-61

NightView User’s Guide

ions
that

that
e of

ithin
ent-

ithin
eak-

here
ore

ome-
ing
d the

urce
ed-

line.
n is

5),

en
Source Line Decorations 7

When NightView lists source lines in your program or displays the assembly instruct
of your program, it precedes each line with decorations providing information about
line. Every source line gets aline number, which is relative to the beginning of that file.
Each instruction displayed is preceded by the line number of the source line
generated it (see “x” on page 7-67). Following the line number may be one or mor
the decorations shown in the following table.

Table 7-6. Source Line Decorations

’A’

Indicates that one or more agentpoints, possibly disabled, are set somewhere w
this source line. When displaying instructions, this indicates that one or more ag
points are set on this instruction. (see “agentpoint” on page 7-86).

’B’

Indicates that one or more breakpoints, possibly disabled, are set somewhere w
this source line. When displaying instructions, this indicates that one or more br
points are set on this instruction. (see “breakpoint” on page 7-78).

’M’

Indicates that one or more monitorpoints, possibly disabled, are set somew
within this source line. When displaying instructions, this indicates that one or m
monitorpoints are set on this instruction. (see “monitorpoint” on page 7-83).

’P’

Indicates that one or more patchpoints, possibly disabled, have been inserted s
where within this source line. (see “patchpoint” on page 7-79). When display
instructions, this indicates the instruction where the patchpoint was inserted, an
patched expressions are displayed elsewhere.

’T’

Indicates that one or more tracepoints, possibly disabled, are set within this so
line. When displaying instructions, this indicates a tracepoint immediately prec
ing this instruction. (see “tracepoint” on page 7-82).

’=’

Indicates that execution is stopped somewhere within or at the beginning of this
When displaying instructions, this indicates the instruction at which executio
stopped (the one that will next be executed).

’>’

Indicates the line (or instruction) in the current frame (see “frame” on page 7-10
where execution will resume when the called routine returns.

This decoration is not displayed if the current frame is frame #0 (with no hidd
frames below frame 0); in this case the ’=’ decoration will appear in its place.
7-62

Command-Line Interface

5),

en

ears
timi-

line,

iated

tion
n this
e. If
gly.

This
he 2-

here
the
the
’<’

Indicates the line (or instruction) in the current frame (see “frame” on page 7-10
which was executing when the called frame was created, i.e.,$cpc . See “Program
Counter” on page 3-22.

This decoration is not displayed if the current frame is frame #0 (with no hidd
frames below frame 0); in this case the ’= ’decoration will appear in its place.

’*’

Indicates that this source line corresponds to executable code. A line that app
executable may still not have executable code associated with it because of op
zation or conditional compilation. Not used when displaying instructions.

This decoration is not displayed if there are any other indicators also on that
since the other indicators imply there is executable code for the line.

’@’

Used only when displaying instructions, this character indicates that the assoc
instruction is the first for the corresponding source line.

NightView reserves enough columns for displaying a 3-digit line number, 2 decora
characters, and a 2-character separator. If the line number and decorations fit withi
space, the source text displayed lines up in columns just as it does in the source fil
more space is needed for line number or decorations, the line is shifted over accordin

In the source listing, the 2-character separator is a vertical bar followed by a space.
helps distinguish decorations from source characters. In the disassembly listing, t
character separator consists of 2 spaces.

Example source listing:

20 | void
21 * | main(argc, argv)
22 | int argc;
23 | char ** argv;
24 | {
25 | int i, errors;
26 * | errors = 0;
27 * | for (i = 1; i < argc; ++i) {
28 | long xl;
29 | int x;
30 | int answer;
31 * | char * ends = NULL;
32 T | xl = strtol(argv[i], &ends, 10);
33 B=| x = (int)xl;
34 B | answer = factorial(x);
35 P | printf("factorial(%d) == %d\n", x, answer);
36 | }
37 * | exit(errors);
38 | }

In this example, line 32 has a tracepoint set on it; line 33 has a breakpoint set somew
within the line, and execution is stopped on the line (but not necessarily at
breakpoint). Line 34 has a breakpoint set somewhere within the line (perhaps on
7-63

NightView User’s Guide

rt
ciated

.

ary
uent

tive

-
sub-

” on

See
return fromfactorial). Line 35 has a patchpoint inserted somewhere within it. Apa
from these lines, the other lines with asterisks on them have executable code asso
with them.

Example instruction listing:

31 @ 0x10002788 <main+52>: li r6,0
31 0x1000278c <main+56>: stw r6,0x40(r1)
32 @T 0x10002790 <main+60>: slwi r5,r16,2
32 0x10002794 <main+64>: lwzx r3,r17,r5
32 0x10002798 <main+68>: addi r4,r1,64
32 0x1000279c <main+72>: li r5,10
32 0x100027a0 <main+76>: bl 0x100010e0 <strtol>
33 @B= 0x100027a4 <main+80>: mr r20,r3
34 @ 0x100027a8 <main+84>: bl 0x10002700 <factorial>
34 B 0x100027ac <main+88>: mr r5,r3
35 @P 0x100027b0 <main+92>: lis r3,12288
35 0x100027b4 <main+96>: addi r3,r3,12528
35 0x100027b8 <main+100>: mr r4,r20
35 0x100027bc <main+104>: bl 0x10001100 <printf>

This is a partial assembly listing for the preceding example source listing.

Examining and Modifying 7

backtrace 7

Print an ordered list of the currently active stack frames.

backtrace [number-of-frames]

Abbreviation: bt

number-of-frames

Number of stack frames to print, starting with the currently executing frame

Thebacktrace command prints, for each process specified in the qualifier, a summ
of the active stack frames, starting with the currently executing frame. Each subseq
entry corresponds to the caller of the frame which precedes it in the listing. All ac
frames are indicated, unless a value fornumber-of-framesis given, in which case, the
given number of frames is printed.

Each entry in thebacktrace listing includes the frame number (the first frame is num
bered0), the program counter, the subprogram name (if known), the arguments of the
program (if known), the source file name (if known), and the line number (if known).

For information on changing the current stack frame, see “frame” on page 7-105, “up
page 7-106, or “down” on page 7-107.

Frames corresponding to uninteresting subprograms are not shown in the listing.
“Interesting Subprograms” on page 3-24.
7-64

Command-Line Interface

-

rela-

ac-

g-
of
pre-

one
or

of
r-
print 7

Print the value of a language expression.

print [/ print-format-letter] expression

Abbreviation: p

print-format-letter

One of the following letters specifying the format in which to print each com
ponent value of the expression:

a

P rint the value of the expression in hexadecimal and as an address
tive to a program symbol.

c

Treat the rightmost (least significant) eight bits of the value as a char
ter constant and print the constant.

d

Print the bit representation of the value in signed decimal.

f

Print the bit representation of the value as a single precision floatin
point number and print using floating-point syntax. If the data type
the language expression is double precision, however, then the bit re
sentation is printed as a double precision floating-point number.

o

Print the bit representation of the value in octal.

s

Print the data as a character string. Arrays of characters will print as
character string (terminated with a zero byte if the language is C
C++); scalar types will print using their default format plus the bytes
the value will be printed as a string. (You might want to use this in Fo
tran if you put Hollerith data inINTEGERvariables.)

See note below about limits on the length of printed strings.

u

Print the bit representation of the value in unsigned decimal.

x

Print the bit representation of the value in hexadecimal.
7-65

NightView User’s Guide

the
nion,
cript,

the

30),

ents

e of
f the

t

expression

A language expression (see “Expression Evaluation” on page 3-18).

print displays the value of a language expression in each process specified by
qualifier. When the expression is an aggregate item, such as an array, record, or u
each component value of the expression is printed, along with the appropriate subs
record field name, etc.

The space betweenprint and / may be omitted. If noprint-format-letter is given,
expressionis printed in a format corresponding to the data type of the expression in
currently defined language.

The printed value is given a value history number (see “Value History” on page 3-
indicated in the output by$ followed by the history number.

If the value printed contains an array or a character string, the number of array elem
and characters will be limited to the values set by theset-limits command (see “set-
limits” on page 7-46).

NOTE

For ease in debugging C and C++ programs, theprint command
treats expressions of type ’char *’ specially. Wheneverprint
prints the value of a ’char *’ pointer, it also prints the string it
points to, inside double-quote marks;print assumes the string is
terminated by a null byte.

Most other commands that print expressions or variables also treat
’char *’ pointers in this manner.

Examples:

(local) (12) p/x var_name*4
(local) (12) p array_name

The first example prints, in hexadecimal, a number equal to four times the valu
var_name , for process 12. The second example prints the value of each member o
arrayarray_name in a format based on the data type ofarray_name , for process 12.

set 7

Evaluate a language expression without printing its value.

set expression

expression

A language expression (see “Expression Evaluation” on page 3-18).

This command is similar to theprint command (see “print” on page 7-65), in that i
7-66

Command-Line Interface

ever,
the
to

syntax,
calls

ed
evaluates a language expression for each process specified in the qualifier. How
set does not accept a format specifier, print the value of the expression, or place
value of the expression in the value history. It is useful for doing assignments
language objects (e.g., memory addresses preceded by the C language cast
variables, and array elements) and convenience variables, as well as for performing
to subprograms whose return value is unimportant.

Examples:

(local) set $i = 98
(local) (27) set vector[5] = x * 2.5
(local) set *(int *)0x1234 = 0xabcd0123
(local) set routine(3,4)

The first example assigns the value98 to the convenience variable$i . The second exam-
ple assigns the value ofx * 2.5 to element five of arrayvector , in process 27. The
third example assigns the hexadecimal valueabcd0123 to the hexadecimal absolute
memory location1234 . The final example performs a call to the subprogramroutine .

x 7

Print the contents of memory beginning at a given address.

x [/[repeat-count][size-letter][x-format-letter]] [addr-expression]

repeat-count

Decimal number of consecutive memory units to print, where a unit is defin
by thesize-letterand thex-format-letter.

size-letter

One of the following letters specifying the size of each memory unit:

b

Each memory unit is one byte (8 bits) long.

h

Each memory unit is one halfword (two bytes) long.

w

Each memory unit is one word (four bytes) long.

g

Each memory unit is one giant word (eight bytes) long.

Thesize-lettermay appear either before or after thex-format-letter.
7-67

NightView User’s Guide

n-

pro-

h of

ng

ith
).

the
x-format-letter

One of the following letters specifying the format in which to print the co
tents of memory:

a

Print as an integer in hexadecimal and as an address relative to a
gram symbol. This format ignoressize-letterand always usesw.

c

Print as character constants. This format ignoressize-letterand always
usesb.

d

Print as signed integers in decimal format.

f

Print as floating-point values.

i

Print as machine instructions in assembler syntax, using the lengt
each instruction as the unit size. Arepeat-countgiven with this format
indicates how many instructions to print.

o

Print as unsigned integers in octal format.

s

Print as a null-terminated string, using the length of the string (includi
the null byte) as the specified unit size; thesize-letter, if any, is ignored.
A repeat-countgiven with this format indicates how many strings to
print.

If the string to be printed is longer than the string limit set by theset-
limits command, the initial characters of the string are printed, w
an ellipsis following the closing quote. (see “set-limits” on page 7-46

u

Print as unsigned integers in decimal format.

x

Print as unsigned integers in hexadecimal format.

z

Print as unsigned integers in hexadecimal format with a display of
correspondingASCII characters.
7-68

Command-Line Interface

on

d by

tents

s
ious

64

ience
iable

rting
page

ress
addr-expression

An expression yielding a memory address (see “Expression Evaluation”
page 3-18).

The x command prints the contents of memory beginning at the address specifie
addr-expressionin each process specified by the qualifier. If anaddr-expressionis not
given, the address corresponds to the byte following the end of the memory con
printed in the lastx command.

The space betweenx and/ may be omitted. Ifrepeat-countis omitted, one memory unit
is printed. If eithersize-letteror x-format-letteris omitted, the default is the last value
used in anx command (beginning defaults arew andd, respectively).

If the x command is repeated, memory contents are printed using the samerepeat-count,
size-letter, andx-format-letteras in the previousx command, and the beginning addres
corresponds to the byte following the end of the memory contents printed in the prev
command.

A 0 precedes octal numbers. A0x precedes hexadecimal numbers. Thus decimal
would appear in hexadecimal as0x40 and in octal as0100 .

The x-format-letterz produces a hexadecimal displaywithout the leading0x prefix. The
character display shows non-printable characters replaced by. (period). Here,printable
is determined by the current locale. The display of characters is framed in| and| .

After an x command, the convenience variables$_ and $__ are set and ready to use in
expressions (see “Predefined Convenience Variables” on page 7-6). The conven
variable$_ is set to address of the last memory unit examined. The convenience var
$__ is set to the contents and type of the last memory unit examined.

Examples:

(local) (14544) x/4i $pc
7 @B= 0x1000271c <factorial+28>: li r3,1
7 0x10002720 <factorial+32>: lwz r16,0x40(r1)
7 0x10002724 <factorial+36>: lwz r13,0x58(r1)
7 0x10002728 <factorial+40>: mtlr r13

For the process with process id 14544, print memory as four machine instructions sta
with the address of the current program counter. See “Source Line Decorations” on
7-62 for a description of the characters at the beginning of each line of this format.

(local) x /4wx 0x40a188
0x0040a188: 0x77767574 0x73727170 0x6f6e6d6c 0x6b6a6968
(local) x /8bz 4235656
0x0040a188: 77 76 75 74 73 72 71 70 |wvutsrqp|
(local)
0x0040a190: 6f 6e 6d 6c 6b 6a 69 68 |onmlkjih|
(local) p $_ - 4235656
17: $_ - 4235656 = 0xf
(local) p $__
$18: $__ = 104 'h'

Print memory as four words (four-byte memory units) starting at hexadecimal add
0x0040a188 as unsigned integers in hexadecimal format with0x prefixes.
7-69

NightView User’s Guide

dress
a

ss
t

in

the
t

rs
new-

ands
d to

her
Print memory as eight bytes (one-byte memory units) starting at the same ad
expressed in decimal (4235656) as unsigned integers in hexadecimal format with
display of the printable characters.

Print in the same format and repeat count starting at the next address (0x0040a190).

Print an expression$_ - 4235656 to show the relative difference between the addre
of the last memory unit printed$_ - 4235656 and address of the first memory uni
two commands ago4235656 .

Print expression$__ to show the value of the last memory unit printed.

output 7

Print the value of a language expression with minimal output.

output [/ print-format-letter] expression

print-format-letter

A letter specifying the format in which to print the expression, as described
theprint command (see “print” on page 7-65).

expression

A language expression (see “Expression Evaluation” on page 3-18).

output prints the value of a language expression for each process specified by
qualifier in the same manner as theprint command, except that a newline is no
printed, the value is not entered in the value history, and the"$ history-number = "
string does not prefix the output.

The space betweenoutput and / may be omitted. If noprint-format-letter is given,
expressionis printed in a format corresponding to the data type of the expression.

echo 7

Print arbitrary text.

echo text

text

Arbitrary text to be printed, up to the end of the line. Non-printing characte
may be represented with C language escape sequences, such as ’\n’ for
line.

This command prints the given text. It is intended as an adjunct to the other comm
which print information about the program, so that the output can be customize
whatever is desired.

A backslash (’\’) may be used to correctly print leading and trailing spaces. In ot
7-70

Command-Line Interface

y a
does

he

ed

r

as

on

ill be
of the
etc.).
words, a backslash may be used at the beginning oftext to print leading spaces appearing
after the backslash, and one may be used at the end oftext to print the spaces appearing
before the backslash. The backslash characters themselves are not printed.

Note that a newline is not printed unless the newline sequence (’\n’) is included.

Examples:

(local) echo \ Text with two leading spaces and a newline\n
(local) echo A backslash (\\) and the number three (\063)

The first example prints " Text with two leading spaces and a newline", followed b
newline. The second example prints "A backslash (\) and the number three (3)", but
not print a newline.

display 7

Add to the list of expressions to be printed each time the process stops.

display [[/ print-format-letter] expression]
display /[repeat-count][size-letter][x-format-letter] addr-expression

print-format-letter

A letter specifying the format in which to print the expression, as in t
print command (see “print” on page 7-65).

expression

A language expression (see “Expression Evaluation” on page 3-18).

repeat-count

Decimal number of consecutive memory units to print, where a unit is defin
by thesize-letterand thex-format-letter.

size-letter

A letter specifying the size of each memory unit, as described in thex com-
mand (see “x” on page 7-67). Thesize-lettermay appear either before or afte
thex-format-letter.

x-format-letter

A letter specifying the format in which to print the contents of memory,
described in thex command (see “x” on page 7-67).

addr-expression

An expression yielding a memory address (see “Expression Evaluation”
page 3-18).

The display item list contains language and memory address expressions which w
used to print expression values or contents of memory, respectively, each time one
specified processes in the qualifier stops (hits a breakpoint, receives a signal,
7-71

NightView User’s Guide

ssion,

n the
n is
ber,
ts of

ently
the

e

or
the

at

be

d by
layed

the
his
ified
display adds a language or memory address expression to the list.

In order to determine whether the given expression is a language or address expre
the parameters before the expression are first examined. If arepeat-countor size-letteris
given, or if either of thex-format-letters ’s’ or ’i’ is given, then the expression is treated
as anaddr-expression. Otherwise, the expression is treated as a languageexpression.

When one of the processes specified by the qualifier stops, each enabled item i
display item list is evaluated. The indicated expression value or memory locatio
displayed, each item beginning on a new line. Each display item has an item num
followed by the text of the expression and then the expression's value or the conten
memory. If a language expression for an item cannot be evaluated in the curr
defined language, output will not appear for that item; however, a summary of
unevaluated items will appear at the end of thedisplay output.

The space betweendisplay and / may be omitted. If noprint-format-letter is given
for a language expression,expressionis printed in a format corresponding to the data typ
of the expression at the time the process stops. Ifrepeat-countis omitted, one memory
unit will be printed. If size-letteror x-format-letteris omitted, the defaults arew andd,
respectively.

If display is entered on a line by itself, the current values of the expressions
contents of memory for each item on the display list are printed. To simply see
expressions themselves, use theinfo display command (see “info display” on page
7-120).

Examples:

(local) (12) display/x var_name
(local) (12) display/4d 0x1234

If these commands are entered, then each time process 12 stops, the value ofvar_name
will be printed in hexadecimal on one line, and four words of memory starting
hexadecimal address1234 will be printed on the next line.

undisplay 7

Disable an item from the display expression list.

undisplay item_number...

item_number

An item number of an item to be disabled in the list of expressions to
printed each time the program stops, as specified in previousdisplay com-
mands (see “display” on page 7-71).

Theundisplay command disables the given items in each of the processes specifie
the qualifier. The associated expressions or memory locations cease to be disp
when the corresponding process stops, until you enable them again using
redisplay command (see “redisplay” on page 7-73). The effect of the qualifier on t
command is to limit the items to be disabled to only those that occur in the spec
processes.
7-72

Command-Line Interface

item

be

gain

is

item

or

ions
lifier.

e.,

sions

rror
Item numbers prefix each displayed language expression and memory section. The
numbers also may be viewed by entering theinfo display command (see “info
display” on page 7-120).

redisplay 7

Enable a display item.

redisplay item_number...

item_number

An item number of an item to be enabled in the list of expressions to
printed each time the program stops, as specified in previousdisplay com-
mands (see “display” on page 7-71).

The redisplay command enables the specified display items so that they once a
print data when the corresponding process stops. Theredisplay command reverses
the effect of theundisplay command. The effect of the qualifier on this command
to limit the items to be enabled to only those that occur in the specified processes.

Item numbers prefix each displayed language expression and memory section. The
numbers also may be viewed by entering theinfo display command (see “info
display” on page 7-120).

printf 7

Print the values of language expressions using a format string.

printf format-string[, expression...]

format_string

A string within quotes containing text to be printed and print formats f
expressions to be printed.

expression

A language expression (see “Expression Evaluation” on page 3-18).

printf prints user-specified text plus, optionally, values of language express
evaluated in the currently defined language, for each process specified in the qua
This command acts the same as the C language library routineprintf (3C) , with the
exception of the ’%n’ format descriptor. As in that routine, each print format (i.
substring beginning with ’%’ and or width specifier ’*’) in theformat-stringcorresponds
to one language expression in the specified list. The number of language expres
entered must match the number of print formats.

If a ’%n’ format descriptor is present in the format string, it is considered a syntax e
and theprintf command is aborted.
7-73

NightView User’s Guide

of

on

f the
the

new
turn

o set
e old

ith
ram,

data
ld
ded
ine
ata

s is

fined
not

mbol

u of
Example:

(local) (27) printf "The value of var_name = %d.\n", var_name

This example prints "The value of var_name = " followed by the decimal value
var_name and a newline, for the process withPID 27.

load 7

Dynamically load an object file, possibly replacing existing routines.

load object

object

The name of an object file to be loaded into the program.

object is subject to object filename translations (see “translate-object-file”
page 7-21).

This command dynamically loads the designated object file into the address space o
running program. If the loaded file contains any routines which are already defined in
program, the entry points of the existing routines are patched to jump directly to the
routines just loaded. If there are any active stack frames for old routines, the re
addresses in the stack still point to the old code. New calls made following theload will
call the new routines.

If you had any breakpoints or other eventpoints set in the old routine, you may need t
equivalent ones again in the new routine (the old ones are still there, but since th
routine will never be called again, you will probably never hit any of them).

The primary purpose of this command is to allow you to replace an existing routine w
a new version, avoiding the overhead of forcing you to stop debugging the prog
relink it, and rerun to get back to the point of interest.

This command must be used with care. If the new object file contains any global
definitions, you are very likely to wind up with an erroneous program in which o
routines refer to the original data locations and new routines refer to the newly loa
data definitions. Patching the old routine entry points to jump to the new rout
definitions is simple, but it is not possible to locate all the places that might refer to d
items defined in the object file, so loading object files that define static data item
likely to generate unexpected results.

If the object file refers to other routines or external data items that are not already de
in the program file, you are told about the undefined symbols, and the object file is
loaded. If you load an object file that defines new symbols, they are added to the sy
table for the program, so subsequent loads may refer to the new names.

This command checks for obvious problems with the new object file and warns yo
anything that is likely to be a mistake, but it loads the new object anyway.
7-74

Command-Line Interface

he

ssigns
nd

po-

y the
the
inte-
vector-set 7

Set the value of a vector.

vector-set l-value = component, component...

vector-set l-value = repeat-count, component

The arguments tovector-set are all expressions separated by commas (', '). The
expressions may not contain commas.

l-value

A vector variable, array element, register, etc., which can be assigned. Tl-
valuemay be followed by either a comma or an equals sign ('='). This expres-
sion may not contain an equals sign ('=') or a comma (', ').

component

One component of the vector.

repeat-count

The number of times to repeat the following component.

This command creates a vector value by concatenating the component values and a
the value to the specifiedl-value, which must be a vector, for each process in the comma
qualifier. vector-set is meaningful only on the Power Hawk 700 Series.

The command operates based on the number of argumentsfollowing the l-value. If there
are 2 arguments, then the first argument is taken as arepeat-count. The value of the com-
ponent is replicated to makerepeat-countcomponents. The value of therepeat-countmust
be one of4, 8 or 16. If there are more than 2 arguments, then each argument is a com
nent.

The format of each component is determined by the number of components.

For the 4-byte case, the component type, integer or floating-point, is determined b
type of the component value. NightView warns you if the components are not all of
same type. For the integer formats, each component is implicitly cast to an unsigned
ger.

Examples:

(local) vector-set my_vec = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1
(local) vector-set my_vec = 16, 1

Number of Components Component Format

16 1 byte integer

8 2 byte integer

4 4 byte integer or float
7-75

NightView User’s Guide

-

odify

oints,
hich
Both of these commands setmy_vec to 16 bytes, with each byte set to1.

(local) vector-set $v0 = 1.0, 2.0, 0.0, 4.0

Set$v0 to these floating-point values.

(local) vector-set $v0 = f(0), f(1), f(2), f(3)

Set$v0 to the results of calling functionf with various values. The type of the 4 compo
nents is detemined by the return type off .

Manipulating Eventpoints 7

This subsection describes the various commands that are used to set and m
eventpoints.

Some of the commands which operate on breakpoints also operate on patchp
tracepoints, monitorpoints, and agentpoints as well. The following table indicates w
types of eventpoints may be affected by which commands:

Table 7-7. Eventpoint Commands

Command Name
What the Command Applies to

Breakpoints Patchpoints Tracepoints Agentpoints Monitorpoints

name X X X X X

clear X X X X X

commands X X

condition X X X X X

delete X X X X X

disable X X X X X

enable X X X X X

ignore X X X X X

tbreak X

tpatch X
7-76

Command-Line Interface

e as
t is
and
be of

ded

of

ints

s

Eventpoint Modifiers 7

An eventpoint modifiermodifies the setting of eventpoints in a program.

The modifiers come after the eventpoint commands as follows:

command[modifier...]

Currently, the only eventpoint modifier is/disabled .

/disabled

Causes the eventpoint to be created in a disabled state. You must use theenable
command to activate the eventpoint. (see “enable” on page 7-91).

name 7

Give a name to a group of eventpoints.

name [/add] name [[-] eventpoint-spec] ...

/add

Add the eventpoints to the named set, rather than redefining the set.

name

The name of the set of eventpoints to be defined. This must not be the sam
the name of any dialogue you currently have, or of any process family tha
currently defined. The name must consist only of alphanumeric characters
underscores and must begin with an alphabetic character. The name may
arbitrary length.

eventpoint-spec

An eventpoint specifier. See “Eventpoint Specifiers” on page 7-12.

The total set of eventpoints is accumulated by scanning theeventpoint-spec
arguments left to right. An argument is added to the set unless it is prece
by a ’-’, in which case it is subtracted from the set accumulated so far.

If no eventpoint-specis given, then this command removes any previous definition
name.

Any qualifier applied to this command has the effect of restricting the set of eventpo
named to those which exist in the processes specified by the qualifier.

Examples:

(local) name evpt1 12 25 18
(local) name evpt2 evpt1 99
(local) name evpt1 evpt1 16

The first command gives the nameevpt1 to three eventpoints identified by eventpoint
7-77

NightView User’s Guide

at
d

ments

st,
is

7.

-77).
re-

.

be

on is
age

age
12, 18, and 25. The second command gives the nameevpt2 to the three eventpoints in
evpt1plus eventpoint 99. The third command extends the definition ofevpt1to include
eventpoint 16; thusevpt1is a synonym for four eventpoints: 12, 16, 18, and 25. Note th
extendingevpt1has no effect onevpt2, which still consists of eventpoints 12, 18, 25, an
99.

Using the names defined in the previous examples, the use of a minus sign on argu
can be illustrated by the following examples:

(local) name evpt3 evpt1 evpt2 -12
(local) name evpt3 evpt1 -12 evpt2

The first command definesevpt3 to be the eventpoints 16, 18, 25, and 99. In contra
the second command definesevpt3 to be the eventpoints 12, 16, 18, 25, and 99. In th
case, the argument-12 removed eventpoint 12 from the set accumulated fromevpt1 ,
but theevpt2 argument adds that eventpoint back in.

breakpoint 7

Set a breakpoint.

breakpoint [eventpoint-modifier] [name =breakpoint-name]
[[at] location-spec] [if conditional-expression]

Abbreviation: b

eventpoint-modifier

Specifies the breakpoint modifier. See “Eventpoint Modifiers” on page 7-7

name=breakpoint-name

Gives a name to the breakpoint for later reference. (see “name” on page 7
If breakpoint-nameis already defined, then this command adds the newly c
ated breakpoints to the list of eventpoints associated with the name.

location-spec

Specifies the breakpoint location. (see “Location Specifiers” on page 7-9)

If location-specis omitted, then the location used is the next instruction to
executed in the current stack frame. See “Current Frame” on page 3-23.

if conditional-expression

Specifies a breakpoint condition. The language and scope of the expressi
determined by the location at which the breakpoint is set (see “Scope” on p
3-22 and “Context” on page 3-22). See also “Expression Evaluation” on p
3-18.
7-78

Command-Line Interface

This
ional

only
er
eing

n the
er.

See

cation
its own
can
s that

ldest

pped
ny
then
o the

and
ed a
NOTE

The at , if , andname keywords may not be abbreviated in this
command.

breakpoint sets a breakpoint in each of the processes specified by the qualifier.
causes the program to suspend execution at the breakpoint location. An opt
condition may be applied to the breakpoint which causes execution to be suspended
if the condition evaluates toTRUE. The conditional expression is evaluated in the us
program when the breakpoint location is reached (unless the breakpoint is currently b
ignored, see “ignore” on page 7-91).

If more than one breakpoint is set (through the use of more than one process i
qualifier) then each breakpoint in each process is assigned a unique breakpoint numb

You can specify debugger commands to be executed when a breakpoint is hit.
“commands” on page 7-88.

It is possible (and sometimes useful) to set more than one breakpoint at the same lo
in a process. Perhaps you have two breakpoints set at the same place and each has
set of commands. By enabling only one of the two breakpoints at a time, you
effectively toggle the set of commands that gets executed when the process reache
location.

If more than one breakpoint is set at the same location in a given process, then the o
breakpoint with an ignore count of zero and a condition that evaluates toTRUE will be the
first breakpoint responsible for stopping the process. After this breakpoint has sto
the process, before continuing on to the next instruction, NightView will check for a
remaining breakpoints at that location which may stop the process. If there are any,
the process will stop at least once more (at the same location) before continuing on t
next instruction.

Example:

(local) (441 115) break name=loop sort.c:42

This example sets two breakpoints at line 42 of the file namedsort.c and associates
both breakpoints with the name ’loop’. One of the breakpoints is set in process 441
the other breakpoint is set in process 115. Each of the two breakpoints is assign
unique breakpoint number.

patchpoint 7

Install a small patch to a routine.

patchpoint [eventpoint-modifier] [name= patchpoint-name]
[[at] location-spec] eval expression

Insert an expression in the program.

patchpoint [eventpoint-modifier] [name= patchpoint-name]
[[at] location-spec] goto location-spec
7-79

NightView User’s Guide

7.

es.

ca-
r to

be

rt

s

valu-

o
igi-

time
e

ed
Insert a branch in the program.

eventpoint-modifier

Specifies the patchpoint modifier. See “Eventpoint Modifiers” on page 7-7

name=patchpoint-name

Patchpoints are assigned event numbers, and thename= syntax as well as the
name command (see “name” on page 7-77) may be used to give them nam
See “Manipulating Eventpoints” on page 7-76.

at location-spec

Specify the exact point in the program to execute the patchpoint (see “Lo
tion Specifiers” on page 7-9). The patchpoint is executed immediately prio
any existing code at this location.

If location-specis omitted, then the location used is the next instruction to
executed in the current stack frame. See “Current Frame” on page 3-23.

eval expression

This variant of thepatchpoint command specifies an expression to inse
in the program at the designatedlocation-spec. Ada, C, and C++ programmers
should note that this is an expression and not a statement; therefore, it doenot
end with a semicolon. (The concept ofexpressionis extended to include
assignments and procedure calls in Ada and Fortran.) See “Expression E
ation” on page 3-18.

goto location-spec

This variant of thepatchpoint command specifies a location to branch t
when the program reaches the point of the patchpoint. The instruction or
nally at the patchpoint location will not be executed.

Note that if an expression is used as alocation-spec, the expression is evalu-
ated only once for each process in the qualifier. For example, if thelocation-
specis *$lr , the value of registerlr in thecurrent contextis used as the loca-
tion to branch to.

NOTE

The keywordsname, at , eval , andgoto may not be abbrevi-
ated in this command.

Once aneval patchpoint is installed, the language expression will be executed each
control reacheslocation-specin the program. After the patchpoint is executed, th
original instruction will also execute.

Once agoto patchpoint is installed, the branch will be executed before the patch
instruction each time execution reacheslocation-specin the program. It is important to
note that the original instruction is not executed if the patchpoint ishit (that is, depending
7-80

Command-Line Interface

t). If

ted
pro-
o the
ces.

the

count

they

page
ied;

the

be

er
ll not
unt
uent

tags
ile

ore

p

on the enabled status, the ignore count and any eventpoint condition on the patchpoin
the patchpoint is not hit, the original instruction is executed normally.

When patching in agoto , you should be aware that the compiler has probably genera
code which expects certain register contents and altering the flow of control in your
gram can very easily send it to a new location with unexpected values in registers, s
goto patchpoint should be used only when you are sure you know all the consequen

You may attach a condition or ignore count to both kinds of patchpoints, using
condition (see “condition” on page 7-88) orignore (see “ignore” on page 7-91)
commands. This suppresses execution of the patched expression unless the ignore
is zero and the conditional expression evaluates toTRUE.

Patchpoints are implemented by modifying the executable code for the program, so
will remain in effect until the program exits, even if youdetach the debugger from the
program, unless the patchpoint was disabled when you detached (see “detach” on
7-32 and “disable” on page 7-90). Note that the disk copy of the program is not modif
you must edit your source, recompile and relink to make a permanent modification to
program.

If multiple patchpoints are made at the same point in the program, they will all
executed in the order they were applied. This is especially important to note forgoto
patchpoints, because once agoto is executed, any subsequent patchpoints (or oth
kinds of eventpoints, such as breakpoints and tracepoints) at that same location wi
be executed. If agoto patchpoint is not hit (because it was disabled, or the ignore co
or condition caused it to be skipped), then the branch will not be taken and subseq
patchpoints will be executed, as well as the original patched instruction.

Example:

(local) patchpoint file.c:12 eval i=0

This C example patches the code to initialize the variablei to zero immediately prior to
executing line 12 in the filefile.c . Note that no semicolon appears in this example.

set-trace 7

Establish tracing parameters.

set-trace [eventmap= event-map-file]

eventmap= event-map-file

Names the file that contains the mapping between symbolic trace-event
and numeric trace-eventIDs. This should be the same as the event-map f
passed tontrace(1) .

The set-trace command is used to specify information that may be required bef
any tracepoints may be set in a process (see “tracepoint” on page 7-82).

If you want to use symbolic trace-event tags rather than numeric trace-eventIDs as the
event-idparameter of thetracepoint command, then you must specify an event-ma
file. You may specify multiple event-map files by repeating theeventmap parameter.
7-81

NightView User’s Guide

be

.

t-

-77.
re-

be

same
lua-

on is
age

age
As long as the files do not contain conflicting definitions for tags, all the tags will
defined for use as trace-event identifiers.

tracepoint 7

Set a tracepoint.

tracepoint [eventpoint-modifier] event-id [name =tracepoint-name]
[[at] location-spec] [value= logged-expression]
[if conditional-expression]

eventpoint-modifier

Specifies the tracepoint modifier. See “Eventpoint Modifiers” on page 7-77

event-id

An identifier for the trace event to be traced byNightTrace . This is either a
numeric trace-eventID or a symbolic trace-event tag obtained from the even
map file specified by theeventmapparameter of theset-trace command
(see “set-trace” on page 7-81).

name=tracepoint-name

Gives a name to the tracepoint for later reference. See “name” on page 7
If tracepoint-nameis already defined, then this command adds the newly c
ated tracepoints to the list of eventpoints associated with the name.

location-spec

Specifies the tracepoint location. See “Location Specifiers” on page 7-9.

If location-specis omitted, then the location used is the next instruction to
executed in the current stack frame.

value= logged-expression

Specifies that the value oflogged-expressionshould be recorded with the trace
event. The expression is evaluated in the user program, so it obeys the
rules that conditional and patchpoint expressions do. See “Expression Eva
tion” on page 3-18.

if conditional-expression

Specifies a tracepoint condition. The language and scope of the expressi
determined by the location at which the tracepoint is set (see “Scope” on p
3-22 and “Context” on page 3-22). See also “Expression Evaluation” on p
3-18.

NOTE

The name, value , and if keywords may not be abbreviated in
this command.
7-82

Command-Line Interface

the
oint
g to

is

h” on

the
r.

ation
same

in a
were

441
ned a
The tracepoint command sets a tracepoint in each of the processes specified by
qualifier. This causes the program to emit special tracing output at the tracep
location. An optional condition may be applied to the tracepoint which causes tracin
be performed only if the condition evaluates toTRUE. The conditional expression
conditional-expressionis evaluated in the user program when the tracepoint location
reached (unless the tracepoint is currently being ignored, see “ignore” on page 7-91).

Tracepoints set in a process remain set even if youdetach the debugger from the
program, unless the tracepoint was disabled at the time you detached (See “detac
page 7-32 and “disable” on page 7-90).

NOTE

The ntrace(3X) routines must have been linked into the pro-
gram when it was built. If the program does not initialize tracing,
then you must initialize tracing manually by evaluating expres-
sions that contain calls to the appropriate trace routines
(trace_start followed by trace_open_thread).

The debugger doesnot start thentraceud(1) monitor process.
You must do that manually (see “NightTrace Monitor” on page
3-34).

If more than one tracepoint is set (through the use of more than one process in
qualifier) then each tracepoint in each process is assigned a unique tracepoint numbe

It is possible (and sometimes useful) to set more than one tracepoint at the same loc
in a process. Perhaps there is more than one noteworthy event that takes place at the
location in your program. If more than one tracepoint is set at the same location
given process, then the tracepoints at that location are recorded in the order they
defined.

Example:

(local) (441 115) tracepoint 27 name=loop_trace sort.c:42

This example sets two tracepoints at line 42 of the file namedsort.c and associates
both tracepoints with the name ’loop_trace’. One of the tracepoints is set in process
and the other tracepoint is set in process 115. Each of the two tracepoints is assig
unique tracepoint number. TheID of the trace event to trace is given by the number 27.

monitorpoint 7

Monitor the values of one or more expressions at a given location.

monitorpoint [eventpoint-modifier] [name =monitorpoint-name]
[[at] location-spec]
7-83

NightView User’s Guide

e

age
e

the

.

be

by

o

ands
The
itor
see

,

the
that

d to it
eventpoint-modifier

Specifies the monitorpoint modifier. See “Eventpoint Modifiers” on pag
7-77.

name=monitorpoint-name

Gives a name to the monitorpoint for later reference. See “name” on p
7-77. If monitorpoint-nameis already defined then this command adds th
newly created monitorpoints to the list of eventpoints associated with
name.

location-spec

Specifies the monitorpoint location. See “Location Specifiers” on page 7-9

If location-specis omitted, then the location used is the next instruction to
executed in the current stack frame.

Themonitorpoint command sets a monitorpoint in each of the processes specified
the qualifier. Each line following themonitorpoint command must be a special form
(described later) ofprint command; eachprint command specifies an expression t
be evaluated and monitored at the location of the monitorpoint. To end the list ofprint
commands, typeend monitor on a line by itself.

In the command-line and simple full-screen interfaces, the prompt changes to> while
you are entering the attachedprint commands. See “Command Syntax” on page 7-1.

When the monitorpoint is executed, the expressions specified in the attached comm
will be evaluated and their values saved in a location reserved by NightView.
monitored values are displayed periodically in a monitor display area; see “Mon
Window” on page 3-25. For a more detailed description of monitorpoints,
“Monitorpoints” on page 3-9.

The syntax of the commands attached to a monitorpoint is:

print [/ print-format-letter] [id=" string"] expression

This syntax is identical to theprint NightView command (see “print” on page 7-65)
with the addition of the optionalid=" string" argument. Thestring, if specified, is used
to identify the monitored expression in the monitor display area. If you do not specify
id= parameter, the text of the expression itself is used as the identifying string. Note
you may not abbreviate theid= keyword to anything shorter (like "i").

Once you have created a monitorpoint, you can change the set of commands attache
(and thus the expressions being monitored) using thecommands command. See
“commands” on page 7-88.

Example:

(local) monitorpoint file.c:12
> print variable1
> print id="Velocity (ft/sec)" variable2
> end monitor

In this example, two variables will be monitored at line 12 offile.c . The first
7-84

Command-Line Interface

e

itor-
ent
oved
int
ee

ff
rn-

ch
k
rned

he
ni-
variable,variable1 , will be displayed using its name as the identifying string. Th
second variable,variable2 , will be displayed with the stringVelocity (ft/sec) .

mcontrol 7

Control the monitor display window.

mcontrol {display | nodisplay} [monitorpoint-spec...]

Turn on or off the display of individual monitorpoints in the monitor window.

mcontrol delay milliseconds

Set the milliseconds to delay between monitor window updates.

mcontrol {off | on | stale | nostale | hold | release}

Toggle a monitoring parameter.

Abbreviation: hold

This is an abbreviation formcontrol hold .

Abbreviation: release

This is an abbreviation formcontrol release .

display nodisplay

These keywords are used to enable or disable the display of specific mon
points in the monitor window. The monitorpoints appearing in the argum
and in the processes specified by the qualifier are either added to or rem
from the monitor window display area. This does not affect the monitorpo
itself, it simply determines which monitorpoints are shown in the window. S
“monitorpoint” on page 7-83.

on off

These keywords turn the monitor window on or off. You may wish to turn o
the monitor window to reclaim screen space, then turn it back on later. Tu
ing off the window also does ahold , but turning the windowon does not
implicitly do a release .

stale nostale

The monitor window normally displays a stale data indication next to ea
value. Thenostale keyword causes the monitor window to display blan
space rather than one of the stale data indicators. The indicators may be tu
back on with thestale keyword.

hold release

Thehold andrelease keywords are used to hold or release updates of t
monitor window. When the window is held, the values displayed in the mo
7-85

NightView User’s Guide

not

p

en
he
r

tor

n the

7.

-77.
re-

be

t” on

gent

s
d the
tor window will no longer change (the processes containing the values are
affected, they continue to run). Therelease keyword allows the monitor
window to start updating the values again.

Interrupting the debugger implicitly causes the Monitor Window to sto
updating. See “Interrupting the Debugger” on page 3-28.

delay

The monitor window normally waits one second (1000 milliseconds) betwe
updates. A different number of milliseconds may be specified following t
delay keyword. If you tell it to wait zero milliseconds, it updates the monito
window as fast as it possibly can.

All of the mcontrol parameters allow you to control various aspects of the moni
display window (see “Monitor Window” on page 3-25).

You may not combine parameters on themcontrol command. Only one keyword may
be used in one invocation of the command. The command qualifier is only used whe
display or nodisplay keywords are used to specify a list of monitorpoints.

agentpoint 7

Insert a call to a debug agent at a given location.

agentpoint [eventpoint-modifier] [name =agentpoint-name]
[[at] location-spec]

eventpoint-modifier

Specifies the patchpoint modifier. See “Eventpoint Modifiers” on page 7-7

name=agentpoint-name

Gives a name to the agentpoint for later reference. See “name” on page 7
If agentpoint-nameis already defined then this command adds the newly c
ated agentpoints to the list of eventpoints associated with the name.

location-spec

Specifies the agentpoint location. See “Location Specifiers” on page 7-9.

If location-specis omitted, then the location used is the next instruction to
executed in the current stack frame.

Once an agentpoint is installed, a call to a special debug agent (see “Debug Agen
page 3-15) will be executed each time control reacheslocation-specin the program. After
the debug agent is executed, the original instruction will also execute. The debug a
allows you to debug your process while it is running.

You may attach a condition or ignore count to an agentpoint, using thecondition (see
“condition” on page 7-88) orignore (see “ignore” on page 7-91) commands. Thi
suppresses execution of the debug agent unless the ignore count is zero an
conditional expression evaluates toTRUE.
7-86

Command-Line Interface

they

page

just
ltiple
tpoint

ee

be

an

oint.

point
Agentpoints are implemented by modifying the executable code for the program, so
remain in effect until the program exits, even if youdetach the debugger from the
program, unless the agentpoint was disabled when you detached (see “detach” on
7-32 and “disable” on page 7-90).

For best results, the debug agent should be executed frequently. If you cannot find
one place in your program that is executed frequently enough, you may create mu
agentpoints, each at a different location. You can enable and disable each agen
independently.

clear 7

Clear all eventpoints at a given location.

clear [[at] location-spec]

location-spec

Specifies the location from which all eventpoints are to be removed. S
“Location Specifiers” on page 7-9.

If location-specis omitted, then the location used is the next instruction to
executed in the current stack frame. See “Current Frame” on page 3-23.

clear removes all eventpoints at the specified location in each process. Once
eventpoint has served its purpose, the eventpoint may be removed by using theclear or
delete commands (see “delete” on page 7-89). Both commands remove an eventp
clear removes eventpoints based on where they are in the process.delete removes
eventpoints specified by name or by eventpoint-number.

NOTE

A location specifier may sometimes designate multiple locations
(see “Location Specifiers” on page 7-9). Hence, it is possible for a
single eventpoint to be set at multiple locations. If any of the loca-
tions at which an eventpoint is set match any of the locations
implied by the location specifier for theclear command, then
that eventpoint will be removed (fromall of its corresponding
locations).

It is unnecessary to clear a breakpoint in order to continue execution after the break
has stopped the program.

Example:

(local) clear sort.c:42

This example removes all eventpoints set at line 42 of the file namedsort.c in each of
the processes specified by the default qualifier.
7-87

NightView User’s Guide

hed.

ints
the
s or

a

oint
also
rom
d is

sume

that

r
e all

s is

rs”

lua-
commands 7

Attach commands to a breakpoint or monitorpoint.

commands eventpoint-spec

eventpoint-spec

The breakpoints or monitorpoints to which the given commands are attac
See “Eventpoint Specifiers” on page 7-12.

The commands command attaches the given list of commands to the given breakpo
or monitorpoints in processes specified by the qualifier. Each line following
commands command-line should be a command to associate with the breakpoint
monitorpoints. To end the list of commands, type ’end’ on a line by itself. For
breakpoint, each of the commands given is implicitly qualified with thePID of the process
that stopped as a result of this breakpoint being hit.

In the command-line and simple full-screen interfaces, the prompt changes to> while
you are entering this command. See “Command Syntax” on page 7-1.

If the first line given is ’silent’, then the usual message that is printed when a breakp
stops the process will be suppressed. Furthermore, the ’silent’ command will
prevent the current source line from being listed, and will prevent any displays f
being updated. The ’silent’ command is valid only when attached to a breakpoint an
useful for breakpoints that are intended only to print a specific message and then re
execution.

Certain commands (such ascontinue , resume , and signal), once executed, will
automatically terminate the command stream associated with a set of commands
were attached to a breakpoint using thecommands command. See “continue” on page
7-94, “resume” on page 7-95, and “signal” on page 7-101.

Although you can use thecommands command to attach commands to eithe
breakpoints or monitorpoints, the eventpoints specified on the command line must b
of one type or the other. Also note that the commands allowed for monitorpoint
restricted toprint commands. See “monitorpoint” on page 7-83.

condition 7

Attach a condition to an eventpoint.

condition eventpoint-spec[conditional-expression]

eventpoint-spec

The eventpoints associated with the condition. See “Eventpoint Specifie
on page 7-12.

conditional-expression

The condition to be associated with the eventpoints. See “Expression Eva
tion” on page 3-18.
7-88

Command-Line Interface

t is

ified

ints,
ssion,

f the
one).
n is

so

thus

d to

.

the
n
y

). If
The simplest type of breakpoint is one which stops the program each time i
encountered (anunconditional breakpoint). Often however, you may wish to stop the
program at a given location only after a certain event has occurred or when a spec
condition has been met (aconditional breakpoint). The condition command may be
used to attach a condition to a breakpoint.

