NightView User’s Guide

<@ CONCURRENT 0890395-230
cggyggnriﬁmm June 2002

Copyright 2002 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end—users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the envelope “ Attention: Publications Department.”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

The license management portion of this product is based on:

Elan License Manager
Copyright 1989-1993 Elan Computer Group, Inc.
All rights reserved.

Elan License Manager is a trademark of Elan Computer Group, Inc.
gdb is atrademark of the Free Software Foundation.

NightHawk is a registered trademark and NightSim, NightStar, NightTrace, NightView, and PowerMAX OS are trademarks of Concurrent Com-
puter Corporation.

NFSis atrademark of Sun Microsystems, Inc.

OSF/Matif is aregistered trademark of The Open Group.

Intel is aregistered trademark of Intel.

Linux is aregistered trademark of Linus Torvalds.

Red Hat is aregistered trademark of Red Hat, Inc.

PowerPC is aregistered trademark of IBM Corp. and PowerPC 604 is a trademark of IBM Corp.
UNIX isaregistered trademark licensed exclusively by the X/Open Company Ltd.

X Window System and X are trademarks of The Open Group.

HyperHelp is a trademark of Brisol Technology Inc.

Printed in U. S. A.

Revision History: Level: Effective With:
Origina Release -- July 1992 010 NightView 1.1
Previous Release -- March 2001 220 NightView 5.3

Current Release -- June 2002 230 NightView 5.4

Preface

General Information

Scope of Manual

NightView is a general purpose source-level program debugger. Some of the features
make it useful for debugging systems of real-time programs, but it can also be used to
debug a single ordinary program.

NightView can debug programs written in multiple languages. Ada, C, C++ and Fortran
are supported.

NightView can debug multiple processes on the local system or on different hosts.

NightView has been designed to be as flexible as possible. The NightView command
interpreter includes macro processing so that you can write your own NightView com-
mands.

You communicate with NightView with one of three user interfaces. The command-line
interface is useful when no advanced terminal capabilities are present. A simple full-
screen interfaceis available for Ascil terminals. The graphical user interface provides the
most functionality.

NightView is supported on systems running PowerMAX OS™. See the Hardware Prereg-
uisites section of the NightView Rel ease Notes associated with your particular version for a
list of supported systems. The NightView user interfaces are supported on Intel® systems
running Red Hat® Linux® 7.1 or 7.2. The Intel/Red Hat interfaces can be used to debug
processes on PowerPC/PowerMAX OS.

This document is the user manual for the NightView debugger. It isintended for anyone
using NightView, regardless of their previous level of experience with debuggers. This
manual describes how to use NightView, by way of tutorial and reference guide. Thereis
also material for system administrators.

Structure of Manual

The manual begins with the short tutorials, Chapter 1 [A Quick Start] on page 1-1 and
Chapter 2 [A Quick Start - GUI] on page 2-1, giving you just enough information to get
you started. For more complete tutorials, see Chapter 4 [Tutorial] on page 4-1 and
Chapter 5 [Tutorial - GUI] on page 5-1.

The next section describes the major concepts you will need to understand in order to get
the best use out of NightView. See Chapter 3 [Concepts] on page 3-1.

NightView Reference Manual

Syntax Notation

More detailed information about the NightView commands is found in Chapter 7 [Com-
mand-Line Interface] on page 7-1.

The next chapter describes a simple full-screen interface to NightView. See Chapter 8
[Simple Full-Screen Interface] on page 8-1.

The next chapter describes the graphical user interface for NightView. See Chapter 9
[Graphical User Interface] on page 9-1.

This manual also contains several appendixes that may not be of interest to all users, such
as an implementation overview. A glossary of terms related to NightView and a quick ref-
erence guide are also provided.

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify appear
in italic type. Special terms and comments in code may also appear
initalic.

list bold User input appearsin| i st bol d type and must be entered exactly

as shown. Names of directories, files, commands, options and man
page references also appear inl i st bol d type.

list Operating system and program output such as prompts and messages
and listings of files and programs appearsin | i st type. Keywords
asoappearinli st type.

emphasis Words or phrases that require extra emphasis use emphasis type.

window Keyboard sequences and window features such as push buttons,
radio buttons, menu items, |abels, and titles appear in window type.