In a similar manner, conditions may also be attached to tracepoints, monitorpo
agentpoints, and patchpoints, causing the desired tracing, monitoring, patched expre
or debug-agent call to take effect only when the associated condition evaluates toTRUE.

The condition command attaches the conditionconditional-expressionto one or more
eventpoints in the processes specified by the qualifier. Ifconditional-expressionis
omitted, then any condition attached to the specified eventpoint is removed in each o
processes specified by the qualifier, (and the eventpoint becomes an unconditional
If the specified eventpoint already has a condition attached to it, the existing conditio
replaced withconditional-expression.

Examples:

(local) breakpoint name=loop at foo.c:12
(local) condition loop (index == 0)
(local) condition loop

The first condition command attaches a condition to the breakpoint named ’loop’
that it only stops the program when the variable ’index’ is zero. The secondcondition
command removes any condition associated with the breakpoint named ’loop’ (
making it an unconditional breakpoint).

(local) trace MyEvent name=trace1 at foo.c:12
(local) condition trace1 (x>12)

In this example, a tracepoint named ’trace1’ is set, and the condition ’x>12’ is attache
the tracepoint. Therefore, the event will be traced only when ’x’ is greater than 12.

delete 7

Delete an eventpoint.

delete [eventpoint-spec...]

Abbreviation: d

eventpoint-spec

The eventpoints to be deleted. See “Eventpoint Specifiers” on page 7-12

delete removes the specified eventpoints in each of the processes specified by
qualifier. Bothdelete and clear may be used to delete eventpoints (see “clear” o
page 7-87). The difference is thatdelete removes eventpoints specified by name or b
eventpoint-number andclear removes eventpoints specified by location.

If eventpoint-specis omitted and your safety-level isunsafe thenall eventpoints in the
processes specified by the qualifier are removed (see “set-safety” on page 7-49
eventpoint-specis omitted and your safety-level isverify , then you are prompted for
7-89

NightView User’s Guide

ions”

nly

cond

.

cified
oint.
iated
ade

t is

). If

ions”

nly

efault
ame

oints
14 in
confirmation before the eventpoints are removed (see “Replying to Debugger Quest
on page 7-16). Ifeventpoint-specis omitted and your safety-level isforbid then no
eventpoints are removed.

The effect of the qualifier on this command is to limit the eventpoints deleted to be o
those that occur in the processes specified by the qualifier.

Examples:

(local) d loop
(local) d 2 5

The first example removes all eventpoints associated with the name ’loop’. The se
example removes eventpoints 2 and 5.

disable 7

Disable an eventpoint.

disable [eventpoint-spec...]

eventpoint-spec

The eventpoints to be disabled. See “Eventpoint Specifiers” on page 7-12

Thedisable command disables the given eventpoints in each of the processes spe
by the qualifier. Disabling an eventpoint is not quite the same as removing an eventp
When an eventpoint is removed, it is made inoperative and all the information assoc
with the eventpoint is removed. When an eventpoint is disabled, it is simply m
inoperative. It may still be seen, however, if you use theinfo eventpoint command
(see “info eventpoint” on page 7-112). All information associated with the eventpoin
still retained so that the eventpoint may later be reactivated using theenable command
(see “enable” on page 7-91).

If eventpoint-specis omitted and your safety-level isunsafe thenall eventpoints in the
processes specified by the qualifier are disabled (see “set-safety” on page 7-49
eventpoint-specis omitted and your safety-level isverify , then you are prompted for
confirmation before the eventpoints are disabled (see “Replying to Debugger Quest
on page 7-16). Ifeventpoint-specis omitted and your safety-level isforbid then no
eventpoints are disabled.

The effect of the qualifier on this command is to limit the eventpoints disabled to be o
those that occur in the processes specified by the qualifier.

Example:

(local) disable 4
(local) (115 441) disable calvin
(local) (549) disable 8 hobbes 12 14

The first example disables eventpoint number 4 in the processes specified by the d
qualifier. The second example disables the eventpoints associated with the n
’calvin ’ in process 115 and in process 441. The third example disables the eventp
associated with the name ’hobbes’ and disables eventpoints numbered 8, 12, and
7-90

Command-Line Interface

then
e a

be
are

e ’/’.

.

the

r the
e

ll be

nly

fault
-only
hird
name
).
process 549.

enable 7

Enable an eventpoint for a specified duration.

enable [/once|/delete] eventpoint-spec...

/once

Specify whether the given eventpoints are to be enabled once only and
immediately disabled after the next time they are hit. There need not b
space between the command name and the ’/’.

/delete

Valid only for breakpoints. Specify whether the given breakpoints are to
enabled once only and then immediately deleted after the next time they
executed. There need not be a space between the command name and th

eventpoint-spec

The eventpoints to be enabled. See “Eventpoint Specifiers” on page 7-12

The enable command enables for the specified duration each of the eventpoints in
processes specified by the qualifier. If neither/once nor /delete is specified, then
the given eventpoints are simply enabled. If/once is specified, then the given
eventpoints are temporarily enabled. The eventpoints will be disabled again afte
next time they are hit. If/delete is specified, then for each process in the qualifier, th
given breakpoints are enabled and also marked for deletion. The breakpoints wi
deleted after the next time they are hit.

The effect of the qualifier on this command is to limit the eventpoints enabled to be o
those that occur in the processes specified by the qualifier.

Examples:

(local) enable calvin
(local) enable /once 4 6 23
(local) enable /delete 8 hobbes

The first example enables all eventpoints associated with the name ’calvin’ in the de
qualifier. The second example enables eventpoints number 4, 6, and 23 for once
execution (the eventpoints will be disabled after the next time they are hit). The t
example enables breakpoint number 8, and the breakpoints associated with the
’hobbes’ for deletion (these breakpoints will be deleted after the next time they are hit

ignore 7

Attach an ignore-count to an eventpoint.
7-91

NightView User’s Guide

t of
The

is is
of a
be

red 4

-77.
re-

ion is
age
ge

oint
ignore eventpoint-spec count

eventpoint-spec

The eventpoints to be ignored. See “Eventpoints” on page 3-8.

count

The number of times to ignore the eventpoint. Specifying an ignore-coun
zero has the effect of causing the eventpoints to no longer be ignored.
ignore-count is evaluated in the user's process.

The ignore command causes the specified eventpoints to be skipped the nextcount
times execution reaches them (even if the eventpoint is a conditional eventpoint). Th
accomplished by attaching an ignore-count to the given eventpoints. In the case
breakpoint, any NightView commands associated with the breakpoint will not
executed until the breakpoint is hit.

Example:

(local) ignore calvin 4

This example causes the eventpoints associated with the name ’calvin’ to be igno
times before they may be hit again.

tbreak 7

Set a temporary breakpoint.

tbreak [name= breakpoint-name] [[at] location-spec]
[if conditional-expression]

name=breakpoint-name

Gives a name to the breakpoint for later reference. See “name” on page 7
If breakpoint-nameis already defined then this command adds the newly c
ated breakpoints to the list of eventpoints associated with the name.

location-spec

Specifies the breakpoint location. See “Location Specifiers” on page 7-9.

if conditional-expression

Specifies an eventpoint condition. The language and scope of the express
determined by the location at which the breakpoint is set (see “Scope” on p
3-22 and “Context” on page 3-22). See “Expression Evaluation” on pa
3-18.

Note: Theat , if , andname keywords may not be abbreviated in this command.

Like the breakpoint command (see “breakpoint” on page 7-78), thetbreak
command sets a breakpoint. The difference between the two is thattbreak sets a one-
time-only breakpoint in each of the processes specified by the qualifier. The breakp
7-92

Command-Line Interface

file

int is

ce.

es.

ca-
r to

be

rt

s

valu-

o
igi-
will be disabled after being hit once.

Example:

(local) (115) tbreak sort.c:48

This example sets a temporary breakpoint in process 115 at line 48 of the source
sort.c .

tpatch 7

Set a patchpoint that will execute only once.

tpatch [name =patchpoint-name] [[at] location-spec] eval expression

Insert an expression in the program that will be executed the next time the patchpo
hit, then never executed again unless explicitly enabled. See “enable” on page 7-91.

tpatch [name=patchpoint-name] [[at] location-spec] goto location-spec

Overwrite an instruction in the program with a branch that will only be taken on
Subsequent execution will ignore the patchpoint and execute the original instruction.

name= patchpoint-name

Patchpoints are assigned event numbers, and thename= syntax as well as the
name command (see “name” on page 7-77) may be used to give them nam
See “Manipulating Eventpoints” on page 7-76.

at location-spec

Specify the exact point in the program to execute the patchpoint. See “Lo
tion Specifiers” on page 7-9. The patchpoint is executed immediately prio
any existing code at this location.

If location-specis omitted, then the location used is the next instruction to
executed in the current stack frame. See “Current Frame” on page 3-23.

eval expression

This variant of thepatchpoint command specifies an expression to inse
in the program at the designatedlocation-spec. Ada, C and C++ programmers
should note that this is an expression and not a statement; therefore, it doenot
end with a semicolon. (The concept ofexpressionis extended to include
assignments and procedure calls in Ada and Fortran.) See “Expression E
ation” on page 3-18.

goto location-spec

This variant of thepatchpoint command specifies a location to branch t
when the program reaches the point of the patchpoint. The instruction or
nally at the patchpoint location will not be executed.
7-93

NightView User’s Guide

oint
be

” on

uld

in the
you

ware
o stop

the

use

that
esses

re
NOTE

The keywordsname, at , eval , andgoto may not be abbrevi-
ated in this command.

The tpatch command is a variant of thepatchpoint command. See “patchpoint” on
page 7-79. It works exactly like the patchpoint command, but a temporary patchp
will automatically disable itself after executing one time. A temporary patchpoint may
enabled later, in which case it will act exactly like a normal patchpoint. See “enable
page 7-91.

A temporary patchpoint may be useful for patching in initialization code which sho
only execute once.

Controlling Execution 7

This section describes commands used to control the execution of a process.

Most of the commands described in this section cause the processes specified
qualifier to resume execution and then wait for something to happen. (This is what
usually want when you are debugging a single process.) Onlyresume resumes
execution and then returns immediately for another command.

Some of the commands continue until something special happens. For example,step
continues until control crosses a source line boundary. However, you should be a
that another event, such as a signal or hitting a breakpoint, may cause the process t
sooner.

If the process stopped because of a signal, then it will receive that signal when
process resumes, subject to the setting of thehandle command, see “handle” on page
7-102. If you want the process to receive a different signal, or no signal at all, then
thesignal command. See “signal” on page 7-101.

If you ask to continue execution of a process with any of the commands here, and
process is already executing, then you get a warning message. Any other proc
specified by the qualifier are continued.

If a process is stopped at a breakpoint, it isnot necessary to remove the breakpoint befo
continuing.

continue 7

Continue execution and wait for something to happen.

continue [count]

Abbreviation: c
7-94

Command-Line Interface

ent

t the
ecute

ore
ome

a
t has
t for

the
rther

, the
eted

g an

d is

at the

out

1.

ignal
count

If the countargument is specified the processes will not stop at the curr
breakpoint again until they have hit itcounttimes. This argument is ignored
for any processes that are not stopped at breakpoints.

continue causes the processes specified by the qualifier to resume execution a
point where they last stopped. Processes run concurrently. Each process will ex
until some event, such as hitting a breakpoint, causes it to stop.

If this command is entered interactively, the debugger does not prompt for any m
commands until one of the processes specified by the qualifier stops executing for s
reason. Note that only one of the specified processes has to stop for thecontinue
command to complete; it does not wait forall of the processes to stop. Note also that
process is considered to be stopped the moment it hits a breakpoint; if the breakpoin
commands attached to it, they probably will not execute before you receive a promp
another command.

If a continue command in a breakpoint command stream continues execution of
process stopped at that breakpoint, the command stream is terminated; no fu
commands are executed from that stream. If acontinue command continues execution
of a process that is currently executing another breakpoint command stream
continue command does not take effect until that command stream has compl
execution. See “Command Streams” on page 3-27.

If a continue command continues execution of a process that is currently executin
on program or on restart command stream, thecontinue command does not
take effect until the affected process has been completely initialized by NightView an
ready to be debugged.

continue is similar toresume . See “resume” on page 7-95.

Example:

(local) c 5

The processes specified by the default qualifier are resumed and will not stop again
current breakpoint until it has been hit 5 times.

resume 7

Continue execution.

resume [sigid]

sigid

The processes receive the specified signal when they resume execution.sigid
is a signal name or number. You may specify a signal name with or with
the SIG prefix; the name is case-insensitive. Ifsigid is 0, then the processes
receive no signal when they resume execution. See “signal” on page 7-10

If this argument is not present, then the processes are resumed with the s
that caused them to stop, similar tocontinue .
7-95

NightView User’s Guide

point
until

the
rther

f

. See

is

See

ult

they

ure
nd

utput
e

resume causes the processes specified by the qualifier to resume execution at the
where they last stopped. The processes run concurrently. Each process will execute
some event, such as hitting a breakpoint, causes it to stop.

If a resume command in a breakpoint command stream continues execution of
process stopped at that breakpoint, the command stream is terminated; no fu
commands are executed from that stream. If aresume command continues execution o
a process that is currently executing another breakpoint command stream, theresume
command does not take effect until that command stream has completed execution
“Command Streams” on page 3-27.

If a resume command continues execution of a process that is currently executing anon
program or on restart command stream, theresume command does not take
effect until the affected process has been completely initialized by NightView and
ready to be debugged.

The difference betweenresume and continue is that resume does not wait for the
processes to stop. The debugger continues to read and process commands.
“continue” on page 7-94.

Example:

(local) resume 0

The processes specified by the default qualifier are resumed with no signal.

Example:

(local) resume 2

The processes specified by the default qualifier are resumed with signal number 2.

step 7

Execute one line, stepping into procedures.

step [repeat]

Abbreviation: s

repeat

The repeatargument specifies the number of lines to single step. The defa
is one line.

step causes the processes specified by the qualifier to continue execution until
have crossed a source line boundary. With a repeat count, this happensrepeattimes.

step follows execution into called procedures. That is, if the current line is a proced
call, and youstep , then the process will execute until it is in that new procedure a
then stop. If you want to step over the procedure, usenext . See “next” on page 7-97.

If a step command causes execution to enter or leave a called procedure, then the o
includes the equivalent of aframe 0 command to show this. See “frame” on pag
7-96

Command-Line Interface

have
. See

and

-23.

7-98

lls

ultiple
you

Line
of

, the
ge

ult

they
7-105.

This command completes only when all of the processes specified by the qualifier
completed the single step or stopped for some other reason (like receiving a signal)
“Signals” on page 3-10 for a discussion of the interactions between single-stepping
signals.

step is interpreted relative to the current frame. See “Current Frame” on page 3
That is, any lower frames are automatically finished before stepping.

There are also commands to single step individual instructions. See “stepi” on page
and “nexti” on page 7-99.

When the program has just started,step steps to the beginning of the procedure that ca
static initializers or library-level elaboration procedures, if any. If there are none,step
steps to the beginning of the main procedure.

Because of optimization and other considerations, a process may appear to stop m
times in the same line or not at all in some lines. The decorations that appear when
list the source can help you decide which lines are executable (see “Source
Decorations” on page 7-62). Also, disassembly can help you determine the flow
control through your program (see “x” on page 7-67).

If the step command causes execution to enter a procedure which is uninteresting
step acts likenext . See “Interesting Subprograms” on page 3-24. See “next” on pa
7-97.

If an exception propagates to the current frame or a calling frame, then thestep com-
pletes and execution is stopped at the beginning of the exception handler.

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
the call.

next 7

Execute one line, stepping over procedures.

next [repeat]

Abbreviation: n

repeat

The repeatargument specifies the number of lines to single step. The defa
is one line.

next causes the processes specified by the qualifier to continue execution until
have crossed a source line boundary. With a repeat count, this happensrepeattimes.
7-97

NightView User’s Guide

and
as

utput
e

have
. See

and

-23.

7-99

stop
pear
urce

w of

he

y the
next steps over called procedures. That is, if the current line is a procedure call,
you single step withnext , then the process will execute until that new procedure h
returned. If you want to follow execution into the procedure, usestep . See “step” on
page 7-96.

If a next command causes execution to leave a called procedure, then the o
includes the equivalent of aframe 0 command to show this. See “frame” on pag
7-105.

This command completes only when all of the processes specified by the qualifier
completed the single step or stopped for some other reason (like receiving a signal)
“Signals” on page 3-10 for a discussion of the interactions between single-stepping
signals.

next is interpreted relative to the current frame. See “Current Frame” on page 3
That is, any lower frames are automatically finished before stepping.

There are also commands to single step individual instructions. See “nexti” on page
and “stepi” on page 7-98.

When the program has just started,next steps to the beginning of the main procedure.

Because of optimization and other considerations, each process may appear to
multiple times in the same line or not at all in some lines. The decorations that ap
when you list the source can help you decide which lines are executable (see “So
Line Decorations” on page 7-62). Also, disassembly can help you determine the flo
control through your program (see “x” on page 7-67).

If an exception propagates to the current frame or a calling frame, then thenext com-
pletes and execution is stopped at the beginning of the exception handler.

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
the call.

stepi 7

Execute one instruction, stepping into procedures.

stepi [repeat]

Abbreviation: si

repeat

The repeatargument specifies the number of instructions to single step. T
default is one instruction.

stepi executes a single machine instruction in each of the processes specified b
7-98

Command-Line Interface

have
. See

and

-23.

To do

, the
on

he

y the

have
. See

and

-23.
qualifier.

This is very similar tostep , except thatstep executes lines andstepi executes
individual instructions. See “step” on page 7-96.

This command completes only when all of the processes specified by the qualifier
completed the single step or stopped for some other reason (like receiving a signal)
“Signals” on page 3-10 for a discussion of the interactions between single-stepping
signals.

stepi is interpreted relative to the current frame. See “Current Frame” on page 3
That is, any lower frames are automatically finished before stepping.

Sometimes, when stepping by instructions, it is useful to set up adisplay command to
show the instruction that is just about to be executed each time the process stops.
that, say

(local) display/i $pc

See “display” on page 7-71.

If the stepi command causes execution to enter a procedure which is uninteresting
stepi acts likenexti . See “Interesting Subprograms” on page 3-24. See “nexti”
page 7-99.

If an exception propagates to the current frame or a calling frame, then thestepi com-
pletes and execution is stopped at the beginning of the exception handler.

nexti 7

Execute one instruction, stepping over procedures.

nexti [repeat]

Abbreviation: ni

repeat

The repeatargument specifies the number of instructions to single step. T
default is one instruction.

nexti executes a single machine instruction in each of the processes specified b
qualifier.

This is very similar tonext , except thatnext executes lines andnexti executes
individual instructions. See “next” on page 7-97.

This command completes only when all of the processes specified by the qualifier
completed the single step or stopped for some other reason (like receiving a signal)
“Signals” on page 3-10 for a discussion of the interactions between single-stepping
signals.

nexti is interpreted relative to the current frame. See “Current Frame” on page 3
That is, any lower frames are automatically finished before stepping.
7-99

NightView User’s Guide

This

hich
the

til

eing

tput

have
ng a
een

ases
re a

een
that
If an exception propagates to the current frame or a calling frame, then thenexti com-
pletes and execution is stopped at the beginning of the exception handler.

finish 7

Continue execution until the current function finishes.

finish

finish causes a process to continue execution until the current frame returns.
happens in each process specified by the qualifier.

Note that this may cause the process to finish multiple procedures, depending on w
frame is the current frame. See “frame” on page 7-105. If the current frame is in
context of a task, thread, orLWP chosen by theselect-context command, execution
continues until that task, thread, orLWP completes execution of that procedure, or un
the process stops for some other reason.

In general, the exact action of this command is dependent on the language b
debugged.

The finish command causes execution to leave a called procedure, so the ou
includes the equivalent of aframe 0 command to show this.

This command completes only when all of the processes specified by the qualifier
completed the function execution or stopped for some other reason (like receivi
signal). The discussion in “Signals” on page 3-10 concerning interactions betw
single-stepping and signals also applies to thefinish command.

If an exception propagates past the current frame, then thefinish completes and execu-
tion is stopped at the beginning of the exception handler.

stop 7

Stop a process.

stop

Thestop command stops each of the processes specified by the qualifier. In many c
(such as setting breakpoints), NightView requires a process to be stopped befo
command may be applied to the process.

The stop command does not complete until all of the specified processes have b
stopped. If a specified process is already stopped, this command silently ignores
process.
7-100

Command-Line Interface

ci-

each

nter
or the

gnal

m a
WARNING

It is possible, though unlikely, that the process will stop of its own
accord (say by hitting a breakpoint) while NightView is trying to
stop it. If that happens, your process may receive a spurious
SIGTRAPsignal the next time you resume its execution. This sig-
nal should be harmless; resuming your process after this signal
occurs should get everything back to normal.

Example:

(local) (addams) stop

This example stops each of the processes in the process family named ’addams’.

jump 7

Continue execution at a specific location.

jump [at] location-spec

location-spec

The location-specspecifies where to continue execution. See “Location Spe
fiers” on page 7-9.

jump causes execution to continue at the specified location. This happens for
process specified in the qualifier.

jump does not modify the stack frames or registers, it just modifies the program cou
and continues execution. Unless you are sure the registers have the right contents f
new location, you are cautioned to avoid using this command.

You must be in frame 0, with no hidden frames below frame zero, to usejump . See
“Interesting Subprograms” on page 3-24.

signal 7

Continue execution with a signal.

signal sigid

sigid

Specifies the name or number of the signal with which to continue. Ifsigid is
0, then the processes are continued without a signal. You may specify a si
name with or without theSIG prefix; the name is case-insensitive.

signal resumes execution of the processes specified in the qualifier, passing the
signal.
7-101

NightView User’s Guide

ized
sing

the
rther

f

. See

is

age

l”

y to
e

signal is useful if a process has received a signal (causing it to stop and be recogn
by the debugger), but you don't want it to see the signal. Then, rather than u
continue to continue the process, usesignal 0 .

Or, perhaps you want the process to receive a different signal.signal can resume your
process with any signal.

If a signal command in a breakpoint command stream continues execution of
process stopped at that breakpoint, the command stream is terminated; no fu
commands are executed from that stream. If asignal command continues execution o
a process that is currently executing another breakpoint command stream, thesignal
command does not take effect until that command stream has completed execution
“Command Streams” on page 3-27.

If a signal command continues execution of a process that is currently executing anon
program or on restart command stream, thesignal command does not take
effect until the affected process has been completely initialized by NightView and
ready to be debugged.

For a way to have the debugger deal with signals automatically, see “handle” on p
7-102. signal overrides thepass setting ofhandle .

Type info signal to get a list of all of the signals on your system. See “info signa
on page 7-121.

Example:

(local) signal 2

The processes resume with signal number 2.

handle 7

Specify how to handle signals and Ada exceptions in the user process.

handle [/signal] sigid keyword ...

handle /exception exception-name keyword...

handle /exception unit-name keyword...

handle /exception all keyword ...

handle /unhandled_exception keyword ...

/signal

Specifies handling of a signal. This is the default.

sigid

Specifies the name or number of a signal to handle. Does not appl
handle /exception commands. You may specify a signal nam
with or without theSIG prefix; the name is case-insensitive.
7-102

Command-Line Interface

his
s

e
cal

he

ns

m

by,

tion.
s

m-
ical
See
/exception

Specifies handling of an Ada exception.

exception-name

Specifies the name of a particular Ada exception to be handled. T
form of handle/exception takes precedence over any previou
handle/exception command that specifiedall .

unit-name

Specifies that all Ada exceptions defined in the specified unit will b
handled according to the keyword specifications. The effect is identi
to the effect obtained by mentioning each of those exceptions in ahan-
dle/exception command.

all

Specifies that all Ada exceptions will be handled as specified by t
keywords. This overrides any previoushandle/exception com-
mand that specifies either anexception-nameor a unit-name. Doesn't
apply to signal handling specifications, nor to the handling of exceptio
for which the user program does not have a handler (usehandle/
unhandled_exception for that).

/unhandled_exception

Specifies the handling (by NightView) of exceptions raised by the progra
when the program has no handler of its own for that exception.

keyword

keywordis one ofstop , nostop , print , noprint , pass or
nopass . Multiple keywords may be specified.

handle tells the debugger how to deal with signals sent to, or exceptions generated
the user program.

Here are the meanings of the keywords:

stop

The process stops when it gets this signal or exception.print is implied
with this keyword.

nostop

The process continues executing automatically after the signal or excep
You may still useprint to tell you when the signal or exception ha
occurred.

print

NightView notifies you that the signal or exception has occurred. In the co
mand-line interface, a message is printed to your terminal. In the graph
user interface, a message is printed in the Debug Message Area.
7-103

NightView User’s Guide

age

key-

his

opped
is
it is

ee

ove.
of

you.

es it.

ear.
Chapter 9 [Graphical User Interface] on page 9-1. See “Debug Mess
Area” on page 9-28.

noprint

You do not receive notification when the signal or exception occurs.nostop
is implied with this keyword.

pass

The signal will be passed to your process the next time it executes. This
word is not applicable to Ada exceptions.

nopass

The signal is discarded, after stopping and printing if that's appropriate. T
keyword is not applicable to Ada exceptions.

In most cases, a signal sent to a debugged program will cause that program to be st
and NightView to be notified of the signal. NightView's normal action for most signals
to notify you of the signal and save it to be passed to the process the next time
continued. For example, the default setting forSIGQUIT would be described as:

(local) handle sigquit stop print pass

This default behavior can be altered by thehandle command. Some settings allow the
system to avoid stopping your process and notifying NightView of the signal. S
“Signals” on page 3-10 for more information about this.

The default action for a few signals is different than the behavior described ab
ConsiderSIGALRM, which is not usually an error; it is used in the normal functioning
the program. You usually don't want to know when your program gets aSIGALRM (but
your program does) so the default setting forSIGALRM is:

(local) handle sigalrm nostop noprint pass

This says that if NightView discovers that your process has been sent aSIGALRM, it will
automatically resume execution and pass the signal to the process without notifying
(NightView may not even be aware of the signal with these settings of thehandle
command. See “Signals” on page 3-10.)

SIGINT is handled a little differently; when the process receives aSIGINT, the process stops
and NightView notifies you, but the signal is discarded, so that the process never se
The normal setting forSIGINT is:

(local) handle sigint stop print nopass

For Ada programs the signalSIGADA is set as follows.

(local) handle sigada nostop noprint pass

For a way to deal with signals one at a time, see “signal” on page 7-101.

To find out the current settings for all the signals, see “info signal” on page 7-121.

If two conflicting keywords are specified, they are both applied, in the order they app
For example, if the initial setting for signal number 1 isstop , print , pass , and you
7-104

Command-Line Interface

at
cur-
s” on

ence

zero
cur-

This

the
say:

(local) handle 1 noprint print

then the new setting isnostop , print , pass , becausenoprint impliesnostop .

handle applies to all the processes specified in the qualifier.

The default settings for all Ada exceptions arenostop , noprint . If the settings are
changed tostop andprint , then execution is stopped in the Ada runtime routine th
routes exceptions to the proper handler. This routine is usually uninteresting, so the
rent frame is set to the code that caused the exception. See “Interesting Subprogram
page 3-24. The user is informed of the name of the exception and the Ada Refer
Manual references.

To find out how one or more exceptions will be handled, you may use theinfo
exception command. See “info exception” on page 7-125.

Selecting Context 7

frame 7

Select a new stack frame or print a description of the current stack frame.

frame [frame-number]

frame * expression[at location-spec]

Abbreviation: f

frame-number

Frame number selected as the new current stack frame. Frame number
corresponds to the currently executing frame. Frame numbers for all the
rently available stack frames may be obtained with thebacktrace com-
mand (see “backtrace” on page 7-64).

* expression

Expression which yields an address at which the stack frame should start.
is the value that$fp would have, not the value of$sp .

location-spec

Specifies a location in the program to use to interpret the stack frame at
address given by* expression. See “Location Specifiers” on page 7-9. If you
do not supply this argument, the default is the current value of$cpc .
7-105

NightView User’s Guide

If
ribed
18.

(see

ck
k like
ing

ued
NOTE

Theat keyword may not be abbreviated in this command.

If no argument is given, a brief description of the current stack frame is printed.
multiple processes are specified in the command qualifier, each of them is desc
separately. For a more complete description of a frame, see “info frame” on page 7-1

If a frame-numberis given, the chosen stack frame is selected as the current frame
“Current Frame” on page 3-23).

The * expressionform of this command is provided for those occasions in which the sta
is in an inconsistent state, or you wish to examine some memory whose contents loo
stack frames. You should be very careful when using this form, observing the follow
cautions.

• A stack frame cannot be interpreted except in the context of some program-
counter value. Therefore, you must be sure that thelocation-specyou give
(or the value of$cpc) is consistent with the stack frame you are examin-
ing.

• The values of the machine registers are not altered by this form of the
frame command. This means that variables that reside in registers cannot
be reliably examined.

• The up , down, and backtrace commands are executed relative to the
given frame address and program-counter value. However, the register
contents for calling frames may still be incorrect, since only the registers
saved in the stack can be restored by NightView.

• Modifying a register (or a variable stored in a register) may alter the current
value of a machine register, or it may alter the value of that register stored
on the stack. You must be very careful when doing this.

• Unless you have modified$pc or other machine registers, resuming execu-
tion of the process will resume with the state the process was in before the
frame command was issued.

Once you have issued aframe command with a* expressionargument, you can restore
the previous view of the stack by issuing aframe command with aframe-number
argument. This restores NightView's view of the stack to what it was before you iss
the frame * expressioncommand.

We recommend that, while you have the frame set using the* expressionform, you
should restrict yourself to just using theup , down, backtrace , andprint commands,
and that you print only global variables or variables stored on the stack.

up 7

Move one or more stack frames toward the caller of the current stack frame.

up [number-of-frames]
7-106

Command-Line Interface

zero
rrent
nced

ller

est)
posi-
ive
rame

me

has
ting

Pro-
number-of-frames

Number of stack frames to advance toward the oldest calling frame. The number
may be used to restore the current source position in the current frame (see “Cu
Frame” on page 3-23). If a negative number is specified, then frames are adva
toward the newest stack frame (see “down” on page 7-107).

If number-of-framesis not given, the number defaults to one, corresponding to the ca
of the current frame.

This command is applied to each process in the qualifier.

down 7

Move one or more stack frames toward frames called by the current stack frame.

down [number-of-frames]

number-of-frames

Number of stack frames to advance toward the currently executing (new
stack frame. The number zero may be used to restore the current source
tion in the current frame (see “Current Frame” on page 3-23). If a negat
number is specified, then frames are advanced toward the oldest stack f
(see “up” on page 7-106).

If number-of-framesis not given, the number defaults to one, corresponding to the fra
called by the current frame.

This command is applied to each process in the qualifier.

select-context 7

Select the context of an Ada task, a thread, or of a Lightweight Process (LWP).

select-context default

select-context task= expression

select-context thread= expression

select-context lwp= lwpid

default

This keyword selects the stack frame for the context where the process
stopped. If the process contains multiple Lightweight Processes, the opera
system chooses one of them as the default context. See “Multithreaded
grams” on page 3-32.
7-107

NightView User’s Guide

e is

by

ss
s

ng

isters

xt

ead,

that

ther

-

s is

error
task= expression

The task= keyword selects the context of an Ada task. Theexpressionmust
either denote a task object or it must be an integer or pointer whose valu
the address of a Task Control Block (TCB).

thread= expression

The thread= keyword selects the context of a thread created
thr_create(3thread) . The expressionmust be thethread_t value
returned bythr_create for a currently active thread.

lwp= lwpid

The lwp= keyword selects the context of a specific Lightweight Proce
(LWP). The lwpid is the ID of the Lightweight Process whose context i
selected.

The select-context command allows you to examine the context (see “Examini
Your Program” on page 3-18) of an Ada task, a thread, or anLWP. Using select-
context , you can get a backtrace (see “backtrace” on page 7-64) and examine reg
and variables in the context of the selected task, thread, orLWP.

When a process that contains multipleLWPs, tasks, or threads stops, the current conte
becomes that of one specific task, thread, orLWP. (For a discussion of how this choice is
made, see “Multithreaded Programs” on page 3-32.) You can use theselect-
context command to temporarily change the context to that of some other task, thr
or LWP.

Once a context has been selected, allframe , up , down, and backtrace commands
apply to that context. All expressions and references to registers also refer to
context, with one exception. When an Ada task is not assigned to anLWP, the state of the
task is saved in memory, but only certain registers are saved. If you reference o
registers, their contents reflect thedefault context.

Note that execution control is on a process basis: if you resume execution, allLWPs are
allowed to execute. If you enter afinish , step , next , stepi , or nexti command,
the process executes until the selected task, thread orLWP completes the stepping opera
tion, but other tasks, threads orLWPs may execute as well.

If you request evaluation of an expression containing a function call, the proces
allowed to execute and allLWPs are allowed to run. If anotherLWP hits a breakpoint, or
stops for some other reason, the function call is terminated prematurely and an
message is issued.

Miscellaneous Commands 7

help 7

Access the online help system.
7-108

Command-Line Interface

refix

ost
r

or by
ge
ge

r
ow.

iption

hen
help [section]

section

The name of a section in this manual (anything in the table of contents).

You can read any section in this document by giving the section name (or a unique p
of the section name) as an argument to thehelp command.

If you typehelp without arguments, the help system displays the document section m
relevant to the last error you received. Typehelp again to see help on the previous erro
you received, and so on.

Error message identifiers are section names, so you can get help for a specific err
giving the help command with the error message identifier. An error messa
identifier, beginning withE-, is printed with each error message. See “Errors” on pa
3-26.

In the non-graphical user interfaces,help prints to the terminal. In the graphical use
interface,help uses another program to display the documentation in a separate wind
See “GUI Online Help” on page 9-2.

NOTE

In the non-graphical user interfaces, help is available only for
error messages.

Thehelp command ignores the command qualifier.

Examples:

(local) help Summary of Commands

The above example displays the section of the document that contains a brief descr
of each command.

(local) help backtrace

Display the description of thebacktrace command.

(local) help E-command_proc003

Display help for the error with error message identifierE-command_proc003 .

refresh 7

Refresh the terminal screen.

refresh

The refresh command clears the terminal screen and redraws it. This is helpful w
the screen becomes garbled, such as with a modem and noisy phone lines.
7-109

NightView User’s Guide

g in
-1.

has
e it
g to

ou
will

u are
ee

inal
are
efore
page

ere a
urns
,

refresh is only useful in the simple full-screen interface. This command does nothin
the command-line interface. See Chapter 8 [Simple Full-Screen Interface] on page 8

shell 7

Run an arbitrary shell command.

shell [shell-command]

The shell command is used to execute a single line in a subshell. This command
nothing to do with debugging and the qualifier is ignored. It is simply provided becaus
is sometimes convenient to have a way to execute a shell command without havin
suspend or exit the debugger.

If you just typeshell without arguments, the debugger puts you in a shell where y
can execute arbitrary commands until you exit the shell, at which time the debugger
get control again. You cannot use this form of theshell command inside a macro (See
“Defining and Using Macros” on page 7-130).

The programs run by this command run on the local system only (the same one yo
running NightView on) and inherit the current working directory of the debugger (s
“cd” on page 7-56).

If you start background processes viashell , they will continue to run normally even if
you quit out of the debugger.

The shell used is determined by looking for theSHELL environment variable, and if that is
not found, by using your login shell.

In the simple full-screen interface, NightView does not have control over the term
while you are executing ashell command, so after the command has completed you
asked to press return. This gives you a chance to view the command output b
NightView redraws the screen. See Chapter 8 [Simple Full-Screen Interface] on
8-1.

source 7

Input commands from a source file.

source command-file

command-file

The file to read.

This command reads the designated file and treats each line in the file as though it w
command you typed in. After reading all the commands in the file, the debugger ret
to reading commands from the keyboard again. (Ifsource commands are nested
ending one file returns to reading from the previous file.)

If NightView encounters any serious error, it stops reading from asource file. See
7-110

Command-Line Interface

to

ed,

ified
cified
ill

to
nce,

een

cific
“Command Streams” on page 3-27.

The qualifier on thesource command has no effect. The default qualifier is applied
any commands in the source file which do not have explicit qualifiers.

delay 7

Delay NightView command execution for a specified time.

delay [milliseconds]

milliseconds

The number of milliseconds to delay command execution. If not specifi
the default is 1.

This command delays the execution of NightView commands for at least the spec
time period, expressed in milliseconds. The actual delay may be longer than the spe
period. The command following adelay command in the same command stream w
not execute until at least the specified time has elapsed.

The primary use of thedelay command is in command scripts, when you may want
prevent a command from executing immediately after the preceding one. For insta
you may wish to allow time for your program to execute for some length of time betw
the execution of two NightView commands.

The qualifier on thedelay command has no effect.

Info Commands 7

The info commands all start with the wordinfo , which may always be abbreviated to
the single characteri . The keyword followinginfo identifies one of the many topics for
which info is available. Each info command may also have additional arguments spe
to the individual command.

The info commands can be broadly divided into two basic categories:

• Status queries, returning information about the current state of the debug-
ger and the processes being debugged.

• Symbol table queries, returning information about program variables and
type definitions.
7-111

NightView User’s Guide

state
.

be

and

or-
(or

ction
-
he

mand
t or
page

-86,
Status Information 7

The status info commands allow you to query various information about the current
of the debugger (e.g., what breakpoints are set, how many dialogues are active, etc.)

info log 7

Describe any open log files.

info log

Describes any open log files currently in use by the debugger. The log files may
created byset-log (see “set-log” on page 7-44) or byset-show (see “set-show” on
page 7-28).

info eventpoint 7

Describe current state of breakpoints, tracepoints, patchpoints, monitorpoints
agentpoints.

info eventpoint [/verbose] [name | number] ...

/verbose

Specify that the locations of all eventpoints displayed will be in verbose f
mat. Verbose location format includes the program counter address
addresses) of the eventpoint and, where possible, the corresponding fun
name, file name, and line number. The number ofPC addresses printed is sub
ject to the limit on printing addresses (see “set-limits” on page 7-46). T
verbose keyword may be abbreviated.

name

An eventpoint name.

number

An eventpoint number.

This command describes eventpoints associated with the processes in the com
qualifier. An eventpoint is any of a breakpoint, tracepoint, patchpoint, monitorpoin
agentpoint. This command combines five separate commands. See “breakpoint” on
7-78, “tracepoint” on page 7-82, “patchpoint” on page 7-79, “agentpoint” on page 7
and “monitorpoint” on page 7-83.

The information printed includes:

• The eventpointID.

• The eventpoint type.

• Current state of eventpoint (enabled, disabled, temporary).
7-112

Command-Line Interface

7-67

or-
(or

ction
-
he

icated
nly

, they
• The eventpoint location. If/verbose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the eventpoint was created.

• The number of times program execution has crossed the eventpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

• The number of times the eventpoint has beenhit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

• Any conditions attached to the eventpoint.

• The current ignore count.

• Any commands attached to the eventpoint (if it is a breakpoint or monitor-
point).

This command sets the defaultx command dump address as well as the$_ predefined
convenience variable to the address of the last eventpoint listed. See “x” on page
and “Predefined Convenience Variables” on page 7-6.

info breakpoint 7

Describe current state of breakpoints.

info breakpoint [/verbose] [name | number] ...

Abbreviation: i b

/verbose

Specify that the locations of all breakpoints displayed will be in verbose f
mat. Verbose location format includes the program counter address
addresses) of the breakpoint and, where possible, the corresponding fun
name, file name, and line number. The number ofPC addresses printed is sub
ject to the limit on printing addresses (see “set-limits” on page 7-46). T
verbose keyword may be abbreviated.

name

An eventpoint name.

number

An eventpoint number.

This command normally describes all breakpoints associated with the processes ind
by the command qualifier. If you specify a list of eventpoint names or numbers, o
those events are described. If any of the specified eventpoints are not breakpoints
are ignored. Breakpoints are created with thebreakpoint command. See
“breakpoint” on page 7-78.

The information printed includes:
7-113

NightView User’s Guide

7-67

or-
(or

ction
-
he

mally
ribed.
red.
• The breakpointID.

• Current state of breakpoint (enabled, disabled, temporary).

• The breakpoint location. If/verbose was specified, then the location
will be printed in verbose format. Otherwise it will be printed in the format
in which it was specified when the breakpoint was created.

• The number of times program execution has crossed the breakpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

• The number of times the breakpoint has beenhit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

• Any conditions attached to the breakpoint.

• The current ignore count.

• Any commands attached to the breakpoint.

This command sets the defaultx command dump address as well as the$_ predefined
convenience variable to the address of the last breakpoint listed. See “x” on page
and “Predefined Convenience Variables” on page 7-6.

info tracepoint 7

Describe current state of tracepoints.

info tracepoint [/verbose] [name | number] ...

/verbose

Specify that the locations of all tracepoints displayed will be in verbose f
mat. Verbose location format includes the program counter address
addresses) of the tracepoint and, where possible, the corresponding fun
name, file name, and line number. The number ofPC addresses printed is sub
ject to the limit on printing addresses (see “set-limits” on page 7-46). T
verbose keyword may be abbreviated.

name

An eventpoint name.

number

An eventpoint number.

This command describes tracepoints in the processes indicated by the qualifier. Nor
all tracepoints are described, but if an argument is given, only those named are desc
Any eventpoints specified in the argument list which are not tracepoints are igno
Tracepoints are created with thetracepoint command. See “tracepoint” on page
7-82.

The information printed includes:
7-114

Command-Line Interface

7-67

or-
(or

ction
-
he

mally
are
are
• The tracepointID.

• Current state of tracepoint (enabled, disabled, temporary).

• The tracepoint location. If/verbose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the tracepoint was created.

• The tracepoint eventID.

• The number of times program execution has crossed the tracepoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

• The number of times the tracepoint has beenhit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

• Any conditions attached to tracepoint.

• The current ignore count.

• The expression being recorded at the tracepoint.

This command sets the defaultx command dump address as well as the$_ predefined
convenience variable to the address of the last tracepoint listed. See “x” on page
and “Predefined Convenience Variables” on page 7-6.

info patchpoint 7

Describe current state of patchpoints.

info patchpoint [/verbose] [name | number] ...

/verbose

Specify that the locations of all patchpoints displayed will be in verbose f
mat. Verbose location format includes the program counter address
addresses) of the patchpoint and, where possible, the corresponding fun
name, file name, and line number. The number ofPC addresses printed is sub
ject to the limit on printing addresses (see “set-limits” on page 7-46). T
verbose keyword may be abbreviated.

name

An eventpoint name.

number

An eventpoint number.

This command describes patchpoints in the processes indicated by the qualifier. Nor
all patchpoints are described, but if an argument is given, only those named
described. Any eventpoints specified in the argument list which are not patchpoints
ignored. Patchpoints are created using thepatchpoint command. See “patchpoint”
on page 7-79.
7-115

NightView User’s Guide

7-67

se
(or

unc-

he

lifier.
med

ints
The information printed includes:

• The patchpointID.

• Current state of patchpoint (enabled, disabled, temporary).

• The patchpoint location. If/verbose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the patchpoint was created.

• The number of times program execution has crossed the patchpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

• The number of times the patchpoint has beenhit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

• Any conditions attached to patchpoint.

• The current ignore count.

• The expression patched in at that point.

This command sets the defaultx command dump address as well as the$_ predefined
convenience variable to the address of the last patchpoint listed. See “x” on page
and “Predefined Convenience Variables” on page 7-6.

info monitorpoint 7

Describe current state of monitorpoints.

info monitorpoint [/verbose] [name | number] ...

/verbose

Specify that the locations of all monitorpoints displayed will be in verbo
format. Verbose location format includes the program counter address
addresses) of the monitorpoint and, where possible, the corresponding f
tion name, file name, and line number. The number ofPC addresses printed is
subject to the limit on printing addresses (see “set-limits” on page 7-46). T
verbose keyword may be abbreviated.

name

An eventpoint name.

number

An eventpoint number.

This command describes monitorpoints in the processes indicated by the qua
Normally all monitorpoints are described, but if an argument is given, only those na
are described. Any eventpoints specified in the argument list which are not monitorpo
are ignored. Monitorpoints are created with themonitorpoint command. See
“monitorpoint” on page 7-83.
7-116

Command-Line Interface

7-67

or-
(or

ction
-
he

mally
are
are
The information printed includes:

• The monitorpointID.

• Current state of monitorpoint (enabled, disabled, temporary).

• The monitorpoint location. If/verbose was specified, then the location
will be printed in verbose format. Otherwise it will be printed in the format
in which it was specified when the monitorpoint was created.

• The number of times program execution has crossed the monitorpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

• The number of times the monitorpoint has beenhit since the program
started execution (this count is incremented only if the condition and ignore
count are satisfied).

• Any conditions attached to monitorpoint.

• The current ignore count.

• The commands attached to the monitorpoint.

This command sets the defaultx command dump address as well as the$_ predefined
convenience variable to the address of the last monitorpoint listed. See “x” on page
and “Predefined Convenience Variables” on page 7-6.

info agentpoint 7

Describe current state of agentpoints.

info agentpoint [/verbose] [name | number] ...

/verbose

Specify that the locations of all agentpoints displayed will be in verbose f
mat. Verbose location format includes the program counter address
addresses) of the agentpoint and, where possible, the corresponding fun
name, file name, and line number. The number ofPC addresses printed is sub
ject to the limit on printing addresses (see “set-limits” on page 7-46). T
verbose keyword may be abbreviated.

name

An eventpoint name.

number

An eventpoint number.

This command describes agentpoints in the processes indicated by the qualifier. Nor
all agentpoints are described, but if an argument is given, only those named
described. Any eventpoints specified in the argument list which are not agentpoints
ignored. Agentpoints are created with theagentpoint command. See “agentpoint” on
page 7-86.
7-117

NightView User’s Guide

7-67

r-
sted
e

the

or a
The information printed includes:

• The agentpointID.

• Current state of agentpoint (enabled, disabled, temporary).

• The agentpoint location. If/verbose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the agentpoint was created.

• The number of times program execution has crossed the agentpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

• The number of times the agentpoint has beenhit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

• Any conditions attached to agentpoint.

• The current ignore count.

This command sets the defaultx command dump address as well as the$_ predefined
convenience variable to the address of the last agentpoint listed. See “x” on page
and “Predefined Convenience Variables” on page 7-6.

info frame 7

Describe a stack frame.

info frame [/v] [* expression[at location-spec]]

/v

If this option is supplied, NightView prints detailed, machine-specific, info
mation about the requested stack frame. You are seldom likely to be intere
in this information; it is provided primarily for detecting problems with th
generated debugging information.

* expression

The address of a stack frame. This is the value that$fp would have, not$sp .

location-spec

Specifies a location in the program to use to interpret the stack frame at
address given by* expression. See “Location Specifiers” on page 7-9. If you
do not supply this argument, the default is the current value of$cpc .

NOTE

Theat keyword may not be abbreviated in this command.

This command describes all available information about the current stack frame f
7-118

Command-Line Interface

ibed

the

ent,

ress
bly

n the
for

ined.
. This
y the
value

ed by
process (see “Current Frame” on page 3-23). See also “frame” on page 7-105.

If multiple processes are specified in the command qualifier, each of them is descr
separately. An error message is printed if any of the processes are running.

If the optional* expressionis given, then the frame at that address is described (but
current frame is not changed). If you supply thelocation-specargument, the frame is
interpreted as a frame for the routine at the resulting address. If you omit this argum
the current value of$cpc is used in decoding the frame.

If * expressiondoes not evaluate to a valid frame address, or the frame at that add
does not correspond to the given program location, the information printed will proba
be nonsense.

The information printed about a frame includes:

• The address of the frame.

• The addresses of the adjacent frames (if any).

• The current frame size.

• The saved return address and its location on the stack (or in a register).

• Any saved registers and their locations on the stack.

• Which registers are currently in use as stack and/or frame pointers and their
relation to the current frame.

• The name of the subroutine associated with the frame along with the source
line and file name (if known).

info directories 7

Print the search path used to locate source files.

info directories

Print the search path used to locate source files. If multiple processes are given i
qualifier, print the list of directories for each process. See “directory” on page 7-60,
the command used to set the search path.

info convenience 7

Describe convenience variables.

info convenience

This command describes all the convenience variables that have been def
Convenience variables may be global or process local (see “set-local” on page 7-50)
command first describes the global variables, then (for each process specified b
command qualifier) describes the process local variables. The name, data type, and
of each variable is listed.

The convenience variables that correspond to the process registers are not describ
7-119

NightView User’s Guide

h time

nce

also
on

ed by

ble
ogram
this command (see “info registers” on page 7-120).

info display 7

Describe expressions that are automatically displayed.

info display

This command describes the set of expressions that are automatically displayed eac
a program stops (see “display” on page 7-71).

info history 7

Print value history information.

info history [number]

number

Specifies an item in the value history list (each value has a unique seque
number). The default value is the most recent history list entry.

This command prints ten history-list values centered around the specified entry. It
prints information about how many history items currently exist. See “set-history”
page 7-46.

info limits 7

Print information about limits on expression and location output.

info limits

The command prints the limits on array elements and character-string elements print
expression output commands, and the limits on program locations printed by otherinfo
commands. See “set-limits” on page 7-46.

The qualifier is ignored by this command.

info registers 7

Print information about registers.

info registers [regexp]

regexp

A regular expression matching register names. An anchored matchis implied.
See “Regular Expressions” on page 7-12.

If the regexpargument is not given, this command prints all the normally accessi
registers that are of general interest to most programmers (such as accumulators, pr
7-120

Command-Line Interface

ith a

rol
See

e “set-

-23).
(the

ve if
e at
lative

ts of

s are

w

m. If
sted
counter, stack pointer, etc.). If you give a regular expression argument, any register w
name matching that regular expression is printed. To printall the registers, you must
specify the regular expression.* as an argument (this includes all the obscure cont
registers and any other registers not normally of interest to a programmer).
“Predefined Convenience Variables” on page 7-6.

The regular expression case sensitivity depends on the current search mode (se
search” on page 7-54).

Registers are printed relative to the current frame (see “Current Frame” on page 3
This means that any register saving is logically unwound as you change frames
register contents are not actually modified). You see the value the register would ha
you returned to the current frame. (If the current frame is also the most recent fram
the end of the stack, the current machine register contents are the correct contents re
to frame zero.)

If the current frame is not frame zero, but you want to see the current active conten
the machine registers, you have to move to frame zero before running theinfo
registers command (see “frame” on page 7-105).

If the command qualifier names multiple processes, the registers from each proces
printed separately. If any of the processes are running, an error is printed.

Since this command operates only on register names, the dollar sign ($) normally used to
refer to registers is optional for this command.

Some registers are defined by the architecture to be composed of various fields.info
registers expands those fields symbolically. If a field is a single bit, NightVie
prints an abbreviation for that field only if the value of the field is1. See the architecture
manual for descriptions of the fields and a list of the abbreviations for each register.

info signal 7

Print information about signals.

info signal [signal ...]

signal

A signal number or signal name.

This command describes how signals will be handled by the process receiving the
the command qualifier specifies multiple processes, then the signal information is li
separately for each process. The information printed includes:

• The signal name.

• The signal number.

• The way the debugger will handle this signal. (see “handle” on page
7-102).

If no signalsare specified, then information for all signals is printed.
7-121

NightView User’s Guide

and

peci-
fol-
info process 7

Describe processes being debugged.

info process

This command lists information about all the processes specified in the comm
qualifier (qualify with(all) to list all of them). The information includes:

• The process ID (PID).

• The controlling dialogue for the process.

• The arguments passed to the program on startup (argv array).

• The current process state (running, stopped).

• When the process state is stopped, list where and why it stopped.

• The current language setting. See “set-language” on page 7-44.

• The disposition of child processes; that is, under what circumstances a
child process will be debugged. See “set-children” on page 7-41.

info memory 7

Print information about the virtual address space.

info memory [/verbose]

/verbose

Indicates that extra information should be printed.

This command prints information about the virtual address space for each process s
fied in the command qualifier. For each region of memory, this command prints the
lowing information:

• The beginning address and ending address of the region.

• The size, in bytes, of the region.

• If the region is the first region associated with a shared library, the name of
the library is printed.

• Whether the region is readable, writable, executable, shared, or locked in
physical memory.

• Whether the region is being used as the process’ stack or memory heap.

• If the region was attached by NightView, what the region is for and how
much space is left in the region. See Appendix E [Implementation Over-
view] on page E-1. If the/verbose option is specified, NightView prints
information about the individual blocks allocated in the region.

The list also includes any regions reserved by the user with themreserve command. See
“mreserve” on page 7-43.
7-122

Command-Line Interface

and

a

e “set-

h

info dialogue 7

Print information about active dialogues.

info dialogue

This command lists information about all the dialogues specified in the comm
qualifier (qualify with(all) to list all of them). The information includes:

• The machine running the dialogue.

• The sizes that will be used for patch areas created in the future. See “set-
patch-area-size” on page 7-50.

• The list of debug andnodebug patterns for this dialogue. See “debug”
on page 7-20.

• The processes being debugged under control of the dialogue.

• The user running the dialogue.

• The status of any dialogue output (see “set-show” on page 7-28).

• The list of object filename translations for this dialogue. See “translate-
object-file” on page 7-21.

info family 7

Print information about an existing process family.

info family [regexp]

regexp

A regular expression matching family names. An anchored matchis implied.
See “Regular Expressions” on page 7-12.

For each family name that matchesregexp this command lists each process that is
member of that family (see “family” on page 7-40). Ifregexpis omitted, then the contents
of all process families are printed.

The regular expression case sensitivity depends on the current search mode (se
search” on page 7-54).

info name 7

Print information about an existing eventpoint-name.

info name [regexp]

regexp

A regular expression matching eventpoint-names. An anchored matcis
implied. See “Regular Expressions” on page 7-12.
7-123

NightView User’s Guide

s

e “set-

d
-23

then
f
age
For each eventpoint-name that matchesregexp, this command lists each eventpoint that i
a member of that eventpoint-name (see “name” on page 7-77). Ifregexpis omitted, then
the contents of all eventpoint-names are printed.

The regular expression case sensitivity depends on the current search mode (se
search” on page 7-54).

Each eventpoint is identified by a dialogue-name, a process-id (PID), and an eventpoint-id
that is unique for that process.

info on dialogue 7

Print on dialogue commands.

info on dialogue [name]

name

The name of a prospective dialogue.

If no arguments are given, then all existingon dialogue commands are printed. If a
dialogue name is given, then only theon dialogue commands that would be execute
if a dialogue namednamewere to be created are printed. See “on dialogue” on page 7

info on program 7

Print on program commands.

info on program [program]

program

The path name of a prospective executable file.

If no arguments are given, theninfo on program prints all existingon program
commands for each dialogue specified by the qualifier. If a program path is given,
info on program prints theon program commands that would be executed i
programwere run in each dialogue specified by the qualifier. See “on program” on p
7-36.

info on restart 7

Print on restart commands.

info on restart [output= outname | append= outname] [program]

output= outname

Write the information tooutname.

append= outname

Append the information tooutname.
7-124

Command-Line Interface

f
age

a.

a
page

sses
rent
ific
g of
program

The path name of a prospective executable file.

If no program is given, theninfo on restart prints all existingon restart
commands for each dialogue specified by the qualifier. If aprogrampath is given, then
info on restart prints theon restart commands that would be executed i
programwere run in each dialogue specified by the qualifier. See “on restart” on p
7-38.

If no outnameis specified, then the output is to the terminal or to the GUI message are

info on restart may be used to preserve restart information in a file for use in
later debug session. See “source” on page 7-110. See “Restarting a Program” on
3-11. For an example, see “checkpoint” on page 7-39.

info exception 7

Print information about Ada exception handling.

info exception exception-name...

info exception unit-name

info exception

exception-name

Specifies the name of a particular Ada exception.

unit-name

Specifies all Ada exceptions defined in the specified unit.

This command describes the current exception handling settings for the proce
specified by the qualifier. See “handle” on page 7-102. With no arguments, the cur
default handling of exceptions is displayed along with the handling of any spec
exceptions to which the default is not applicable. If an argument is given, the handlin
those specific exceptions is displayed. Theinfo exception command will list:

• The exception name, or the keywordall denoting the default.

• The exception handling settings.
7-125

NightView User’s Guide

rded
s of

th the

red

n.

e “set-

d
this
Symbol Table Information 7

The info commands in this section are used to lookup and report on information reco
in the debug tables of program files. This includes the names and declaration
variables, the address of generated code for source lines, etc.

info args 7

Print description of current routine arguments.

info args

This command prints a description of each argument of the subroutine associated wi
current frame (see “Current Frame” on page 3-23).

info locals 7

Print information about local variables.

info locals [regexp]

regexp

A regular expression matched against local variable names. An ancho
matchis implied. See “Regular Expressions” on page 7-12.

Print a description of every local variable visible in the current context. If theregexp
argument is given, print only the variables with names matching the regular expressio

The regular expression case sensitivity depends on the current search mode (se
search” on page 7-54).

The term local variables is defined to include all variables with any sort of restricte
scope. External variables visible throughout the program are never listed by
command.

The information listed for each variable includes:

• The name of the variable.

• The type of the variable.

• The current value of the variable.

• The location of the variable.

• The scope of the variable (directly visible, inherited from an outer block,
etc.).

info variables 7

Print global variable information.
7-126

Command-Line Interface

ored

e “set-

) is
k, it

must
he C

rns”

If a

ach
info variables [regexp]

regexp

A regular expression matched against global variable names. An anch
matchis implied. See “Regular Expressions” on page 7-12.

This command prints information about global variables. When theregexpargument is
given, it prints only variable names matching the regular expression.

The regular expression case sensitivity depends on the current search mode (se
search” on page 7-54).

info address 7

Determine the location of a variable.

info address identifier

identifier

The name of the variable to be described.

Print out information about where the given variable (visible in the current context
located. If the variable is in a register, it prints the register name. If it is on the stac
prints the stack frame offset. If it is in static memory, it prints the absolute location.

To determine the absolute address of a particular instance of a stack variable you
use theprint command to evaluate an expression which returns the address (for t
language, this would be something likeprint &name , see “print” on page 7-65).

info sources 7

List names of source files.

info sources [pattern]

pattern

Wildcard pattern to match against source file names. See “Wildcard Patte
on page 7-14.

This command lists the names of the source files recorded in the debug tables.
wildcard pattern is given, it lists only file names matching the wildcard pattern.

If multiple processes are specified in the command qualifier, the source files for e
process are listed separately.

info functions 7

List names of functions, subroutines, or Ada unit names.

info functions [regexp]
7-127

NightView User’s Guide

h

ed in
gular

e “set-

h

s all

e “set-

sion

, but
res-

the
regexp

A regular expression to match against function names. An anchored matcis
implied. See “Regular Expressions” on page 7-12.

This command lists the names of functions, subroutines, or Ada unit names record
the debug tables. If a regular expression is given, it lists only names matching the re
expression.

The regular expression case sensitivity depends on the current search mode (se
search” on page 7-54).

info types 7

Print type definition information.

info types [regexp]

regexp

A regular expression to match against type names. An anchored matcis
implied. See “Regular Expressions” on page 7-12.

This command prints information about type definitions. When theregexpargument is
given, it prints only type names matching the regular expression; otherwise, it print
the types defined in the program.

The regular expression case sensitivity depends on the current search mode (se
search” on page 7-54).

info whatis 7

Describe the result type of an expression visible in the current context.

info whatis expression

Abbreviation: whatis

expression

An expression for which the data type is to be determined. See “Expres
Evaluation” on page 3-18.

Describe the result type of the expression. The expression is not normally evaluated
operations which require run time type determination may require portions of the exp
sion to be evaluated. If the expression includes the Ada’self attribute or the C++
dynamic_cast<> function, their operands must be evaluated in order to determine
actual type of the result.

info representation 7

Describe the storage representation of an expression.
7-128

Command-Line Interface

sion

ion is

. An

ext.

“set-

table
and
info representation expression

Abbreviation: representation

expression

An expression for which the data type is to be determined. See “Expres
Evaluation” on page 3-18.

Describe the storage representation of the result type of the expression. The express
not evaluated.

info declaration 7

Print the declaration of variables or types.

info declaration regexp

Abbreviation: ptype

regexp

A regular expression to match against type names and variable names
anchored matchis implied. See “Regular Expressions” on page 7-12.

The regexpparameter may specify type or variable names visible in the current cont
This command prints the complete declaration of all matching names.

The regular expression case sensitivity depends on the current search mode (see
search” on page 7-54).

info files 7

Print the names of the executable, symbol table and core files.

info files

For each process specified in the command qualifier, print the names of the execu
file, symbol table file, and core file associated with the process (the executable
symbol table files are usually the same).

info line 7

Describe location of a source line.

info line [at] location-spec

location-spec

Query the source line number associated with this location.

Describe the location of the source line implied by thelocation-specargument (see
“Location Specifiers” on page 7-9). The information printed includes:
7-129

NightView User’s Guide

age

ith
a new

er in
t in
le in
ands

nti-
fol-
s no

may
3 for
• The address of thelocation-spec.

• The ranges of addresses occupied by the generated code for the line. The
number of address ranges printed is subject to the current limit on
addresses (see “set-limits” on page 7-46).

• The source file and line number.

• The function containing the line.

This command sets the defaultx command dump address as well as the$_ predefined
convenience variable to the address of the first instruction in the line. See “x” on p
7-67 and “Predefined Convenience Variables” on page 7-6.

Defining and Using Macros 7

NightView provides a macro facility so you can augment the NightView commands w
your own features. Macros can either be used as part of another command, or as
command.

A macro is a named set of text, possibly with arguments, that can be substituted lat
any NightView command. The arguments allow macros to expand to different tex
different circumstances. Macros are useful in extending the command set availab
NightView; they can also serve as shortcuts for frequently used constructs in comm
or expressions.

define 7

Define a NightView macro.

define macro-name[(arg-name [, arg-name] ...)] [text]

define macro-name[(arg-name [, arg-name] ...)] as

macro-name

This is the name of the macro. Macro names follow the usual rules for ide
fiers in most languages: they must begin with an alphabetic character,
lowed by zero or more alphanumeric characters or underscore. There i
limit to the length of a macro name.

A macro name can be the same as a NightView command name, but this
render the command unusable. See “Referencing Macros” on page 7-13
more information.

arg-name

A formal argumentname. These names follow the same rules asmacro-name.
7-130

Command-Line Interface

sti-

e

text.
iew

they
void
g the

d its
d the
to

y or

at
-133

es

of an
text

The text to be substituted when the macro is invoked. In this form, the sub
tuted text will not contain any newline characters, so thetextbecomes part of
whatever command the macro invocation appears in.

NOTE

There must not be any blanks separating themacro-namefrom the
left parenthesis that introduces the formal arguments.

In the second form of thedefine command, the text of the macro begins on the lin
following the define command and extends until a line containing only the wordsend
define is encountered. Except for the newline character immediately following theas
keyword and the newline immediately preceding theend define command, the
newline characters within the body of the macro will be retained in the substituted
Thus, each line of text in the macro body must normally be a complete NightV
command.

Comments appearing in the body of the macro become part of the body. Thus,
appear in the text that is substituted for a reference to the macro. You should a
having a comment as the last line of a macro, because it may cause any text followin
macro invocation to be ignored.

In the command-line and simple full-screen interfaces, the prompt changes to> while
you are entering the second form of thedefine command. (See “Command Syntax” on
page 7-1.)

The define command associates a body of text with the givenmacro-name. When the
macro is invoked (see “Referencing Macros” on page 7-133), the macro name an
actual arguments are replaced by the associated text. The text of the macro, calle
macro body, may contain references to other macros (in particular, they will want
reference their formal arguments). A macro may not reference itself, either directl
indirectly; that is, macros cannot be recursive.

Within the body of a macro, eacharg-namebecomes a macro without arguments th
expands to its corresponding actual argument. “Referencing Macros” on page 7
describes the syntax of macro invocations and actual arguments.

A macro body should not contain anotherdefine command.

Thedefine command ignores any qualifier supplied for it.

If the givenmacro-namewas previously defined as a macro, the new definition replac
the old one. If you omit thetext in a one-line definition, or theend define command
appears on the line immediately following thedefine ...as command, any prior
definition of macro-nameis removed.

Examples:

(local) define printhex(str,x) printf "The value of %s is 0x%x\n",
@str, @x

The above example defines a macro that prints a descriptive string and the value
7-131

NightView User’s Guide

in a
o be
that

does
re that
arbitrary variable, using theprintf command.

(local) define advance(p) as
> set @p = @p->next
> print *@p
> end define

The preceding example defines a macro that advances a pointer to the next item
linked list, then prints the item. Note that this macro requires the language context t
C or C++, but the type of the argument pointer can be a pointer to any structure
contains an appropriately-typed field named "next".

(local) define short (VERY_LONG_NAME(INDEX*2,INDEX-1)*SOME_CONSTANT)

This example simply defines a shorthand for a long Fortran expression. Note that it
not have any arguments; the parentheses surround the substituted text to make su
precedence of operators is preserved when the macro is invoked.
7-132

Command-Line Interface

r, and
was
nd

ts

ts

cter
ith

actual
ching
m. If
tching
mas,
ctual
t may

n is
f the
View
will

ally

s

an
ithout

left
esis.

leave
Referencing Macros 7

Macros are usually referenced by preceding the macro name with the @ characte
following the macro name with a parenthesized list of arguments, if the macro
defined with arguments. If you wish, you may enclose the macro name inside of ’{’ a
’}’ (but any argument list must appearoutsideof the braces). The number of argumen
you supply must be the same as the number of formal arguments (i.e., thearg-names)
specified in thedefine command; otherwise, NightView issues an error. Argumen
are matched with each formal argument name by position.

A reference to a macro without any arguments consists solely of the @ chara
followed (without intervening blanks) by the macro name. A reference to a macro w
one or more arguments consists of the @ character, the macro name, and a list of
arguments. The actual arguments begin with a left parenthesis and end with a mat
right parenthesis. If more than one argument is given, a comma must separate the
an actual argument contains a left parenthesis, then the argument extends until a ma
right parenthesis is encountered, irrespective of any other characters, including com
in the intervening text. Note that an unmatched right parenthesis appearing in an a
argument prematurely ends the list of actual arguments; this may cause an error, or i
produce unexpected results.

An actual argument may contain an invocation of another macro; that invocatio
expanded immediately when the actual argument is read during the processing o
enclosing macro invocation. This can lead to some surprising results, because Night
expands these actual arguments without regard to the context in which they
ultimately appear.

For example:

(local) define abc xyz
(local) define printit(x) print "The value is %s\n", @x
(local) print "The value is %s\n", "@abc"
(local) @printit("@abc")

The print command will print "The value is @abc", because macros are not norm
expanded within string literals. However, the@printit command will print "The value
is xyz", because NightView expands the macro@abc when it is processing the
invocation of macro@printit . At that time, it does not know that the double quote
imply a string literal.

String literals as actual arguments can cause other problems as well. For example:

(local) # Illegal reference:
(local) @mymac("This has a left-parenthesis(")
(local) # Okay:
(local) @mymac("This has two parentheses()")

The first invocation ofmymac is invalid because the actual argument contains
unmatched left parenthesis. Since NightView attempts to balance parentheses w
regard to any other text (including quotes), the right parenthesis matches the
parenthesis in the argument, leaving the argument list without a closing right parenth

If a macro invocation appears where a command keyword is expected, then you can
off the @ prefix character (but the macro name maynotbe enclosed between ’{’ and ’}’).
7-133

NightView User’s Guide

f the
macro

e of a
ilt-in
ore.
le to
ilt-in
uilt-
ou

the

y of
can

you
This allows macros to be used conveniently as command shortcuts. However, i
macro requires arguments, these must still be placed within parentheses after the
name.

Macros take precedence over commands when the macro name appears in plac
command keyword. This means that if you name a macro the same as a bu
NightView command, you may not be able to reference the built-in command anym
However, you cannot abbreviate the macro name in an invocation, so you may be ab
use an abbreviation for the built-in command. If you name a macro the same as a bu
command abbreviation, you won't be able to use that particular abbreviation for the b
in command later, but you can still use the full form, or a different abbreviation. If y
accidentally name a macro the same as a built-in command, you can remove
definition by entering

(local) # Note, no text given in definition.
(local) define macro-name

You may want to refer to the Summary of Commands (see Appendix B [Summar
Commands] on page B-1) for a complete list of the NightView commands, so you
avoid these kinds of conflicts.

Macro references can generally appear anywhere within a NightView command, but
should be aware of the following rules:

• NightView never expands macros that appear within command comments.

• NightView usually does not expand macros that appear within string liter-
als. However, if the literal appears as an actual argument in another macro
invocation, macros within the string literal may be expanded.

• Macros are not expanded in theformat-string argument to theprintf
command. See “printf” on page 7-73.

• Macros appearing in anecho command are expanded. See “echo” on
page 7-70.

• Macros appearing in a! (see “!” on page 7-27),run (see “run” on page
7-30), orshell (see “shell” on page 7-110) command are not expanded.

• A macro referenced within a language expression must expand to text that
makes sense as part of that expression.

• A macro can be used to form part of a syntactic item, or token, in a Night-
View command. For example, you could form a variable name in an
expression from the results of two macro invocations. However, you can-
not use this technique to construct the name of a macro to be invoked.

Examples:

(local) define short (VERY_LONG_NAME(INDEX*2,INDEX-1)*SOME_CONSTANT)
(local) set $x=i + @{short*10

The above example uses a macro in an expression.

(local) define printhex(str,x) printf "The value of %s is 0x%x\n",
@str, @x
(local) printhex("ptr1", ptr1)
(local) printhex("ptr1->next", (ptr1=ptr1->next, ptr1))
7-134

Command-Line Interface

ates

e “set-
This example invokes the macro ’printhex’ twice. The second invocation demonstr
how an expression containing a comma can be included as a formal argument.

The following C fragment defines some data types for use in the next example:

struct list_element {
struct list_element * next ;
struct data * the_data ;

};
extern struct list_element * hd ;

Example NightView commands:

(local) define printdata(p) as
> printf "The data is:\n"
> print *(@p)->the_data
> end define
(local) define next(p) as
> set @p = (@p)->next
> end define

info macros 7

Print a description of one or more NightView macros.

info macros [regexp]

regexp

A regular expression matching macro names. An anchored matchis implied.
See “Regular Expressions” on page 7-12.

If the regexpargument is not given, theinfo macros command prints a description of
every macro you have defined. If you give aregexpargument, a description of every
macro whose name matches the regular expression is printed.

The regular expression case sensitivity depends on the current search mode (se
search” on page 7-54).

The description of each macro includes:

• The name of the macro.

• The formal argument names, if any, of the macro.

• The macro body text, exactly as it will appear when substituted, except that
the last line of the macro will be followed by a newline.
7-135

NightView User’s Guide
7-136

Simple Full-Screen Interface

That
all at
l.

ite
son,
ur

will
car-

ns

-line
ooks
trol

pt is

you a
ll” on

ints.
his
8
Chapter 8Simple Full-Screen Interface

8
8
8

NightView is designed to be able to debug multiple processes asynchronously.
means your processes may be running and producing output or hitting breakpoints,
the same time. You might be entering NightView commands at the same time as wel

This can be a little confusing. It would be especially confusing if NightView were to wr
to your terminal at the same time you are trying to enter a command For this rea
NightView doesn't usually show you output or event notifications while it is reading yo
commands (It will do that if you want it to, though. See “set-show” on page 7-28.)

This means that NightView may have output or event notifications to show you, but it
not show them to you because it is waiting for you to type a command. You can press
riage return a few times to see output you are expecting, but that can be annoying

A full-screen interface gives NightView a way to show you output and event notificatio
as soon as they are available without interfering with your typing

The simple full-screen interface has the same basic functionality as the command
interface. All the commands are the same. In fact, the simple full-screen interface l
a lot like the command-line interface. The main difference is that NightView has con
over the entire screen, so it can print output to you while you are "at a prompt".

Using the Simple Full-Screen Interface 8

To use the simple full-screen interface, you should have yourTERM environment variable
set to the type of your terminal. If you are using a full-screen editor, such asvi(1) , you
probably have already taken care of this.

Invoke NightView with the-simplescreen option:

nview -simplescreen

NightView clears the screen before it writes its welcome message. Then the prom
written to the bottom line and you can type a command.

NightView does not have control over the terminal while you are executing ashell com-
mand, so after the command has completed you are asked to press return This gives
chance to view the command output before NightView redraws the screen. See “she
page 7-110.

The simple full-screen interface creates a special window when you use monitorpo
See “Monitor Window - Simple Full-Screen” on page 8-2 for more information about t
window.
8-1

NightView User’s Guide

based

usly

e is

w

reen
status
f the

Any

har-
period

rma-

he

the
Editing Commands in the Simple Full-Screen Interface 8

You can use special key sequences to edit your commands. The key sequences are
on the line editing modes ofksh(1) . NightView implements theemacs, gmacs andvi
modes ofksh . In particular, you can use the various key sequences to retrieve previo
entered commands.

The initial editor mode is set from yourVISUAL or EDITORenvironment variables. If
NightView cannot determine the mode from those variables, then the default mod
emacs. You can explicitly set the editor mode with theset-editor command. See
“set-editor” on page 7-55.

Monitor Window - Simple Full-Screen 8

The Monitor Window is created when you use monitorpoints while running NightVie
with the simple full-screen interface. See “Monitor Window” on page 3-25.

In the simple full-screen interface, the Monitor Window appears at the top of the sc
and takes up as many lines as it needs for the number of items displayed, plus one
line, while leaving at least ten lines for other debugger operations at the bottom o
screen.

Only the items that fit in the space available at the top of the screen are displayed.
further items are left in the same state they would be in following anmcontrol nodis-
play command (See “mcontrol” on page 7-85)

The stale data indicators used in the simple full-screen Monitor Window are simple c
acters used to indicate each state. A space () is used to indicate updated values. A
(.) is used for monitorpoints that have not been executed. An exclamation point (!) is
used for monitorpoints which have executed but not taken a sample. For more info
tion about stale data indicators, see “Monitor Window” on page 3-25.

A status line at the bottom of the simple full-screen Monitor Window divides it from t
remainder of the screen. The status line indicates the state of the Monitor Window (held
or running) and shows the current delay time in milliseconds between updates of
window.
8-2

Graphical User Interface

the

cepts

n 1 is
You

input
o

” on

ge

e are
ial -

e the
9
Chapter 9Graphical User Interface

9
9
9

This chapter describes the graphical user interface (GUI) for NightView. The GUI

provides more flexibility and functionality than either the command-line interface or
simple full-screen interface.

The graphical user interface for NightView is based on OSF/MotifTM. NightView runs in
the environment of the X Window SystemTM Version 11, Release 6 (or later).

This chapter assumes that you have a basic understanding of window system con
such as selecting objects by clicking with the mouse. For more information, see theOSF/
Motif User's Guide.

It is assumed that your X server has a three-button mouse. By default, mouse butto
the leftmost button, button 2 the middle button, and button 3 the rightmost button.
can reassign the functions associated with mouse buttons by usingxmodmap(1) . If you
do not have a three-button mouse, see your system administrator or read sections on
and navigation in theOSF/Motif Style Guide. Use mouse button 1 when you are told t
click, drag, press, and select.

This chapter refers to using a mouse, and refers toclicking on objects to select them or to
activate them, but you may also use keyboard selection and activation. See “Keys
page 9-10.

You can customize the NightView GUI. See Appendix D [GUI Customization] on pa
D-1.

Sample debug sessions showing how to use the NightView graphical user interfac
available. See Chapter 2 [A Quick Start - GUI] on page 2-1. See Chapter 5 [Tutor
GUI] on page 5-1.

NightView GUI Concepts 9

This section explains concepts that you need to understand so that you can us
NightView graphical user interface to its fullest advantage.

GUI Overview 9

The Graphical User Interface contains these major types of windows.

• Dialogue Window

• Debug Window
9-1

NightView User’s Guide

h the

ut
is
page

ge
bal
ee

ows
ay

w's
ch
the
ich

ics.

to
d in

, or
lp.
• Monitor Window - GUI

• Global Window

• Help Window

Each of these major windows has supporting dialog boxes which are described wit
corresponding major window. See “Dialogues and Dialog Boxes” on page 9-10.

A Dialogue Window is used to control a NightView dialogue and for input and outp
with the dialogue shell. See “Dialogue Window” on page 9-16. A Debug Window
used to debug and manipulate one or more processes. See “Debug Window” on
9-20. The GUI Monitor Window displays monitorpoints. See “Monitorpoints” on pa
3-9. The Global Window is used to control the debugger in general. See “Glo
Window” on page 9-47. The Help Window is used only when you ask for help. S
“Help Window” on page 9-49.

Typically, while debugging a process, you have the Debug and Dialogue Wind
available, but most of the actual debugging is done with the Debug Window. You m
iconify any windows you don't need at the moment.

Each of the NightView windows has a unique icon image that relates to the windo
function. The Debug Window icon displays the identifying NightView image, and ea
of the other windows includes this image as part of its icon. If you are displaying
icon images (it is possible to display only the icon labels), you can quickly see wh
iconified windows belong to the NightView application.

GUI Online Help 9

The graphical user interface provides several ways of providing help on particular top

• Context-sensitive help is available in all major NightView windows. See
“Context-Sensitive Help” on page 9-3.

• Each of the major windows has aHelp Menu. See “Help Menu” on page
9-3.

• Pressing theF1 function key displays help for the part of the window that
has the current focus.

• Some of the windows have help buttons that pop up help for the particular
window.

• You can use thehelp command from the command-line interface. See
“help” on page 7-108.

Help information is displayed in a Help Window. NightView uses a separate program
display the Help Window. Once a Help Window is displayed, you can move aroun
the help system in a variety of ways. You can keep the Help Window on your screen
dismiss it. You can also iconify it, and it redisplays itself the next time you ask for he
See “Help Window” on page 9-49.
9-2

Graphical User Interface

y
d

ns.
elect
s
.

over
elp
o its

t

on-

by

ine
Context-Sensitive Help 9

Context-sensitive help is available through theHelp menu found in each major
NightView window. See “Help Menu” on page 9-3. In addition, the <Help> ke
(usually this is theF1 function key) displays help information for the currently selecte
window component.

Generally, help is not provided on individual graphical items, such as individual butto
Instead, you are given help for the region you have selected. For example, if you s
help on the Detach button in the Dialogue Window, the Help Window display
information about the process summary area. See “Process Summary” on page 9-18

To get context-sensitive help using theHelp menu, select theOn Context menu item.
The pointer changes to a question mark with an arrow. Place the point of the arrow
the graphical region for which you want help and click mouse button 1. The H
Window is displayed with information about that region. The pointer changes back t
original shape.

To get context-sensitive help using theF1 (Help) key, select a window component tha
you have a question about. Press theF1 (Help) key. A Help Window is displayed with
information about that region.

Help Menu 9

Mnemonic:H

Each major window in NightView has aHelp menu. TheHelp menu in each window has
the same menu items.

On Context

Mnemonic:C

This item provides help about a particular graphical region of a window. See “C
text-Sensitive Help” on page 9-3.

On Last Error

Mnemonic:E

If NightView just displayed an error message, you can get help on that error
selecting this menu item.

Selecting this item is similar to using thehelp command with no argument. See
“help” on page 7-108.

On Help

Mnemonic:H

This item gives help about how to use NightView's help system. See “GUI Onl
Help” on page 9-2.
9-3

NightView User’s Guide

ge

ht-

er 2

er 5

ht-
On Window

Mnemonic:W

This item gives help about the window where you selected theHelp menu.

On Commands

Mnemonic:M

This item gives a summary of NightView commands.

On Keys

Mnemonic:K

This item gives help about using special keys in NightView. See “Keys” on pa
9-10.

Index

Mnemonic:I

This item shows an index that lists all the help topics available for NightView.

Table of Contents

Mnemonic:N

This item shows a table of contents that lists all the help topics available for Nig
View.

A Quick Start

Mnemonic:Q

This item takes you to the beginning of the GUI quick start chapter. See Chapt
[A Quick Start - GUI] on page 2-1.

Tutorial

Mnemonic:T

This item takes you to the beginning of the GUI tutorial chapter. See Chapt
[Tutorial - GUI] on page 5-1.

On Version

Mnemonic:V

This item pops up an information dialog box that describes which version of Nig
View you are running.

Help Buttons 9

Dialog boxes include aHelp button in the lower right corner. You can click on this
9-4

Graphical User Interface

age

e
on
sted

of

elp
st

iew

phical

text
enter

e

r and
pter.
ly to

oard

can
n

button to receive help on the dialog box. See “Dialogues and Dialog Boxes” on p
9-10.

Help Command 9

You can type thehelp command, followed by the topic you want help on, into th
command entry area of a major NightView window to obtain online help. See “help”
page 7-108. A Help Window is displayed that contains information about the reque
topic. See “Help Window” on page 9-49.

If a Help Window does not exist, NightView displays one for you. Otherwise, the text
the existing Help Window changes to show you the information that you requested.

If NightView cannot find the information you requested, a warning dialog box and a H
Window are displayed. See “Warning Dialog Box” on page 9-15. You mu
acknowledge the warning before you can interact with any of the other NightV
windows. Click on theDismiss button.

GUI Components 9

This section describes GUI components that you need to understand to use the gra
user interface.

Text Input Areas 9

Text input areas receive text from the keyboard. The most important examples of
input areas are the single line input areas in the major windows, which are used to
NightView commands. See “Debug Command Area” on page 9-34.

The command areas use acombo boxto provide access to the command history. Se
“Combo Boxes” on page 9-6.

Text input areas have many special keys that can be used to position the text curso
to edit the text. A description of all the special keys is beyond the scope of this cha
However, this section describes some of the most important keys as they app
NightView's command areas. For more information on keys, see theOSF/Motif User's
Guide.

Text input areas can take input only when they have the keyboard focus. See “Keyb
Focus” on page 9-10.

For color devices, NightView uses a different color for areas of a window that you
type into. You can configure this color. Refer to the NightView color applicatio
defaults file. See Appendix D [GUI Customization] on page D-1.

left and right arrows

move the cursor by one character to the left or right, respectively

Home
9-5

NightView User’s Guide

” on
the
s the

own
lay
he
list

om-

put
ands

s, and
utput
sage

ed to
ight

of
moves the cursor to the beginning of the line of text

End

moves the cursor to the end of the line of text

Return

completes the text entry

Backspace

deletes the character before the text cursor

Delete

deletes the character following the text cursor

Combo Boxes 9

Combo boxes combine a text input area and a drop-down list (see “Text Input Areas
page 9-5). You can see the list by clicking on the downward-pointing arrow next to
text input area. You may then select any item in the list. The selected item replace
text in the text input area. You may then edit that text and enter it if desired.

You can also use the keyboard to manipulate the combo box. Use the up arrow or d
arrow to replace the text with the next item in the list without displaying the list. Disp
the list by holding downCTRL and pressing the up arrow or the down arrow. When t
list is displayed you can move within the list with up arrow and down arrow. Hide the
by pressingEsc.

NightView uses combo boxes to provide access to the command history. See “GUI C
mand History” on page 9-12.

Message Areas 9

Each major NightView window (Global, Dialogue, and Debug windows) has an out
area that displays messages pertaining to that element along with the output of comm
and actions performed in that window. These message areas are scrolling text area
each is headed by the word "Messages:" above the scrolling text. See “Global O
Area” on page 9-48. See “Dialogue Message Area” on page 9-17. See “Debug Mes
Area” on page 9-28.

Above each scrolling text area, to the right of the "Messages:" label, is an area us
provide feedback to the user when NightView is busy performing a task that m
prevent or delay other user interaction. This area will display one of two forms
feedback:

• An output-only text field displaying a message. The message indicates the
task that NightView is performing. The background color of this field indi-
cates that it is an output-only field. See “NightStar Color Resources” on
page D-4.
9-6

Graphical User Interface

n-
t indi-
may
ck up"

g file

file
he

m-
ser-
e it

ver-
cess

s,
ries.
iew

, it
ny
do

to
our

file
iew
he
x to
• A progress bar displaying both a message and a visual indication of
progress. The message again indicates the task that NightView is perform-
ing, and the progress bar gives an approximate indication of how much of
the task is done and how much is left to do. The colors used for progress
indication are user customizable; see “NightStar Color Resources” on
page D-4.

Some tasks involve an amount of work that is difficult to quantify from the begi
ning. In those cases, a number may be included in the feedback message tha
cates the current estimate of the amount of work to be done. This number
change as the task progresses, and consequently the progress bar may "ba
rather than progress smoothly. This is normal behavior.

Some examples of tasks that you may see feedback for are:

Initializing processname

This message appears when NightView is preparing a new process, executin
name, for debugging.

Initial scan of object filename

This message appears when NightView is scanning the debug information of
nameprior to debugging a program for the first time. The named file may be t
name of either an executable program or a shared library.

Translatingn type definitions inname

If you are debugging a program that was built from many different source files co
piled separately, your program may contain debug information for the same u
defined type many times. NightView must resolve these many definitions befor
can manipulate items of that type. Because NightView attempts to minimize o
head by reading and interpreting debug information only when required, this pro
may be incurred at any time during your debug session.

This type resolution process is typically only incurred in C and C++ program
although it may also be required for some Ada programs that use shared libra
You may be able to eliminate or considerably reduce the amount of time NightV
takes to resolve these type definitions by running thecprs(1) program on your
executable file.

Note that, once NightView has resolved the definition of a particular data type
does not need to resolvethat type again for that executable, regardless of how ma
times you debug that program during your NightView session. As long as you
not exit NightView and do not modify the executable file, NightView will be able
retain the information it has acquired from debug information and thus reduce y
debugging time. See “Restarting a Program” on page 3-11.

File Selection Dialog Box 9

A file selection dialog box allows you to browse through directories and choose a
from a list. Or, you can type in a file name. You can change directories and v
subdirectories and their files. Typically, the file selection dialog box lists files in t
current directory. In some cases, NightView may instruct the file selection dialog bo
9-7

NightView User’s Guide

s the
out

tion

ar in

d by

the
list certain files in a specific directory.

There are two possible versions of the file selection dialog box; this section describe
default version used by NightView. You can use the other version if you comment
the following resources in/usr/lib/X11/app-defaults/Nview :

*XmFileSelectionBox.pathMode
*XmFileSelectionBox.fileFilterStyle

Also, see theOSF/Motif Style Guide.

The file selection dialog box consists of aDirectory text input area for the directory
name, aFilter mask, a list of subdirectories, a list of files, aSelection text input area
for the filename, and buttons that allow you to take actions related to the file selec
dialog box. See “Text Input Areas” on page 9-5.

See “List Selection Policies” on page 9-9.

Directory.

This area shows the name of the directory whose files and subdirectories appe
the lists.

This is a text input area. You can change the directory name; click on theFilter but-
ton and the file selection dialog box updates theDirectories andFiles lists.

File Filter.

By editing theFilter string and clicking on theFilter button, you can change the
files that are displayed in theFiles lists.

This is a text input area. See “Text Input Areas” on page 9-5.

Directories List.

This list shows the subdirectory names that are located in the directory indicate
theDirectory string.

To choose a directory from the list, click on its name in the list and click on theFil-
ter button. Double-clicking on a directory entry changes theFilter directory to that
directory. The list of subdirectories and the list of files are also changed.

Files List.

This list shows the file names that are located in the directory indicated by
Directory string.

To select a file from the list, you can click on its name in the list and click on theOK
button. You can also double-click on a file in the list to select that file.

File Selection.

This area shows the currently selected file name in theFiles list, or you can type in
a file name.

This is a text input area. See “Text Input Areas” on page 9-5.
9-8

Graphical User Interface

nce
ion is

rce

are

ost
at

less

sible

ays
on
ugh

ter,

ed

e are

s.

of
you

elect

of
Action Area Buttons.

If you are satisfied with the file name selection, click on theOK button. NightView
uses the file you chose; how the file is used depends on the application context.

Clicking on Filter changes theDirectories andFiles list contents to reflect the
contents of theDirectory andFilter fields.

Clicking onCancel cancels the current action and closes this dialog box.

You can get help for this dialog box by clicking onHelp.

List Selection Policies 9

A list allows you to select one or more items. The selected items are highlighted. O
selected, you can cause some action to be taken on the items; usually, this act
invoked by pressing a button near the list.

With some lists in NightView, you can change the default selection policy. The resou
that controls the list selection policy isselectionPolicy . Refer to the NightView
application defaults file to determine which windows have list selection policies that
configurable. See Appendix D [GUI Customization] on page D-1.

Lists may have different selection policies, depending on what type of selection is m
appropriate in a given application context. For example, a list may allow only one item
a time to be selected, or it may allow you to select multiple discontiguous items. Un
otherwise indicated,browseis the default list selection policy.

In the case where it is appropriate to select only one item at a time, there are two pos
selection policies:browseandsingle.

The browseselection policy allows you to select, at most, one item. One item is alw
selected, although the list may initially display with no selected item. You can click
an item to select it, or you can hold down mouse button 1 and drag the pointer thro
the list of items, scrolling the list. As you browse through the list with the mouse poin
the selected item changes.

Thesingleselection policy allows you to click on an item to select it. Click on a select
item to deselect it. At most, one item is selected. There may be no item selected.

In some cases, a list allows multiple list items to be selected. For these lists, ther
two possible selection policies:multipleandextended.

The multiple selection policy allows you to click on one or more items to select item
Clicking on a selected item deselects it. You can select all items by usingCtrl+ /. You
can deselect all items by usingCtrl+ \.

The extendedselection policy allows you to select multiple discontiguous ranges
items. Use mouse button 1 to drag the pointer and select a range of items. Once
have selected one or more items, press theCtrl key while using the mouse pointer to add
more items to the set of currently selected items. You can click on any item to des
all other items in the selection set; that item will be selected. To deselect items, useCtrl
while clicking on a selected item or while dragging the pointer through a range
selected items.
9-9

NightView User’s Guide

h an

t the

se
e is

ngs

e is

ally

ard
s of

s the

y is
icy

ou
.

UI

cting

the
You can also use keyboard methods to select and deselect all items in a list wit
extended selection policy. You select all items by usingCtrl+ /. While in normal mode
(notice that the location cursor is a solid box), you can deselect all list items, excep
item indicated with the location cursor, by usingCtrl+ \. To deselect all items in the list,
you must change toadd mode(notice that the location cursor is a dashed box), and u
Ctrl+ \. The standard key binding for toggling between normal mode and add mod
Shift+F8.

For more information on list selection policies, virtual keys, and common key bindi
see theOSF/Motif Style Guide. For information on using lists, see theOSF/Motif User's
Guide.

Dialogues and Dialog Boxes 9

NightView has a concept called adialogue, which is a way of communicating with an
ordinary command shell. See “Dialogues” on page 3-4. Note that this kind of dialogu
spelled with a "ue" at the end.

The graphical user interface uses another term:dialog box. This is not related to the
NightView concept of adialogue. Dialog boxrefers to a particular type of window that
may appear during your session. A dialog box usually appears only briefly and typic
allows you to specify a particular item, such as a file name.

These two concepts are distinct and unrelated, even though they sound alike.

Keyboard Focus 9

The GUI uses the concept ofkeyboard focus. Keyboard input is accepted only in a field
when that field has the keyboard focus. When a field of a window has the keybo
focus, the window is also considered to have the keyboard focus, for the purpose
using mnemonics and accelerators. See “Keys” on page 9-10. The field that ha
keyboard focus is highlighted.

How you set the keyboard focus depends on the focus policy. If the focus polic
pointer, then the keyboard focus is in whatever field the pointer is in. If the focus pol
is explicit, then you must take some action to move the keyboard focus to a field. Y
can do this by clicking on the field or by using certain keys. See “Keys” on page 9-10

The default keyboard focus policy for NightView isexplicit. The resource used to
control this is keyboardFocusPolicy . Information about how to change this
resource can be found in the NightView application defaults file. See Appendix D [G
Customization] on page D-1.

For more information on how to manipulate the keyboard focus, see theOSF/Motif
User's Guide.

Keys 9

NightView uses certain key combinations as shortcuts for displaying menus and sele
menu items. These key combinations are calledacceleratorsand mnemonics. Each
window has its own set of accelerators and mnemonics that are active only while
9-10

Graphical User Interface

e in
oard

are

the

onic
ne-

onic,

ciated
by
are

h as

ation

is

” on

near

other.
ze of
ndow
.

keyboard focus is in that window. However, the keyboard focus does not have to b
any particular field of the window to use accelerators and mnemonics. See “Keyb
Focus” on page 9-10.

Menus can be displayed with mnemonics.

Menus can be displayed from the keyboard by typingAlt+mnemonic. Each of the
main windows has a menu bar near the top of the window. The different menus
labeled. For example, the Debug Window has aProcess menu. If you look at the
Process menu, you can see that theP is underlined.P is the mnemonic for the
Process menu. That means that, in addition to displaying theProcess menu by
clicking on it with mouse button 1, you can also display it withAlt+ p (hold down
Alt and pressp).

If you decide you don't want to select any of the menu items, you can make
menu go away by typingEsc or by clicking somewhere else.

Menu items can be selected with mnemonics.

Once a menu is displayed, you can select a menu item by typing only the mnem
for that item. The mnemonics for the menu items are underlined, just as the m
monics for the menus are underlined. To select a menu item by using its mnem
just press the key.

Menu functions can be invoked with accelerators.

Some commonly used menu items have accelerator keys. The functions asso
with these menu items can be invoked directly, without displaying the menu,
pressing the accelerator keys. The accelerator keys for a particular menu item
listed next to the item in the menu.

The accelerator keys are often a combination of a control key plus a letter, suc
Ctrl+ O. To typeCtrl+ O, hold down the control key and pressO.