[] Brackets enclose command options and arguments that are optional.
Mutually exclusive choices are separated by the pipe (|) character.
You do not type the brackets (or the pipe character) if you choose to
specify such options or arguments.

{ 1} Braces enclose mutually exclusive choices separated by the pipe (|)
character, where one choice must be selected. You do not type the
braces or the pipe character with the choice.

An ellipsis follows an item that can be repeated.

= This symbol meansis defined as in Backus-Naur Form (BNF).

Related Publications

0800032 Power PC Microprocessor Family: The Programming Environments
0890161 The C Programming Language
0890240 Hf77 FORTRAN Reference Manual

0890288
0890300
0890380
0890382
0890398
0890429
0890460
0890475
0890497
0890516
0891019
0891055

Preface

HAPSE Reference Manual

X Window System User’s Guide
OSF/Motif Documentation Set

UNIX® SystemV AT& T C++ Language System Release 2.1
NightTrace Manual

System Administration Volume 1
Compilation Systems Volume 2 (Concepts)
NightView Pocket Reference

C++ Reference Manual

MAXAda Reference Manual

Harris C Reference Manual

Elan License Manager™ Release Notes

NightView Reference Manual

Contents

Contents
Chapter 1 A Quick Start
Sample Program 11
SaAtiNG UP. o 1-2
Geatting HEID ..o 1-3
Setting aBreakpoint 1-4
FiNiShing Up. . ..o 1-5
Chapter 2 A Quick Start - GUI
SampleProgram - GUI o 2-1
StartingUp - GUI ..o 2-2
Getting Help - GUI . ..o e 2-4
Setting aBreakpoint - GUI 2-5
Finishingup - GUI. o 2-6
Chapter 3 Concepts
DEDUGGING - - - o et 31
AcCessSiNg FileS . .. o 31
Programs and PrOCESSES. oottt e 3-2
MUItIPIE PrOCESSES oo 3-2
Families ... 3-2
AtaChiNg . .. oo 3-3
DEaChiNg . . . oo 3-3
CoreFilES . . o 3-4
QUAlIIENS .o o 34
DIalOgUES. . . o oot e 3-4
Dialogue l/O. 35
Real-TimeDebUgUIiNg -ottt e e e 3-5
RemoteDialogueso 3-6
ReadyTODEDUG. . . . oot 3-7
Finding Your Programo 3-8
Controlling Your Programot 3-8
EVENtpOiNtS. e 3-8
BreakpoiNtSot e 3-10
MONItOrPOINES oo e e e 3-10
Patchpointso 3-10
TraCEPOINtS . . ettt 311
AGENLPOINES . . . oot 311
WatChpoints. 311
SIONAlS 312
Restarting aProgramt 314

NightView User’s Guide

Restart Mechanism i i 3-14

Restart Information i 3-15

Restart Macros.o 3-16

Exited and Terminated PrOCESSES oo i vt e 3-16
PrOCESS SEatES. ottt 316
Debugger Mechanisms. 317
JPPOC o e 317
DEbUg ANt . . .o 317
Operations Whilethe Process ISEXeCUtingooiiiiieeinan. 3-18
Using /proc and the Debug Agent Togethert 3-19
Examining YOUr Program.ttt 3-20
Expression Evaluation 3-20
AdaEXPreSsionsot 321
CEXPIrESSIONS . .. ottt et ettt e e e 322

CHt EXPIreSSIONS . . oottt ettt e 322

FOrtran EXPressionsS. oo vttt e i e 323
Overloadingo 3-23
Program COUNEYottt e e 3-24
CONMEXE . . et 3-24
SO . . o it 3-25
K . oo 3-25
CUImeNt Frame. . . .o 3-25
REGISIEIS . . et 3-26
INlNE SUDPrOgramSot et e e e e e e 3-26
Interesting SUBPrOgramsottt e 327
Monitor WINOWo 3-28
ErrOrS . 3-29
Command SIFEAMS.ottt e 3-30
Interrupting the Debugger 3-30
MaCIOS . .. 3-31
Convenience Variables. 3-31
LOgGING o v ettt 3-32
ValUEHISIOIY . . oo 3-32
Command History 3-32
Initidization FIlES 3-33
OPtIMIZALION. . . oo e e e e e 333
Debugging AdaProgramso 3-33
PaCKagES . . . 3-33
ExceptionHandling oo 3-34
Multithreaded Programs.ot 3-34
Using NightView with Other TooIS. e 3-35
Limitationsand Warningst 3-35
SEtUId Programs oot e 3-35
AttaCh Permissionso 3-36
Frequency-Based Scheduler 3-36
NIghtTrace MONItoro e 3-36
Memory Mapped /O 3-36
Blocking INterrupts.o 3-37
User-Level Interruptso 3-37
Debugging with Shared Libraries. 3-38