In addition to mnemonics and accelerators, there are also special keys used for navig
within and among windows and fields. These keys includeTab, Shift+Tab, Home,
End, Page Up, Page Down and the arrow keys. The documentation of these keys
beyond the scope of this chapter. For more information about keys, see theOSF/Motif
User's Guide.

There are many special keys used to edit text input areas. See “Text Input Areas
page 9-5.

Sashes 9

Some of the windows are divided into panes and have sashes. A sash is a little box
the right end of the line that separates the panes.

A sash may be used to change the sizes of two adjoining panes, relative to each
You can do this by dragging the sash with mouse button 1. As you increase the si
one pane, the adjoining pane's size is decreased proportionally. The size of the wi
does not change, only the sizes of the adjoining panes within the window are affected

For more information about Paned Windows, see theOSF/Motif User's Guide.
9-11

NightView User’s Guide

ypes
n be
d in a

mark
item
or a

he
ee

age
h the

ee

g and

ow
using

ich

hile
bug

in-
ll the
ows
e”
Toggle Buttons 9

A toggle button is a graphical element that can be toggled on or off. There are two t
of toggle buttons: check buttons and radio buttons. More than one check button ca
selected in a group of check buttons, whereas only one radio button can be selecte
group of radio buttons.

The graphical item used for a check button to indicate the on state is either a check
graphic in a square box (the default), or a filled square check box. The graphical
used for a radio button to indicate the on state is either a filled circle (the default),
filled diamond. The off state is indicated with an empty box, circle or diamond.

You can configure the selection color of the toggle button by defining t
selectColor resource. Refer to the NightView color application defaults file. S
Appendix D [GUI Customization] on page D-1.

GUI Command History 9

NightView keeps a history of the commands you enter. See “Command History” on p
3-30. In the graphical user interface you can access the command history throug
combo box in the command area of each major window.

The combo box in each window shows the entire history from all the windows. S
“Combo Boxes” on page 9-6.

Understanding the Debug Window 9

This section explains the concepts you need to understand so that you can debu
manipulate processes in a NightView Debug Window.

Debug Window Behavior 9

NightView automatically creates one Principal Debug Window. This Debug Wind
contains all processes that appear in a NightView session. You can debug processes
only this window, or you can create additional Debug Windows and define wh
processes appear in them.

Any single process may be represented in one or more Debug Windows at a time. W
all Debug Windows share common behavior traits, the behavior of the Principal De
Window varies slightly from Debug Windows that you create.

Common Debug Window Behavior.

NightView allows you to control one or more processes in one or more Debug W
dows. You can choose to manipulate one process at a time, or to manipulate a
processes in the window as a group. To accomplish this, the Debug Window all
you to switch betweensingleandgroupprocess modes. See “Single Process Mod
on page 9-13. See “Group Process Mode” on page 9-14.
9-12

Graphical User Interface

cur-
and
roup

it

ion.
n that

at-
re-
l

ar in

is
s in

ow

any
udes
using
e the
t and
If the window is in single process mode, commands and actions apply to the
rently displayed process. If the window is in group process mode, commands
actions apply to each of the processes in the group area list. See “Debug G
Area” on page 9-35.

New processes always appear in the same windows as their parent.

If a process exits, it is removed from the group list of all Debug Windows where
appeared.

You can choose to close a Debug Window at any time during the NightView sess
Closing a Debug Window has no effect on the processes that are represented i
window.

Principal Debug Window.

The Principal Debug Window can be empty.

This window remains available throughout the NightView session; it is not autom
ically closed. If you choose to close it, the Principal Debug Window can be
opened by using theNightView menu found in the Debug, Dialogue, and Globa
Windows.

User-Created Debug Windows.

You can create other Debug Windows and define which processes initially appe
each window. See “Debug Group Selection Dialog Box” on page 9-36.

In contrast to the Principal Debug Window, a Debug Window that you create
never empty; NightView automatically closes the window when the last proces
the window exits.

You can tell NightView to automatically display each process in its own Debug Wind
by setting theoneWindowPerProcess resource toTrue (the default isFalse). See
Appendix D [GUI Customization] on page D-1. When this resource isTrue :

• NightView displays a separate Debug Window for each process. Any
Debug Windows created this way are considered to be user-created Debug
Windows.

• NightView sets the window's title to the process's qualifier.

• The Principal Debug Window is not automatically displayed.

• You might also want to consider setting thedisplayGroupToggle-
Button.set resource toFalse . See “Debug View Menu” on page
9-26.

Single Process Mode 9

By default, the Debug Window is in single process mode. This means that
commands that you issue apply only to the currently displayed process. This incl
commands that are typed into the command area or commands that are issued
graphical methods. If there is more than one process in the window, you can chang
currently displayed process by selecting a process from the debug group area lis
9-13

NightView User’s Guide

e
the

may
n the
by
ea” on

t the
s in
d

s is
and
” on

ou to

is by
ply to
typed

and
debug

t the
s in

e

s is
and
” on

ou to

le
clicking on theSwitch To button. See “Debug Group Area” on page 9-35. Initially, th
process that occurs first in the group area list is the currently displayed process in
source display area. See “Debug Source Display” on page 9-30.

When the Debug Window is in single process mode, some of the command buttons
be disabled to indicate that their use is not appropriate at this time. For example, whe
selected process is stopped, theStop button is disabled. Any messages generated
commands are displayed in the debug message area. See “Debug Message Ar
page 9-28.

You can determine when the Debug Window is in single process mode by looking a
debug qualifier area. See “Debug Qualifier Area” on page 9-34. When the window i
single process mode, you see theQualifier: label and the process's qualifier displaye
here. Otherwise, you see the phrase[Group Mode]. See “Group Process Mode” on
page 9-14.

The View menu contains radio buttons that also indicate which of the two mode
currently set, and allows you to change your view of the window between single
group process mode. See “Debug View Menu” on page 9-26. See “Toggle Buttons
page 9-12.

There are keyboard accelerators associated with these menu items which allow y
switch between modes without displaying the menu. See “Keys” on page 9-10.

Group Process Mode 9

If you want to issue commands that apply to more than one process, you can do th
changing to group process mode. This means that any commands that you issue ap
each of the processes listed in the group area. This includes commands that are
into the debug command area or commands issued using graphical methods.

When the Debug Window is in group mode, all of the command buttons are enabled
any messages generated by any of the processes in the group are displayed in the
message area.

You can determine when the Debug Window is in group process mode by looking a
debug qualifier area. See “Debug Qualifier Area” on page 9-34. When the window i
group process mode, you do not see theQualifier: label, and instead of a specific
qualifier you see the phrase[Group Mode]. To see the value of the qualifier, use th
View menu itemShow Qualifier.... See “Debug View Menu” on page 9-26.

The View menu contains radio buttons that also indicate which of the two mode
currently set, and allows you to change your view of the window between single
group process mode. See “Debug View Menu” on page 9-26. See “Toggle Buttons
page 9-12.

There are keyboard accelerators associated with these menu items which allow y
switch between modes without displaying the menu. See “Keys” on page 9-10.

Confirm Exit Dialog Box 9

If you try to close a window and NightView determines that this is the last visib
9-14

Graphical User Interface

iew

win-

he

lt in
r or

can
ted

arning

tion

afe

er-

that
mes-

r

window on your screen, NightView assumes you want to exit the debugger. NightV
displays a dialog box allowing you to confirm this assumption.

Message.

The dialog box that pops up contains text that indicates that this is the last open
dow and asks you if you want to exit the debugger.

Action Area Buttons.

Selecting theOK button tells the debugger to go ahead and exit the debugger.

Selecting theCancel button tells the debugger to cancel the request to exit t
debugger.

If you wish to get help, select theHelp button.

You must select either theOK button or theCancel button before you can continue.

Warning and Error Dialog Boxes 9

If an error occurs, or if you have instructed NightView to take an action that may resu
the loss of data, NightView displays warning or error windows to alert you to the erro
the unsafe action. Often, you need to acknowledge the warning or error before you
continue by clicking on one of the buttons. A default choice is indicated by a highligh
box around one of the buttons.

Warning Dialog Box 9

Certain actions performed by the debugger are considered unsafe. They cause a w
dialog box to pop up and ask you for verification to perform the unsafe action.

Warning Message.

The warning dialog box that pops up contains text that specifies the unsafe ac
that is to be performed.

Action Area Buttons.

Selecting theOK button tells the debugger to go ahead and perform the uns
action.

Selecting theCancel button tells the debugger to cancel the request to p
form the unsafe action.

If you wish to get help, press theF1 (Help) key. Or, you can select theCan-
cel button and then either get help on the last diagnostic or error message
was displayed or on the section that was referenced by the last diagnostic
sage or error message. See “Help Menu” on page 9-3.

You must select either theOK button or theCancel button before you can use any othe
NightView windows.
9-15

NightView User’s Guide

rm

.

r

ue.

ed by

gue

al
al

al
Error Dialog Box 9

If you make an error while using NightView, an error dialog box may pop up to info
you of the mistake.

Error Message.

The error dialog box that pops up contains a message about the error condition

Action Area Buttons.

Click on OK to acknowledge the error and dismiss the error dialog box.

If you wish to get help, press theF1 (Help) key.

You must acknowledge the error by selecting theOK button before you can use any othe
NightView windows.

Dialogue Window 9

The Dialogue Window lets you communicate with and control a NightView dialog
See “Dialogues” on page 3-4.

Any programs that you run in the dialogue I/O area can be debugged and manipulat
NightView. See “Dialogue I/O Area” on page 9-17.

Dialogue Menu Bar 9

The dialogue menu bar lets you perform global NightView actions, control the dialo
and access online help.

Dialogue NightView Menu 9

Mnemonic:N

The NightView menu is used to control NightView windows and perform glob
NightView actions. TheNightView menu appears in the Debug, Dialogue and Glob
windows and has the same menu items in each window.

See “Debug NightView Menu” on page 9-20, for a description of the individu
NightView menu items.

Dialogue Menu 9

Mnemonic:D

TheDialogue menu lets you terminate the dialogue.
9-16

Graphical User Interface

is is

e are
use

ow,
help.
n

ine

ith.

ludes
ssed by

s.

s” on

See
ally
here.
Logout

Mnemonic:L

Selecting this item terminates the dialogue and closes the Dialogue Window. Th
similar to using thelogout command. See “logout” on page 7-23.

Depending on the safety level (see “set-safety” on page 7-49) and whether ther
any active processes, NightView may display a warning dialog box when you
theLogout menu item. See “Warning Dialog Box” on page 9-15.

Dialogue Help Menu 9

Mnemonic:H

This menu provides ways of getting context-sensitive help, help on the current wind
help on the last error NightView encountered, as well as several other categories of
NightView help information is displayed in a Help Window. See “Help Window” o
page 9-49.

TheHelp menu is described in another section. See “Help Menu” on page 9-3.

A general discussion of NightView's online help is also available. See “GUI Onl
Help” on page 9-2.

Dialogue Identification Area 9

This area shows the name of the particular dialogue that this window is associated w

There is also a label showing the name of the system the dialogue is running on.

Dialogue Message Area 9

This area displays messages related to this dialogue. The displayed information inc
process exit messages, error messages and output from commands that are proce
this Dialogue Window.

This is a scrolling area. You can use the scroll bar to look at older or newer message

You can change the height of this area by moving the sash up or down. See “Sashe
page 9-11.

Dialogue I/O Area 9

This area allows you to interact with the dialogue shell and with your programs.
“Dialogues” on page 3-4. You can run your program here, just as you would norm
run it, providing any arguments that it needs. Shell and program output is displayed
9-17

NightView User’s Guide

hing
hat

s” on

ing
the

the
this

ot

iew
obal
cept

can
he
.

The
ore
to all
You can also enter input to the shell and to your programs. This window acts somet
like a little terminal. If your shell lets you do command-line editing, then you can do t
in this window, too.

This is a scrolling area. You can use the scroll bar to look at older or newer output.

You can change the height of this area by moving the sash up or down. See “Sashe
page 9-11.

Dialogue Interrupt Button 9

Clicking on this button interrupts whatever the debugger is doing. This is similar to us
the shell interrupt character in the command-line interface. See “Interrupting
Debugger” on page 3-28.

Dialogue Qualifier Area 9

The dialogue qualifier area is a label to remind you that commands entered in
dialogue command area are implicitly qualified by the dialogue associated with
Dialogue Window. The label shows the name of the dialogue.

Unlike the default qualifier in the global qualifier area in the Global Window, you cann
change this qualifier.

Dialogue Command Area 9

The dialogue command area in the Dialogue Window is used to enter NightV
commands. Like the debug command area in the Debug Window and the gl
command area in the Global Window, all the command-line interface commands, ex
for shell , can be entered in the dialogue command area.

Input to this area is similar to using the command-line interface. For example, you
enter an explicit qualifier followed by a command. If you do not specify a qualifier, t
command is implicitly qualified by the dialogue associated with this Dialogue Window

The dialogue command area is a combo box. See “Combo Boxes” on page 9-6.

Process Summary 9

The process summary provides a list of all the processes that exist in the dialogue.
list is followed by buttons that provide related process actions. Select one or m
processes, then press one of the buttons. The button action that you choose applies
selected processes.

The buttons allow you to detach and terminate processes.
9-18

Graphical User Interface

dow.
s

sing

s
tion
e

s” on

ogue

nd-
to
tells

u

dia-

ram,
The

ebug
To detach from a process, first select one or more processes in the summary win
The selected processes are highlighted. Then click onDetach. The selected processe
are detached from the dialogue. This is similar to using thedetach command. See
“detach” on page 7-32.

TheKill button may be used to terminate one or more processes. This is similar to u
thekill command. See “kill” on page 7-33.

The default list selection policy isextended, which means you can select discontiguou
ranges of items. This list selection policy is configurable. (The only other selec
policy that is appropriate ismultiple.) See “List Selection Policies” on page 9-9. Se
Appendix D [GUI Customization] on page D-1.

You can change the height of this area by moving the sash up or down. See “Sashe
page 9-11.

Dialogue Window Dialog Boxes 9

This section describes dialog boxes that may appear while you are using the Dial
Window.

Program Arguments Dialog Box 9

This dialog box pops up if you invoke NightView with a program name as a comma
line argument (see Chapter 6 [Invoking NightView] on page 6-1). It allows you
specify the arguments that your program expects. The message in the dialog box
you the name of the program and what to do.

You cannot interact with other NightView windows, except the Help Window, until yo
select eitherOK or Cancel in this dialog box.

Enter Program Arguments.

Enter the arguments, if any, in the text input area. PressingReturn activates theOK
button.

See “Text Input Areas” on page 9-5.

Choose an Action Button.

If you are satisfied with the arguments you entered, click onOK.

If you decide you do not want to debug this program, click onCancel. You can
still debug the program later, by entering the appropriate shell command in the
logue I/O area. See “Dialogue I/O Area” on page 9-17).

You can get help for this dialog box by clicking onHelp.

The dialog box will disappear, and you should see a shell command for your prog
with the arguments you specified in this dialog box, appear in the dialogue I/O area.
program is started, causing a Debug Window to appear for it; at that point, you can d
the program. See “Debug Window” on page 9-20.
9-19

NightView User’s Guide

e or

and
ted in
rea”

in this
ocess

them.

ipal
by

s on
hange

al
al

bug

s to
ow.
Debug Window 9

The Debug Window provides the primary means of debugging and manipulating on
more processes.

By default, the window is in single process mode, which means you can debug
manipulate the currently displayed process or switch to any other process represen
this Debug Window. See “Single Process Mode” on page 9-13. See “Debug Group A
on page 9-35. If you want to debug and manipulate all the processes represented
window at the same time, you can change to group process mode. See “Group Pr
Mode” on page 9-14. See “Debug View Menu” on page 9-26.

You can create Debug Windows and define the group of processes that appear in
See “Debug NightView Menu” on page 9-20.

The behavior of a Debug Window differs slightly depending on whether it is the Princ
Debug Window (created automatically by NightView) or a Debug Window created
you. See “Debug Window Behavior” on page 9-12.

Debug Menu Bar 9

From the debug menu bar you can perform global NightView actions, perform action
one or more processes, choose source to display or edit, manipulate eventpoints, c
the way you view the window, and obtain online help.

Debug NightView Menu 9

Mnemonic:N

The NightView menu is used to control NightView windows and perform glob
NightView actions. TheNightView menu appears in the Debug, Dialogue and Glob
windows and has the same menu items in each window.

Create Debug Window...

Mnemonic:D

Selecting this menu item allows you to create a new Debug Window. See “De
Window” on page 9-20.

A dialog box is displayed that allows you to select one or more qualifier specifier
define the new window. You can also provide a name for the new Debug Wind
See “Qualifier Specifiers” on page 7-10.

See “Debug Group Selection Dialog Box” on page 9-36.

Open Principal Debug Window

Mnemonic:P
9-20

Graphical User Interface

ow

dy

ee

stem
for

s.

the
as

s the

e are
use

the
w is

ses in
Selecting this menu item opens the Principal Debug Window. See “Debug Wind
Behavior” on page 9-12.

This menu item is disabled (dimmed) if the Principal Debug Window is alrea
open.

Open Global Window

Mnemonic:G

Selecting this menu item opens the Global Window.

This menu item is disabled (dimmed) if the Global Window is already open. S
“Global Window” on page 9-47.

Start Remote Dialogue...

Mnemonic:R

Selecting this menu item allows you to create a remote dialogue on a target sy
of your choice. A dialog box is displayed that allows you to choose parameters
the remote dialogue. See “Remote Login Dialog Box” on page 9-44.

Close Window

Mnemonic:C

Selecting this menu item closes this window and any related dialog box window

If this is a Debug Window, closing the window has no effect on the processes in
window. If this is a Dialogue Window, closing the window has the same effect
logging out of the dialogue. See “Dialogue Menu” on page 9-16.

Exit (Quit NightView)

Mnemonic:X

Accelerator:Ctrl+ Q

Selecting this menu item causes NightView to exit. This has the same effect a
quit command. See “quit” on page 7-17.

Depending on the safety level (see “set-safety” on page 7-49) and whether ther
any active processes, NightView may display a warning dialog box when you
theExit menu item. See “Warning Dialog Box” on page 9-15.

Debug Process Menu 9

Mnemonic:P

This menu is used to perform actions on processes.

If the window is in single process mode, the menu item you select will affect only
currently displayed process. See “Single Process Mode” on page 9-13. If the windo
in group process mode, then the menu item you select will act on each of the proces
the group area list. See “Group Process Mode” on page 9-14.
9-21

NightView User’s Guide

ess
if in
Pro-

dis-

s (if
pro-
ode”

dis-

urce
page

e, the
cess
page

ram
Dis-

l-
lly
View
Detach

Mnemonic:D

Selecting this item causes NightView to detach from the currently displayed proc
(if in single process mode) or from each process listed in the group area list (
group process mode). See “Single Process Mode” on page 9-13. See “Group
cess Mode” on page 9-14. See “Debug Group Area” on page 9-35.

This is similar to using thedetach command. See “detach” on page 7-32.

Depending on the safety level (see “set-safety” on page 7-49), NightView may
play a warning dialog box when you use theDetach menu item. See “Warning
Dialog Box” on page 9-15.

Kill

Mnemonic:K

Selecting this item causes NightView to terminate the currently displayed proces
in single process mode) or each process listed in the group area list (if in group
cess mode). See “Single Process Mode” on page 9-13. See “Group Process M
on page 9-14. See “Debug Group Area” on page 9-35.

This is similar to using thekill command. See “kill” on page 7-33.

Depending on the safety level (see “set-safety” on page 7-49), NightView may
play a warning dialog box when you use theKill menu item. See “Warning Dialog
Box” on page 9-15.

Debug Source Menu 9

Mnemonic:S

This menu provides ways of changing the program code displayed in this window's so
display area and editing source files that are listed. See “Debug Source Display” on
9-30.

Because the source display area shows only one process's program code at a tim
items in this menu act independently of whether the window is in single or group pro
mode. See “Single Process Mode” on page 9-13. See “Group Process Mode” on
9-14.

List Function/Unit...

Mnemonic:F

Selecting this menu item pops up a dialog box that allows you to list the prog
code of a function or Ada unit in the debug source display. See “Debug Source
play” on page 9-30.

This dialog box is titledSelect a Function/Unit, and displays the process's qua
ifier specifier. See “Qualifier Specifiers” on page 7-10. It allows you to optiona
enter a regular expression that is used to search for function names that Night
knows about. (An anchored match isnot implied.) See “Regular Expressions” on
9-22

Graphical User Interface

'.
the
o the

(see

e

e in

i-
lly
ght-
nter
m-
one

c-

to
urce

the

.

ue to
page 7-12. For example, enterset$ to search for function names ending with 'set
A list of functions is displayed, and one function can be selected for display in
debug source display. For Ada and C++, the regular expression is only applied t
final component of a name.

The regular expression case sensitivity depends on the current search mode
“set-search” on page 7-54).

The Select a Function/Unit dialog box is one variation of the debug sourc
selection dialog box, which is also used by theList Source File... menu item.
See “Debug Source Selection Dialog Box” on page 9-36.

List Source File...

Mnemonic:S

Selecting this menu item pops up a dialog box that allows you to list a source fil
the debug source display. See “Debug Source Display” on page 9-30.

This dialog box is titledSelect a Source File, and displays the process's qual
fier specifier. See “Qualifier Specifiers” on page 7-10. It allows you to optiona
enter a wildcard pattern which is used to search for source file names that Ni
View knows about. See “Wildcard Patterns” on page 7-14. For example, e
mod*.c to search for source file names that start with 'mod' followed by any nu
ber of characters and ending with '.c'. A list of source files is displayed, and
source file can be selected for display in the debug source display.

TheSelect a Source File dialog box is one variation of the debug source sele
tion dialog box, which is also used by theList Function/Unit... menu item. See
“Debug Source Selection Dialog Box” on page 9-36.

List Any File...

Mnemonic:A

Selecting this menu item pops up a file selection dialog box that allows you
choose any file you wish and list it in the debug source display. See “Debug So
Display” on page 9-30.

This dialog box is titledSelect a File. See “Debug File Selection Dialog Box” on
page 9-37.

Edit

Mnemonic:E

Selecting this item lets you edit the source file that is currently displayed in
debug source display. See “Debug Source Display” on page 9-30.

There are some rules for determining how the editor is invoked. The resourceedi-
tor is expected to be a string,editorstring, that describes how to invoke the editor
The string may contain variable specifiers, which are composed of a%followed by
another character. The variable specifiers are replaced by an appropriate val
create the editor string. The variable specifier characters are:

%

9-23

NightView User’s Guide

gin-

the

sole

en

ults
ands

ry of

e of
-30.

ion

the
Replaced by%. That is, to get a%, use%%.

s

Replaced by the name of the source file.

l

Replaced by the line number of the current position.

p

Replaced by the offset, in characters, of the current position from the be
ning of the file.

c

Replaced by the column of the current position.

A %followed by any other character is ignored.

An exampleeditor resource is:

nview*editor: emacsclient +%l %s

If the editor resource is not defined, then the name of the editor is taken from
EDITOR environment variable. If there is noEDITOR variable, thenvi is used. In
these cases the editor is invoked with the name of the current source file as the
argument.

If your editor can communicate with the X Window System display directly, th
you should set the resourceeditorTalksX to true . Then the editor is invoked
aseditorstring. Otherwise, the editor is run via/usr/bin/X11/xterm -e edi-
torstring.

Note that once you have edited the source file, NightView displays thenewcontents,
but the debugging information still refers to theold contents. For this reason, the
source decorations may no longer match. Also, you might get confusing res
from using the special keys in the debug source display or from entering comm
based on the new contents.

Debug Eventpoint Menu 9

Mnemonic:E

This menu provides ways to set and change eventpoints, and see a summa
eventpoints. See “Eventpoints” on page 3-8.

Before selecting one of the menu items, position the text insertion cursor on the lin
interest in the debug source display. See “Debug Source Display” on page 9
NightView uses this line to determine the location specifier for you. See “Locat
Specifiers” on page 7-9.

Once you select a menu item, NightView displays the eventpoint dialog box for
selected item.
9-24

Graphical User Interface

et a
See

log

ut
ty.
ug

et a
See

ia-

et a
See

log

et a
See

log
Set Breakpoint...

Mnemonic:B

Accelerator:Ctrl+ B

Selecting this menu item pops up a breakpoint dialog box that allows you to s
new breakpoint at a given location and apply eventpoint commands to it.
“Manipulating Eventpoints” on page 7-76. See “breakpoint” on page 7-78.

For information on using the breakpoint dialog box, see “Debug Eventpoint Dia
Boxes” on page 9-38.

Like the Breakpoint button, this menu item allows you to set a breakpoint. B
using the breakpoint dialog box provides you with more control and flexibili
Using theBreakpoint button, you can only set a simple breakpoint. See “Deb
Command Buttons” on page 9-32.

Set Monitorpoint...

Mnemonic:M

Accelerator:Ctrl+ M

Selecting this menu item pops up a monitorpoint dialog box that allows you to s
new monitorpoint at a given location and apply eventpoint commands to it.
“Manipulating Eventpoints” on page 7-76. See “monitorpoint” on page 7-83.

For information on using the monitorpoint dialog box, see “Debug Eventpoint D
log Boxes” on page 9-38.

Set Patchpoint...

Mnemonic:P

Accelerator:Ctrl+ P

Selecting this menu item pops up a patchpoint dialog box that allows you to s
new patchpoint at a given location and apply eventpoint commands to it.
“Manipulating Eventpoints” on page 7-76. See “patchpoint” on page 7-79.

For information on using the patchpoint dialog box, see “Debug Eventpoint Dia
Boxes” on page 9-38.

Set Tracepoint...

Mnemonic:T

Accelerator:Ctrl+ T

Selecting this menu item pops up a tracepoint dialog box that allows you to s
new tracepoint at a given location and apply eventpoint commands to it.
“Manipulating Eventpoints” on page 7-76. See “tracepoint” on page 7-82.

For information on using the tracepoint dialog box, see “Debug Eventpoint Dia
Boxes” on page 9-38.
9-25

NightView User’s Guide

et a
See

log

ee a
ipu-

nt-

.

roup

ge
Set Agentpoint...

Mnemonic:A

Accelerator:Ctrl+ A

Selecting this menu item pops up an agentpoint dialog box that allows you to s
new agentpoint at a given location and apply eventpoint commands to it.
“Manipulating Eventpoints” on page 7-76. See “agentpoint” on page 7-86.

For information on using the agentpoint dialog box, see “Debug Eventpoint Dia
Boxes” on page 9-38.

Summarize/Change...

Mnemonic:U

Accelerator:Ctrl+ U

Selecting this menu item pops up an eventpoint dialog box that allows you to s
summary of eventpoints and make changes to existing eventpoints. See “Man
lating Eventpoints” on page 7-76.

For information on using the eventpoint summary dialog box, see “Debug Eve
point Summarize/Change Dialog Box” on page 9-41.

Debug View Menu 9

Mnemonic:V

This menu allows you to change the way you view the contents of the Debug Window

Display Group Area

Mnemonic:D

Accelerator:Ctrl+ D

This menu item displays a check button which is eithersetor unset, depending on
whether the debug group area is displayed or hidden from view. See “Debug G
Area” on page 9-35. See “Toggle Buttons” on page 9-12.

The default initial setting isset: the debug group area is displayed. You can chan
this setting at any time by selecting this menu item.

You can change the initial setting by setting the resourcedisplayGroupTog-
gleButton.set . The default value of this resource isTrue . See Appendix D
[GUI Customization] on page D-1.

Single Process Mode

Mnemonic:S

Accelerator:Ctrl+ S
9-26

Graphical User Interface

auses
esses
ode”
is the

wn
ns”

is

auses
area,
See

wn
ns”

is

fier
ox

r
rrent
Selecting this menu item causes the appearance of the window to change and c
NightView commands to operate on a single process, rather than on all the proc
which may be represented in this window's group area. See “Single Process M
on page 9-13. See “Debug Group Area” on page 9-35. Single process mode
default setting.

When the Debug Window is in single process mode, a filled radio button is sho
next to the menu item to indicate that this option is selected. See “Toggle Butto
on page 9-12.

The other member of this set of options is theGroup Process Mode menu item.
See “Group Process Mode” on page 9-14.

The behavior of the Debug Window when in single or group process mode
described in another section. See “Debug Window Behavior” on page 9-12.

Group Process Mode

Mnemonic:G

Accelerator:Ctrl+ G

Selecting this menu item causes the appearance of the window to change and c
NightView commands to operate on all the processes represented in the group
rather than on a single process. See “Group Process Mode” on page 9-14.
“Debug Group Area” on page 9-35.

When the Debug Window is in group process mode, a filled radio button is sho
next to the menu item to indicate that this option is selected. See “Toggle Butto
on page 9-12.

The other member of this set of options is theSingle Process Mode menu item.
See “Single Process Mode” on page 9-13.

The behavior of the Debug Window when in single or group process mode
described in another section. See “Debug Window Behavior” on page 9-12.

Show Qualifier...

Mnemonic:L

Accelerator:Ctrl+ L

Use this menu item to see the value of the qualifier for this window. See “Quali
Specifiers” on page 7-10. The qualifier is displayed in an information dialog b
entitledWindow Qualifier. SelectOK to dismiss the dialog box.

TheWindow Qualifier dialog box is not dynamically updated when the qualifie
changes. You must redisplay this dialog box each time you want to see the cu
value of the qualifier.

Debug Help Menu 9

Mnemonic:H
9-27

NightView User’s Guide

ow,
help.
n

ine

. The
t from

he
in this
f the
ses
. See

s.

s” on

ocess

ifier

e a

ock
tion

to

citly
This menu provides ways of getting context-sensitive help, help on the current wind
help on the last error NightView encountered, as well as several other categories of
NightView help information is displayed in a Help Window. See “Help Window” o
page 9-49.

TheHelp menu is described in another section. See “Help Menu” on page 9-3.

A general discussion of NightView's online help is also available. See “GUI Onl
Help” on page 9-2.

Debug Message Area 9

This area displays messages related to the processes represented by this window
displayed information includes process status messages, error messages and outpu
commands that are processed by this Debug Window.

If the window is in single process mode, NightView displays output from only t
currently selected process plus messages from any commands that are executed
window while that process is selected. See “Single Process Mode” on page 9-13.I
window is in group process mode, then NightView displays output from all the proces
in the group, plus messages from any commands that are executed in this window
“Group Process Mode” on page 9-14.

This is a scrolling area. You can use the scroll bar to look at older or newer message

You can change the height of this area by moving the sash up or down. See “Sashe
page 9-11.

Debug Identification Area 9

This area shows the name of the executable program that the currently displayed pr
is running.

There is also a label showing the qualifier specifier for this process. See “Qual
Specifiers” on page 7-10.

Debug Source Lock Button 9

The Debug Window contains a source lock button. The source lock button looks lik
little padlock.

You can lock the source display by clicking on the source lock button. The padl
changes from being unlocked to locked, and the button is highlighted with the selec
color. This indicates that the source display is locked. Click on the button again
unlock.

A locked source display does not change which file is displayed unless you expli
change it. These actions explicitly change the source display:
9-28

Graphical User Interface

See
ield

s that

page

This
indow

aller.

is
• Issuing alist command in the command area of the window.

• Using theSource menu.

• Issuing anup , down or frame command in the command area of the win-
dow.

These events can cause anunlockedsource display to change:

• The currently displayed process stops.

• The source file for the currently displayed process changes because of an
action in another window.

Debug Source File Name 9

This area shows the name of the source file displayed in the debug source display.
“Debug Source Display” on page 9-30. If there is no source file displayed, then this f
showsNo Source File. If NightView cannot find the source file, this field shows
Cannot find: filename.

Debug Status Area 9

This area shows the status of the currently displayed process. Here are the value
this field may have:

About to exit

The process hit the exit breakpoint. See “Exited and Terminated Processes” on
3-14.

Calling function

The process is executing to evaluate a function call.

Exited

The process has exited. See “Exited and Terminated Processes” on page 3-14.
status does not normally appear, because the process is removed from the Debug W
when the process exits.

Finish frame

The process is executing until a designated instance of a subprogram returns to its c
See “finish” on page 7-100.

New process

This process has just been created by afork() call in the parent process. The process
stopped. See “Multiple Processes” on page 3-2.
9-29

NightView User’s Guide

.

es”

n

ently-
3. See
the

urce
Running

The process is currently executing.

Stepping

The process is executing because of a stepping command. See “step” on page 7-96

Stopped after finish

The process has completed afinish command. See “finish” on page 7-100.

Stopped after step

The process has finished a stepping command. See “step” on page 7-96.

Stopped at breakpoint number

The process hit breakpoint numbernumber. See “Breakpoints” on page 3-9.

Stopped by attach

The process has just been attached by the debugger. See “Attaching” on page 3-3.

Stopped by user

The process stopped because of astop command. See “stop” on page 7-100.

Stopped for exception-name

The process stopped because of the Ada exception namedexception-name. See
“Exception Handling” on page 3-31.

Stopped for exec

The process has justexec() 'ed a new program image. See “Programs and Process
on page 3-2.

Stopped with signal

The process stopped with signalsignal. See “Signals” on page 3-10.

Terminated with signal

The process terminated with signalsignal. See “Exited and Terminated Processes” o
page 3-14. This status appears only for core files. See “Core Files” on page 3-4.

Debug Source Display 9

The debug source display area lists the program code corresponding to the curr
selected frame in the currently-selected process. See “Current Frame” on page 3-2
“Debug Group Area” on page 9-35. See “list” on page 7-58, for information on how
current source file is determined.

The text in this area includes the program listing along with line numbers and so
9-30

Graphical User Interface

ns or

s” on

most

the

rea

n

”

ey is
e

e

decorations. See “Source Line Decorations” on page 7-62.

The text in this area changes if you use the debug source menu to list other functio
files.

You can change the height of this area by moving the sash up or down. See “Sashe
page 9-11.

There are several special keys that may be used within this area. The function of
keys is independent of the position of the text cursor in this area. Some keys, likeb and
h, do depend on the position of the text cursor so that NightView can determine
source line of interest.

The text cursor (an "I-beam" cursor) can be moved to different locations within this a
by using the arrow keys or by pointing to a source line and clicking mouse button 1.

s

This key is similar to using thestep command with no argument. See “step” o
page 7-96.

S

This key is similar to using thestepi command with no argument. See “stepi” on
page 7-98.

n

This key is similar to using thenext command with no argument. See “next” on
page 7-97.

N

This key is similar to using thenexti command with no argument. See “nexti” on
page 7-99.

r

This key is similar to using theresume command with no argument. See “resume
on page 7-95.

h

Run the process until it reaches the line the source window cursor is on. This k
identical to theRun to Here button. See “Debug Command Buttons” on pag
9-32. It combines the actions ofbreakpoint , enable/delete , andresume .

f

This key is similar to using thefinish command. See “finish” on page 7-100.

u

This key is similar to using theup command with no argument. See “up” on pag
7-106.

d

9-31

NightView User’s Guide

”

-

with
ttons

only
ebug
f the

page
This key is similar to using thedown command with no argument. See “down” on
page 7-107.

=

This key is similar to using theframe 0 command. See “frame” on page 7-105.

>

This key is similar to using theframe command with no arguments. See “frame
on page 7-105.

e

This key is similar to selecting theEdit item in theSource menu. See “Debug
Source Menu” on page 9-22.

p

This key performs the same action as thePrint button in the debug command but
tons area. See “Debug Command Buttons” on page 9-32).

b

This key performs the same action as theBreakpoint button (see “Debug Com-
mand Buttons” on page 9-32).

Debug Command Buttons 9

The debug command buttons let you control one or more processes by clicking
mouse button 1. See “Understanding the Debug Window” on page 9-12. Some bu
may be disabled (dimmed) under certain circumstances.

If the Debug Window is in single process mode, button-activated commands apply
to the currently displayed process. See “Single Process Mode” on page 9-13. If the D
Window is in group process mode, button-activated commands apply to each o
processes represented in the debug group area list. See “Group Process Mode” on
9-14.

Resume

Clicking on this button is similar to using theresume command with no argument.
See “resume” on page 7-95.

Step

Clicking on this button is similar to using thestep command with no argument.
See “step” on page 7-96.

Stepi

Clicking on this button is similar to using thestepi command with no argument.
See “stepi” on page 7-98.
9-32

Graphical User Interface

y area
you

lt for-

ave
you

iew
tion
e the
e area.
g the
he

lows
-

ts a
ee

ume”

eak-
point.
Next

Clicking on this button is similar to using thenext command with no argument.
See “next” on page 7-97.

Nexti

Clicking on this button is similar to using thenexti command with no argument.
See “nexti” on page 7-99.

Finish

Clicking on this button is similar to using thefinish command. See “finish” on
page 7-100.

Stop

Clicking on this button is similar to using thestop command. See “stop” on page
7-100.

Print

Clicking on this button is similar to using theprint command. See “print” on
page 7-65. You must have selected an expression in the debug source displa
before pressing this button. See “Debug Source Display” on page 9-30. When
press the button, the value of the selected expression is printed using the defau
mat for the type of the expression.

Breakpoint

Clicking on this button is similar to using thebreakpoint command with a line
number for the location specifier. See “breakpoint” on page 7-78. You must h
moved the text cursor in the debug source display area to the source line where
want to set the breakpoint. See “Debug Source Display” on page 9-30. NightV
uses this source line as the location specifier for the breakpoint. See “Loca
Specifiers” on page 7-9. When you press this button, a breakpoint is set. You se
source line decoration change and a message is displayed in the debug messag
See “Debug Message Area” on page 9-28. You can also set a breakpoint usin
breakpoint dialog box, which provides you with more control and flexibility than t
Breakpoint button. See “Debug Eventpoint Menu” on page 9-24.

Run to Here

Run the process until it reaches the line the source window cursor is on. This al
you to use theRun to Here button to quickly skip past chunks of code without sin
gle stepping through each line.

Clicking on this button combines the actions of three commands: First, it se
breakpoint at the source window line where the text cursor is located. S
“Debug Source Display” on page 9-30. Next, it runsenable/delete on that
breakpoint (which will cause it to be deleted when it is hit). Finally, itresume s the
process. See “breakpoint” on page 7-78. See “enable” on page 7-91. See “res
on page 7-95.

When you press the button, you will see the source line decoration for the br
point appear and the message area will print a message about the new break
9-33

NightView User’s Guide

and

text
clear
this
hen
line

will
is dis-
.

ing
the

that
ntly

. See
ifier.

the
-14.

nds.
area

can
he
gle
f you
roup
When the process finally stops at that breakpoint, the breakpoint will be deleted,
the decoration will disappear. See “Debug Message Area” on page 9-28.

Clear

Clicking on this button is similar to using theclear command with a line number
for the location specifier. See “clear” on page 7-87. You must have moved the
cursor in the debug source display area to the source line where you want to
eventpoints. See “Debug Source Display” on page 9-30. NightView uses
source line as the location specifier. See “Location Specifiers” on page 7-9. W
you press this button, any eventpoints that are set at the first instruction of this
are removed. (If you have eventpoints set at instructions within the line, they
not be cleared.) You see the source line decoration change and a message
played in the Debug message area. See “Debug Message Area” on page 9-28

Debug Interrupt Button 9

Clicking on this button interrupts whatever the debugger is doing. This is similar to us
the shell interrupt character in the command-line interface. See “Interrupting
Debugger” on page 3-28.

Debug Qualifier Area 9

In single process mode, the debug qualifier area is a label that reminds you
commands entered in the debug command area are implicitly qualified by the curre
displayed process in this Debug Window. See“Debug Command Area” on page 9-34
“Single Process Mode” on page 9-13. The label shows the process's qualifier spec
See “Qualifier Specifiers” on page 7-10.

In group process mode, any commands that you enter are implicitly qualified by
qualifier associated with this Debug Window. See “Group Process Mode” on page 9
The qualifier label is replaced by an indicator that you are inGroup Mode. To see the
value of the qualifier, use theView menu itemShow Qualifier.... See “Debug View
Menu” on page 9-26.

Debug Command Area 9

The debug command area in the Debug Window is used to enter NightView comma
Like the dialogue command area in the Dialogue Window and the global command
in the Global Window, all the command-line interface commands, except forshell , can
be entered in the debug command area.

Input to this area is similar to using the command-line interface. For example, you
enter an explicit qualifier followed by a command. If you do not specify a qualifier, t
command is implicitly qualified by the currently displayed process (if you are in sin
process mode), or by the group of processes represented in this Debug Window (i
are in group process mode). See “Single Process Mode” on page 9-13. See “G
9-34

Graphical User Interface

n this
area

. The
e.

the
status
ess

it.
isplay
ation
See

age

yed
item

utton

nd
the

lar to
w"
the
the

on
rap

f the
ther it

that
.

Process Mode” on page 9-14.

The debug command area is a combo box. See “Combo Boxes” on page 9-6.

Debug Group Area 9

The debug group area provides a list of all the processes that are represented i
Debug Window. Scroll bars appear if the list requires more space than the group
currently provides. The list is followed by theSwitch To button, which allows you to
switch the currently displayed process to a process that you have selected in the list
list selection policy isbrowse, which means you can select only one list item at a tim
See “List Selection Policies” on page 9-9.

Each item, or row, in the list contains the following information about one process:
qualifier specifier of each process, the executable file name, and an abbreviated
indicator. See “Qualifier Specifiers” on page 7-10. If the status information for a proc
changes, it is updated in the list.

To change the currently displayed process, select a list item, then press theSwitch To
button. Or, you can double-click on a list item to both select the item and switch to
The program code for the currently selected process is represented in the source d
area, and the identification area, status area and source file name area contain inform
about the currently selected process. See “Debug Source Display” on page 9-30.
“Debug Identification Area” on page 9-28. See “Debug Source File Name” on p
9-29.

The highlighted item in the group area list normally represents the currently displa
process in the source display area. This is true unless you select a different list
(process) and fail to switch to it.

You can cycle through the stopped processes in the group area list by using the b
panel, labeledSwitch To Stopped Process, located to the right of the list. If you
click on Auto, NightView determines which process in the list is currently stopped a
has been stopped the longest, highlights it in the list, and automatically switches
currently displayed process (in the source display area) to this process. (This is simi
the auto qualifier specifier. See “Qualifier Specifiers” on page 7-10.) The "up arro
and "down arrow" buttons cause NightView to automatically select, and switch to,
next stopped process that is located up in the list, or down in the list, relative to
currently selected list item. Continuing to click on a directional arrow in this butt
panel after the top or bottom list item has been reached causes NightView to "w
around" its search in the list for the next stopped process.

You can use theView menu itemDisplay Group Area to display this area or to hide
it from view. See “Debug View Menu” on page 9-26.

The size of the Debug Window does not change to accommodate the presence o
group area; rather, the source display area expands or shrinks depending on whe
needs to make room for the group area.

The group area can be resized within the Debug Window by adjusting the sash
separates it from the pane containing the source display. See “Sashes” on page 9-11
9-35

NightView User’s Guide

ebug

ier
age

ali-
ppear
nec-
eady

-
tion

e.

abel.

rce
2.
ting
her
Debug Dialog Boxes 9

This section describes dialog boxes that may appear while you are using the D
Window. See “Dialogues and Dialog Boxes” on page 9-10.

Debug Group Selection Dialog Box 9

This dialog box pops up when you use theNightView menu to create a new Debug
Window. See “Debug NightView Menu” on page 9-20. You can select qualif
specifiers and provide a name for the new window. See “Qualifier Specifiers” on p
7-10.

Select qualifier specifiers.

Select one or more items to define the new Debug Window. If you choose a qu
fier-specifier such as a dialogue name, the existing processes in that dialogue a
in the new Debug Window; future processes that start up in that dialogue do not
essarily appear in the new Debug Window unless their parent process is alr
there. See “Debug Window Behavior” on page 9-12.

The default list selection policy isextended, which means you can select discontigu
ous ranges of items. See “List Selection Policies” on page 9-9. This list selec
policy is configurable. See Appendix D [GUI Customization] on page D-1.

Debug Window name.

By default, NightView uses the first selected item in the list for the window's nam
Or, you can type in a name for the new Debug Window. PressingReturn activates
theOK button.

This name appears in the window manager's title bar and as the window's icon l

This is a text input area. See “Text Input Areas” on page 9-5.

Choose an action button.

When you are satisfied with your choices, click onOK. The dialog box is dismissed
and a new Debug Window is created that contains the items you selected.

Clicking onCancel cancels the action and closes this dialog box.

You can get help for this dialog box by clicking onHelp.

Debug Source Selection Dialog Box 9

This dialog box pops up when you ask to list a function or Ada unit, or ask to list a sou
file from the Debug Window'sSource menu. See “Debug Source Menu” on page 9-2
It allows you to change the program code that is listed in the Debug Window by selec
a function, Ada unit name or source file name from a list. You can interact with ot
NightView windows while this dialog box is displayed.
9-36

Graphical User Interface

ntly

tern
ess

on

ply

of a

list
ently
bug

“List

ay
ed)

on
This dialog box is titledSelect a Function/Unit or Select a Source File,
depending on which menu item you selected, and displays the qualifier of the curre
displayed process.

Enter search criteria.

Enter the regular expression (if you are searching for functions) or wildcard pat
(if you are searching for source files) you want to search for, then either pr
Return or click on Search. (For a regular expression, an anchored match isnot
implied.) See “Regular Expressions” on page 7-12. See “Wildcard Patterns”
page 7-14.

If you do not want to enter a regular expression or wildcard pattern, you can sim
pressReturn or click onSearch and all functions or files are displayed.

For Ada and C++, the regular expression is only applied to the final component
name.

The next time you use this dialog box, this text is redisplayed.

Select a list item.

If NightView finds any functions or source files, their names are displayed in the
area. Scroll bars appear if the list requires more space than the dialog box curr
provides. If no functions or files are found, a message is displayed in the de
message area. See “Debug Message Area” on page 9-28. The list uses thebrowse
selection policy, which means that only one item can be selected at a time. See
Selection Policies” on page 9-9.

Select an item in the list. If you double-click on an item in the list, theOK button is
activated.

Choose an action button.

Click on OK to list that function, Ada unit name or source file in the source displ
area. See “Debug Source Display” on page 9-30. This button is disabled (dimm
if the list is empty.

You can cancel the listing of the selected function or source file by clicking
Cancel.

You can get help for this dialog box by clicking onHelp.

Debug File Selection Dialog Box 9

This dialog box pops up when you selectList Any File... from the Debug Window's
Source menu. It allows you to list a file of your choice in the Debug Window.

This is a file selection dialog box. See “File Selection Dialog Box” on page 9-7.

Select a file name.

Select the file you want to list. If you double-click on a file name in theFiles list,
theOK button is activated.
9-37

NightView User’s Guide

age

cide

ional
oint

ion
ther
fore

ting
int

nt-
ws

he
See

ee

ec-

m-
Choose an action button.

If you are satisfied with the file you selected, click onOK.

Clicking onCancel cancels the action and closes this dialog box.

You can get help for this dialog box by clicking onHelp.

Debug Eventpoint Dialog Boxes 9

NightView provides a dialog box for each type of eventpoint. See “Eventpoints” on p
3-8. These dialog boxes pop up when you use the Debug Window'sEventpoint menu to
set or change an eventpoint. See “Debug Eventpoint Menu” on page 9-24. You de
how you want the eventpoint set or changed, then select theOK button and NightView
will set or modify it for you.

All types of eventpoints share common traits; some eventpoints have additional opt
or required information. The eventpoint dialog boxes present the common eventp
information first, followed by any data that is specific to a given eventpoint.

NightView provides default settings for new eventpoints, including a default locat
specifier. See “Location Specifiers” on page 7-9. In addition, you can enter o
information to define the eventpoint. Required data that must be provided by you be
NightView can set the eventpoint is visually emphasized.

Depending on whether you are setting a new eventpoint, or changing an exis
eventpoint, NightView allows or disallows access to certain fields in the eventpo
dialog boxes.

Define the eventpoint.

Description (display only)

Each type of eventpoint dialog box displays a label describing which eve
point the dialog box deals with and indicating whether the dialog box allo
you to set or change an eventpoint.

Location

When the dialog box appears, theLocation field contains a location speci-
fier.

When setting a new eventpoint, NightView determines this value from t
location of the text insertion cursor in the debug source display area.
“Debug Source Display” on page 9-30. You can edit this text input area. S
“Text Input Areas” on page 9-5.

When changing an existing eventpoint, NightView displays the location sp
ifier associated with this eventpoint. You cannot change this location.

Eventpoint Number (display only)

This labeled field is dimmed if NightView has not yet assigned a unique nu
ber to the eventpoint. See “Eventpoints” on page 3-8.
9-38

Graphical User Interface

int

ions.
the
le”

nt's
e of
this

nt-

hit.

ed

ion,

ore
the
When changing an existing eventpoint, NightView displays the eventpo
number.

Enable Options

When setting a new eventpoint, you can choose from several enable opt
By default, the eventpoint is created enabled. This is similar to using
enable or disable commands. See “enable” on page 7-91. See “disab
on page 7-90.

When changing an existing eventpoint, NightView displays the eventpoi
enabled state. You can select a different enable option by clicking on on
the choices. These options are dimmed if NightView cannot determine
state.

Enable

This is the default choice when setting a new eventpoint. The eve
point is enabled.

Enable, disable after next hit

You can have the eventpoint be disabled automatically after the next

For breakpoints, this is similar to using thetbreak command, or the
enable/once command. See “tbreak” on page 7-92.

For patchpoints, this is similar to using thetpatch command, or the
enable/once command. See “tpatch” on page 7-93.

Enable, delete after next hit

Valid for breakpoints only. You can have the eventpoint be delet
automatically after the next hit. This is similar to using theenable/
delete command.

Disable

You can disable the eventpoint.

Condition

You can attach a condition to this eventpoint, or change an existing condit
by editing this text input field. This is similar to using thecondition com-
mand. See “condition” on page 7-88.

If you delete an existing condition, the eventpoint becomes unconditional.

Ignore Count

You can attach an ignore count to this eventpoint, or change an existing ign
count, by entering a number in this text input area. This is similar to using
ignore command. See “ignore” on page 7-91.

The default ignore count is zero and is represented by a blank field.

Name
9-39

NightView User’s Guide

xt in
ters
may

Use

xist-
ut

ick-
for

put

ult

s
-

be
When setting a new eventpoint, you can assign a name to it by entering te
this text input area. The name must consist only of alphanumeric charac
and underscores and must begin with an alphabetic character. The name
be of arbitrary length. This is similar to using thename command. See
“name” on page 7-77.

You cannot change an existing eventpoint's name using the dialog box.
thename command to change eventpoint names.

Commands

Valid for breakpoints and monitorpoints only;requiredto set monitorpoints.
You can attach commands to this breakpoint or monitorpoint, or change e
ing commands, by entering one command per line in this multi-line text inp
area. This is similar to using thecommands command. See “commands” on
page 7-88.

Evaluate Expression - Go To Location

Valid for patchpoints only; you arerequiredto enter either an expression or a
location specifier to set a patchpoint. Select one of the two choices by cl
ing on it. The radio button appears filled for your selection, and the label
the text input area changes to eitherEvaluate or Go to. See “Toggle But-
tons” on page 9-12. Enter the expression or location specifier in the text in
area.

Insert an expression at this location

This field represents theeval argument of one variant of thepatch-
point command. See “patchpoint” on page 7-79. This is the defa
choice.

Branch to a different location

This field represents thegoto argument of one variant of thepatch-
point command.

Once set, this field cannot be changed.

Event ID

Valid for tracepoints only;requiredto set a tracepoint. This field represent
theevent-idargument of thetracepoint command. You must enter a trace
event number or symbolic name. See “tracepoint” on page 7-82.

Once set, this field cannot be changed.

Value

Valid for tracepoints only. This field represents thevalue= argument of the
tracepoint command. You can enter an expression whose value should
logged with the trace event.

Once set, this field cannot be changed.

Choose an action button.
9-40

Graphical User Interface

his

line
ll you

nd
s or
ebug

ee

e
ting

the

ange
e” on

this

is

ult

nts,
the
og-
eck
Click on OK to set or change the eventpoint. The dialog box is dismissed.

Click on Delete to delete an existing eventpoint. The dialog box is dismissed. T
button is disabled (dimmed) if this is a new eventpoint.

Clicking onCancel cancels the action and closes this dialog box.

You can get help for this dialog box by clicking onHelp. The dialog box is not dis-
missed.

If you are setting a new eventpoint or deleting an existing one, you see the source
decoration change. NightView displays a message in the Debug message area to te
if the eventpoint was set.

If you make an error while entering data, NightView may display an error dialog box a
allow you to re-enter the data. See “Error Dialog Box” on page 9-16. Other warning
errors associated with setting or changing this eventpoint are displayed in the d
message error. See “Debug Message Area” on page 9-28.

You can use theinfo eventpoint command to check the eventpoint settings. S
“info eventpoint” on page 7-112.

Debug Eventpoint Summarize/Change Dialog Box 9

This dialog ox pops up when you use the Debug Window'sEventpoint menu to select
the Summarize/Change... item. See “Debug Eventpoint Menu” on page 9-24. If th
Debug Window is in single process mode, it shows you a summary of exis
eventpoints for the process. If the Debug Window is in group process mode,
Qualifier changes to[Group Mode] and the list of eventpoints includes all the
processes in the qualifier. This dialog box also provides several ways for you to ch
eventpoints. See “Single Process Mode” on page 9-13. See “Group Process Mod
page 9-14.

See “Eventpoints” on page 3-8.

Specify eventpoints to appear in the list.

NightView displays a list of eventpoints according to the selections you make in
section of the dialog box.

By default, NightView displays all eventpoints that occur for the qualifier. If there
only one eventpoint, NightView selects it for you in the list.

PressingReturn while the focus is in one of the text input areas causes the defa
Update List button to be activated. See “Text Input Areas” on page 9-5.

Choose eventpoints.

You can choose any combination of eventpoints (breakpoints, monitorpoi
patchpoints, tracepoints, agentpoints) to display in the list by clicking on
check button (or its label) for each eventpoint you are interested in. See “T
gle Buttons” on page 9-12. Two buttons are also available to help you ch
all of the eventpoints (Check All) or clear all of the checked eventpoints
(Clear All).
9-41

NightView User’s Guide

ts
ur

ca-

t
lay
e

the

ss
ca-

to
cifi-

at
list of

ent-
nt-
the

-
ist, if

list
hen

u
area
Choose location.

By default, the location field is blank. NightView shows you all eventpoin
for the qualifier regardless of their locations (taking into consideration yo
other list specifications).

If you want to see a list of eventpoints found at a given location, type a lo
tion specifier into this field. See “Location Specifiers” on page 7-9.

If you want NightView to fill in the location field with a location specifier tha
corresponds to the location of the text insertion cursor in the source disp
area, press theUpdate button next to the location field. See “Debug Sourc
Display” on page 9-30.

The location field is a text input area.

Choose eventpoint name.

If you want to see a list of eventpoints that have a certain name, enter
name in this field.

If the name field is blank, NightView shows you all eventpoints in the proce
regardless of any name (taking into consideration your other list specifi
tions).

The name field is a text input area.

Qualifier.

The qualifier is displayed to remind you that this list of eventpoints applies
the process or processes represented by this qualifier. See “Qualifier Spe
ers” on page 7-10.

Update the list.

TheUpdate List button updates the list of eventpoints and the qualifier th
represents them. Press this button whenever you want to see the current
eventpoints and their status for the Debug Window's current qualifier.

The list of eventpoints is automatically updated when you change an ev
point by using this dialog box. The list is not updated if you create new eve
points or type in commands to change eventpoint characteristics; use
Update List button if you are unsure of the current state of eventpoints.

Select eventpoints from the list to change.

The eventpoint list displays eventpointID numbers, tells you what type of event
point it is, its enabled state, process and address. Scroll bars appear for the l
necessary. Messages related to the list are displayed below the list.

If NightView cannot determine a piece of eventpoint information, that part of the
will be empty. For example, this situation may occur if the process is running w
NightView tries to determine the enabled state of an eventpoint.

If there is only one item in the list, NightView selects it for you. Otherwise, yo
must select the items in the list you are interested in and then choose an action
button to perform the requested action on each selected eventpoint.
9-42

Graphical User Interface

-
x D

mple,

to
for

log

ng

ng

ox
age
imi-

it
are

on

are
ialog
The default list selection policy isExtended, which means you can select discon
tiguous ranges of items. This list selection policy is configurable. See Appendi
[GUI Customization] on page D-1. See “List Selection Policies” on page 9-9.

Choose an action button.

The buttons in the action area allow you to make changes toselectedeventpoints,
dismiss the dialog box, and request help.

Some buttons may be disabled (dimmed) under certain circumstances. For exa
if the list is empty, it does not make sense to use some of the buttons.

The eventpoint summary dialog box is dismissed only if you choose theClose but-
ton.

Change...

Click on Change... to see additional information about an eventpoint and
change eventpoint characteristics. An eventpoint dialog box is displayed
each eventpoint you selected in the list. See “Debug Eventpoint Dia
Boxes” on page 9-38.

Enable

Click on Enable to enable the selected eventpoints. This is similar to usi
theenable command. See “enable” on page 7-91.

Disable

Click on Disable to disable the selected eventpoints. This is similar to usi
thedisable command. See “disable” on page 7-90.

Delete

Click on Delete to delete selected eventpoints.

Depending on your safety level, NightView may display a warning dialog b
to make sure you want to delete the eventpoints. See “set-safety” on p
7-49. Once deleted, you cannot refer to these eventpoints again. This is s
lar to using thedelete command. See “delete” on page 7-89.

If you think you may want to "turn off" an eventpoint temporarily, then use
again later, you should disable the eventpoint and enable it when you
ready to use it.

Close

Clicking on Close cancels any action and closes this dialog box. This butt
is never disabled (dimmed).

Help

You can get help for this dialog box by clicking onHelp. This button is never
disabled (dimmed).

Warnings or errors associated with using this dialog box or changing eventpoints
displayed in dialog boxes or in the debug message area. See “Warning and Error D
9-43

NightView User’s Guide

fo

s
mote
al.

te on
logue

ote

ld is

w;
ld
ated

ifi-
ill

nd
tem

riod
d of

es
to
ly-
Boxes” on page 9-15.. See “Debug Message Area” on page 9-28.

You can use theinfo eventpoint command to check eventpoint settings. See “in
eventpoint” on page 7-112.

Remote Login Dialog Box 9

This dialog box pops up when you use theNightView menu's Start Remote
Dialogue... item. See “Debug NightView Menu” on page 9-20. This dialog box allow
you to specify the parameters for creating a remote NightView session. See “Re
Dialogues” on page 3-6. Some of these parameters are required, but most are option

The parameters specified in this dialog apply to the NightView processes that execu
the remote system. These processes include a NightView target program, a dia
shell, and (unless you specify otherwise using therun(1) shell command) all the
processes started by that dialogue shell.

Remote host information

Remote host

This is the name or address of the remote system on which you want a rem
dialogue. This field is required information.

Login name

This specifies the user name to use to log into the remote system. This fie
required, but it defaults to the user running NightView.

Password

This specifies the password for the user name specified in theLogin name
field. For security, the password you type is not echoed in the windo
instead, an asterisk (*) replaces each character. You may leave this fie
empty if the specified user name does not have a password on the design
remote system.

Name for new Dialogue

This field specifies the name to give to the dialogue. See “Qualifier Spec
ers” on page 7-10. If you leave this field empty, the name of the dialogue w
default to be the same as theRemote host field. If the remote system name
is not a valid dialogue name, an error dialog will appear. See “Warning a
Error Dialog Boxes” on page 9-15. A common reason for the remote sys
to be an invalid dialogue name is that the remote system name contains pe
(.) characters (e.g., it includes domain names), or it is an IP address instea
a name.

Scheduling information

Priority

This field specifies the priority you want applied to the NightView process
running on the remote system. You will usually want to leave this empty,
select the default value. However, if your application contains continuous
9-44

Graphical User Interface

pri-
-
e or
t-

the

le to

o-
ce-

ro-
r, if
ght-
and

n-
he

te
he

d

you

ght-
running processes that run at real-time priorities, you may need to set the
ority of NightView or it will not get sufficient CPU time to perform its debug
ging chores. We suggest that you set this only if the target system has littl
no spare CPU resourcesandyou notice a lack of responsiveness in Nigh
View.

Valid values for the priority depend on the scheduling class you select. See
run(1) command for valid values.

Note that you may need special privileges on the remote system to be ab
specify a priority explicitly.

Nice Value

This is an alternative way to adjust the priority of the remote NightView pr
cesses. If you specify both priority and nice value, the priority takes pre
dence. Nice values only apply to theTime Sharing scheduling class.

Scheduling Class

This option menu selects the scheduling policy for the remote NightView p
cesses. You will usually want to leave this at its default selection. Howeve
you need greater control over how much CPU resources the remote Ni
View processes get, you may need to select a different scheduling class
priority.

Time Quantum

This field is enabled only if you select theRound Robin scheduling class.
See therun(1) command man page for more information about time qua
tum. You may use the units option menu to the right of this field to specify t
time units to apply to the quantum value.

CPU and memory binding information

Binding Type

This option menu selects the kind of CPU binding to apply to the remo
NightView processes. You may wish to use this if you want to isolate t
NightView processes to a particular CPU or set of CPUs.

If you select theBias option, the CPU toggle buttons will be enabled an
allow you to select any set of CPUs. If you selectExclusive, the CPU toggle
buttons are enabled but you are restricted to selecting exactly one CPU. If
select any other choice in theBinding Type menu, the CPU toggle buttons
are disabled.

CPU

These toggle buttons allow you to select the CPUs on which the remote Ni
View processes can execute. They are enabled only for theBias or Exclu-
sive binding type options. When these toggle buttons are enabled, theOK
button is disabled until you select at least one CPU.

NUMA
9-45

NightView User’s Guide

for
ight-
s.

is
cific

be

they

te

ed

n.
you

ote
r an
es-
log

a

e

These option menus allow you to select the memory binding parameters
the remote NightView processes. You may need to use these to keep N
View from interfering with your application's use of certain memory pool
See therun(1) command and thememory(7) man pages for more infor-
mation about NUMA policies.

The Default option menu selects the overall memory binding policy. Th
policy applies to all pages unless overridden by one of the other more-spe
NUMA option menus. TheText option menu selects the NUMA policy to
apply to text (code) pages, thePrivate option menu selects the NUMA policy
to apply to private data pages, and so forth for theShared andUBlock
option menus.

All of these menus contain theGlobal , Soft Local , andHard Local
options. TheGlobal option specifies that the designated pages should
placed in global memory. TheSoft Local option specifies that the desig-
nated pages be placed in local memory if space is available, otherwise
should be placed in global memory. TheHard Local option specifies that
the designated pagesmustbe placed in local memory.

For theDefault option menu, selectingSystem Default specifies that the
NUMA policy will be inherited by the parent process that starts the remo
dialogue processes. For theText, Private, Shared, andUBlock menus,
choosingDefault specifies that whatever policy was selected by theDefault
option menu applies to that class of memory pages.

For example, if you selectDefault/Soft Local, Text /Default , Private/
Hard Local, Shared/Global, andUBlock/Default, then text and ublock
pages will be placed in local memory if possible (soft local policy, specifi
by theDefault /Soft Local selection), while private data will be forced to
local memory and shared data will be forced to global memory.

Action Buttons

OK

TheOK button is enabled if you have specified all the required informatio
Required information is the remote host name and login name and, if
selected a binding type ofBias or Exclusive, at least one CPU must be
selected.

When you press theOK button, the remote dialogue is created and the rem
login dialog is dismissed. If the remote dialogue cannot be created, eithe
error dialog box will appear or the remote login dialog disappears and a m
sage is displayed in the message area. See “Warning and Error Dia
Boxes” on page 9-15. See “Debug Message Area” on page 9-28.

Cancel

Pressing theCancel button dismisses the dialog box without creating
remote dialogue.

Help

Pressing theHelp button brings up the online help with information about th
remote login dialog.
9-46

Graphical User Interface

w

, so
To

yout
s to
ult

See
be

con
, and

t not
itor

ows
brief

es.

hen

ue

ns
Monitor Window - GUI 9

The Monitor Window is created when you use monitorpoints while running NightVie
with the graphical user interface. See “Monitor Window” on page 3-25.

In the GUI, the Monitor Window uses a scrolling area to display monitored values
there is essentially no limit to the number of items you can have in the active display.
remain compatible with the simple full-screen interface, it uses the same item la
algorithm and assumes a column width for the window to determine how many item
put on one line. See “Monitor Window - Simple Full-Screen” on page 8-2. The defa
value for this column width is 80, but you can set themonitorWindowColumns
resource to any other appropriate value (a common alternative might be 132).
Appendix D [GUI Customization] on page D-1. Dynamically resizing the window to
wider does not cause NightView to put more items on one line.

The stale data indicators in the graphical display take the form of icons. A blank i
indicates updated values, a triangular warning symbol indicates not executed values
a triangular warning symbol containing an exclamation point indicates executed bu
sampled values. For more information about stale data indicators, see “Mon
Window” on page 3-25.

A label at the top of the window indicates the current held or running status and sh
the current delay time in milliseconds between samples. A legend shows a
description of the stale data icons.

Global Window 9

The Global Window provides global interaction and gives you control over dialogu
There is only one instance of a Global Window for an invocation of NightView.

The Global Window is normally hidden and appears only when you ask to see it or w
no Dialogue Windows exist. You can display the Global Window by choosing theOpen
Global Window menu item found in theNightView menu of both the Debug and
Dialogue Windows. See “Debug NightView Menu” on page 9-20. See “Dialog
NightView Menu” on page 9-16.

The following sections describe the parts of the Global Window.

Global Menu Bar 9

The menu bar in the Global Window allows you to perform global NightView actio
and access the online help system.

Global NightView Menu 9

Mnemonic:N
9-47

NightView User’s Guide

al
al

al

ow,
help.
n

ine

line
ebug
from

ogram
hows
logue

s.

ing
the

bal
a (see
the
The NightView menu is used to control NightView windows and perform glob
NightView actions. TheNightView menu appears in the Debug, Dialogue and Glob
windows and has the same menu items in each window.

See “Debug NightView Menu” on page 9-20, for a description of the individu
NightView menu items.

Global Help Menu 9

Mnemonic:H

This menu provides ways of getting context-sensitive help, help on the current wind
help on the last error NightView encountered, as well as several other categories of
NightView help information is displayed in a Help Window. See “Help Window” o
page 9-49.

TheHelp menu is described in another section. See “Help Menu” on page 9-3.

A general discussion of NightView's online help is also available. See “GUI Onl
Help” on page 9-2.

Global Output Area 9

The output area in the Global Window is similar to the output from the command-
interface. It shows a combination of the output and messages displayed in the D
Window and the Dialogue Window as well as the output and error messages
commands that are processed by this Global Window.

In contrast, the message area in the Dialogue Window shows only messages and pr
output associated with that dialogue, and the message area in the Debug Window s
only messages associated with processes represented in that window. See “Dia
Message Area” on page 9-17, and “Debug Message Area” on page 9-28.

This is a scrolling area. You can use the scroll bar to look at older or newer message

Global Interrupt Button 9

Clicking on this button interrupts whatever the debugger is doing. This is similar to us
the shell interrupt character in the command-line interface. See “Interrupting
Debugger” on page 3-28.

Global Qualifier Area 9

The qualifier area in the Global Window shows the current default qualifier for the glo
interactive command stream, which you can access through the global command are
“Global Command Area” on page 9-49). You can set the default qualifier using
set-qualifier command. See “set-qualifier” on page 7-46.
9-48

Graphical User Interface

nds.
ea in

can

can

to

e

-2.
Global Command Area 9

The global command area in the Global Window is used to enter NightView comma
Like the debug command area in the Debug Window and the dialogue command ar
the Dialogue Window, all the command-line interface commands, except forshell , can
be entered in the global command area.

Input to this area is similar to using the command-line interface. For example, you
enter an explicit qualifier followed by a command.

Commands entered in this area are implicitly qualified by the default qualifier. You
change the default qualifier by using theset-qualifier command. See “Global
Qualifier Area” on page 9-48.

The global command area is a combo box. See “Combo Boxes” on page 9-6.

Help Window 9

NightView displays online help in the Help Window. The Help Window allows you
display any section of theNightView User's Guideand provides different methods to
allow you to navigate from one section to another.

NightView uses HyperHelpTM to display help. To learn about HyperHelp, click on th
Help menu of the Help Window and selectHelp On HyperHelp.

For a general discussion of NightView's online help, see “GUI Online Help” on page 9
9-49

NightView User’s Guide
9-50

System Resource Requirements

ators
use

the
ey are
ately.
both

3-6),
ust

ote
and

em-
sys-

t be
ory
ay

ble

w

A
Appendix ASystem Resource Requirements

1
1
1

This appendix describes system resources used by NightView. System administr
may want to modify the "System Tuning Parameters" so that their users can
NightView effectively. SeeSystem Administration Volume 1.

This discussion refers to thelocal system and theremotesystem. The local system is the
system where NightView is invoked. The remote system is the system where
application program is running. In many cases, these are the same system, but th
distinguished here so that special purpose applications can be dealt with appropri
Many system administrators will simply want to make all their systems be able to be
local and remote systems.

System components

If you are using the remote dialogue feature (see “Remote Dialogues” on page
you must have networking installed on both the local and remote systems. You m
also havetelnetd running on the remote system, or you must arrange forinetd
to run it. See the man pages for these facilities for more information.

shared memory regions

NightView uses a variety of shared memory regions on both the local and the rem
system. Each shared memory region contributes to the total number of regions
the total number of shared memory clicks on the system. Most of the shared m
ory regions also contribute to the number of shared memory identifiers on the
tem as long as the debugger is running.

Therefore, in order to use NightView, both the local and remote systems mus
configured with shared memory enabled. The maximum number of shared mem
identifiers and the maximum number of shared memory clicks system wide m
need to be increased.

IPC

Make sure the ipc module is configured (/etc/conf/sdevice.d/ipc).

SHMMNI

Check the "maximum number of shared memory identifiers" system tuna
using theidtune(1M) utility.

The following information about the particular memory regions used by NightVie
is supplied only to aid in fine-tuning of the memory parameters.

Regions on the local system:

Communications among processes which make up the debugger.

One shared memory region per invocation of NightView.
A-1

NightView User’s Guide

See
is

ote
.

The
being

r

See
Regions on the remote system:

Debug agent

One shared memory region for each process using a debug agent.
“Debug Agent” on page 3-15. The shared memory identifier for th
region exists as long as the process is running.

Monitorpoints

One shared memory region per invocation of NightView on each rem
system that is using monitorpoints. See “Monitorpoints” on page 3-9

processes

Each invocation of NightView uses at least one process on the local system.
remote system uses two processes per dialogue, not including the processes
debugged.

The maximum number of processes on the system (NPROCtunable) and the maxi-
mum number of processes per user (MAXUPtunable) may need to be increased fo
the local and remote systems.

ptys

NightView uses one pty per dialogue on the remote system.

For the graphical user interface, X server memory may also be a concern.
Appendix D [GUI Customization] on page D-1.
A-2

Summary of Commands

ized
the

6 for

e”

m”

7-32

age

for-

ma-
B
Appendix BSummary of Commands

2
2
2

This section gives a summary of all the commands in NightView. The table is organ
alphabetically by command. The abbreviations for the commands are included with
corresponding commands, rather than alphabetically.

Also, remember that you can abbreviate commands by using a unique prefix.

!

Pass input to a dialogue. See “!” on page 7-27 for more information.

agentpoint

Insert a call to a debug agent at a given location. See “agentpoint” on page 7-8
more information.

apply on dialogue

Executeon dialogue commands for existing dialogues. See “apply on dialogu
on page 7-25 for more information.

apply on program

Executeon program commands for existing processes. See “apply on progra
on page 7-38 for more information.

attach

Attach the debugger to a process that is already running. See “attach” on page
for more information.

backtrace
bt

Print an ordered list of the currently active stack frames. See “backtrace” on p
7-64 for more information.

breakpoint
b

Set a breakpoint. See “breakpoint” on page 7-78 for more information.

cd

Set the debugger’s default working directory. See “cd” on page 7-56 for more in
mation.

checkpoint

Take a restart checkpoint now. See “checkpoint” on page 7-39 for more infor
tion.
B-1

NightView User’s Guide

for-

-88

or-

7-94

. See

ore

ge

rma-

n.
clear

Clear all eventpoints at a given location. See “clear” on page 7-87 for more in
mation.

commands

Attach commands to a breakpoint or monitorpoint. See “commands” on page 7
for more information.

condition

Attach a condition to an eventpoint. See “condition” on page 7-88 for more inf
mation.

continue
c

Continue execution and wait for something to happen. See “continue” on page
for more information.

core-file

Create a pseudo-process for debugging an aborted program’s core image file
“core-file” on page 7-34 for more information.

debug

Specify names for programs you wish to debug. See “debug” on page 7-20 for m
information.

define

Define a NightView macro. See “define” on page 7-130 for more information.

delay

Delay NightView command execution for a specified time. See “delay” on pa
7-111 for more information.

delete
d

Delete an eventpoint. See “delete” on page 7-89 for more information.

detach

Stop debugging a list of processes. See “detach” on page 7-32 for more info
tion.

directory

Set the directory search path. See “directory” on page 7-60 for more informatio

disable

Disable an eventpoint. See “disable” on page 7-90 for more information.
B-2

Summary of Commands

“dis-

me.

ore

xec-

for

00

ion.

See

ndle”
display

Add to the list of expressions to be printed each time the process stops. See
play” on page 7-71 for more information.

down

Move one or more stack frames toward frames called by the current stack fra
See “down” on page 7-107 for more information.

echo

Print arbitrary text. See “echo” on page 7-70 for more information.

enable

Enable an eventpoint for a specified duration. See “enable” on page 7-91 for m
information.

exec-file

Specify the location of the executable file corresponding to a process. See “e
file” on page 7-35 for more information.

family

Give a name to a family of one or more processes. See “family” on page 7-40
more information.

finish

Continue execution until the current function finishes. See “finish” on page 7-1
for more information.

forward-search
fo

Search forward through the current source file for a specified regular express
See “forward-search” on page 7-61 for more information.

frame
f

Select a new stack frame or print a description of the current stack frame.
“frame” on page 7-105 for more information.

handle

Specify how to handle signals and Ada exceptions in the user process. See “ha
on page 7-102 for more information.

help

Access the online help system. See “help” on page 7-108 for more information.
B-3

NightView User’s Guide

for-

ore

ore

for

ore

ore

for

for

age

age

and
ignore

Attach an ignore-count to an eventpoint. See “ignore” on page 7-91 for more in
mation.

info address

Determine the location of a variable. See “info address” on page 7-127 for m
information.

info agentpoint

Describe current state of agentpoints. See “info agentpoint” on page 7-117 for m
information.

info args

Print description of current routine arguments. See “info args” on page 7-126
more information.

info breakpoint
i b

Describe current state of breakpoints. See “info breakpoint” on page 7-113 for m
information.

info convenience

Describe convenience variables. See “info convenience” on page 7-119 for m
information.

info declaration
ptype

Print the declaration of variables or types. See “info declaration” on page 7-129
more information.

info dialogue

Print information about active dialogues. See “info dialogue” on page 7-123
more information.

info directories

Print the search path used to locate source files. See “info directories” on p
7-119 for more information.

info display

Describe expressions that are automatically displayed. See “info display” on p
7-120 for more information.

info eventpoint

Describe current state of breakpoints, tracepoints, patchpoints, monitorpoints
agentpoints. See “info eventpoint” on page 7-112 for more information.
B-4

Summary of Commands

ge

23

” on

on

a-

ts”

a-

re

ge

-122
info exception

Print information about Ada exception handling. See “info exception” on pa
7-125 for more information.

info family

Print information about an existing process family. See “info family” on page 7-1
for more information.

info files

Print the names of the executable, symbol table and core files. See “info files
page 7-129 for more information.

info frame

Describe a stack frame. See “info frame” on page 7-118 for more information.

info functions

List names of functions, subroutines, or Ada unit names. See “info functions”
page 7-127 for more information.

info history

Print value history information. See “info history” on page 7-120 for more inform
tion.

info limits

Print information about limits on expression and location output. See “info limi
on page 7-120 for more information.

info line

Describe location of a source line. See “info line” on page 7-129 for more inform
tion.

info locals

Print information about local variables. See “info locals” on page 7-126 for mo
information.

info log

Describe any open log files. See “info log” on page 7-112 for more information.

info macros

Print a description of one or more NightView macros. See “info macros” on pa
7-135 for more information.

info memory

Print information about the virtual address space. See “info memory” on page 7
for more information.
B-5

NightView User’s Guide

for

age

re

re

r-

ore

more

for-

n” on

a-

on.
info monitorpoint

Describe current state of monitorpoints. See “info monitorpoint” on page 7-116
more information.

info name

Print information about an existing eventpoint-name. See “info name” on p
7-123 for more information.

info on dialogue

Print on dialogue commands. See “info on dialogue” on page 7-124 for mo
information.

info on program

Print on program commands. See “info on program” on page 7-124 for mo
information.

info on restart

Print on restart commands. See “info on restart” on page 7-124 for more info
mation.

info patchpoint

Describe current state of patchpoints. See “info patchpoint” on page 7-115 for m
information.

info process

Describe processes being debugged. See “info process” on page 7-122 for
information.

info registers

Print information about registers. See “info registers” on page 7-120 for more in
mation.

info representation
representation

Describe the storage representation of an expression. See “info representatio
page 7-128 for more information.

info signal

Print information about signals. See “info signal” on page 7-121 for more inform
tion.

info sources

List names of source files. See “info sources” on page 7-127 for more informati

info tracepoint
B-6

Summary of Commands

ore

a-

re

info

ore

for-

on

r-
Describe current state of tracepoints. See “info tracepoint” on page 7-114 for m
information.

info types

Print type definition information. See “info types” on page 7-128 for more inform
tion.

info variables

Print global variable information. See “info variables” on page 7-126 for mo
information.

info whatis
whatis

Describe the result type of an expression visible in the current context. See “
whatis” on page 7-128 for more information.

interest

Control which subprograms are interesting. See “interest” on page 7-51 for m
information.

jump

Continue execution at a specific location. See “jump” on page 7-101 for more in
mation.

kill

Terminate a list of processes. See “kill” on page 7-33 for more information.

list
l

List a source file. See “list” on page 7-58 for more information.

load

Dynamically load an object file, possibly replacing existing routines. See “load”
page 7-74 for more information.

login

Login to a new dialogue shell. See “login” on page 7-18 for more information.

logout

Terminate a dialogue. See “logout” on page 7-23 for more information.

mcontrol
hold
release

Control the monitor display window. See “mcontrol” on page 7-85 for more info
mation.
B-7

NightView User’s Guide

itor-

ore

ma-

ore

for

7-20

a-

e “on

e “on

age
monitorpoint

Monitor the values of one or more expressions at a given location. See “mon
point” on page 7-83 for more information.

mreserve

Reserve a region of memory in a process. See “mreserve” on page 7-43 for m
information.

name

Give a name to a group of eventpoints. See “name” on page 7-77 for more infor
tion.

next
n

Execute one line, stepping over procedures. See “next” on page 7-97 for m
information.

nexti
ni

Execute one instruction, stepping over procedures. See “nexti” on page 7-99
more information.

nodebug

Specify names for programs you do not wish to debug. See “nodebug” on page
for more information.

notify

Ask about pending event notifications. See “notify” on page 7-31 for more inform
tion.

on dialogue

Specify debugger commands to be executed when a dialogue is created. Se
dialogue” on page 7-23 for more information.

on program

Specify debugger commands to be executed when a program isexec ed. See “on
program” on page 7-36 for more information.

on restart

Specify debugger commands to be executed when a program is restarted. Se
restart” on page 7-38 for more information.

output

Print the value of a language expression with minimal output. See “output” on p
7-70 for more information.
B-8

Summary of Commands

a-

for-

age

re

n.

.

sion.

ee

See

7-66
patchpoint

Install a small patch to a routine. See “patchpoint” on page 7-79 for more inform
tion.

print
p

Print the value of a language expression. See “print” on page 7-65 for more in
mation.

printf

Print the values of language expressions using a format string. See “printf” on p
7-73 for more information.

pwd

Print NightView’s current working directory. See “pwd” on page 7-56 for mo
information.

quit
q

Stop everything. Exit the debugger. See “quit” on page 7-17 for more informatio

redisplay

Enable a display item. See “redisplay” on page 7-73 for more information.

refresh

Refresh the terminal screen. See “refresh” on page 7-109 for more information

resume

Continue execution. See “resume” on page 7-95 for more information.

reverse-search

Search backwards through the current source file for a specified regular expres
See “reverse-search” on page 7-61 for more information.

run

Run a program in a dialogue and wait for NightView to start debugging it. S
“run” on page 7-30 for more information.

select-context

Select the context of an Ada task, a thread, or of a Lightweight Process (LWP).
“select-context” on page 7-107 for more information.

set

Evaluate a language expression without printing its value. See “set” on page
for more information.
B-9

NightView User’s Guide

” on

for

-edi-

for

on

t-lan-

ram
6 for

ore

re

ons.
set-auto-frame

Control the positioning of the stack when a process stops. See “set-auto-frame
page 7-54 for more information.

set-children

Control whether children should be debugged. See “set-children” on page 7-41
more information.

set-editor

Set the mode for editing commands in the simple full-screen interface. See “set
tor” on page 7-55 for more information.

set-exit

Control whether a process stops before exiting. See “set-exit” on page 7-42
more information.

set-history

Specify the number of items to be kept in the value history list. See “set-history”
page 7-46 for more information.

set-language

Establish a default language context for variables and expressions. See “se
guage” on page 7-44 for more information.

set-limits

Specify limits on the number of array elements, string characters, or prog
addresses printed when examining program data. See “set-limits” on page 7-4
more information.

set-local

Define process local convenience variables. See “set-local” on page 7-50 for m
information.

set-log

Log session to file. See “set-log” on page 7-44 for more information.

set-notify

Control how you are notified of events. See “set-notify” on page 7-30 for mo
information.

set-overload

Control how NightView treats overloaded operators and routines in expressi
See “set-overload” on page 7-54 for more information.
B-10

Summary of Commands

e” on

-47

uent
for-

for

7-49

” on

for-

r” on

n.

n.

ion.
set-patch-area-size

Control the size of patch areas created in your process. See “set-patch-area-siz
page 7-50 for more information.

set-prompt

Set the string used to prompt for command input. See “set-prompt” on page 7
for more information.

set-qualifier

Specify the default list of processes or dialogues that will be affected by subseq
commands which accept qualifiers. See “set-qualifier” on page 7-46 for more in
mation.

set-restart

Control whether restart information is applied. See “set-restart” on page 7-49
more information.

set-safety

Control debugger response to dangerous commands. See “set-safety” on page
for more information.

set-search

Control case sensitivity of regular expressions in NightView. See “set-search
page 7-54 for more information.

set-show

Control where dialogue output goes. See “set-show” on page 7-28 for more in
mation.

set-terminator

Set the string used to recognize end of dialogue input mode. See “set-terminato
page 7-48 for more information.

set-trace

Establish tracing parameters. See “set-trace” on page 7-81 for more informatio

shell

Run an arbitrary shell command. See “shell” on page 7-110 for more informatio

show

Control dialogue output. See “show” on page 7-29 for more information.

signal

Continue execution with a signal. See “signal” on page 7-101 for more informat
B-11

NightView User’s Guide

ma-

nfor-

for

e”

ore

on

for

See
source

Input commands from a source file. See “source” on page 7-110 for more infor
tion.

step
s

Execute one line, stepping into procedures. See “step” on page 7-96 for more i
mation.

stepi
si

Execute one instruction, stepping into procedures. See “stepi” on page 7-98
more information.

stop

Stop a process. See “stop” on page 7-100 for more information.

symbol-file

Establish the file containing symbolic information for a program. See “symbol-fil
on page 7-33 for more information.

tbreak

Set a temporary breakpoint. See “tbreak” on page 7-92 for more information.

tpatch

Set a patchpoint that will execute only once. See “tpatch” on page 7-93 for m
information.

tracepoint

Set a tracepoint. See “tracepoint” on page 7-82 for more information.

translate-object-file
xl

Translate object filenames for a remote dialogue. See “translate-object-file”
page 7-21 for more information.

undisplay

Disable an item from the display expression list. See “undisplay” on page 7-72
more information.

up

Move one or more stack frames toward the caller of the current stack frame.
“up” on page 7-106 for more information.

vector-set

Set the value of a vector. See “vector-set” on page 7-75 for more information.
B-12

Summary of Commands

7-67
x

Print the contents of memory beginning at a given address. See “x” on page
for more information.
B-13

NightView User’s Guide
B-14

Quick Reference Guide
C
Appendix CQuick Reference Guide

3
3
3

Invoking NightView C

nview [-editor program] [-help] [-ktalk] [-nogui]
[-noktalk] [-nolocal] [-nx] [-prompt string]
[-safety safe-mode] [-simplescreen] [-version]
[- Xoption ...] [-x command-file] [-xeditor]
[program-name[corefile-name]]

Controlling the Debugger C

Quitting NightView C

quit

Abbreviation:q

Managing Dialogues C

login [/conditional] [/popup] [name= dialogue name] [user= login
name] [others ...] machine

debug pattern ...

nodebug pattern ...

translate-object-file [from [to]]

Abbreviation:xl

logout

on dialogue [regexp]

on dialogue regexp command
C-1

NightView User’s Guide
on dialogue regexp do

apply on dialogue

Dialogue Input and Output C

! [input line]

set-show [silent | notify= mode | continuous= mode]
[log[= filename]] [buffer= number]

show [number | all | none] [| shell-command]

Managing Processes C

run input line

set-notify [silent | continuous= mode]

notify

attach pid

detach

kill

symbol-file program-name

core-file corefile-name[exec-file= program-name]

exec-file program-name

on program [pattern]

on program pattern command

on program pattern do

apply on program

on restart [pattern]

on restart pattern command

on restart pattern do

checkpoint
C-2

Quick Reference Guide
family family-name [[-] qualifier-spec] ...

set-children { all [resume] | exec | none }

set-exit [stop | nostop]

mreserve start= address {length= bytes | end= address}

Setting Modes C

set-log keyword filename

set-language {ada | auto | c | c++ | fortran}

set-qualifier [qualifier-spec ...]

set-history count

set-limits {array= number | string= number | addresses= number} ...

set-prompt string

set-terminator string

set-safety [forbid | verify | unsafe]

set-restart [always | never | verify]

set-local identifier ...

set-patch-area-size {data= data-size | eventpoint= eventpoint-size|
monitor= monitor-size | text= text-size} ...

interest [level] [[at] [location-spec]]

interest inline[= level]

interest justlines[= level]

interest nodebug[= level]

interest threshold[= level]

set-auto-frame args...

set-overload [operator={on | off}] [routine={on | off}]

set-search [sensitive | insensitive]

set-editor mode
C-3

NightView User’s Guide
Debugger Environment Control C

cd dirname

pwd

Source Files C

Viewing Source Files C

list where-spec

list where-spec1, where-spec2

list , where-spec

list where-spec,

list +

list -

list =

list

Abbreviation:l

directory [dirname ...]

Searching C

forward-search regexp

Abbreviation:fo

reverse-search regexp

Examining and Modifying C

backtrace [number-of-frames]
C-4

Quick Reference Guide
Abbreviation:bt

print [/ print-format-letter] expression

Abbreviation:p

set expression

x [/[repeat-count][size-letter][x-format-letter]] [addr-expression]

output [/ print-format-letter] expression

echo text

display [[/ print-format-letter] expression]

display /[repeat-count][size-letter][x-format-letter] addr-expression

undisplay item-number...

redisplay item-number...

printf format-string[, expression...]

load object

vector-set l-value = component, component...

vector-set l-value = repeat-count, component

Manipulating Eventpoints C

name [/add] name [[-] eventpoint-spec] ...

breakpoint [eventpoint-modifier] [name= breakpoint-name] [[at]
location-spec] [if conditional-expression]

Abbreviation:b

patchpoint [eventpoint-modifier] [name= patchpoint-name] [[at]
location-spec] eval expression

patchpoint [eventpoint-modifier] [name= patchpoint-name] [[at]
location-spec] goto location-spec

set-trace [eventmap= event-map-file]
C-5

NightView User’s Guide
tracepoint [eventpoint-modifier] event-id [name= tracepoint-name] [[at]
location-spec] [value= logged-expression] [if conditional-expression]

monitorpoint [eventpoint-modifier] [name= monitorpoint-name] [[at]
location-spec]

mcontrol {display | nodisplay} [monitorpoint-spec...]

mcontrol delay milliseconds

mcontrol {off | on | stale | nostale | hold | release}

Abbreviation:hold

Abbreviation:release

agentpoint [eventpoint-modifier] [name= agentpoint-name] [[at]
location-spec]

clear [[at] location-spec]

commands eventpoint-spec

condition eventpoint-spec[conditional-expression]

delete [eventpoint-spec...]

Abbreviation:d

disable [eventpoint-spec...]

enable [/once|/delete] eventpoint-spec...

ignore eventpoint-spec count

tbreak [name= breakpoint-name] [[at] location-spec] [if
conditional-expression]

tpatch [name= patchpoint-name] [[at] location-spec] eval expression

tpatch [name= patchpoint-name] [[at] location-spec] goto location-spec

Controlling Execution C

continue [count]

Abbreviation:c
C-6

Quick Reference Guide
resume [sigid]

step [repeat]

Abbreviation:s

next [repeat]

Abbreviation:n

stepi [repeat]

Abbreviation:si

nexti [repeat]

Abbreviation:ni

finish

stop

jump [at] location-spec

signal sigid

handle [/signal] sigid keyword ...

handle /exception exception-name keyword...

handle /exception unit-name keyword...

handle /exception all keyword ...

handle /unhandled_exception keyword ...

Selecting Context C

frame [frame-number]

frame * expression[at location-spec]

Abbreviation:f

up [number-of-frames]

down [number-of-frames]
C-7

NightView User’s Guide
select-context default

select-context task= expression

select-context thread= expression

select-context lwp= lwpid

Miscellaneous Commands C

help [section]

refresh

shell [shell-command]

source command-file

delay [milliseconds]

Info Commands C

Status Information C

info log

info eventpoint [/verbose] [name | number] ...

info breakpoint [/verbose] [name | number] ...

Abbreviation:i b

info tracepoint [/verbose] [name | number] ...

info patchpoint [/verbose] [name | number] ...

info monitorpoint [/verbose] [name | number] ...

info agentpoint [/verbose] [name | number] ...

info frame [/v] [* expression[at location-spec]]

info directories
C-8

Quick Reference Guide
info convenience

info display

info history [number]

info limits

info registers [regexp]

info signal [signal ...]

info process

info memory [/verbose]

info dialogue

info family [regexp]

info name [regexp]

info on dialogue [name]

info on program [program]

info on restart [output= outname|append= outname] [program]

info exception exception-name...

info exception unit-name

info exception

Symbol Table Information C

info args

info locals [regexp]

info variables [regexp]

info address identifier

info sources [pattern]

info functions [regexp]

info types [regexp]

info whatis expression
C-9

NightView User’s Guide
Abbreviation:whatis

info representation expression

Abbreviation:representation

info declaration regexp

Abbreviation:ptype

info files

info line [at] location-spec

Defining and Using Macros C

define macro-name[(arg-name [, arg-name] ...)] [text]

define macro-name[(arg-name [, arg-name] ...)] as

info macros [regexp]
C-10

GUI Customization

ical

be
this

he

's

ctory
this

am,

hese
the

t of

ong
pecial
one

that
dow
Star
D
Appendix DGUI Customization

4
4
4

This appendix contains information that you need if you want to customize the graph
user interface.

NightView's behavior may be modified by specifying resources. Resources can
specified in many ways. A complete discussion of this topic is beyond the scope of
text. For more information on setting X11 client resources, refer to theX Window System
User's Guideor to the X man pageX(1) .

NightView's default resources are specified in the file/usr/lib/X11/app-
defaults/Nview . Default color resources are specified in the file/usr/lib/X11/
app-defaults/Nview-color ; default monochrome resources are specified in t
file /usr/lib/X11/app-defaults/Nview-mono . See “Color Selection” on page
D-6. You can look in these files for examples of ways to customize NightView
appearance and behavior.

One way to specify resources is to copy the default resource files to your home dire
and change your versions of NightView's resource files. That is the method used in
appendix.

Application Resources D

In addition to the standard resources associated with an X11 or Motif progr
NightView defines specialapplication resourcesyou can use to customize NightView's
appearance and behavior. See Appendix D [GUI Customization] on page D-1. T
resources affect the entire NightView graphical user interface; they are "global" to
application.

There are two categories of application resources used by NightView. One se
application resources applies to all products that are part of the NightStarTM tool set. In
addition to these, NightView has its own application resources.

NightStar Resources D

NightView is part of the NightStar tool set. To provide a consistent appearance am
these tools and to provide an easy way for you to change the default appearance, s
application resources exist that define fonts and colors. They allow you to change
resource (instead of many) to affect the font or color for a set of window components
have similar characteristics. These resources are applied only to certain win
components; many of NightView's window components are unaffected by the Night
resources.
D-1

NightView User’s Guide

areas
em.

one
age
w

u are

[GUI

as it
r the

d

d

g
h as
u
w

me
so
cify
e

ug
For example, some textual display areas show only program output and some
accept input only from you. Different colors are used for these areas to distinguish th
If you want to change the color for input fields, for example, you need to change only
resource in NightView's color resource file. See “NightStar Color Resources” on p
D-4. The next time you run NightView, the color of all the input fields has the ne
setting.

Changing theinputBackground line in yourNview-color file to:

*inputBackground: Yellow

causes the background color for all input areas to be yellow. (This assumes that yo
using a color display and that theuseNightStarColors resource isTrue . See
“Using NightStar Resources” on page D-2.)

Resource values are specified in the application resource files. See Appendix D
Customization] on page D-1.

Using NightStar Resources D

The following resources are provided so you can control NightView's appearance
applies to the NightStar resources. In most cases, however, the default values fo
following resources should be used.

useNightStarFonts

By default, this resource isTrue . It controls whether the NightStar fonts are use
by NightView.

useNightStarColors

By default, this resource isTrue . It controls whether the NightStar colors are use
by NightView.

These resources are specified in the/usr/lib/X11/app-defaults/Nview
resource file.

If you set one of these resources toFalse , NightView does not use the correspondin
NightStar resource. Instead, only standard X11 resources are used (suc
*background , *foreground , *fontList , as defined in the resource files), and yo
are responsible for explicitly specifying fonts and colors for NightView's windo
components.

For example, if you setuseNightStarFonts to False , all of NightView's textual
display would use the font defined for the standardfontList resource. See “Font
Selection” on page D-6. The NightStar default font is a proportional-width font. So
of NightView's textual displays require a fixed-width font for proper text alignment,
this default proportional font is inappropriate for these areas. You would need to spe
a fixed-width font, individually, for some of NightView's display areas. Adding th
following lines to your resource file would tell NightView to use the6x13 fixed-width
font for the text in the Dialogue Window's process summary list, and the Deb
D-2

GUI Customization

r

ition

nal-
ixed-
you

as.

lay

bug
Window's source display area. See “Widget Hierarchy” on page D-7.

*processSummaryHeadingsLabel*fontList: 6x13
*processSummaryList*fontList: 6x13
*sourceText*fontList: 6x13

If useNightStarFonts is set toTrue , NightView takes care of setting the fonts fo
you based on font resource values in the resource file.

NightStar Font Resources D

This section describes the special font resources available for NightStar tools. In add
to these resources, NightStar tools specify an overalldefault fontthat is used for most of
the textual display. See “Font Selection” on page D-6. NightStar tools use proportio
width fonts except in areas that depend on text alignment; in these instances a f
width font is important for readability. If you decide to change fonts, make sure that
choose another fixed-width font for the font resources that havefixed in their names.

NightStar font resources include:

boldFontList

Used for text that is emphasized to attract your attention.

smallFontList

Used for areas that require a smaller font.

NightView does not currently use this font.

infoFontList

Used for areas that display informational messages, warnings, errors.

NightView does not currently use this font. The default font is used for these are

fixedFontList

Used for areas that depend on text alignment.

NightView areas that use this font include headings for lists, lists and the disp
area in the Monitor Window.

smallFixedFontList

Used for areas that depend on text alignment but require a smaller font.

NightView areas that use this font include message areas in the Dialogue, De
and Global Windows; dialogue I/O area; and Debug source display area.

The /usr/lib/X11/app-defaults/Nview resource file specifies the font values
for NightView.
D-3

NightView User’s Guide

In

use
ovide
es a

Dia-
area

a-
vent-

s the
rea;

dia-
y set.

Mes-
tion.

that
on is
NightStar Color Resources D

This section describes the special color resources available for NightStar tools.
addition to these resources, NightStar tools specify an overalldefault colorthat is used
for most of the window areas. See “Color Selection” on page D-6. NightStar tools
the same color scheme to indicate that they are part of the same tool set and to pr
cues about the usage of different areas in the windows. Each NightStar tool us
unique color for its menu bars.

The following NightStar color application resources are defined:

outputBackground
outputForeground

Used for the background and foreground colors in output-only areas.

NightView areas that use these color resources include message areas in the
logue, Debug and Global Windows; lists; Debug source display area; display
in the Monitor Window; and text input areas that are used for displaying inform
tion, such as the eventpoint dialog boxes when used for changing an existing e
point's attributes.

inputBackground
inputForeground

Used for the background and foreground colors in areas that accept user input.

NightView areas that use these color resources include text entry areas such a
command areas in the Dialogue, Debug and Global Windows; the dialogue I/O a
and other text input areas in dialog boxes.

distinctBackground
distinctForeground

Used for the background and foreground colors in areas thatrequire user input.

NightView areas that use these color resources include fields in the eventpoint
log boxes that require you to enter data before the eventpoint can be successfull

feedbackBackground
feedbackForeground

Used for the background and foreground colors of the user feedback area (see “
sage Areas” on page 9-6) for feedback that does not provide progress informa
These colors default to the same values asoutputBackground andoutput-
Foreground , respectively.

feedbackNotDoneBackground
feedbackNotDoneForeground

Used for the background and foreground colors of the user feedback area for
portion representing work to be done, in those cases where progress informati
provided.

feedbackDoneBackground
D-4

GUI Customization

that
gress

set.
other

he

file

X

lue

See
e is

ult

[GUI
feedbackDoneForeground

Used for the background and foreground colors of the user feedback area for
portion representing the amount of work completed, in those cases where pro
information is provided.

We recommend that thefeedbackDoneForeground and feedbackNot-
DoneForeground colors always be the same.

The /usr/lib/X11/app-defaults/Nview-color resource file specifies the
color values for NightView.

NightView Resources D

In addition to NightStar resources, NightView has application resources that you can
See “NightStar Resources” on page D-1. These resources are not shared by
NightStar tools.

The following NightView resources are available.

editor

This resource allows you to define the editor that is invoked by theSource->Edit
menu item. If theeditor resource is not defined (default), then the name of t
editor is taken from the environment variableEDITOR. If there is noEDITOR vari-
able, thenvi is used. The editor is invoked with the name of the current source
as the sole argument. See “Debug Source Menu” on page 9-22.

editorTalksX

Setting this resource toTrue indicates that your editor can communicate with the
Window System directly. The default value for this resource isFalse . See the
description of theSource->Edit menu item for further information. See “Debug
Source Menu” on page 9-22.

monitorWindowColumns

This resource controls the column width in the Monitor Window. The default va
for this resource is 80. See “Monitor Window - GUI” on page 9-47.

lockButtonSelectColor

This resource controls the selected color of the debug source lock button.
“Debug Source Lock Button” on page 9-28. The default value for this resourc
#ff0000 (red) and it is set in the/usr/lib/X11/app-defaults/Nview-
color file.

useKoalaTalk

Set this resource toFalse if you do not want NightView to communicate with
other tools. See “Using NightView with Other Tools” on page 3-32. The defa
value of this resource isTrue .

Resource values are specified in the application resource files. See Appendix D
D-5

NightView User’s Guide

.

ese
Font

you
, for

ver

s

ces.
tStar

you

and
ults

rce
Customization] on page D-1.

Font Selection D

NightView defines adefault fontto use for most of the textual display in the windows
This proportional-width font is specified in the/usr/lib/X11/app-defaults/
Nview resource file as the value of the standard MotiffontList resource. This font is
used by window components that do not have a font specified for them.

A few of the window components use fonts specified by NightStar font resources. Th
fonts are specified in the same resource file as the default font. See “NightStar
Resources” on page D-3.

You can change the fonts used by NightView, and you can control whether or not
use the NightStar fonts. See “Using NightStar Resources” on page D-2. You can
example, change the default font by setting the resourcefontList . Changing the
fontList line in yourNview file to:

*fontList: 9x15

causes NightView to use the9x15 font for most of the textual display.

Fonts can take up a lot of memory in your X server. If you are running low on ser
memory, you might want to set up your resources so that you use fewer fonts.

Color Selection D

NightView defines adefault color to use for most of the window areas. This color i
specified in the/usr/lib/X11/app-defaults/Nview-color resource file as the
value of the standard X11background resource. This color is used by window
components that do not have a color specified for them.

A few of the window components use colors specified by NightStar color resour
These colors are specified in the same resource file as the default color. See “Nigh
Color Resources” on page D-4.

You can change the colors used by NightView, and you can control whether or not
use the NightStar colors. See “Using NightStar Resources” on page D-2.

NightView determines whether you are using a monochrome or color display
automatically loads the appropriate NightView monochrome or color application defa
file. This means that you do not have to specify an X11customization resource
explicitly. If you do specify this resource (using either-color or -mono for the value),
NightView still loads the appropriate application defaults file and uses its resou
values.
D-6

GUI Customization

fields

ese

olors.
n to

n
hy”

per

for
tif

not

each
heir
Monochrome Display D

The file /usr/lib/X11/app-defaults/Nview-mono has examples of
monochrome resource specifications that were chosen to help distinguish certain
using standard X Window System bitmaps.

If you want NightView to have white text on a black background, you can add th
resources to yourNview-mono or Nview file.

*background: black *foreground: white

Color Display D

The file /usr/lib/X11/app-defaults/Nview-color has examples of color
resource specifications. These resources include the default color and NightStar c
See “NightStar Color Resources” on page D-4. The colors in this file were chose
help distinguish certain fields and to emphasize areas that accept user input.

If you want to make changes to the colors, change your copy of theNview-color file.

Window Geometry D

If you want to specify window geometries for the individual NightView windows, the
you need to refer to the TopLevelShell widget for each window. See “Widget Hierarc
on page D-7. For example,

*globalWindowShell*geometry: +0+0
*dialogueWindowShell*geometry: -0+0
*DebugWindowShell*geometry: +0-0

would put the Global Window in the upper left corner, the Dialogue Window in the up
right corner, and the Debug Window in the lower left corner.

Widget Hierarchy D

Information about the widget hierarchy for the graphical user interface is useful
modifying the behavior of NightView through the use of standard X11 or Mo
resources. You can get this information by usingeditres(1) . See the man page for
information abouteditres .

The widget hierarchy specific to the Monitor Window requires additional explanation
covered by the functionality ofeditres(1) . The items displayed in the Monitor
Window (in the graphical user interface) are composed of three label gadgets, one
for the identifier, stale data indicator and value. These labels inherit attributes from t
D-7

NightView User’s Guide

and

urces
parent (the monitorBulletinBoard). The names of the gadgets are "label", "status"
"value".

The icons for the various stale data indicators may be changed by changing the reso
up da t ed St at u sP ix ma p , n ot Ex e cu te dS t at us Pi x ma p a n d
notSampledStatusPixmap .
D-8

Implementation Overview

ter-
See

l

Dia-
ction

n of
-15.

ebug

n
oints.
ess

sses
o that

by a
icular

n
one text
of the
in the

Due
here
ce as

ram
0000-
E
Appendix EImplementation Overview

5
5
5

This section gives a very high-level description of how the debugger is implemented.

The user invokesnview . nview is a script that runs eithersnview or xnview .
snview implements the command-line and simple full-screen interfaces.xnview
implements the graphical user interface. (Users are discouraged from invokingsnview
or xnview directly.) The user interface programs deal with all aspects of the user in
face and with managing the symbolic debugging information from executable files.
Chapter 6 [Invoking NightView] on page 6-1.

NightView runsNightView.p for each dialogue. If the dialogue is on the loca
machine, then NightView communicates withNightView.p via a shared memory
region. There is one such shared memory region per invocation of NightView. See “
logues” on page 3-4. For remote dialogues, NightView establishes a socket conne
with NightView.p .

NightView.p is responsible for controlling the user processes by some combinatio
the /proc file system and the debug agent. See “Debugger Mechanisms” on page 3

If the debug agent is used, it communicates withNightView.p via a shared memory
region. There is one of these shared memory regions for each process using a d
agent. See “Debug Agent” on page 3-15.

Monitorpoints communicate withNightView.p via a shared memory region created i
your process. There is one shared memory region for each dialogue using monitorp
See “Monitorpoints” on page 3-9. The shared memory region is placed in your proc
somewhere in the range0xa0000000 to 0xb0000000 , if there is space available in that
range. Otherwise, it is placed anywhere NightView can find space.

Each dialogue runs a shell and controls it using/proc . This is not to get control of the
shell, but so that the debugger is notified of the shell's children, which are the proce
to be debugged. The shell runs at a pseudo-terminal controlled by the debugger, s
the debugger can capture the program I/O.

Eventpoints are implemented by replacing the instruction at the target address
branch to a patch area. The patch area contains instructions to implement the part
eventpoint, emulate the replaced instruction, and return to the target address.

Space for a patch area is acquired by usingmmapor by creating a shared memory regio
in the process's address space. The debugger usually creates one data patch area,
patch area, and one or two eventpoint patch areas. The user can adjust the sizes
patch areas. See “set-patch-area-size” on page 7-50. Each region is only created
process if necessary.

Eventpoint patch areas must be within 2**25 bytes of the eventpoint target address.
to the small amount of memory covered, a complex method is used to determine w
the eventpoint patch areas are placed, in order to cover as much of the code spa
possible without overlapping the user code. The statically-linked portion of the prog
usually begins at 0x10000000, so an eventpoint patch area is placed at (0x1200
E-1

NightView User’s Guide

pied,
0 -

ced
atch
e data
ce is
rea

his is
f the
(eventpoint patch area size)), if possible. If that address space is already occu
NightView attempts to place the region somewhere within the range 0x1000000
0x12000000.

For the dynamically-linked portion of the program, eventpoint patch areas may be pla
at (0xb0000000-(eventpoint patch area size)) and at (0xb4000000-(2*(eventpoint p
area size))). Other eventpoint patch areas may be created for some programs. Th
patch area is placed somewhere in the range 0xa0000000 to 0xb0000000, if spa
available; otherwise it is placed anywhere NightView can find room. The text patch a
is placed in a manner similar to the data patch area.

You can see where NightView has placed patch areas with theinfo memory command
(see “info memory” on page 7-122).

The user process is sometimes forced to execute code on behalf of the debugger. T
how function calls work in evaluated expressions, and it is also used to do some o
housekeeping chores, e.g., creating memory regions.
E-2

Performance Notes

y the
the
iting
less
not
emory

ther
he
s” on

been
d

ority.
ration
rent

per

ble
F
Appendix FPerformance Notes

6
6
6

Debug Agent Performance F

The performance of the debug agent (see “Debug Agent” on page 3-15) is affected b
operations it is asked to perform, and by whether NightView is able to tell whether
memory locations accessed by such operations are valid or not. Reading from or wr
to memory locations that NightView already knows are valid addresses takes much
time than if the locations are not known to NightView. (Some examples of locations
known to NightView are addresses in the heap and stack and addresses in shared-m
regions your program attaches to.)

Writing to memory that contains executable instructions is more expensive than o
forms of reads or writes. You should be aware that NightView must modify t
executable instructions when it creates or deletes an eventpoint. See “Eventpoint
page 3-8.

The effect of debug-agent calls on the performance of the debugged program has
measured on a NightHawk® 4800 system running CX/UX 7.1. All pages of the debugge
program were locked in memory, and the program was isolated to aCPU from which all
interrupts were excluded; the program was also running at the highest possible pri
Various statistics from this measurement, separated according to the types of ope
performed, are set forth below. Times are approximate and may vary under diffe
circumstances.

Calls to the agent when there is nothing to do:

Maximum

278 microseconds per call

Minimum

35 microseconds per call

Average

38 microseconds per call

Calls to agent when it performs only reads and writes of data (maximum of 160 bytes
operation):

Maximum

1194 microseconds per call

Calls to agent when it performs a mix of operations, including writes to executa
F-1

NightView User’s Guide
instructions:

Maximum

1816 microseconds per call
F-2

Tutorial Files

files
G
Appendix GTutorial Files

7
7
7

The following sections show source listings for the files used in the tutorials. These
all reside under the/usr/lib/NightView/Tutorial directory.

C Files G

msg.h G

1 #include <stdio.h>
2 #include <sys/types.h>
3 #include <signal.h>

main.c G

1 #include "msg.h"
2
3 /* This program spawns a child process and sends
4 * signals from the parent to the child.
5 *
6 */
7
8 main()
9 {

10 int total_sig;
11 pid_t pid;
12 char *tracefile = "msg_file";
13 extern void parent_routine();
14 extern void child_routine();
15 extern void signal_handler();
16
17 signal(SIGUSR1, signal_handler);
18 printf("How many signals should the parent send

the child?\n");
19 scanf("%d", &total_sig);
20 pid = fork();
21
22 if(pid == 0)
23 {
24 /* It’s the child */
25 child_routine(total_sig);
G-1

NightView User’s Guide
26 }
27
28 else
29 {
30 /* It’s the parent */
31 parent_routine(pid, total_sig);
32 }
33
34 exit(0);
35 }

parent.c G

1 #include "msg.h"
2
3 /* Every time the parent sends the child a signal,
4 * the parent writes a message.
5 */
6
7 void parent_routine(child_pid, total_sig)
8 pid_t child_pid;
9 int total_sig;

10 {
11 int isec = 2;
12 int sig_ct;
13
14 for(sig_ct = 1; sig_ct <= total_sig; ++sig_ct)
15 {
16 printf("%d. Parent sleeping for %d

seconds\n", sig_ct, isec);
17 sleep(isec);
18 kill(child_pid, SIGUSR1);
19 }
20 }

child.c G

1 #include "msg.h"
2
3 /* Every time the child receives a signal from
4 * the parent, the child writes a message.
5 */
6
7 int sig_ct_child = 0;
8
9 void child_routine(total_sig)

10 int total_sig;
G-2

Tutorial Files
11 {
12 extern void signal_handler();
13
14 signal(SIGUSR1, signal_handler);
15
16 while(sig_ct_child < total_sig)
17 {
18 pause();
19 printf("Child got ordinal signal #%d\n",

sig_ct_child);
20 }
21 }
22
23
24
25 /* Count how many signals have been received */
26
27 void signal_handler(sig_num)
28 int sig_num;
29 {
30 signal(SIGUSR1, signal_handler);
31 ++sig_ct_child;
32 }

Fortran Files G

msg.i G

1 C Constants for main.f, parent.f, and child.f
2
3 integer SIGUSR1
4 parameter (SIGUSR1=30)

main.f G

1 C This program spawns a child process and sends
2 C signals from the parent to the child.
3 C
4
5 program main
6 common /msg_comm/ total_sig
7 integer total_sig
8 integer pid
9 integer fork

10 character *8 tracefile
11 external parent_routine
12 external child_routine
G-3

NightView User’s Guide
13
14 tracefile = "msg_file"
15 write(6,*) "How many signals should the

parent send the child?"
16 read(5,*) total_sig
17 pid = fork()
18
19 if(pid .eq. 0) then
20 C It’s the child
21 call child_routine()
22 else
23 C It’s the parent
24 call parent_routine(pid)
25 end if
26
27 call exit
28 end

parent.f G

1 C Every time the parent sends the child a signal,
2 C the parent writes a message.
3
4 subroutine parent_routine(child_pid)
5 common /msg_comm/ total_sig
6 integer child_pid
7 integer total_sig
8 integer isec
9 integer ireturn

10 integer sig_ct
11 integer kill
12 include "msg.i"
13 data isec/2/
14
15 do 10 sig_ct = 1, total_sig
16 write(6,*) sig_ct, ". Parent sleeping

for", isec, "seconds"
17 call sleep(isec)
18 ireturn = kill(child_pid, SIGUSR1)
19 10 continue
20
21 return
22 end

child.f G

1 C Every time the child receives a signal from
G-4

Tutorial Files
2 C the parent, the child writes a message
3
4 subroutine child_routine()
5 common /msg_comm/ total_sig
6 common /sig_comm/ sig_ct_child
7 integer total_sig
8 integer sig_ct_child
9 integer ireturn

10 integer csignal
11 cexternal pause
12 integer pause
13 external signal_handler
14 integer signal_handler
15 include "msg.i"
16
17 ireturn = csignal(SIGUSR1, signal_handler, -1

)
18
19 while(sig_ct_child .lt. total_sig)
20 ireturn = pause()
21 ireturn = csignal(SIGUSR1, signal_handler,

-1)
22 write(6,*) "Child got ordinal signal #",

sig_ct_child
23 end while
24
25 return
26 end
27
28
29
30 C Count how many signals have been received
31
32 integer function signal_handler()
33 common /sig_comm/ sig_ct_child
34 integer sig_ct_child
35 data sig_ct_child /0/
36
37 sig_ct_child = sig_ct_child + 1
38 return
39 end

Ada Files G

main.a G

1 -- This program spawns a child process and sends
2 -- signals from the parent to the child
3
4 with child_routine;
G-5

NightView User’s Guide
5 with parent_routine;
6 with text_io;
7 with posix_1003_1;
8 procedure main is
9

10 pid : posix_1003_1.pid_t;
11 total_sig : integer;
12 tracefile : constant string := "msg_file";
13 buffer : string (1..80) ;
14 last : natural ;
15
16 begin
17
18 text_io.put_line("How many signals should the

parent send the child?");
19 text_io.get_line (buffer, last) ;
20 total_sig := integer’value(buffer(1..last)) ;
21 pid := posix_1003_1.fork;
22
23 if (pid = 0) then
24 -- It’s the child
25 child_routine(total_sig);
26 else
27 -- It’s the parent
28 parent_routine(pid, total_sig);
29 end if;
30
31 end main;

parent.a G

1 -- Every time the parent sends the child a signal,
2 -- the parent writes a message.
3
4 with posix_1003_1;
5 with text_io;
6 procedure parent_routine(child_pid :

posix_1003_1.pid_t;total_sig : integer) is
7
8 isec : integer := 2;
9 sig_ct : integer := 1;

10 stat : integer;
11
12 begin
13
14 while sig_ct <= total_sig loop
15 text_io.put_line(integer’image(sig_ct) & ".

Parent sleeping for "
16 & integer’image(isec) & " seconds");
17 delay duration(isec);
G-6

Tutorial Files
18 stat := posix_1003_1.kill(child_pid,
posix_1003_1.SIGUSR1);

19 sig_ct := sig_ct + 1;
20 end loop;
21
22 end parent_routine;

child.a G

1 -- Every time the child receives a signal from
2 -- the parent, the child writes a message.
3
4 package child_signal_handler is
5
6 sig_ct_child : integer;
7
8 procedure signal_handler;
9

10 end child_signal_handler;
11
12 package body child_signal_handler is
13
14 procedure signal_handler is
15 begin
16 sig_ct_child := sig_ct_child + 1;
17 end signal_handler;
18
19 end child_signal_handler;
20
21 with system;
22 with posix_1003_1;
23 with text_io;
24 with child_signal_handler;
25
26 procedure child_routine(total_sig : integer) is
27 --
28 act : posix_1003_1.sigaction_t;
29 stuff : integer;
30 --
31 begin
32 --
33 act.sa_handler :=

child_signal_handler.signal_handler’address;
34 stuff :=

posix_1003_1.sigemptyset(act.sa_mask’address);
35 act.sa_flags := 0;
36 child_signal_handler.sig_ct_child := 0;
37 stuff :=

posix_1003_1.sigaction(posix_1003_1.SIGUSR1, act’address);
38 while child_signal_handler.sig_ct_child <

total_sig loop
G-7

NightView User’s Guide
39 stuff :=
posix_1003_1.sigsuspend(act.sa_mask’address);

40 text_io.put_line("Child got ordinal signal #"
&

41
integer’image(child_signal_handler.sig_ct_child));

42 end loop;
43 --
44 end child_routine;
45
G-8

Reporting Bugs

ort
by

ction

duce
H
Appendix HReporting Bugs

8
8
8

This section describes how to report bugs in NightView. It is important to rep
problems, otherwise we might never know about them. You can report a problem
calling the Concurrent Software Support Center. For more information, see the se
Direct Software Supportin the release notes for the current release.

It is also important to report a problem in a way that helps us understand and repro
the problem.

Here is a list of things you should tell us in a problem report.

• What version of NightView are you using? You can get this by running
nview -v or by activatingOn Version in theHelp menu in theGUI.

• What type of machine are you running on, and what is the version of the
operating system? Use the commanduname -a to get this information.

• Are you using theGUI, the simple-screen interface, or the command line
interface? Sometimes this is not obvious from the description of the prob-
lem.

• Try to be very explicit about what you see happen when the problem
occurs. Do you get any error messages? Exactly what incorrect behavior
do you see? How will we know when we have reproduced the problem?

• Try to isolate the problem to a small test program and a small series of
actions in the debugger. This is not always possible, but to the extent that
you can isolate the problem, that will help us reproduce and fix it.

• Be explicit about exactly how to reproduce the problem. Try not to leave
out any facts, even if you think you know the cause of the problem.
H-1

NightView User’s Guide
H-2

also

inde-

t

.

differ-

otif
tion.
age

you

ak-
ts
Glossary

This glossary defines terms used in NightView. Terms initalics are defined here.

accelerator

A special key used to select a menu item quickly in the graphical user interface. See
mnemonic. See “Keys” on page 9-10.

Ada task

Ada tasks are entities whose executions proceed in parallel. Different tasks proceed
pendently, except at points where they synchronize.

agentpoint

A call to thedebug agent(see “Debug Agent” on page 3-15) inserted by NightView a
your direction. You can set an agentpoint with theagentpoint command. See “agent-
point” on page 7-86. Agentpoints may be conditional.

anchored match

The entire string must match the regular expression. Put another way, a^ is implied at the
beginning of the regular expression, and a$ is implied at the end of the regular expression
See “Regular Expressions” on page 7-12.

application

A group of related processes. The processes may be running the same program or
ent programs.

application resource

Application resources are application-specific resources defined for an X11 or M
application. They allow you to customize the appearance or behavior of the applica
Application resources affect the entire application. See “Application Resources” on p
D-1.

attaching

Attaching to a process means that the debugger will have control over it. This is how
debug processes that already exist. See “attach” on page 7-32.

breakpoint

A breakpoint is a place in your program where execution will stop. You can set a bre
point with thebreakpoint command. See “Breakpoints” on page 3-9. Breakpoin
Glossary-1

NightView User’s Guide

-

nfor-

he
ss. A
ontrol

nds,

be
shell

om-
ype as
ved
and

`hit’’

e an

or
ws
may be conditional, seeconditional breakpoint. Breakpoints may have debugger com
mands associated with them, seebreakpoint commands.

breakpoint commands

A set of debugger commands to be executed when a breakpoint is hit. Seebreakpoint.

checkpoint

A checkpoint saves information about the eventpoints, signal disposition, and other i
mation, for a program. This information is used when a program isrestarted. See
“Restarting a Program” on page 3-11.

child process

When a processforks, a new process is created that looks just like the old process. T
new process is called a child process and the old process is called the parent proce
process may have many child processes, but only one parent process. You can c
whether the child process is debugged with theset-children command. See “set-
children” on page 7-41.

command history

NightView keeps a history of all the commands you enter. You can retreive comma
edit them, and re-enter them. See “Command History” on page 3-30.

command-line interface

A command-line interface deals with only one line at a time. This kind of interface can
used from a terminal or from other programs that expect simple behavior, such as a
running in emacs. Contrast this with afull-screen interfaceand agraphical user interface.
See Chapter 7 [Command-Line Interface] on page 7-1.

command stream

A command stream is a set of commands executed sequentially by NightView. The c
mands attached to a breakpoint form a command stream, as do the commands you t
input to NightView. Execution of commands in one command stream may be interlea
with the execution of commands from another command stream. See “Comm
Streams” on page 3-27.

conditional breakpoint

A breakpoint may have a language expression associated with it. The breakpoint is `
only if the expression evaluates toTRUE when the breakpoint is encountered. Seebreak-
point.

context

Context refers to the information the debugger uses to determine how to evaluat
expression. The main components of the context are theprogram counter, which deter-
mines thescope, and thestack. Context determines the language (i.e., Ada, C, C++
Fortran) as well as the type and location of variables in the program. NightView allo
Glossary-2

Glossary

page

f an
pres-

n the
Core

point
unt or
dis-

n the

alled

ecu-

our
em-

er.
ge
you to specify the context to be used in interpreting an expression. See “Context” on
3-22.

convenience variables

A convenience variable is a variable maintained by the debugger to hold the value o
expression. The type of a convenience variable is determined by the type of the ex
sion assigned to it. See “Convenience Variables” on page 3-29.

core file

A core file is a snapshot of a process’s memory created by the operating system whe
process is aborted. You can examine this process state using NightView. See “
Files” on page 3-4.

crossing count

A crossing count is the number of times program execution has crossed an event
since the program has started execution. This count is updated even if the ignore co
condition was not satisfied. The crossing count is not updated if the eventpoint is
abled.

current frame

The current frame is one of the frames on the stack of a stopped process. It is ofte
same as thecurrently executing frame, but other frames can be selected using theup ,
down, andframe commands. The current frame is used to determine thecontextfor
evaluating an expression. See “Current Frame” on page 3-23.

currently executing frame

The currently executing frame is the stack frame associated with the most recently c
routine in a stopped process. Contrast this withcurrent frame.

debugger

A debugger is a tool to help you debug programs. A debugger lets you control the ex
tion of your program and look at your program’s memory.

debug agent

A debug agent is a module supplied with NightView that enables debugging while y
process is running. The debug agent communicates with NightView through shared m
ory. See “Debug Agent” on page 3-15.

debug session

A debug session is one invocation of NightView; it lasts until you exit from the debugg
See Chapter 6 [Invoking NightView] on page 6-1. See “Quitting NightView” on pa
7-17.
Glossary-3

NightView User’s Guide

one

rocess
ntrol

muni-

act

. To

o be
ber to
age
Debug Window

In the graphical user interface, a Debug Window allows you to manipulate and debug
or more processes. See alsoprocess. See “Debug Window” on page 9-20.

default color

The default color is specified by the X11background resource and applies only to the
graphical user interface. See “Color Selection” on page D-6.

default font

The default font is specified by the MotiffontList resource and applies only to the
graphical user interface. See “Font Selection” on page D-6.

detaching

Detaching from a process means that the debugger no longer has control over that p
and any future children that are created by that process. The debugger still has co
over previously created children. See “detach” on page 7-32.

dialogue

NightView provides dialogues as a means of starting processes, via a shell, and com
cating with those processes. See “Dialogues” on page 3-4. See alsoremote dialogue.

Dialogue Window

In the graphical user interface, a Dialogue Window provides you with a way to inter
with a NightView dialogue. See alsodialogue. See “Dialogue Window” on page 9-16.

disassembly

A symbolic representation of the raw machine language that makes up your program
disassemble part of your program, use thex command with thei format. See “x” on page
7-67.

display item

A display item is an expression or memory location whose value or contents are t
printed out whenever the associated process stops. NightView assigns a unique num
each display item in each process. See “display” on page 7-71 and “info display” on p
7-120.

DWARF

DWARF is the standard format for symbolic debugging information used withELF files.
SeeELF.
Glossary-4

Glossary

exe-
ram

ew
are:

ent-

exe-
. Exe-
d by a
n han-
han-
this
rmost
ion”
ELF

Executable and Linking Format. This is a standard for the format and contents of an
cutable file. It also determines the form and content of information about your prog
available to the debugger.

event-map file

An event-map file lets you associate or map symbolictrace-event tagsand numerictrace-
eventIDs. This file appears on thentrace invocation line when performingNightTrace
tracing. Seetrace.

eventpoint

An eventpoint is a generic name given to the various kinds of modifications NightVi
can insert at a particular location of a process. The different kinds of eventpoints
breakpoint, monitorpoint, tracepoint, patchpoint, andagentpoint. See “Eventpoints” on
page 3-8.

eventpoint modifier

An eventpoint modifier modifies the meaning of an eventpoint command. The only ev
point modifier is/disabled . The modifier/disabled tells NightView to create the
eventpoint, but leave it disabled initially. See “Eventpoint Modifiers” on page 7-77.

exception

An Ada exception is an error or other exceptional situation that arises during program
cution. Normal program execution is abandoned, and special actions are executed
cuting these actions is called handling the exception. An exception can also be cause
raise statement. When an exception arises, control can be transferred to a user writte
dler at the end of a block statement, body of a subprogram, package or task unit. If a
dler is not present in the frame of context in which the exception arises, execution of
sequence of statements is abandoned. The exception will be propagated to the inne
enclosing frame of context if possible. See “handle” on page 7-102. See “info except
on page 7-125.

family

A group of related processes. See “family” on page 7-40.

focus

Seekeyboard focus.

fork

Create a new process. The debugger informs you when your process forks. Seechild pro-
cess.

frame

Seestack frame.
Glossary-5

NightView User’s Guide

ma-
trast

es-
lobal

lows

n

This
ndow.

or-

ount
See

ount
int to
uates
. See
full-screen interface

A full-screen interface uses the capabilities of a terminal to control the display of infor
tion on the entire screen, rather than just writing to the terminal one line at a time. Con
this with acommand-line interfaceand agraphical user interface. See Chapter 8 [Simple
Full-Screen Interface] on page 8-1.

Global Window

In the graphical user interface, the Global Window shows all of NightView’s output m
sages and allows you to control the debugger if all other windows are closed. See “G
Window” on page 9-47.

graphical user interface

A graphical user interface may be used on a graphics display. This kind of display al
much more flexibility and functionality than a text display. Contrast this with acommand-
line interfaceand afull-screen interface. See Chapter 9 [Graphical User Interface] o
page 9-1.

group process mode

In the graphical user interface, a Debug Window can operate in group process mode.
means that you can issue commands that apply to all the processes in the Debug Wi
See alsoDebug Window. See “Group Process Mode” on page 9-14.

GUI

A graphical user interface.

Help Window

In the graphical user interface, the Help Window displays NightView’s online help inf
mation. You can choose to look at any part of theNightView User’s Guide. See also
online help system. See “Help Window” on page 9-49.

hit a breakpoint

A breakpoint is hit when execution reaches the breakpoint location and the ignore c
and conditions, if any, are satisfied. Thus, hitting a breakpoint stops the process.
“Breakpoints” on page 3-9.

hit an eventpoint

An eventpoint is hit when execution reaches the eventpoint location and the ignore c
and conditions, if any, are satisfied. Thus, hitting an eventpoint causes that eventpo
perform its specified action; e.g., a breakpoint stops the process, a monitorpoint eval
its expressions and saves their values, a tracepoint logs a trace event, and so on
eventpoint, breakpoint, monitorpoint, tracepoint.
Glossary-6

Glossary

o

re
ion
on

ro-

o-

t level
w
ams”

. See

user

in a
ities
ignore count

An ignore count causes NightView to skip an eventpoint the nextcounttimes that execu-
tion reaches the eventpoint. You use theignore command to attach an ignore count t
an eventpoint. See “ignore” on page 7-91.

initialization file

An initialization file is a file containing NightView commands that are executed befo
NightView reads commands from standard input. NightView has a default initializat
file, and you can specify others on the NightView invocation line. See “Initializati
Files” on page 3-30.

inline subprogram

A subprogram that is expanded directly into the calling program. See “Inline Subp
grams” on page 3-24.

inline interest level

The level that determines if any inline subprograms are interesting. You may set aninter-
est levelfor individual inline subprograms to override this level. See “Inline Subpr
grams” on page 3-24. You can change or query this level with theinterest command.
See “interest” on page 7-51.

interest level

Each subprogram has an associated interest level. NightView compares the interes
to the interest level thresholdto determine if the subprogram is interesting. NightVie
generally avoids showing you uninteresting subprograms. See “Interesting Subprogr
on page 3-24. You can change or query the interest level with theinterest command.
See “interest” on page 7-51.

interest level threshold

Each process has an interest level threshold. If theinterest levelof a subprogram is less
than the interest level threshold, the subprogram is considered to be uninteresting
“Interesting Subprograms” on page 3-24.

keyboard focus

The keyboard focus determines which field receives keyboard input in the graphical
interface. See “Keyboard Focus” on page 9-10.

macro

A macro is a named set of text, possibly with arguments, that can be substituted
NightView command by referencing the name. This is a means of extending the facil
provided by NightView. See “Defining and Using Macros” on page 7-130.
Glossary-7

NightView User’s Guide

ser

s are
ight-
is

vents

elp
n

point

ehav-

ight-
enta-
mnemonic

A mnemonic is a way of selecting a menu or a menu item quickly in the graphical u
interface. See alsoaccelerator. See “Keys” on page 9-10.

monitorpoint

A monitorpoint is a location in a debugged process where one or more expression
evaluated and the values saved. The saved values are displayed periodically by N
View. Monitorpoints thus provide a means of viewing program data while the program
executing. See “Monitorpoints” on page 3-9 and “monitorpoint” on page 7-83.

NightTrace

An interactive debugging and performance analysis tool that lets you examine trace e
logged by user applications and the kernel. Seetrace. See theNightTrace Manualfor
details.

NightView

A pretty good debugger.

online help system

All of the NightView User’s Guideis available to you, online, through NightView’s online
help system. In the graphical user interface, help information is displayed in the H
Window. See alsoHelp Window. See “help” on page 7-108. See “GUI Online Help” o
page 9-2.

overloading

Overloading means that more than one entity with the same name is visible at some
in the program. See “Overloading” on page 3-21.

patch

A patch is an expression (or a branch) inserted into a debugged process to alter its b
ior (usually to fix a bug). Seepatchpoint. See “Patching” on page 3-9.

patch area

NightView creates regions, known as patch areas, in your process. This is where N
View puts code and data that is inserted into your process. See Appendix E [Implem
tion Overview] on page E-1. See “set-patch-area-size” on page 7-50.

patchpoint

A patchpoint is a location in a debugged process where a patch is inserted. Seepatch. See
“Patching” on page 3-9.
Glossary-8

Glossary

l
ee

cide
View
ses-
.

ro-

. See

an do

n

next.

Qual-
pattern

A pattern is used in thedebug andnodebug commands to control which programs wil
be debugged in a particulardialogue. Patterns are similar to shell wildcard patterns. S
“debug” on page 7-20.

Principal Debug Window

In the graphical user interface, this is the only Debug Window you see unless you de
to create additional Debug Windows. It contains all processes that appear in a Night
session. The Principal Debug Window remains available throughout the NightView
sion. See alsouser-created Debug Window. See “Debug Window Behavior” on page 9-12

PID

A process identifier. This is an integer from 1 to 30000 which uniquely identifies a p
cess on a particular system. In some situations, NightView may create falsePIDs, outside
the normal range, to identify false processes, e.g., core files.

procedure

Seeroutine.

process

The execution of a program. Many processes may be executing the same program
“Programs and Processes” on page 3-2.

process state

A process state describes whether the process is actively executing and what you c
with the process using NightView. The two most common process states arerunningand
stopped. See “Process States” on page 3-14.

program

A file containing instructions and data. A program is usually created with theld(1) pro-
gram. An executing program represents aprocess. See “Programs and Processes” o
page 3-2.

program counter

The program counter is a register that locates the instruction that is to be executed
See “Program Counter” on page 3-22.

qualifier

A qualifier specifies the set of processes or dialogues that a command affects. See “
ifiers” on page 3-4.
Glossary-9

NightView User’s Guide

n
ience

ht-

a

lan-
roce-

nced.

veral
iew,

al to
ight-
” on

ode.
pro-

e

rou-
registers

Registers are special storage locations in theCPU for holding frequently accessed data. I
NightView, you can access most of these registers using specially-named conven
variables. See “Predefined Convenience Variables” on page 7-6.

remote dialogue

A remote dialogue is adialoguestarted on a system other than the one on which Nig
View was invoked. See “Remote Dialogues” on page 3-6.

restarted

When a program is run again in the same debug session, it is considered to berestarted.
Information from the most recentcheckpointis applied to the process. See “Restarting
Program” on page 3-11.

routine

Routine is a generic term denoting a function or subroutine in a program. Different
guages use different terms for this concept; other similar terms are subprogram and p
dure.

scope

A scope is a section of your program where a particular set of variables can be refere
Scope forms a part of thecontext. See “Scope” on page 3-22.

shell

The shell is the program the system normally executes when you log in. There are se
varieties of shell: Bourne shell, C shell, and Korn shell are some examples. In NightV
eachdialogueyou create executes an instance of your login shell.

signal

A signal is a notification of some event to your process. This event may be extern
your process, or it may be the result of an erroneous action by the process itself. N
View allows you to control how signals are delivered to your process. See “Signals
page 3-10.

single process mode

In the graphical user interface, the Debug Window can operate in single process m
This means that you can issue commands that apply only to the currently displayed
cess in the Debug Window. See alsoDebug Window. See “Single Process Mode” on pag
9-13.

stack

An area of memory used to hold local variables and return information for each active
tine. The stack consists of a sequence ofstack frames. Calling a routine pushes a new
Glossary-10

Glossary

See

to the
f the

ack”

cate

is
are

Some
ltiple

.

r you
-10.

sses
last
frame onto the stack; returning from the routine removes that frame from the stack.
“Stack” on page 3-22.

stack frame

A stack frame is a contiguous set of locations in the process’ stack that corresponds
execution of an active routine. The stack frame holds the local automatic variables o
routine, and it also holds information needed to return to the calling routine. See “St
on page 3-22.

stale data indicator

A stale data indicator is a character or icon displayed with a monitored value to indi
the validity and reliability of that value. Seemonitorpoint.

symbol file

An executable file containing symbolic debug information. Normally, the symbol file
the same as the program’s executable file, but it may be different if, for example, you
debugging a stripped program. See “symbol-file” on page 7-33.

thread

Each instance of execution of a program contains one or more threads of execution.
programs have a single thread. Ada programs, through the use of tasking, have mu
parallel threads. See “Multithreaded Programs” on page 3-32.

trace

The collection of data produced by executingtracepointsin a process is called a trace
SeeNightTrace.

trace-event ID

An integer that identifies aNightTracetrace event. User trace eventIDs are in the range 0
through 4095, inclusive. Seeevent-map fileandtrace-event tag.

trace-event tag

A symbolic name that identifies aNightTracetrace event. It is mapped to a numerictrace-
eventID in anevent-map file.

tracepoint

A tracepoint is a call to one of thentrace(3X) library routines for recording the time
when execution reached the tracepoint. You can insert a tracepoint in your source, o
can use NightView to insert them after starting your process. See “Tracing” on page 3

user-created Debug Window

In the graphical user interface, a user-created Debug Window initially contains proce
that are defined by you. This type of Debug Window can not be empty. When the
Glossary-11

NightView User’s Guide

ht-

can
tory”
process in the window exits, this type of Debug Window is automatically closed by Nig
View. See alsoPrincipal Debug Window. See “Debug Window Behavior” on page 9-12.

value history

The value history is a list of values you have printed in your NightView session. You
view this list, and you can reference the values in other expressions. See “Value His
on page 3-30.
Glossary-12

Index
- (family or name argument) 7-40, 7-77
- (list argument) 7-58, 7-59

Symbols

! 1-3, 3-5, 4-11, 7-27, 7-30, 7-48, 7-134
!exit 7-23
(comment) 7-2
$ 7-4, 7-50, 7-66
$ prompt 1-3, 2-3, 4-4, 5-4
$$ 7-4
$_ 7-6
$__ 7-6
$cpc 3-22, 3-23, 7-7, 7-52, 7-63, 7-105, 7-106, 7-118,

7-119
$fp 7-7, 7-105, 7-118
$pc 3-17, 3-22, 3-23, 7-7, 7-69, 7-106
$sp 7-7
& 3-20, 4-7, 5-7, 7-9, 7-30, 7-127
'body 7-9
'specification 7-9
(local) prompt 1-3, 4-4
* (source line decoration) 7-63
+ (list argument) 7-58, 7-59
. 7-12
-. (input terminator) 7-27, 7-48
.NightViewrc file 3-30, 7-22, 7-24, 7-25
.profile file 3-7
/disabled eventpoint modifier 7-77, Glossary-5
/etc/conf/sdevice.d/ipc file A-1
/proc 3-3, 3-6, 3-15, 3-17, 3-34, E-1
/Tutorial 4-3
/usr/lib/NightView/Tutorial 5-3
/usr/lib/NightView- release/ReadyToDebug

1-3, 2-3, 3-7, 4-4, 5-4
/usr/ucb/rsh 3-3
< (source line decoration) 7-63
= (list argument) 7-58
= (source line decoration) 7-62
= key 9-32
> prompt 7-2, 7-84, 7-88, 7-131
> (source line decoration) 7-62
@ (macro invocation) 7-133

@ (source line decoration) 7-63
\ 7-70
\n 7-70
| (show argument) 7-29

A

A (source line decoration) 7-62
Abbreviations

b (breakpoint) 7-78
bt (backtrace) 7-64
c (continue) 7-94
command 7-1, 7-134
d (delete) 7-89
f (frame) 7-105
hold (mcontrol hold) 7-85
i b (info breakpoint) 7-113
l (list) 7-58
n (next) 7-97
ni (nexti) 7-99
p (print) 7-65
ptype (info declaration) 7-129
q (quit) 7-17
release (mcontrol release) 7-85
representation (info representation)

7-129
s (step) 7-96
si (stepi) 7-98
whatis (info whatis) 7-128
xl (translate-object-file) 7-21

Abnormal termination 7-34
Abort 3-26
Accelerator 9-10, 9-11, 9-14, Glossary-1

Ctrl+A 9-26
Ctrl+B 9-25
Ctrl+D 9-26
Ctrl+G 9-27
Ctrl+L 9-27
Ctrl+M 9-25
Ctrl+P 9-25
Ctrl+Q 9-21
Ctrl+S 9-26
Ctrl+T 9-25
Index-1

NightView User’s Guide

,

,

Ctrl+U 9-26
Access vector 3-33
Accessing files 3-1
Actual argument

macro 7-131, 7-133, 7-134
Ada iii, 3-18, 3-22, 3-31, 4-3, 4-10, 4-15, 4-17, 4-18,

4-19, 4-20, 4-21, 4-23, 4-24, 4-27, 4-30, 5-3,
5-10, 5-11, 5-13, 5-14, 5-17, 5-18, 5-20, 5-21,
5-24, 5-25, 5-26, 5-32, 7-44, 7-80, 7-93, 9-23,
9-37, Glossary-2

Ada elaboration 3-31
Ada exception 3-20, 7-103, 7-125, Glossary-5
Ada exception handling 3-31, 7-102, 7-105, 7-125
Ada expressions 3-18
Ada packages 3-31
Ada task 3-32, 7-100, 7-107, Glossary-1, Glossary-11
Ada unit 7-9, 7-59, 7-103, 7-125, 7-127
Add mode 9-10
Address

printing 7-127
Addresses limits 7-120

printing 7-46
addr-expression7-69, 7-71
Agentpoint 3-8, 3-10, 3-15, 3-17, 7-32, 7-62, 7-76, 7-86,

Glossary-1, Glossary-5
changing 9-38
clearing 7-87
condition on 3-13, 7-88, 7-113, 7-118, 9-39
deleting 7-89, 9-41, 9-43
disabling 7-90, 9-39, 9-43
displaying 7-112, 7-117
enabling 7-91, 9-39, 9-43
hitting 7-118, 9-39
ignoring 3-13, 7-91, 7-113, 7-118, 9-39, Glossary-7
named 3-13, 7-77, 7-86, 9-39
saving 3-13
setting 7-74, 7-86, 9-38
state 7-118, 9-39
temporary 9-39

agentpoint 3-10, 3-15, 3-17, 7-86, 7-117
Agentpoint crossing count Glossary-3
Agentpoint Dialog Box 9-26, 9-38
Aggregate item 7-66, 7-120
Alt key 9-11
Anchored match 7-13, 7-61, 7-120, 7-123, 7-126, 7-127,

7-128, 7-129, 7-135, 9-23, 9-37, Glossary-1
Application 3-2, Glossary-1
Application resources D-1, D-5, Glossary-1
apply on dialogue 7-24, 7-25
apply on program 7-38
Argument

actual 7-131
command 7-1
macro 7-131, 7-133

printing 7-122, 7-126
Array 7-66, 7-120

printing 7-46
Array slices 3-20
Assignment 3-18, 7-80
attach 3-3, 3-33, 7-32, 7-42
Attaching 3-3, 3-33, 3-34, 7-32, 9-30, Glossary-1
Attaching commands to a dialogue 7-24
Attaching commands to a program 7-36, 7-39

B

b (breakpoint) 1-4, 2-5, 4-9, 7-78
B (source line decoration) 7-62
b key 9-32
Background process 7-110
background resource D-4, D-7
Backspace key 9-6
backtrace 1-5, 2-6, 3-22, 4-18, 5-18, 7-5, 7-64,

7-105, 7-106, 7-108
Blank line 7-15, 7-59
Body

macro 3-28, 7-131, 7-135
boldFontList resource D-3
Branch instruction 7-80, 7-93
Breakpoint 3-8, 3-9, 3-14, 3-33, 4-15, 5-14, 7-62, 7-63

7-76, 7-81, 7-96, 7-102, 9-30, 9-32, 9-33,
Glossary-1, Glossary-5

changing 9-38
clearing 7-87
commands on 3-13, 3-27, 3-29, 4-24, 5-26, 7-88,

7-113, 7-114, 9-40, Glossary-2
condition on 3-13, 4-23, 5-24, 7-79, 7-88, 7-113,

7-114, 9-39, Glossary-2
deleting 4-22, 5-23, 7-32, 7-89, 9-41, 9-43
disabling 4-28, 5-30, 7-90, 9-39, 9-43
displaying 4-28, 5-31, 7-112, 7-113
enabling 7-91, 9-39, 9-43
hitting 3-14, 7-31, 7-71, 7-94, 7-95, 7-114, 9-39,

Glossary-6
ignoring 3-13, 4-23, 5-25, 7-79, 7-91, 7-113, 7-114

9-39, Glossary-7
named 3-13, 7-77, 7-78, 7-92, 9-39
saving 3-13
setting 1-4, 2-5, 4-9, 4-23, 5-9, 5-24, 5-25, 7-74,

7-78, 7-92, 9-32, 9-33, 9-38
state 7-114, 9-39
temporary 7-92, 9-39

breakpoint 1-4, 2-5, 3-2, 3-4, 4-9, 4-23, 4-24, 7-78,
7-92, 7-113, 9-31, 9-32, 9-33

Breakpoint button 5-9, 9-32, 9-33
Breakpoint crossing count Glossary-3
Index-2

Index

,

,

Breakpoint Dialog Box 5-24, 5-25, 5-26, 9-25, 9-33,
9-38

Browse selection policy 9-9, 9-35, 9-37
bt 1-5, 2-6
bt (backtrace) 7-64
Buffered output 3-28
Building a program 1-2, 2-2, 4-2, 5-3
Busy feedback 9-6, D-4
Busy indication 9-6, D-4
Button

Breakpoint 5-9, 9-32, 9-33
Cancel 2-3, 5-33, 9-9, 9-15, 9-19, 9-36, 9-37,

9-38, 9-41
Change... 5-26, 9-43
check 9-12, 9-26, 9-41
Check All 9-41
Clear 9-34
Clear All 9-41
Close 5-8, 5-24, 5-27, 5-31, 9-43
Delete 5-23, 9-41, 9-43
Detach 9-19
dimmed 5-22, 9-32, 9-37, 9-41, 9-43
Disable 5-30
disabled 5-22, 9-14, 9-32, 9-37, 9-41, 9-43
Dismiss 9-5
Filter 9-8, 9-9
Finish 9-33
Help 9-4, 9-9, 9-15, 9-16, 9-19, 9-36, 9-37, 9-38,

9-41, 9-43
Interrupt 9-18, 9-34, 9-48
Kill 7-33, 9-19
Next 5-11, 9-33
Nexti 9-33
OK 2-3, 2-7, 5-16, 5-23, 5-24, 5-25, 5-27, 5-30,

5-35, 9-8, 9-9, 9-15, 9-16, 9-19, 9-36, 9-37,
9-41

Print 2-6, 5-15, 5-20, 9-32, 9-33
radio 9-12, 9-14, 9-27, 9-40
Resume 2-6, 5-10, 5-12, 5-22, 5-28, 5-33, 9-32
Run to Here 9-31, 9-33
Search 5-16, 9-37
source lock 9-28
Step 5-17, 9-32
Stepi 9-32
Stop 9-14, 9-33
Switch To 5-7, 5-13, 9-13
toggle 9-12, 9-14, 9-26, 9-27, 9-40, 9-41
Update 9-42
Update List 9-42

C

c (continue) 1-5, 7-94
C language iii, 3-20, 3-22, 3-31, 3-34, 7-44, 7-48, 7-65

7-66, 7-70, 7-73, 7-80, 7-93, 7-127, 7-132,
Glossary-2

C string 3-34, 7-66
C++ iii, 3-20, 3-22, 3-31, 3-34, 7-44, 7-65, 7-80, 7-93,

7-132, 9-23, 9-37, Glossary-2
Calling macros 7-133
Cancel button 2-3, 5-33, 9-9, 9-15, 9-19, 9-36, 9-37,

9-38, 9-41
Cautions 3-26
cc option

-g 1-2, 2-2, 4-2, 5-3
cd 7-56
Change... button 5-26, 9-43
Changing a breakpoint 9-38
Changing a monitorpoint 9-38
Changing a patchpoint 9-38
Changing a tracepoint 9-38
Changing an agentpoint 9-38
Changing an eventpoint 9-38
Changing eventpoints 5-26, 5-30, 9-38, 9-41, D-4
Character string 7-66, 7-120

printing 7-46
Check All button 9-41
Check button 9-12, 9-26, 9-41
Checkpoint 3-12, 3-13, 7-36, 7-39, Glossary-2,

Glossary-10
checkpoint 3-13, 7-39
Child process 3-2, 3-3, 4-1, 4-7, 4-14, 4-15, 5-1, 5-8,

5-13, 5-14, 7-21, 7-32, 7-42, Glossary-2
clear 7-76, 7-87, 7-89, 9-34
Clear All button 9-41
Clear button 9-34
Clearing agentpoints 7-87
Clearing breakpoints 7-87
Clearing eventpoints 7-87, 9-34
Clearing monitorpoints 7-87
Clearing patchpoints 7-87
Clearing terminal 7-109
Clearing tracepoints 7-87
Clicking

double 5-15, 5-20, 9-8, 9-37
Clicking on objects 5-2, 5-5, 5-8, 5-15, 5-23, 5-24, 5-25

5-26, 5-29, 5-30, 5-32, 5-34, 9-1
Close button 5-8, 5-24, 5-27, 5-31, 9-43
Color

default D-4, D-6, D-7, Glossary-4
Color display 9-5, D-7
Color resources D-4, D-6
Combo boxes 9-5, 9-18, 9-35, 9-49
Index-3

NightView User’s Guide
Command abbreviations 7-1, 7-134
b (breakpoint) 7-78
bt (backtrace) 7-64
c (continue) 7-94
d (delete) 7-89
f (frame) 7-105
hold (mcontrol hold) 7-85
i b (info breakpoint) 7-113
l (list) 7-58
n (next) 7-97
ni (nexti) 7-99
p (print) 7-65
ptype (info declaration) 7-129
q (quit) 7-17
release (mcontrol release) 7-85
representation (info representation)

7-129
s (step) 7-96
si (stepi) 7-98
whatis (info whatis) 7-128
xl (translate-object-file) 7-21

Command arguments 7-1
Command case 7-1
Command execution

delaying 7-111
Command file 7-110
Command history 3-30, 9-5
Command input 7-110, 7-111
Command prompt 4-4, 4-12
Command qualifier 3-4, 4-22, 5-4, 7-1, 7-10, 7-46, 9-18,

9-34, Glossary-9
Command repetition 4-14, 7-2, 7-15, 7-59
Command replacement 7-134
Command stream 3-27, 3-28, 3-30, 7-95, 7-96, 7-102,

7-110, 7-111, Glossary-2
event-driven 3-27

Command summary 5-5, 9-4, B-1
Command syntax 7-1
Command-line interface iii, 1-1, 3-26, 4-1, 4-3, 5-1, 5-4,

7-2, 7-84, 7-88, 7-103, 7-131, 8-1, 9-1, 9-18,
9-34, 9-48, 9-49, Glossary-2

Command-line user interface 7-109
Commands

! 7-27
agentpoint 7-86
apply on dialogue 7-25
apply on program 7-38
attach 7-32
backtrace 7-64
breakpoint 7-78
cd 7-56
checkpoint 7-39
clear 7-87
commands 7-88

condition 7-88
continue 7-94
core-file 7-34
debug 7-20
define 7-130
delay 7-111
delete 7-89
detach 7-32
directory 7-60
disable 7-90
display 7-71
down 7-107
echo 7-70
enable 7-91
exec-file 7-35
family 7-40
finish 7-100
forward-search 7-61
frame 7-105
handle 7-102
help 7-108
ignore 7-91
info address 7-127
info agenpoint 7-117
info args 7-126
info breakpoint 7-113
info convenience 7-119
info declaration 7-129
info dialogue 7-123
info directories 7-119
info display 7-120
info eventpoint 7-112
info exception 7-125
info family 7-123
info files 7-129
info frame 7-118
info functions 7-127
info history 7-120
info limits 7-120
info line 7-129
info locals 7-126
info log 7-112
info macros 7-135
info memory 7-122
info monitorpoint 7-116
info name 7-123
info on dialogue 7-124
info on program 7-124
info on restart 7-124
info patchpoint 7-115
info process 7-122
info registers 7-120
info representation 7-128
info signal 7-121
Index-4

Index

,

,

,

,

info sources 7-127
info tracepoint 7-114
info types 7-128
info variables 7-126
info whatis 7-128
interest 7-51
jump 7-101
kill 7-33
list 7-58
load 7-74
login 7-18
logout 7-23
mcontrol 7-85
monitorpoint 7-83
mreserve 7-43
name 7-77
next 7-97
nexti 7-99
nodebug 7-20
notify 7-31
on dialogue 7-23
on program 7-36
on restart 7-38
output 7-70
patchpoint 7-79
print 7-65, 7-73
pwd 7-56
quit 7-17
redisplay 7-73
refresh 7-109
resume 7-95
reverse-search 7-61
run 7-30
select-context 7-107
set 7-66
set-auto-frame 7-54
set-children 7-41
set-editor 7-55
set-exit 7-42
set-history 7-46
set-language 7-44
set-limits 7-46
set-local 7-50
set-log 7-44
set-notify 7-30
set-overload 7-54
set-patch-area-size 7-50
set-prompt 7-47
set-qualifier 7-46
set-restart 7-49
set-safety 7-49
set-search 7-54
set-show 7-28
set-terminator 7-48

set-trace 7-81
shell 7-110
show 7-29
signal 7-101
source 7-110
step 7-96
stepi 7-98
stop 7-100
symbol-file 7-33
tbreak 7-92
tpatch 7-93
tracepoint 7-82
translate-object-file 7-21
undisplay 7-72
up 7-106
vector-set 7-75
x 7-67

commands 3-9, 4-24, 7-76, 7-88
Commands attached to a dialogue 7-24
Commands attached to a program 7-36, 7-39
Commands on breakpoint 3-13, 5-26, 7-78, 7-79, 7-88

9-40, Glossary-2
Commands on eventpoint 9-40
Commands on monitorpoint 3-13, 7-83, 7-88, 9-40
Comments 7-2, 7-131
Compilation

by debugger 3-8, 3-29, 7-6
Compiling 1-2, 2-2, 3-10, 3-31, 4-2, 5-3
Condition

agentpoint 3-13, 7-113, 7-118, 9-39
breakpoint 3-13, 5-24, 7-113, 7-114, 9-39,

Glossary-2
eventpoint 3-8, 3-13, 7-6, 7-88, 7-92, 7-113, 9-39
monitorpoint 3-13, 7-113, 7-117, 9-39
patchpoint 3-13, 7-6, 7-113, 7-116, 9-39
tracepoint 3-13, 7-113, 7-115, 9-39

condition 7-76, 7-81, 7-86, 7-88
Condition removal 7-89, 9-39
conditional-expression3-20, 7-78, 7-82, 7-88, 7-92
Configuration

kernel A-1
Confirm Exit Dialog Box 9-14
Context 3-16, 3-21, 3-22, 3-31, 3-32, 7-5, 7-44, 7-59,

7-100, 7-122, 7-127, 7-128, 7-129, Glossary-2
Glossary-5

Context-sensitive help 9-3
continue 1-5, 3-4, 3-11, 4-10, 4-15, 4-31, 7-94, 7-95

7-96, 7-102
Continuing execution 1-5, 2-6, 3-32, 4-10, 4-15, 4-21,

4-31, 5-10, 5-14, 5-22, 5-33, 7-94, 7-95, 7-100
7-101, 7-108, 9-32

Convenience variable 3-29, 7-4, 7-6, 7-66, Glossary-3
global 3-29, 7-50, 7-119
predefined 3-23, 7-5, 7-6, 7-113, 7-114, 7-115,
Index-5

NightView User’s Guide

1,

4,

2,
7-116, 7-117, 7-118, 7-120, 7-130
process local 3-29, 7-6, 7-50, 7-119

Core file 3-3, 3-4, 3-14, 6-2, 7-34, 7-129, 9-30,
Glossary-3

core-file 7-34, 7-56
cprs 9-7
CPU bias 7-19
CPU hang 3-34
Cross reference

help 5-5
Crossing count Glossary-3
Ctrl key 9-6, 9-11
Ctrl+/ key 9-9
Ctrl+\ key 9-9
Current frame 3-23, 7-97, 7-98, 7-99
Current source file 7-59, 7-61
Current stack frame 3-22, 3-23, 4-19, 4-20, 4-31, 5-19,

5-21, 5-33, 7-62, 7-78, 7-80, 7-82, 7-84, 7-86,
7-87, 7-93, 7-100, 7-105, 7-107, 7-108, 7-118,
7-121, Glossary-3

Current working directory 7-56, 9-7
Currently displayed process 5-7
customization resource D-6, D-7

D

d (delete) 7-89
d key 9-31
Data definitions

global 7-74
static 7-74

Data type
printing 7-128

debug 3-2, 3-5, 7-14, 7-20, 7-21, 7-123
Debug agent 3-6, 3-10, 3-15, 3-34, 7-86, A-2, F-1,

Glossary-1, Glossary-3
Debug command area 2-4, 2-6, 5-8, 5-9, 5-18, 5-19,

5-21, 5-27, 9-14, 9-34, 9-49, D-4
Debug command button area 5-17
Debug Eventpoint Dialog Boxes 9-38
DebugEventpoint menu 5-23, 5-24, 5-25, 5-26, 5-29,

5-30, 5-32, 9-24, 9-38, 9-41
Debug Eventpoint Summarize/Change Dialog Box

5-23, 5-26, 5-30, 5-32, 9-26
Debug File Selection Dialog Box 9-37
Debug group area 5-7, 5-11, 5-12, 5-13, 5-14, 5-17,

5-22, 5-28, 5-34, 9-13, 9-14, 9-26, 9-27, 9-32,
9-35

Debug Group Selection Dialog Box 9-36
DebugHelp menu 9-27
Debug identification area 2-3, 5-6, 5-13, 9-28
Debug information 4-3, 5-3, 7-33, 9-7

DebugInterrupt button 9-34
Debug menu bar 9-20
Debug message area 2-3, 2-6, 5-7, 5-8, 5-9, 5-10, 5-1

5-12, 5-13, 5-14, 5-15, 5-17, 5-18, 5-20, 5-21,
5-25, 5-27, 5-28, 5-30, 5-31, 5-34, 9-14, 9-28,
9-37, 9-48, D-3, D-4

DebugNightView menu 2-7, 5-34, 9-20, 9-36
Debug qualifier area 5-7, 5-14, 9-14, 9-34
Debug session Glossary-3
Debug source display 2-3, 2-5, 2-6, 5-7, 5-10, 5-11,

5-14, 5-15, 5-16, 5-17, 5-20, 5-21, 5-24, 5-25,
5-26, 5-30, 9-22, 9-23, 9-24, 9-29, 9-30, 9-33,
9-37, 9-38, 9-42, D-3, D-4

Debug source file name 2-3, 5-7, 5-13, 5-20, 5-21, 5-3
9-29

Debug source lock button 9-28
DebugSource menu 5-15, 9-22, 9-31, 9-32, 9-36, D-5
Debug Source Selection Dialog Box 9-23, 9-36
Debug status area 2-3, 5-7, 5-11, 5-12, 5-14, 5-17, 5-2

5-28, 5-34, 9-29
Debug status message 9-28
Debug table 7-126, 7-127
DebugView menu 5-17, 5-19, 5-31, 5-33, 9-14, 9-26
Debug Window 2-3, 5-6, 5-9, 5-10, 5-11, 5-12, 5-14,

5-15, 5-17, 5-22, 5-23, 5-24, 5-28, 5-29, 9-1,
9-6, 9-11, 9-12, 9-13, 9-14, 9-16, 9-19, 9-20,
9-26, 9-27, 9-28, 9-29, 9-32, 9-34, 9-35, 9-36,
9-37, 9-47, 9-48, 9-49, Glossary-4

Principal 5-6
user-created Glossary-11

Debugger 3-1, Glossary-3
gdb 1-1, 1-4
NightView iii, 3-1
symbolic 3-1

Debugging
multiple processes 3-2
real-time 3-5
single process 3-2

Declaration
printing 7-129

Default color D-4, D-6, D-7, Glossary-4
Default font D-2, D-3, D-6, Glossary-4
define 7-130, 7-133
Defining a macro 7-131
delay 7-111
delete 4-22, 7-76, 7-87, 7-89
Delete button 5-23, 9-41, 9-43
Delete key 9-6
Deleting agentpoints 7-89, 9-41, 9-43
Deleting breakpoints 4-22, 5-23, 7-89, 9-41, 9-43
Deleting eventpoints 7-89, 9-41, 9-43
Deleting monitorpoints 7-89, 9-41, 9-43
Deleting patchpoints 7-89, 9-41, 9-43
Deleting tracepoints 7-89, 9-41, 9-43
Index-6

Index

,

Deselecting objects 9-9, 9-10
detach 7-21, 7-23, 7-32, 9-19, 9-22
Detach button 9-19
Detaching 3-2, 3-14, 7-17, 7-23, 7-32, 7-83, 9-19, 9-22,

Glossary-4
Dialog Box 2-3, 2-7, 9-10, 9-19

Agentpoint 9-26, 9-38
Breakpoint 5-24, 5-25, 5-26, 9-25, 9-33, 9-38
Confirm Exit 9-14
Debug Eventpoint Summarize/Change 5-23, 5-26,

5-30, 5-32, 9-26
Debug File Selection 9-37
Debug Group Selection 9-36
Debug Source Selection 9-23, 9-36
Error 9-15, 9-16
Eventpoint 9-38
File Selection 9-7, 9-23
Monitorpoint 9-25, 9-38
Patchpoint 5-29, 9-25, 9-38
Program Arguments 9-19
Select a Function/Unit 5-16, 9-23, 9-37
Select a Source File 9-23, 9-37
Tracepoint 9-25, 9-38
Warning 5-23, 5-35, 9-5, 9-15, 9-17, 9-21, 9-22

Dialog Boxes
Debug Eventpoint 9-38

Dialogue 3-4, 3-5, 3-6, 3-15, 3-17, 4-4, 5-4, 5-7, 5-11,
5-12, 5-14, 7-11, 7-18, 7-19, 7-32, 7-124, 9-10,
9-21, 9-44, A-1, A-2, E-1, Glossary-4

commands on 7-24
local 3-5, 7-1
local - with on dialogue 7-24, 7-25
printing 7-123
remote 3-5, 3-6, 7-19, 9-21, 9-44, A-1
starting 7-18
terminating 7-23

Dialogue command area 5-5, 9-18, 9-34, D-4
DialogueDialogue menu 9-16
DialogueHelp menu 9-17
Dialogue I/O 9-2
Dialogue I/O Area 3-5
Dialogue I/O area 2-2, 2-3, 2-6, 5-4, 5-6, 5-11, 5-12,

5-28, 5-33, 9-17, 9-19, D-3, D-4
Dialogue identification area 9-17
Dialogue input 7-27, 7-30, 7-48
DialogueInterrupt button 9-18
Dialogue menu

Dialogue 9-16
Dialogue menu 9-16
Dialogue menu bar 9-16
Dialogue message area 5-5, 9-17, 9-48, D-3, D-4
Dialogue name 7-20
DialogueNightView menu 2-7, 9-16
Dialogue output 3-5, 7-27, 7-29

Dialogue prompt 6-2
Dialogue qualifier area 5-4, 9-18
Dialogue shell 1-2, 2-2, 3-4, 3-5, 3-15, 5-6, 9-2, 9-17,

E-1
login 7-18
logout 7-23

Dialogue Window 2-3, 5-4, 5-7, 5-11, 5-12, 5-14, 9-1,
9-6, 9-13, 9-16, 9-17, 9-18, 9-19, 9-20, 9-21,
9-34, 9-47, 9-48, Glossary-4

Dimmed button 5-22, 9-32, 9-37, 9-41, 9-43
Dimmed label 9-38, 9-39
Dimmed menu item 9-21
Directory

current 7-56, 9-7
directory 3-13, 7-56, 7-59, 7-60
Directory searching 3-13, 7-59, 7-60, 7-119
disable 4-28, 7-76, 7-90
Disable button 5-30
Disabled button 5-22, 9-32, 9-37, 9-41, 9-43
Disabled menu item 9-21
Disabling a breakpoint 4-23, 4-28, 5-25, 5-30, 7-90,

7-91, 9-39, 9-43
Disabling a monitorpoint 7-91, 9-39, 9-43
Disabling a patchpoint 7-91, 9-39, 9-43
Disabling a tracepoint 7-91, 9-39, 9-43
Disabling an agentpoint 7-91, 9-39, 9-43
Disabling an eventpoint 7-90, 7-91, 9-39, 9-43
Disassembly 7-68, 7-97, 7-98, 7-99, Glossary-4
Dismiss button 9-5
Display

color 9-5, D-7
monochrome D-7

display 3-13, 4-25, 5-27, 7-6, 7-71, 7-72, 7-73, 7-99
7-120

Display Ada exception handling 7-125
Display addresses limits 7-46, 7-120
Display agentpoint 7-112, 7-117
Display arguments 7-122, 7-126
Display array 7-46
Display breakpoint 4-28, 5-31, 7-112, 7-113
Display checkpoint information 7-124
Display convenience variables 7-119
Display declaration 7-129
Display dialogue information 7-123
Displaydisplay variables 7-120
DISPLAY environment variable 6-3
Display eventpoint 4-28, 5-31, 7-112, 7-123
Display expression 7-120, 7-128
Display expression limits 7-120
Display family information 7-123
Display file names 7-129
Display function names 7-127
Display global variable 7-126
Display item Glossary-4
Index-7

NightView User’s Guide

,

,

Display line number 7-129
Display local variables 7-126
Display log file information 7-112
Display macro 7-135
Display monitorpoint 7-112, 7-116
Displayon program commands 7-124
Displayon restart commands 7-124
Display patchpoint 4-28, 5-31, 7-112, 7-115
Display process information 7-122
Display search path 7-119
Display source file 4-8, 4-10, 7-58
Display source file names 7-127
Display stack frame

all 4-18, 5-18, 7-64
one 7-118

Display string limits 7-46
Display tracepoint 7-112, 7-114
Display type 7-129
Display type information 7-128
Display value history 7-120
Display variable 1-5, 2-6, 3-13, 4-16, 4-20, 4-25, 5-15,

5-20, 5-27, 7-65, 7-129
Display variable address 7-127
displayGroupToggleButton resource 9-13
displayGroupToggleButton.set resource 9-26
distinctBackground resource D-4
distinctForeground resource D-4
Documentation

online 1-1, 1-4, 2-1, 2-4, 4-5, 5-4, 7-108, 9-2,
Glossary-6, Glossary-8

Double clicking 5-15, 5-20, 9-8, 9-37
down 4-20, 5-21, 7-106, 7-107, 7-108, 9-31
DWARF 3-31, 7-44, Glossary-4
Dynamic linker 3-35
Dynamically loaded library 3-4, 3-17, 3-35, 3-36, 7-22,

7-122

E

e key 9-32
echo 7-15, 7-70, 7-134
Editor

emacs 7-55, 8-2
gmacs 7-55, 8-2
vi 7-55, 8-2, 9-24

EDITOR environment variable 8-2, 9-24, D-5
editor resource 9-23, D-5
editorTalksX resource 9-24, D-5
editres D-7
Elaboration 3-31
ELF 3-31, 7-60, Glossary-5
emacs editor 7-55, 8-2

enable 7-76, 7-77, 7-90, 7-91, 9-31, 9-33
Enabling a breakpoint 7-91, 9-39, 9-43
Enabling a monitorpoint 7-91, 9-39, 9-43
Enabling a patchpoint 7-91, 9-39, 9-43
Enabling a tracepoint 7-91, 9-39, 9-43
Enabling an agentpoint 7-91, 9-39, 9-43
Enabling an eventpoint 7-91, 9-39, 9-43
end define 7-131
End key 9-6, 9-11
end on dialogue 7-24
end on program 7-36
end on restart 7-39
Entry point 7-74
Environment variable

DISPLAY 6-3
EDITOR 8-2, 9-24, D-5
NIGHTVIEW_ENV3-4, 3-5, 3-7
PATH 3-8
POWERWORKS_ELMHOST 6-3
SHELL 7-110
TERM 8-1
VISUAL 8-2

Error
abort 3-26
caution 3-26
warning 3-26

Error Dialog Box 9-15, 9-16
Error message 7-119, 9-6, 9-17, 9-28, 9-48
Errors 1-4, 2-4, 3-26, 3-31, 4-5, 5-5, 9-3, 9-15, 9-16,

Glossary-5
Esc key 9-6, 9-11
Evaluation of expressions 3-16, 7-66
Event notification 7-30, 7-32
Event-driven command streams 3-27
Event-map file 7-81, 7-82, Glossary-5
Eventpoint 3-8, 3-12, 3-13, 3-14, 3-34, 7-12, 7-74, 7-76

7-81, 7-90, 7-114, 7-115, 7-117, 9-24, 9-38,
9-41, Glossary-5

changing 9-38
clearing 7-87, 9-34
commands on 9-40
condition on 3-8, 3-13, 3-29, 7-6, 7-88, 7-92, 7-113

9-39
deleting 7-89, 9-41, 9-43
disabling 7-90, 9-39, 9-43
displaying 4-28, 5-31, 7-112
enabling 7-91, 9-39, 9-43
hitting 7-113, 9-39, Glossary-6
ignoring 3-8, 3-13, 7-91, 7-113, 9-39
named 3-13, 9-39
naming 7-12, 7-77
printing 7-123
removing 7-87
saving 3-13
Index-8

Index

,
setting 3-3, 9-38
state 7-112, 9-39

Eventpoint crossing count Glossary-3
Eventpoint Dialog Boxes 9-38, D-4
Eventpoint ID 9-38
Eventpoint menu

Debug 9-24, 9-38, 9-41
Eventpoint menu 9-24, 9-38, 9-41
Eventpoint modifier 7-77, Glossary-5

/disabled 7-77, Glossary-5
Eventpoint number 3-8, 9-38
Eventpoint state 9-41
Eventpoint summary 5-23, 5-26, 5-30, 5-32, 9-24, 9-26,

9-38, 9-41
Eventpoints

changing 5-26, 5-30, 9-38, 9-41, D-4
Event-triggered commands 7-24, 7-37
Exception 7-97, 7-98, 7-99, 7-100

Ada 3-20, 7-103, 7-125, Glossary-5
Exception handling 3-31, 7-102, 7-105, 7-125

saving 3-13
exec 3-13, 4-7, 5-8, 7-32, 7-36, 7-39, 7-42, 9-30
exec-file 3-8, 3-36, 7-22, 7-34, 7-35, 7-36, 7-56
Executable

stripped 7-22, 7-33
Executable and linking format Glossary-5
Executable file 3-1, 7-33, 7-34, 7-35, 7-126, 7-129
Execution

continuing 1-5, 2-6, 3-32, 4-10, 4-15, 4-21, 4-31,
5-10, 5-14, 5-22, 5-33, 7-94, 7-95, 7-100,
7-101, 7-108, 9-32

restarting 3-12, 3-13, 7-36, 7-39, 7-42, Glossary-2,
Glossary-10

resuming 1-5, 2-6, 4-10, 4-15, 4-21, 4-31, 5-10,
5-14, 5-22, 5-33, 7-94, 9-32

starting 1-2, 2-2, 3-12
stopping 1-4, 2-5, 3-32, 3-35, 4-9, 4-23, 5-9, 5-24,

5-25, 7-78
Exit messages 5-35, 9-17
Exiting 1-6, 2-7, 3-13, 4-32, 5-34, 7-17, 7-42
Explicit focus policy 9-10
Expression 3-22, 7-45

Ada 3-18
conditional 3-20, 4-23, 5-24, 7-79, 7-82, 7-83
displaying 7-120
evaluation 3-16, 3-18, 7-66
floating-point 3-18
insertion 7-79, 7-93
language 7-71, 7-73, 7-80
logging 7-82, 9-40
memory address 7-71
patchpoint 7-82, 9-40
printing 1-5, 4-16, 4-20, 4-25, 5-15, 5-20, 5-27,

7-65, 7-71, 7-116, 7-128, 9-33

regular 5-16, 7-12, 7-23, 7-54, 7-61, 7-120, 7-123
7-126, 7-127, 7-128, 7-129, 7-135, 9-23,
9-37

regular examples 7-13
syntax 7-4

Expression Evaluation 3-21
Expression limits 7-120
Expressions

monitoring 7-6, 7-84
Extended selection policy 9-9, 9-19, 9-36, 9-43
External data definitions 7-74
External variable 7-106

printing 7-126

F

f (frame) 7-105
f key 9-31
F1 key 9-2, 9-3, 9-15, 9-16
fact program 1-1, 2-1
Family 3-2, 3-14, 4-12, 4-14, 4-22, 7-10, 7-18, 7-40,

7-46, 7-77, 7-101, 7-123, Glossary-5
printing 7-123

family 4-12, 4-14, 7-34, 7-36, 7-40
FBS 3-16, 3-33
fbswait 3-16, 3-33
Feedback 9-6, D-4
feedbackBackground resource D-4
feedbackDoneBackground resource D-4
feedbackDoneForeground resource D-4
feedbackForeground resource D-4
feedbackNotDoneBackground resource D-4
feedbackNotDoneForeground resource D-4
File

.NightViewrc 3-30, 7-22, 7-24, 7-25

.profile 3-7
/etc/conf/sdevice.d/ipc A-1
commands 7-110
core 3-3, 3-4, 3-14, 6-2, 7-34, 7-129, 9-30,

Glossary-3
event-map 7-81, 7-82, Glossary-5
executable 3-1, 7-33, 7-34, 7-35, 7-126, 7-129
filter 9-8
initialization 6-2, 6-3, 7-110, Glossary-7
library 3-1
log 7-44, 7-112
Nview D-1, D-7
Nview-color D-1, D-7
Nview-mono D-1, D-7
object 3-1, 3-10, 7-74
ReadyToDebug 1-3, 2-3, 3-7, 4-4, 5-4
source 3-1, 4-8, 4-10, 5-1, 5-7, 5-10, 5-11, 5-14,
Index-9

NightView User’s Guide

,

1,
5-15, 5-16, 5-17, 5-20, 5-21, 5-24, 5-25,
5-30, 7-58, 7-59, 7-60, 7-110, 7-119,
7-127, 7-130, 9-22, 9-23, 9-30

symbol 7-33, 7-35
trace event-map 7-81, 7-82, Glossary-5

File access 3-1
File name

printing 7-129
File Selection Dialog Box 9-7, 9-23
Filter

file 9-8
Filter button 9-8, 9-9
finish 4-31, 7-100, 7-108, 9-30, 9-31, 9-33
Finish button 9-33
fixedFontList resource D-3
Floating-point expressions 3-18
Focus

keyboard 9-2, 9-5, 9-10, Glossary-5, Glossary-7
Focus policy

explicit 9-10
pointer 9-10

Font
default D-2, D-3, D-6, Glossary-4

fontList resource D-6
Fonts D-3, D-6
forbid safety level 6-2, 7-17, 7-23, 7-33, 7-40, 7-49,

7-89, 7-90
foreground resource D-4, D-7
Forking 3-2, 3-3, 4-7, 4-14, 5-8, 5-13, 7-32, 9-29,

Glossary-5
Formal argument

macro 7-130, 7-133
Fortran iii, 3-8, 3-21, 3-22, 3-31, 4-1, 4-3, 4-15, 4-17,

4-18, 4-19, 4-20, 4-21, 4-23, 4-24, 4-27, 4-29,
5-1, 5-3, 5-10, 5-13, 5-17, 5-18, 5-20, 5-21,
5-24, 5-25, 5-26, 5-32, 7-44, 7-65, 7-66, 7-80,
7-93, 7-132, Glossary-2

forward-search 7-13, 7-59, 7-61
Frame

displaying 7-118
stack 3-22, 3-23, 4-19, 4-20, 4-31, 5-19, 5-21, 5-33,

7-5, 7-59, 7-62, 7-74, 7-78, 7-80, 7-82,
7-84, 7-86, 7-87, 7-93, 7-100, 7-105,
7-107, 7-108, 7-118, 7-121, 7-127,
Glossary-3, Glossary-5, Glossary-11

stack - printing 4-18, 5-18, 7-64
frame 3-23, 7-96, 7-100, 7-105, 7-108, 9-32
Frame pointer 7-7, 7-105, 7-118
Frame zero 7-7, 7-52, 7-62, 7-101, 7-105, 7-107, 7-121
Frames

hidden 7-7, 7-52, 7-62, 7-101
Frequency-Based Scheduler 3-16, 3-33
Full-screen interface iii, 1-1, 3-26, 6-2, 7-2, 7-84, 7-88,

7-110, 7-131, 8-1, 8-2, 9-1, Glossary-6

Full-screen user interface 7-109
Function 4-11, 4-16, 5-11, 5-16, 7-96, 7-97, 7-98, 7-99

7-100, 7-119
static - location of 7-9

Function arguments
printing 7-126

Function name
list 7-127

G

-g option 1-2, 2-2, 4-2, 5-3
gdb 1-1, 1-4
Geometry

window D-7
geometry resource D-7
GID 3-33
Global command area 9-18, 9-34, 9-48, 9-49, D-4
Global data definitions 7-74
GlobalHelp menu 9-48
Global Interrupt button 9-48
Global menu bar 9-47
Global message area D-3, D-4
GlobalNightView menu 9-47
Global output area 9-48
Global qualifier area 9-48
Global variable 3-16, 7-106

printing 7-126
Global Window 9-2, 9-6, 9-13, 9-16, 9-18, 9-20, 9-21,

9-34, 9-47, 9-48, 9-49, Glossary-6
gmacs editor 7-55, 8-2
Graphical user interface iii, 2-1, 3-26, 3-28, 6-1, 6-3,

7-1, 7-33, 7-103, 7-109, 9-1, 9-47, A-2, D-1,
Glossary-6

Group ID 3-33
Group process mode 5-16, 5-31, 9-12, 9-14, 9-20, 9-2

9-22, 9-27, 9-28, 9-32, 9-34, 9-41, Glossary-6
GUI 2-1, 3-26, 3-28, 6-1, 6-3, 7-1, 7-33, 7-103, 9-1,

9-47, A-2, D-1, Glossary-6
Guide

command summary B-1

H

h key 9-31
handle 3-10, 3-11, 3-13, 3-31, 4-7, 5-9, 7-94, 7-102,

7-121
Help

context-sensitive 9-3
cross reference 5-5
Index-10

Index
help 1-1, 1-4, 3-27, 4-5, 7-108, 9-2, 9-3, 9-5,
Glossary-6, Glossary-8

Help button 9-4, 9-9, 9-15, 9-16, 9-19, 9-36, 9-37, 9-38,
9-41, 9-43

Help menu
Debug 9-27
Dialogue 9-17
Global 9-48

Help menu 2-1, 2-4, 5-4, 5-5, 5-8, 9-2, 9-3, 9-17, 9-27,
9-48

Help system
movement 9-2, 9-49

Help Window 2-1, 2-4, 2-5, 5-5, 5-8, 9-2, 9-5, 9-17,
9-19, 9-28, 9-48, 9-49, D-3, D-4, Glossary-6

Help window
exiting 2-4, 2-5

Hidden frames 7-7, 7-52, 7-62, 7-101
Highlighting 9-9, 9-10, 9-15, 9-19, 9-35
History

command 3-30, 9-5
value 3-30, 4-16, 5-15, 7-4, 7-46, 7-66, 7-70, 7-120,

Glossary-12
Hit a breakpoint 9-39
Hit a monitorpoint 9-39
Hit a patchpoint 9-39
Hit a tracepoint 9-39
Hit an agentpoint 9-39
Hit an eventpoint 9-39
hold (mcontrol hold) 7-85
Hollerith data 7-65
Home key 9-5, 9-11

I

i b (info breakpoint) 7-113
I/O 3-5
Iconifying windows 9-2
ID

group 3-33
process 3-3, 3-5, 3-14, 4-7, 5-7, 5-13, 7-11,

Glossary-9
trace-event 7-81, 7-82, 9-40, Glossary-11
user 3-33

idtune utility A-1
ignore 4-23, 7-76, 7-81, 7-86, 7-91, Glossary-7
Ignore count Glossary-7
Ignoring agentpoints 3-13, 7-91, 7-113, 7-118, 9-39,

Glossary-7
Ignoring breakpoints 3-13, 4-23, 5-25, 7-79, 7-91, 7-95,

7-113, 7-114, 9-39, Glossary-7
Ignoring eventpoints 3-8, 3-13, 7-91, 7-113, 9-39
Ignoring monitorpoints 3-13, 7-91, 7-117, 9-39,

Glossary-7
Ignoring patchpoints 3-13, 7-81, 7-86, 7-91, 7-113,

7-116, 9-39, Glossary-7
Ignoring tracepoints 3-13, 7-83, 7-91, 7-113, 7-115,

9-39, Glossary-7
inetd A-1
info address 7-127
info agentpoint 7-112, 7-117
info args 7-126
info breakpoint 7-112, 7-113
info convenience 7-119
info declaration 7-129
info dialogue 7-20, 7-21, 7-51, 7-123
info directories 7-60, 7-119
info display 7-72, 7-73, 7-120
info eventpoint 4-28, 7-90, 7-112
info exception 7-105, 7-125
info family 7-123
info files 7-129
info frame 7-6, 7-118
info functions 3-31, 7-127
info history 7-120
info limits 7-47, 7-120
info line 7-59, 7-129
info locals 7-126
info log 7-112
info macros 7-135
info memory 7-51, 7-122
info monitorpoint 7-112, 7-116
info name 7-123
info on dialogue 7-24, 7-124
info on program 7-37, 7-124
info on restart 3-13, 7-39, 7-52, 7-124
info patchpoint 7-112, 7-115
info process 7-122
info registers 3-23, 7-7, 7-119, 7-120
info representation 7-128
info signal 7-102, 7-121
info sources 7-127
info tracepoint 7-112, 7-114
info types 7-128
info variables 7-126
info whatis 7-128
infoFontList resource D-3
Initial scan of object file 9-7
Initialization file 6-2, 6-3, 7-110, Glossary-7
Initialize tracing 7-81
Initializing process 9-7
Inline interest level 7-52
Inline subprograms 3-24
Input

dialogue 7-27, 7-30, 7-48
program 1-3, 2-3, 3-5, 4-11, 5-12, 7-27, 7-48
shell 9-17
Index-11

NightView User’s Guide

,

Input area 5-24, 5-25, 5-26, 5-29, 9-5, 9-19
editing 9-5, 9-11
text 9-36

Input command 7-110
Input terminator 7-27, 7-48
inputBackground resource D-4
inputForeground resource D-4
Instruction

branch 7-80, 7-93
interest 3-25, 7-51, 7-54, Glossary-7
Interest level

inline 7-52
justlines 3-13, 3-25, 7-52
nodebug 3-13, 3-25, 7-52
subprogram 3-13, 3-24, 7-51, Glossary-7

Interest level threshold 3-13, 3-25, 7-52, Glossary-7
Interesting subprograms 3-13, 3-23, 3-24, 4-14, 5-13,

7-7, 7-52, 7-97, 7-99, Glossary-7
Interface

command-line iii, 1-1, 3-26, 4-1, 4-3, 5-1, 5-4, 7-2,
7-84, 7-88, 7-103, 7-131, 8-1, 9-1, 9-18,
9-34, 9-48, 9-49, Glossary-2

full-screen iii, 1-1, 3-26, 6-2, 7-2, 7-84, 7-88, 7-110,
7-131, 8-1, 8-2, 9-1, Glossary-6

graphical user iii, 2-1, 3-26, 3-28, 6-1, 6-3, 7-1,
7-33, 7-103, 9-1, 9-47, A-2, D-1,
Glossary-6

Interrupt
user-level 3-32, 3-34

Interrupt button 9-18, 9-34, 9-48
Interrupting the debugger 3-26, 3-28, 7-85, 9-18, 9-34,

9-48
Interrupts 3-34
Invoking the debugger 1-2, 2-2, 3-30, 4-3, 5-4, 6-1
IPC configuration A-1
IPL register 3-34

J

Job control 3-14
jump 7-101
Justlines interest level 3-13, 3-25, 7-52

K

Kernel configuration A-1
Key

= 9-32
> 9-32
Alt 9-11

b 9-32
Backspace 9-6
Ctrl 9-6, 9-11
Ctrl+/ 9-9
Ctrl+\ 9-9
d 9-31
Delete 9-6
e 9-32
End 9-6, 9-11
Esc 9-6, 9-11
f 9-31
F1 9-2, 9-3, 9-15, 9-16
h 9-31
Home 9-5, 9-11
N 9-31
n 9-31
p 9-32
Page Down 9-11
Page Up 9-11
r 9-31
Return 4-4, 4-8, 4-12, 4-26, 5-5, 5-6, 5-8, 5-9,

5-12, 5-18, 5-19, 5-21, 5-24, 5-25, 5-26,
5-27, 5-29, 7-15, 7-16, 7-59, 8-1, 9-6, 9-19
9-36, 9-37, 9-41

S 9-31
s 9-31
Shift+F8 9-10
Shift+Tab 9-11
Space 4-4, 4-12
Tab 9-11
u 9-31
virtual 9-10

Keyboard activation 9-1
Keyboard focus 9-2, 9-5, 9-10, Glossary-7
Keyboard selection 9-1
keyboardFocusPolicy resource 9-10
kill 3-10
kill 7-33, 9-19, 9-22
Kill button 7-33, 9-19
Killing processes 3-13, 7-17, 7-33, 9-19, 9-22

L

l (list) 1-4, 7-58
Label

dimmed 9-38, 9-39
Language 7-82, 7-100

machine 3-1, 3-31
Language expression 7-71, 7-73, 7-80
Language support iii, 3-18, 3-22, 4-1, 5-1, 7-44, 7-122
Library

dynamically loaded 3-4, 3-17, 3-35, 3-36, 7-22,
Index-12

Index
7-122
shared 3-4, 3-17, 3-35, 3-36, 7-22, 7-122

Library file 3-1
Lightweight Process 3-32, 3-35, 7-100, 7-107
Limits

addresses 7-120
expression 7-120

Line decorations 2-5, 2-6, 4-8, 4-10, 4-11, 4-14, 4-17,
5-7, 5-10, 5-11, 5-13, 5-14, 5-18, 5-20, 5-22,
5-25, 5-30, 7-59, 7-62, 7-97, 7-98, 9-24, 9-30,
9-33, 9-34

Line number
printing 7-129

Linking 1-2, 2-2, 4-2, 5-3, 7-83
dynamic Glossary-5

list 1-4, 3-31, 4-8, 4-10, 7-15, 7-56, 7-58, 7-60, 7-61
List function names 7-127
List mode 9-30
List selection policy

Browse 9-9
Extended 9-9, 9-19, 9-43
Multiple 9-9, 9-19
Single 9-9

List source file 4-8, 4-10, 7-58
List source file names 7-127
load 3-10, 7-22, 7-74
local dialogue 1-3, 2-3, 3-5, 4-4, 7-1, 7-37

with on dialogue 7-24, 7-25
Local system 3-6, A-1
Local variable 3-16, 7-5

printing 7-126
Location

in executable program 7-9
printing 7-46, 7-127

Location specifier 7-9, 9-24, 9-33, 9-34, 9-38, 9-40,
9-42

Location Specifiers 3-21
Log

dialogue 7-29
Log file 7-44, 7-112
Logging

session 7-44
login 3-7, 7-18
Logout 7-23
logout 7-23, 9-17
LWP 3-32, 3-35, 7-100, 7-107

M

M (source line decoration) 7-62
Machine language 3-1, 3-31
Macro 3-13, 3-28, 7-15, 7-27, 7-130, Glossary-7

actual arguments 7-133
argument 7-130, 7-133
definition 7-131
example 7-15
formal arguments 7-130, 7-133
printing 7-135
recursion 7-131
referencing 7-133
replacing 7-131
restart_begin_hook 3-13, 7-36
restart_end_hook 3-13
string 7-133

Macro body 3-28, 7-131, 7-135
Macro expansion 7-24, 7-37
Manual

online 1-1, 1-4, 2-1, 2-4, 4-5, 5-4, 7-108, 9-2,
Glossary-6, Glossary-8

Manual section 4-5, 5-4, 7-108
MAXUPconfiguration parameter A-2
mcontrol 3-25, 7-85, 8-2
Memory 7-106

global 7-19
local 7-19
output 7-69, 7-71
shared 3-15, 7-50, A-1, E-1, Glossary-3
static 7-127
X server A-2, D-6

memory 9-46
Memory address expression 7-71
Memory layout 7-122
Memory mapped I/O 3-34
Menu

DebugEventpoint 5-23, 5-24, 5-25, 5-26, 5-29,
5-30, 5-32, 9-24, 9-38, 9-41

DebugHelp 9-27
DebugNightView 2-7, 5-34, 9-20, 9-36
DebugSource 5-15, 9-22, 9-31, 9-32, 9-36, D-5
DebugView 5-17, 5-19, 5-31, 5-33, 9-14, 9-26
Dialogue 9-16
DialogueDialogue 9-16
DialogueHelp 9-17
DialogueNightView 2-7, 9-16
Eventpoint 9-24, 9-38, 9-41
GlobalHelp 9-48
GlobalNightView 9-47
Help 2-1, 2-4, 5-4, 5-5, 5-8, 9-2, 9-3, 9-17, 9-27,

9-48
NightView 9-16, 9-20, 9-36, 9-47
Source 9-22, 9-31, 9-32, 9-36
View 9-14, 9-26

Menu bar 5-5, 9-11
Debug 9-20
Dialogue 9-16
Global 9-47
Index-13

NightView User’s Guide

7

,

Menu item
dimmed 9-21
disabled 9-21

Message
error 7-119, 9-6, 9-17, 9-28, 9-48
exit 5-35, 9-17
output 9-6, 9-48
process status 9-28

mmapE-1
Mnemonic 9-10, Glossary-8

A 9-23, 9-26
B 9-25
C 9-3, 9-21
D 9-16, 9-20, 9-22, 9-26
E 2-4, 9-3, 9-23, 9-24
F 9-22
G 9-21, 9-27
H 2-1, 2-4, 9-3, 9-17, 9-27, 9-48
I 9-4
K 9-4, 9-22
L 9-17, 9-27
M 9-4, 9-25
m 2-4
menu 9-11
menu item 9-11
N 2-7, 9-4, 9-16, 9-20, 9-47
n 2-1
P 9-11, 9-20, 9-21, 9-25
Q 9-4, 9-21
R 9-21
S 9-22, 9-23, 9-26
T 9-4, 9-25
U 9-26
V 9-4, 9-26
W 9-4
X 2-7, 9-21

Mode
add 9-10
group process 5-16, 5-31, 9-12, 9-14, 9-20, 9-21,

9-22, 9-27, 9-28, 9-32, 9-34, 9-41,
Glossary-6

list 9-30
normal 9-10
single process 9-12, 9-13, 9-14, 9-20, 9-21, 9-22,

9-26, 9-28, 9-32, 9-34, 9-41, Glossary-10
Monitor refresh rate 7-86
Monitor Window 3-25, 7-85, 8-2, 9-2, 9-47

GUI 9-2, 9-47, D-4, D-5, D-7
simple full-screen 8-2

Monitoring expressions 7-6, 7-84
Monitorpoint 3-8, 3-9, 3-10, 3-14, 3-20, 3-25, 3-34,

7-32, 7-50, 7-62, 7-76, 7-84, 7-85, A-2,
Glossary-5, Glossary-8

changing 9-38

clearing 7-87
commands on 3-13, 7-88, 7-113, 7-117, 9-40
condition on 3-13, 7-88, 7-113, 7-117, 9-39
deleting 7-89, 9-41, 9-43
disabling 7-90, 9-39, 9-43
displaying 7-112, 7-116
enabling 7-91, 9-39, 9-43
hitting 7-117, 9-39
ignoring 3-13, 7-91, 7-113, 7-117, 9-39, Glossary-
named 3-13, 7-77, 7-84, 9-39
saving 3-13
setting 7-74, 7-83, 9-38
state 7-117, 9-39
temporary 9-39

monitorpoint 3-9, 3-25, 7-83, 7-116, Glossary-8
Monitorpoint crossing count Glossary-3
Monitorpoint Dialog Box 9-25, 9-38
monitorWindowColumns resource 9-47, D-5
Monochrome display D-7
Motif 9-1
Mouse 9-1
Mouse button 1 2-1, 5-2, 5-15, 5-20, 9-1, 9-3, 9-9, 9-11

9-31, 9-32
mreserve 7-43
msg program 4-3, 4-7, 4-10, 4-21, 5-3, 5-8, 5-10, 5-22
Multiple processes iii, 3-2, 3-4, 7-106, 7-119, 7-121,

7-127, 8-1
Multiple selection policy 9-9, 9-19

N

n (next) 7-97
N key 9-31
n key 9-31
name 7-76, 7-77, 7-80, 7-93
Named agentpoint 3-13, 7-86, 9-39
Named breakpoint 3-13, 7-77, 7-78, 7-92, 9-39
Named eventpoint 3-13, 7-12, 7-77, 9-39
Named monitorpoint 3-13, 7-84, 9-39
Named patchpoint 3-13, 7-80, 7-93, 9-39
Named process 4-12, 4-14
Named tracepoint 3-13, 7-82, 9-39
networking A-1
Newline 7-15, 7-59
next 4-11, 7-96, 7-97, 7-99, 7-108, 9-31, 9-33
Next button 5-11, 9-33
nexti 7-97, 7-98, 7-99, 7-108, 9-31, 9-33
Nexti button 9-33
NFS 3-2
ni (nexti) 7-99
nice value 7-19
NightSim 3-34
Index-14

Index

,

NightStar tool set D-1
NightTrace Glossary-8
NightTrace 3-6, 3-10, 7-82, 7-83
NightView iii, 3-1, Glossary-8
NightView menu

Debug 9-20, 9-36
Dialogue 9-16
Global 9-47

NightView menu 9-16, 9-20, 9-36, 9-47
NightView version 1-2, 4-4, 6-2, 9-4, H-1
NIGHTVIEW_ENVenvironment variable 3-4, 3-5, 3-7
nodebug 3-2, 3-5, 7-14, 7-17, 7-20, 7-21, 7-23, 7-25
Nodebug interest level 3-13, 3-25, 7-52
-nogui option 1-2, 4-3, 6-1
Normal mode 9-10
Notification of events 7-28, 7-30, 7-32, 7-104, 8-1
notify 7-31
NPROCconfiguration parameter A-2
ntrace 3-10, 7-81
ntraceud 3-34, 7-83
nview

exiting 1-6, 2-7, 4-32, 5-34, 7-17
invoking 1-2, 2-2, 3-30, 4-3, 5-4, 6-1

nview 1-2, 2-2, 8-1
Nview file D-1, D-7
nview option

-help 4-3, 5-4
-nogui 1-2, 4-3, 6-1
-simplescreen 8-1

nview options 6-1
Nview-color file D-1, D-7
Nview-mono file D-1, D-7

O

Object activation 5-2, 5-23, 5-26, 5-30, 9-1
Object deselection 9-9, 9-10
Object file 3-1, 7-74

initial scan 9-7
Object filename translations 7-21, 7-33, 7-35, 7-74,

7-123
Object selection 5-2, 5-5, 5-8, 5-15, 5-23, 5-24, 5-25,

5-26, 5-29, 5-30, 5-32, 5-34, 9-1
OK button 2-3, 2-7, 5-16, 5-23, 5-24, 5-25, 5-27, 5-30,

5-35, 9-8, 9-9, 9-15, 9-16, 9-19, 9-36, 9-37,
9-41

on dialogue
with local dialogue 7-24, 7-25

on dialogue 7-22, 7-23, 7-25, 7-124
on program 3-13, 3-14, 7-14, 7-35, 7-36, 7-38, 7-39,

7-124
on restart 3-12, 3-13, 7-36, 7-38, 7-124

oneWindowPerProcess resource 9-13
Online documentation 1-1, 1-4, 2-1, 2-4, 4-5, 5-4, 7-108

9-2, Glossary-6, Glossary-8
Online help system Glossary-8
Optimization 3-30, 7-97, 7-98
Option

-g 1-2, 2-2, 4-2, 5-3
-help 4-3, 5-4
-nogui 1-2, 4-3, 6-1
-simplescreen 8-1
-x 6-3
-xrm 6-3

Options
nview 6-1

Output 3-5
buffered 3-28
dialogue 3-5, 7-29
logging 3-29
memory 7-69, 7-71
messages 9-6, 9-48
program 9-17
session 7-44
shell 9-17
suppressed 8-1
text 7-70

output 7-70
Output addresses limits 7-46
Output array 7-46
Output string limits 7-46
Output variable 1-5, 2-6, 4-16, 4-20, 4-25, 5-15, 5-20,

5-27, 7-65
outputBackground resource D-4
outputForeground resource D-4
Overloading 3-21, Glossary-8

P

p (print) 1-5, 7-65
P (source line decoration) 7-62
p key 9-32
Packages

Ada 3-31
Page Down key 9-11
Page Up key 9-11
Pane 9-11
Parent process 4-14, 4-15, 5-13, 5-14
Patch Glossary-8
patch area Glossary-8
Patchpoint 3-8, 3-20, 3-34, 7-32, 7-62, 7-63, 7-76,

Glossary-5, Glossary-8
changing 9-38
clearing 7-87
Index-15

NightView User’s Guide

7,

9,
condition on 3-13, 7-6, 7-81, 7-86, 7-88, 7-113,
7-116, 9-39

deleting 7-89, 9-41, 9-43
disabling 7-90, 9-39, 9-43
displaying 4-28, 5-31, 7-112, 7-115
enabling 7-91, 9-39, 9-43
hitting 7-116, 9-39
ignoring 3-13, 7-81, 7-86, 7-91, 7-113, 7-116, 9-39,

Glossary-7
named 3-13, 7-77, 7-93, 9-39
saving 3-13
setting 4-27, 5-29, 7-74, 7-79, 7-93, 9-38
state 7-116, 9-39
temporary 7-93, 9-39

patchpoint 3-10, 4-27, 7-79, 7-115
Patchpoint crossing count Glossary-3
Patchpoint Dialog Box 5-29, 9-25, 9-38
Patchpoints named 7-80
PATH environment variable 3-8
Pattern

wildcard 7-14, 7-20, 7-36, 7-39, 7-127, 9-23, 9-37
wildcard examples 7-14

Pattern matching 7-12, 7-20, 7-21, 7-55, 7-61, 7-123,
Glossary-9

Pattern matching examples 7-13
PID 3-3, 3-5, 3-14, 4-7, 5-7, 5-13, 7-11, Glossary-9
Pipelines 3-2, 3-4
Pointer

question mark 5-5, 9-3
Pointer focus policy 9-10
PowerMAX OS iii, 3-3, 3-6, 3-11, 3-16, 3-17, 3-30,

3-34, 7-104
PowerPC iii
PowerPC 604 7-7
PowerPC registers 7-7
POWERWORKS_ELMHOST environment variable

6-3
Predefined convenience variable 3-23, 7-5, 7-6, 7-113,

7-114, 7-115, 7-116, 7-117, 7-118, 7-120,
7-130

Principal Debug Window 5-6, 9-12, 9-13, 9-20,
Glossary-9

print
command attached to monitorpoint 7-84

print 1-5, 3-30, 4-16, 4-20, 7-45, 7-65, 7-66, 7-70,
7-71, 7-73, 7-84, 7-106, 7-127, 7-133, 9-32,
9-33

Print Ada exception handling 7-125
Print addresses limits 7-46, 7-120
Print agentpoint 7-112, 7-117
Print arguments 7-122, 7-126
Print array 7-46
Print breakpoint 4-28, 5-31, 7-112, 7-113
Print button 2-6, 5-15, 5-20, 9-32, 9-33

Print checkpoint information 7-124
Print convenience variables 7-119
Print current directory 7-56
Print declaration 7-129
Print dialogue information 7-123
Print display variables 7-120
Print eventpoint 4-28, 5-31, 7-112
Print eventpoint information 7-123
Print expression 1-5, 4-16, 4-20, 4-25, 5-15, 5-20, 5-2

7-65, 7-71, 7-128
Print expression limits 7-120
Print family information 7-123
Print file names 7-129
Print function names 7-127
Print global variable 7-126
Print line number 7-129
Print local variables 7-126
Print log file information 7-112
Print macro 7-135
Print monitorpoint 7-116
Print on dialogue commands 7-124
Print on program commands 7-124
Print on restart commands 7-124
Print patchpoint 4-28, 5-31, 7-112, 7-115
Print process information 7-122
Print registers 7-120
Print search path 7-119
Print signal 7-121
Print source file names 7-127
Print stack frame

all 4-18, 5-18, 7-64
one 7-118

Print string limits 7-46
Print text 7-70
Print tracepoint 7-112, 7-114
Print type information 7-128, 7-129
Print value history 7-120
Print variable 7-129
Print variable address 7-127
printf 7-131, 7-134
Procedure 4-11, 4-16, 5-11, 5-16, 7-96, 7-97, 7-98, 7-9

7-100, 7-119, Glossary-9
Procedure arguments

printing 7-126
Procedure call 3-19, 7-80
Procedure name

list 7-127
Process 3-2, 9-12, 9-21, A-2, E-1, Glossary-9

abnormal termination 7-34
attaching to 7-32
background 7-110
child 3-2, 3-3, 4-1, 4-7, 4-14, 4-15, 5-1, 5-8, 5-13,

5-14, 7-21, 7-32, 7-42, Glossary-2
currently displayed 5-7
Index-16

Index

,

0,
,

exiting 3-13, 3-14, 7-42
initializing 9-7
killing 3-13, 7-17
multiple 3-2, 3-4, 8-1
naming 4-12, 4-14
parent 4-14, 4-15, 5-13, 5-14
printing 7-122
pseudo 3-3, 3-14, 6-2, 7-34, 7-36
running 3-14, 3-18
single 3-2
stopped 3-14, 3-18, 3-22, 3-23
stopping 7-100
stopping debugging 7-32
terminated 3-14
terminating 3-13, 3-14

Process families 3-2
Process ID 3-3, 3-5, 3-14, 4-7, 5-7, 5-13, 7-11,

Glossary-9
Process mode

group 5-16, 5-31, 9-12, 9-14, 9-20, 9-21, 9-22, 9-27,
9-28, 9-32, 9-34, Glossary-6

single 9-12, 9-13, 9-14, 9-20, 9-21, 9-22, 9-26,
9-28, 9-32, 9-34, Glossary-10

process mode
group 9-41
single 9-34, 9-41

Process selection 9-18
Process state 3-14, 7-122, Glossary-9
Process summary 9-18
Processes

multiple iii, 7-106, 7-119, 7-121, 7-127
procfs 3-15
Program 3-2, Glossary-9

commands on 7-36
compiling 1-2, 2-2, 3-31, 4-2, 5-3
fact 1-1, 2-1
msg 4-3, 4-7, 4-10, 4-21, 5-3, 5-8, 5-10, 5-22
restarting 3-12, 3-13, 7-36, 7-39, 7-42, Glossary-2,

Glossary-10
running 1-2, 4-6, 5-6, 7-28, 7-30
setuid 3-3
starting 3-12

Program arguments 1-3, 2-3, 6-1, 9-19
Program Arguments Dialog Box 9-19
Program counter 3-17, 3-22, 3-23, 7-7, 7-101, 7-120,

Glossary-9
Program I/O E-1
Program input 1-3, 2-3, 3-5, 4-11, 5-12, 7-27, 7-48
Program location

specifying 7-9
Program name 1-1, 2-1, 3-8, 4-3, 4-7, 5-3, 5-8, 6-2, 9-19,

9-28
Program output 3-5, 3-28, 3-29, 9-17
Progress bar 9-7, D-4

Progress indication 9-7, D-4
Prologue 7-9
Prompt 7-2, 7-48

$ 1-3, 2-3, 4-4, 5-4
(local) 1-3, 4-4
> 7-84, 7-88, 7-131
command 4-4, 4-12
dialogue 6-2, 7-2
shell 1-3, 2-3, 4-4, 5-4

ps 3-3
Pseudo process 3-3, 3-14, 6-2, 7-34, 7-36
Pseudo terminal A-2
pty A-2
ptype (info declaration) 7-129
pwd 7-56

Q

q (quit) 1-6, 7-2, 7-17
Qualifier 3-4, 4-15, 4-22, 5-4, 7-1, 7-10, 7-46, 9-18,

9-27, 9-34, 9-36, 9-42, Glossary-9
Quick command summary B-1
quit 6-3
quit 1-6, 4-32, 7-2, 7-17, 9-21
Quitting 1-6, 2-7, 4-32, 5-34, 7-17

R

r key 9-31
Radio button 9-12, 9-14, 9-27, 9-40
raise 3-31
ReadyToDebug 1-3, 2-3, 3-7, 4-4, 5-4
Real-time debugging 3-5
Recursion

macro 7-131
redisplay 7-72, 7-73
Referencing macros 7-133
refresh 7-109
Refreshing terminal 7-109
regexp 7-12, 7-61, 7-120, 7-123, 7-126, 7-128, 7-129,

7-135
Register

IPL 3-34
Register variable 7-5
Registers 3-1, 3-17, 3-22, 3-23, 7-5, 7-7, 7-101, 7-106

7-119, 7-127, Glossary-10
printing 7-120

Regular expression 5-16, 7-12, 7-23, 7-54, 7-61, 7-12
7-123, 7-126, 7-127, 7-128, 7-129, 7-135, 9-23
9-37
Index-17

NightView User’s Guide

,

2

,

Regular expression examples 7-13
release (mcontrol release) 7-85
Remote dialogue 3-5, 3-6, 7-19, 9-21, 9-44, A-1,

Glossary-10
Remote system 3-6, A-1
Repeating commands 4-14, 7-2, 7-15, 7-59
Replacing commands 7-134
representation (info representation)

7-129
Rerunning a program 3-12, 3-13, 7-36, 7-39, 7-42
Resizing windows 9-11
Resource

background D-4, D-7
boldFontList D-3
customization D-6, D-7
displayGroupToggleButton 9-13
displayGroupToggleButton.set 9-26
distinctBackground D-4
distinctForeground D-4
editor 9-23, D-5
editorTalksX 9-24, D-5
feedbackBackground D-4
feedbackDoneBackground D-4
feedbackDoneForeground D-4
feedbackForeground D-4
feedbackNotDoneBackground D-4
feedbackNotDoneForeground D-4
fixedFontList D-3
fontList D-6
foreground D-4, D-7
geometry D-7
infoFontList D-3
inputBackground D-4
inputForeground D-4
keyboardFocusPolicy 9-10
monitorWindowColumns 9-47, D-5
oneWindowPerProcess 9-13
outputBackground D-4
outputForeground D-4
selectColor 9-12
selectionPolicy 9-9
smallFixedFontList D-3
smallFontList D-3
useNightStarColors D-2
useNightStarFonts D-2

Resources
application D-1, D-5, Glossary-1
color D-4, D-6
system A-1
X A-2, D-1, D-6

Restart
commands on 7-39

restart_begin_hook macro 3-13, 7-36
restart_end_hook macro 3-13

Restarting a program 3-13, 7-36, 7-42
Restarting execution 3-12, 3-13, 7-36, 7-39, 7-42,

Glossary-2, Glossary-10
resume 3-11, 3-32, 3-34, 4-21, 7-88, 7-94, 7-95, 9-31

9-32, 9-33
Resume button 2-6, 5-10, 5-12, 5-22, 5-28, 5-33, 9-3
Resuming execution 1-5, 2-6, 4-10, 4-15, 4-21, 4-31,

5-10, 5-14, 5-22, 5-33, 7-94, 9-32
Return key 4-4, 4-8, 4-12, 4-26, 5-5, 5-6, 5-8, 5-9,

5-12, 5-18, 5-19, 5-21, 5-24, 5-25, 5-26, 5-27,
5-29, 7-15, 7-16, 7-59, 8-1, 9-6, 9-19, 9-36,
9-37, 9-41

reverse-search 7-13, 7-59, 7-61
rlogin 7-19
Root user 3-33
Routine 4-11, 4-16, 5-11, 5-16, 7-96, 7-97, 7-98, 7-99

7-100, 7-119, Glossary-10
trace_open_thread 7-83
trace_start 7-83

Routine arguments
printing 7-126

Routine name
list 7-127

Routine replacement 7-74
rtcp 3-34
rtutil 3-34
run 3-7, 7-19, 9-44, 9-45, 9-46
run 1-2, 3-5, 4-6, 7-28, 7-30, 7-134
Run a program 1-2, 3-12, 4-6, 5-6, 7-28, 7-30
Run to Here button 9-31, 9-33

S

s (step) 7-96
S key 9-31
s key 9-31
Safety level

forbid 6-2, 7-17, 7-23, 7-33, 7-40, 7-49, 7-89,
7-90

unsafe 3-27, 6-2, 7-16, 7-23, 7-32, 7-33, 7-49,
7-89, 7-90

verify 6-2, 7-16, 7-17, 7-23, 7-33, 7-40, 7-49,
7-89, 7-90

Sash 9-11, 9-17, 9-18, 9-19, 9-28, 9-31
Saving agentpoints 3-13
Saving breakpoints 3-13
Saving eventpoints 3-13
Saving exception handling 3-13
Saving monitorpoints 3-13
Saving patchpoints 3-13
Saving tracepoints 3-13
Scheduler
Index-18

Index

,

,

,

9

,

,

2,

,

frequency-based 3-16, 3-33
Scope 3-22, 3-29, 7-78, 7-82, 7-126, Glossary-10
Script

debugger 7-110, 7-111
Scroll bar 2-5, 5-5, 5-7, 9-17, 9-18, 9-28, 9-35, 9-37,

9-48
Search button 9-37
Searching

function 9-23
path 7-59, 7-60, 7-119
regular expression 5-16, 7-61, 9-37
wildcard pattern 9-23, 9-37

Section
manual 4-5, 5-4, 7-108

Select a Function/Unit Dialog Box 5-16, 9-23, 9-37
Select a Source File Dialog Box 9-23, 9-37
selectColor resource 9-12
select-context 3-32, 7-100, 7-107
Selection

object 5-2, 5-5, 5-8, 5-15, 5-23, 5-24, 5-25, 5-26,
5-29, 5-30, 5-32, 5-34, 9-1

process 9-18
Selection policy

Browse 9-9, 9-35, 9-37
Extended 9-9, 9-19, 9-36, 9-43
Multiple 9-9, 9-19
Single 9-9

selectionPolicy resource 9-9
Semicolon 7-80, 7-93
Session

debug Glossary-3
Session logging 7-44
set 7-66
set-auto-frame 7-54
set-children 3-2, 3-13, 4-7, 5-8, 7-41
set-editor 7-55, 8-2
set-exit 7-42
set-history 7-46
set-language 3-13, 7-44, 7-122
set-limits 7-46, 7-47, 7-66, 7-68, 7-112, 7-113,

7-114, 7-115, 7-116, 7-117
set-local 3-29, 7-50
set-log 7-44, 7-112
set-notify 7-30
set-overload 3-21, 7-54
set-patch-area-size 7-50, 7-123, E-1,

Glossary-8
set-prompt 7-2, 7-47
set-qualifier 4-22, 7-10, 7-46, 9-48, 9-49
set-restart 3-13, 7-49
set-safety 7-24, 7-37, 7-49
set-search 7-54
set-show 3-5, 7-28, 7-29, 7-44, 7-112
set-terminator 7-48

Setting a breakpoint 1-4, 2-5, 4-9, 4-23, 5-9, 5-24, 5-25
7-78, 7-92, 9-32, 9-33, 9-38

Setting a conditional agentpoint 7-113, 7-118, 9-39
Setting a conditional breakpoint 3-8, 5-24, 7-113, 7-114

9-39, Glossary-2
Setting a conditional eventpoint 7-6, 7-88, 7-92, 7-113

9-39
Setting a conditional monitorpoint 7-113, 7-117, 9-39
Setting a conditional patchpoint 7-6, 7-113, 7-116, 9-3
Setting a conditional tracepoint 7-113, 7-115, 9-39
Setting a monitorpoint 7-83, 9-38
Setting a patchpoint 4-27, 5-29, 7-79, 7-93, 9-38
Setting a tracepoint 7-83, 9-38
Setting an agentpoint 7-86, 9-38
Setting an eventpoint 9-38
set-trace 7-81, 7-82
Setuid programs 3-3
Shared library 3-4, 3-17, 3-35, 3-36, 7-22, 7-122
Shared memory 3-15, 7-50, A-1, E-1, Glossary-3
Shell Glossary-10

dialogue 3-4, 3-5, 3-15, 3-17, 5-6, 9-17, E-1
shell 3-3, 3-34, 7-17, 7-56, 7-110, 7-134, 8-1, 9-18,

9-34, 9-49
SHELL environment variable 7-110
Shell I/O 9-17
Shell prompt 1-3, 2-3, 4-4, 5-4
Shift+F8 key 9-10
Shift+Tab key 9-11
SHMMNIconfiguration parameter A-1
show 3-5, 7-28, 7-29
si (stepi) 7-98
SIGADA 7-104
SIGALRM 7-104
siginfo 3-11
SIGINT 7-104
signal 3-11, 7-88, 7-94, 7-101
Signals 3-10, 3-13, 3-34, 4-1, 4-7, 5-1, 5-9, 7-31, 7-37

7-71, 7-94, 7-95, 7-97, 7-98, 7-99, 7-100,
7-101, 7-103, Glossary-10

printing 7-121
SIGQUIT 7-104
SIGTRAP 3-11, 7-101
SIGUSR1 4-1, 4-7, 4-26, 4-32, 5-1, 5-9
Simple full-screen interface iii, 1-1, 3-26, 6-2, 7-2, 7-84

7-88, 7-110, 7-131, 8-1, 8-2, 9-1, Glossary-6
editing commands 8-2

-simplescreen option 8-1
Single process 3-2
Single process mode 9-12, 9-13, 9-14, 9-20, 9-21, 9-2

9-26, 9-28, 9-32, 9-34, 9-41, Glossary-10
Single selection policy 9-9
Single stepping 3-11, 3-32, 3-34, 4-11, 4-16, 5-11, 5-16

7-96, 7-97, 7-98, 7-99, 7-100, 9-30, 9-31, 9-32
smallFixedFontList resource D-3
Index-19

NightView User’s Guide

,

7

,

smallFontList resource D-3
source 3-13, 3-27, 3-30, 7-15, 7-110, 7-125
Source display area 9-22, 9-37
Source file 3-1, 5-1, 5-7, 5-10, 5-11, 5-14, 5-15, 5-16,

5-17, 5-20, 5-21, 5-24, 5-25, 5-30, 7-110,
7-130, 9-22, 9-23, 9-30

current 7-59, 7-61
displaying 4-8, 4-10, 7-58
list 7-127
search path for 7-59, 7-60, 7-119

Source line decorations 2-5, 2-6, 4-8, 4-10, 4-11, 4-14,
4-17, 5-7, 5-10, 5-11, 5-13, 5-14, 5-18, 5-20,
5-22, 5-25, 5-30, 7-59, 7-62, 7-97, 7-98, 9-24,
9-30, 9-33, 9-34

Source listing 1-4, 2-3, 4-8, 4-10, 7-15, 7-58
Source menu

Debug 9-22, 9-31, 9-32, 9-36
Source menu 9-22, 9-31, 9-32, 9-36
Space key 4-4, 4-12
Stack Glossary-10
Stack examination 1-5, 2-6, 4-18, 5-18, 7-64
Stack frame 7-5, 7-59, 7-74, 7-127, Glossary-5,

Glossary-11
current 3-22, 3-23, 4-19, 4-20, 4-31, 5-19, 5-21,

5-33, 7-62, 7-78, 7-80, 7-82, 7-84, 7-86,
7-87, 7-93, 7-100, 7-105, 7-107, 7-108,
7-118, 7-121, Glossary-3

displaying 7-118
printing 4-18, 5-18, 7-64

Stack pointer 7-7, 7-120
Stack variable 3-16
Stale data indicator 3-26, 8-2, 9-47, Glossary-11
Starting execution 1-2, 2-2, 3-12
Starting the debugger 1-2, 2-2, 3-30, 4-3, 5-4, 6-1
Starting tracing 7-81
State

agentpoint 7-118, 9-39
breakpoint 7-114, 9-39
eventpoint 7-112, 9-39
monitorpoint 7-117, 9-39
patchpoint 7-116, 9-39
process 3-14, 7-122, Glossary-9
tracepoint 7-115, 9-39

Static data definitions 7-74
Static function

specifying location of 7-9
Static memory 7-127
Static variable 3-16, 7-5
Status information 7-111
step 3-24, 3-31, 3-32, 4-16, 5-16, 7-94, 7-96, 7-98,

7-99, 7-108, 9-31, 9-32
Step button 5-17, 9-32
stepi 7-97, 7-98, 7-108, 9-31, 9-32
Stepi button 9-32

stop 3-35, 7-100, 9-30, 9-33
Stop button 9-14, 9-33
Stopping a process 7-100, 9-33
Stopping execution 1-4, 2-5, 3-32, 3-35, 4-9, 4-23, 5-9

5-24, 5-25, 7-78
Stream

command Glossary-2
String

C 3-34, 7-66
character 7-66, 7-120
macro 7-133

String limits
printing 7-46

strip 7-33
Stripped executable 7-22, 7-33
stty 8-1
Subprogram 4-11, 4-16, 5-11, 5-16, 7-96, 7-97, 7-98,

7-99, 7-100, 7-119
Subprogram arguments

printing 7-126
Subprogram interest level 3-13, 3-24, 7-51, Glossary-
Subprogram name

list 7-127
Subprograms

inline 3-24
interesting 3-13, 3-23, 3-24, 4-14, 5-13, 7-7, 7-52

7-97, 7-99, Glossary-7
uninteresting 3-13, 3-23, 3-24, 4-14, 5-13, 7-7,

7-52, 7-97, 7-99
Subroutine 4-11, 4-16, 5-11, 5-16, 7-96, 7-97, 7-98,

7-99, 7-100, 7-119
Subroutine arguments

printing 7-126
Subroutine call 3-21, 7-80
Subroutine name

list 7-127
Substitution

text 7-130
Summary of commands 5-5, 9-4, B-1
Summary of eventpoints 5-23, 5-26, 5-30, 5-32, 9-24,

9-26, 9-38, 9-41
Superuser 3-33
Switch To button 5-7, 5-13, 9-13
Symbol file 3-13, 7-33, 7-35, Glossary-11
Symbol table 7-74, 7-111, 7-126, 7-127, 7-129
symbol-file 3-7, 3-13, 7-22, 7-33, 7-34, 7-56
Symbolic debug information 7-33, 9-7
Symbolic debugger iii, 3-1
Symbols

undefined 7-74
Syntax

command 7-1
expression 7-4
qualifier 7-1
Index-20

Index

,

3,
System
local 3-6, A-1
remote 3-6, A-1

system 3-2, 7-42
System crash 3-34
System resources A-1
System tuning A-1

T

T (source line decoration) 7-62
Tab key 9-11
Tag

trace-event 7-81, 7-82, Glossary-11
Task 3-32, 7-100, 7-107

Ada Glossary-1, Glossary-11
tbreak 7-76, 7-92
telnetd A-1
Temporary agentpoint 9-39
Temporary breakpoint 7-92, 9-39
Temporary monitorpoint 9-39
Temporary patchpoint 7-93, 9-39
Temporary tracepoint 9-39
TERM environment variable 8-1
Terminal refresh 7-109
Terminating a process 3-13, 3-14, 7-33, 9-19, 9-22
Termination

abnormal 7-34
Terminator

input 7-27, 7-48
Text

printing 7-70
Text cursor 9-31, 9-33, 9-34
Text fonts D-3, D-6
Text input area 5-24, 5-25, 5-26, 5-29, 9-5, 9-19, 9-36,

9-38, 9-39, 9-40, 9-41, D-4
editing 9-5, 9-11

Text substitution 7-130
Thread 3-32, 7-100, 7-107, Glossary-11
Threshold

interest level 3-13, 3-25, 7-52
Toggle button 9-12, 9-14, 9-26, 9-27, 9-40, 9-41
tool set

NightStar D-1
tpatch 7-76, 7-93
Trace Glossary-11
Trace initialization 7-81
trace_open_thread routine 7-83
trace_start routine 7-83
Trace-event ID 7-81, 7-82, 9-40, Glossary-11
Trace-event map file 7-81, 7-82, Glossary-5
Trace-event tag 7-81, 7-82, Glossary-11

Tracepoint 3-8, 3-10, 3-14, 3-20, 3-34, 7-32, 7-62, 7-63
7-76, 7-81, Glossary-5, Glossary-11

changing 9-38
clearing 7-87
condition on 3-13, 7-88, 7-113, 7-115, 9-39
deleting 7-89, 9-41, 9-43
disabling 7-90, 9-39, 9-43
displaying 7-112, 7-114
enabling 7-91, 9-39, 9-43
hitting 7-115, 9-39
ignoring 3-13, 7-83, 7-91, 7-113, 7-115, 9-39,

Glossary-7
named 3-13, 7-77, 7-82, 9-39
saving 3-13
setting 7-74, 7-83, 9-38
state 7-115, 9-39
temporary 9-39

tracepoint 3-10, 3-34, 7-81, 7-82, 7-114
Tracepoint crossing count Glossary-3
Tracepoint Dialog Box 9-25, 9-38
Tracing 3-6, 3-10, 3-34
translate-object-file 3-7, 7-21, 7-34
Translating type definitions 9-7
Translations

object filename 7-21, 7-33, 7-35, 7-74, 7-123
Tuning

system A-1
Tutorial

command-line 4-1, 5-1
Type definition

printing 7-128, 7-129
Type definitions

translating 9-7
Type resolution 9-7

U

u key 9-31
UID 3-33
ulimit 3-5
Undefined symbols 7-74
undisplay 7-72, 7-73
Uninteresting subprograms 3-13, 3-23, 3-24, 4-14, 5-1

7-7, 7-52, 7-97, 7-99
unsafe safety level 3-27, 6-2, 7-16, 7-23, 7-32, 7-33,

7-49, 7-89, 7-90
up 3-23, 4-19, 5-19, 7-5, 7-106, 7-108, 9-31
Update button 9-42
Update List button 9-42
useNightStarColors resource D-2
useNightStarFonts resource D-2
User 7-123
Index-21

NightView User’s Guide

,

,

User ID 3-33
User interface

command-line iii, 1-1, 3-26, 4-1, 4-3, 5-1, 5-4, 7-2,
7-84, 7-88, 7-103, 7-109, 7-131, 8-1, 9-1,
9-34, 9-48, 9-49, Glossary-2

full-screen iii, 1-1, 3-26, 6-2, 7-2, 7-84, 7-88, 7-109,
7-110, 7-131, 8-1, 8-2, 9-1, Glossary-6

graphical iii, 2-1, 3-26, 3-28, 6-1, 6-3, 7-1, 7-33,
7-103, 7-109, 9-1, 9-47, A-2, D-1,
Glossary-6

User-created Debug Window Glossary-11
User-level interrupt 3-32, 3-34

V

Value history 3-30, 4-16, 5-15, 7-4, 7-46, 7-66, 7-70,
7-120, Glossary-12

Variable
assignment 3-18
convenience 3-29, 7-4, 7-5, 7-6, 7-50, 7-66, 7-119,

Glossary-3
declaration 3-18
global 3-16, 7-106
local 3-16, 3-22, 3-23, 7-5
predefined convenience 3-23, 7-5, 7-6, 7-113,

7-114, 7-115, 7-116, 7-117, 7-118, 7-120,
7-130

printing 7-126, 7-129
register 3-16, 7-5
static 3-16, 7-5

vector-set 7-75
verify safety level 6-2, 7-16, 7-17, 7-23, 7-33, 7-40,

7-49, 7-89, 7-90
Version

NightView 1-2, 4-4, 6-2, 9-4, H-1
vi editor 7-55, 8-2, 9-24
View menu

Debug 9-14, 9-26
View menu 9-14, 9-26
Virtual address space 7-122
Virtual keys 9-10
Virtual memory 7-122
VISUAL environment variable 8-2

W

Warning Dialog Box 5-23, 5-35, 9-5, 9-15, 9-17, 9-21,
9-22

Warnings 3-26
whatis (info whatis) 7-128

Widget hierarchy D-7
Wildcard pattern 7-14, 7-20, 7-36, 7-39, 7-127, 9-23,

9-37
Wildcard pattern examples 7-14
wildcard_pattern 7-127
Window

Debug 2-3, 5-6, 5-9, 5-10, 5-11, 5-12, 5-14, 5-15,
5-17, 5-22, 5-23, 5-24, 5-28, 5-29, 9-1, 9-6
9-11, 9-12, 9-13, 9-14, 9-16, 9-19, 9-20,
9-26, 9-27, 9-28, 9-29, 9-32, 9-34, 9-35,
9-36, 9-37, 9-47, 9-48, 9-49, Glossary-4

Dialogue 2-3, 5-4, 5-7, 5-11, 5-12, 5-14, 9-1, 9-6,
9-13, 9-16, 9-17, 9-18, 9-19, 9-20, 9-21,
9-34, 9-47, 9-48, Glossary-4

Global 9-2, 9-6, 9-13, 9-16, 9-18, 9-20, 9-21, 9-34
9-47, 9-48, 9-49, Glossary-6

Help 2-1, 2-4, 2-5, 5-5, 5-8, 9-2, 9-5, 9-17, 9-19,
9-28, 9-48, 9-49, D-3, D-4, Glossary-6

iconifying 9-2
Monitor 3-25, 7-85, 8-2, 9-2, 9-47, D-4, D-5, D-7
Principal Debug 5-6, 9-12, 9-13, 9-20, Glossary-9
user-created Debug Glossary-11

Window geometry D-7
Window resizing 9-11

X

X 9-1
x 7-6, 7-15, 7-67, 7-71, 7-113, 7-114, 7-115, 7-116,

7-117, 7-118, 7-130
-x option 6-3
X resource

background D-4, D-7
customization D-6, D-7
displayGroupToggleButton 9-13
displayGroupToggleButton.set 9-26
editor 9-23
editorTalksX 9-24
fontList D-6
foreground D-4, D-7
geometry D-7
keyboardFocusPolicy 9-10
monitorWindowColumns 9-47
oneWindowPerProcess 9-13
selectColor 9-12
selectionPolicy 9-9

X resources A-2, D-1, D-6
X server memory A-2, D-6
X Window System 3-27, 9-1
xl (translate-object-file) 7-21
-xrm option 6-3
Index-22

Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

User’s
Guide

0890395

N
ightV

iew

	NightView User’s Guide
	Preface
	Contents
	A Quick Start
	Sample Program
	Starting Up
	Getting Help
	Setting a Breakpoint
	Finishing up

	A Quick Start - GUI
	Sample Program - GUI
	Starting Up - GUI
	Getting Help - GUI
	Setting a Breakpoint - GUI
	Finishing up - GUI

	Concepts
	Debugging
	Accessing Files
	Programs and Processes
	Multiple Processes
	Families
	Attaching
	Detaching
	Core Files
	Qualifiers

	Dialogues
	Dialogue I/O
	Real-Time Debugging
	Remote Dialogues
	ReadyToDebug

	Finding Your Program
	Controlling Your Program
	Eventpoints
	Breakpoints
	Monitorpoints
	Patching
	Tracing
	Agentpoints

	Signals
	Restarting a Program
	Restart Mechanism
	Restart Information
	Restart Macros

	Exited and Terminated Processes

	Process States
	Debugger Mechanisms
	/proc
	Debug Agent
	Operations While the Process Is Executing
	Using /proc and the Debug Agent Together

	Examining Your Program
	Expression Evaluation
	Ada Expressions
	C Expressions
	C++ Expressions
	Fortran Expressions

	Overloading
	Program Counter
	Context
	Scope
	Stack
	Current Frame
	Registers

	Inline Subprograms
	Interesting Subprograms
	Monitor Window
	Errors
	Command Streams
	Interrupting the Debugger
	Macros
	Convenience Variables
	Logging
	Value History
	Command History
	Initialization Files
	Optimization
	Debugging Ada Programs
	Packages
	Exception Handling

	Multithreaded Programs
	Using NightView with Other Tools
	Limitations and Warnings
	Setuid Programs
	Attach Permissions
	Frequency-Based Scheduler
	NightTrace Monitor
	Memory Mapped I/O
	Blocking Interrupts
	User-Level Interrupts
	Debugging with Shared Libraries

	Tutorial
	About the Tutorial
	Creating a Program
	Starting NightView
	Getting General and Error Help
	Starting Your Program
	Debugging All Child Processes
	Handling Signals
	Listing the Source
	Setting the First Breakpoints
	Listing a Breakpoint
	Continuing Execution
	Not Entering Functions
	Entering Input
	Creating Families
	Continuing Execution Again
	Creating Families Again
	Catching up the Child Process
	Verifying Data Values
	Entering Functions
	Examining the Stack Frames
	Moving in the Stack Frames
	Verifying Data Values in Other Stack Frames
	Returning to a Stack Frame
	Resuming Execution
	Setting the Default Qualifier
	Removing a Breakpoint
	Setting Conditional Breakpoints
	Attaching an Ignore Count to a Breakpoint
	Attaching Commands to a Breakpoint
	Automatically Printing Variables
	Watching Inter-Process Communication
	Patching Your Program
	Disabling a Breakpoint
	Examining Eventpoints
	Continuing to Completion
	Leaving the Debugger

	Tutorial - GUI
	About the Tutorial - GUI
	Creating a Program - GUI
	Starting NightView - GUI
	Getting General and Error Help - GUI
	Starting Your Program - GUI
	Debugging All Child Processes - GUI
	Handling Signals - GUI
	Setting the First Breakpoints - GUI
	Continuing Execution - GUI
	Not Entering Functions - GUI
	Entering Input - GUI
	Continuing Execution Again - GUI
	Catching up the Child Process - GUI
	Verifying Data Values - GUI
	Listing the Source - GUI
	Entering Functions - GUI
	Examining the Stack Frames - GUI
	Moving in the Stack Frames - GUI
	Verifying Data Values in Other Stack Frames - GUI
	Returning to a Stack Frame - GUI
	Resuming Execution - GUI
	Removing a Breakpoint - GUI
	Setting Conditional Breakpoints - GUI
	Attaching an Ignore Count to a Breakpoint - GUI
	Attaching Commands to a Breakpoint - GUI
	Automatically Printing Variables - GUI
	Watching Inter-Process Communication - GUI
	Patching Your Program - GUI
	Disabling a Breakpoint - GUI
	Examining Eventpoints - GUI
	Continuing to Completion - GUI
	Leaving the Debugger - GUI

	Invoking NightView
	Command-Line Interface
	Command Syntax
	Selecting Overloaded Entities
	Special Expression Syntax
	Predefined Convenience Variables
	PowerPC Registers

	Location Specifiers
	Qualifier Specifiers
	Eventpoint Specifiers
	Regular Expressions
	Wildcard Patterns

	Repeating Commands
	Replying to Debugger Questions
	Controlling the Debugger
	Quitting NightView
	quit

	Managing Dialogues
	login
	debug
	nodebug
	translate-object-file
	logout
	on dialogue
	apply on dialogue

	Dialogue Input and Output
	!
	set-show
	show

	Managing Processes
	run
	set-notify
	notify
	attach
	detach
	kill
	symbol-file
	core-file
	exec-file
	on program
	apply on program
	on restart
	checkpoint
	family
	set-children
	set-exit
	mreserve

	Setting Modes
	set-log
	set-language
	set-qualifier
	set-history
	set-limits
	set-prompt
	set-terminator
	set-safety
	set-restart
	set-local
	set-patch-area-size
	interest
	set-auto-frame
	set-overload
	set-search
	set-editor

	Debugger Environment Control
	cd
	pwd

	Source Files
	Viewing Source Files
	list
	directory

	Searching
	forward-search
	reverse-search

	Source Line Decorations

	Examining and Modifying
	backtrace
	print
	set
	x
	output
	echo
	display
	undisplay
	redisplay
	printf
	load
	vector-set

	Manipulating Eventpoints
	Eventpoint Modifiers
	name
	breakpoint
	patchpoint
	set-trace
	tracepoint
	monitorpoint
	mcontrol
	agentpoint
	clear
	commands
	condition
	delete
	disable
	enable
	ignore
	tbreak
	tpatch

	Controlling Execution
	continue
	resume
	step
	next
	stepi
	nexti
	finish
	stop
	jump
	signal
	handle

	Selecting Context
	frame
	up
	down
	select-context

	Miscellaneous Commands
	help
	refresh
	shell
	source
	delay

	Info Commands
	Status Information
	info log
	info eventpoint
	info breakpoint
	info tracepoint
	info patchpoint
	info monitorpoint
	info agentpoint
	info frame
	info directories
	info convenience
	info display
	info history
	info limits
	info registers
	info signal
	info process
	info memory
	info dialogue
	info family
	info name
	info on dialogue
	info on program
	info on restart
	info exception

	Symbol Table Information
	info args
	info locals
	info variables
	info address
	info sources
	info functions
	info types
	info whatis
	info representation
	info declaration
	info files
	info line

	Defining and Using Macros
	define
	Referencing Macros
	info macros

	Simple Full-Screen Interface
	Using the Simple Full-Screen Interface
	Editing Commands in the Simple Full-Screen Interface
	Monitor Window - Simple Full-Screen

	Graphical User Interface
	NightView GUI Concepts
	GUI Overview
	GUI Online Help
	Context-Sensitive Help
	Help Menu
	Help Buttons
	Help Command

	GUI Components
	Text Input Areas
	Combo Boxes
	Message Areas
	File Selection Dialog Box
	List Selection Policies
	Dialogues and Dialog Boxes
	Keyboard Focus
	Keys
	Sashes
	Toggle Buttons

	GUI Command History
	Understanding the Debug Window
	Debug Window Behavior
	Single Process Mode
	Group Process Mode

	Confirm Exit Dialog Box
	Warning and Error Dialog Boxes
	Warning Dialog Box
	Error Dialog Box

	Dialogue Window
	Dialogue Menu Bar
	Dialogue NightView Menu
	Dialogue Menu
	Dialogue Help Menu

	Dialogue Identification Area
	Dialogue Message Area
	Dialogue I/O Area
	Dialogue Interrupt Button
	Dialogue Qualifier Area
	Dialogue Command Area
	Process Summary
	Dialogue Window Dialog Boxes
	Program Arguments Dialog Box

	Debug Window
	Debug Menu Bar
	Debug NightView Menu
	Debug Process Menu
	Debug Source Menu
	Debug Eventpoint Menu
	Debug View Menu
	Debug Help Menu

	Debug Message Area
	Debug Identification Area
	Debug Source Lock Button
	Debug Source File Name
	Debug Status Area
	Debug Source Display
	Debug Command Buttons
	Debug Interrupt Button
	Debug Qualifier Area
	Debug Command Area
	Debug Group Area
	Debug Dialog Boxes
	Debug Group Selection Dialog Box
	Debug Source Selection Dialog Box
	Debug File Selection Dialog Box
	Debug Eventpoint Dialog Boxes
	Debug Eventpoint Summarize/Change Dialog Box
	Remote Login Dialog Box

	Monitor Window - GUI
	Global Window
	Global Menu Bar
	Global NightView Menu
	Global Help Menu

	Global Output Area
	Global Interrupt Button
	Global Qualifier Area
	Global Command Area

	Help Window

	System Resource Requirements
	Summary of Commands
	Quick Reference Guide
	Invoking NightView
	Controlling the Debugger
	Quitting NightView
	Managing Dialogues
	Dialogue Input and Output
	Managing Processes
	Setting Modes
	Debugger Environment Control

	Source Files
	Viewing Source Files
	Searching

	Examining and Modifying
	Manipulating Eventpoints
	Controlling Execution
	Selecting Context
	Miscellaneous Commands
	Info Commands
	Status Information
	Symbol Table Information

	Defining and Using Macros

	GUI Customization
	Application Resources
	NightStar Resources
	Using NightStar Resources
	NightStar Font Resources
	NightStar Color Resources

	NightView Resources

	Font Selection
	Color Selection
	Monochrome Display
	Color Display

	Window Geometry
	Widget Hierarchy

	Implementation Overview
	Performance Notes
	Debug Agent Performance

	Tutorial Files
	C Files
	msg.h
	main.c
	parent.c
	child.c

	Fortran Files
	msg.i
	main.f
	parent.f
	child.f

	Ada Files
	main.a
	parent.a
	child.a

	Reporting Bugs
	Glossary
	Index