10

Chapter 4 Tutorial

Contents

Aboutthe Tutorial 4-1
Creating aProgram e 4-2
Starting NightView 4-3
Getting General and Error Help.o 4-5
Starting Your Programo 4-6
Debugging All Child Processes.ot e e 4-7
Handling SIgnals.o 4-7
Listingthe SoUrceo 4-8
Setting the First Breakpoints. 4-9
ListingaBreakpointii i 4-10
Continuing EXECULIONot 4-10
Not Entering FUNCLIONS oo 4-11
Entering INpULo oo 4-11
Creating Families. 4-12
Continuing EXECUtION AQaINottt 4-13
Creating FamilieS AQaino 4-14
Catching up the Child Process.o e e e 4-15
Verifying DataValUESot 4-16
Entering FUNCLIONS.o 4-16
Examining the Stack Frames. 4-18
Movinginthe Stack Frames 4-19
Verifying Data Valuesin Other Stack Frames. it 4-20
ReturningtoaStack Frame. 4-20
ReSUMING EXECULIONo e 4-21
Setting the Default Qualifier ... o 4-22
Removing aBreakpoint. 4-22
Setting Conditional Breakpoints.t 4-23
Attaching an Ignore Count to aBreakpoint., 4-23
Attaching CommandstoaBreakpoint. i, 4-24
Automatically Printing Variables. 4-25
Watching Inter-Process Communication.vuiunenineennnennn. 4-26
Patching Your Programo 4-27
Disabling aBreakpoint o 4-28
Examining EVentpointS oo 4-28
Continuing to Completion. 4-31
Leaving the Debuggero oo 4-32

Chapter 5 Tutorial - GUI

Aboutthe Tutorial - GUIo 5-1
CreatingaProgram- GUI 5-2
Starting NightView - GUI 5-4
Getting General and Error Help- GUI 5-4
Starting Your Program - GUI.o 5-6
Debugging All Child Processes- GUI e 5-8
Handling Signals- GUI 5-9
Setting the First Breakpoints-GUI 5-9
Continuing Execution- GUI 5-10
Not Entering Functions- GUI 5-11
Entering Input - GUIo 5-12
Continuing Execution Again-GUI. i 512
Catching up the Child Process-GUI 5-14

NightView User’s Guide

Verifying DataValues- GUI 5-15
Listingthe Source- GUI o 5-15
Entering Functions- GUIL. 5-16
Examining the Stack Frames- GUI i 5-18
Movinginthe Stack Frames- GUI i 5-19
Verifying Data Valuesin Other Stack Frames-GUI 5-20
Returningto aStack Frame- GUI i 5-21
Resuming Execution - GUI 5-22
Removing aBreakpoint- GUI. 5-23
Setting Conditional Breakpoints-GUIo 5-24
Attaching an Ignore Count to aBreakpoint- GUI. 5-25
Attaching Commandsto aBreakpoint-GUI.o, 5-26
Automatically Printing Varigbles- GUI. i 5-27
Watching Inter-Process Communication- GUIt 5-28
Patching Your Program - GUIo 5-29
Disabling aBreakpoint - GUI 5-30
Examining Eventpoints- GUI 5-31
Continuing to Completion - GUI o 5-33
LeavingtheDebugger - GUI oo 5-34

Chapter 6 Invoking NightView

Chapter 7 Command-Line Interface

12

Command SYNEBX. . . .« v ettt e e 7-1
Selecting Overloaded Entities.t 7-2
Special EXPression SYNtaX et i e 7-4

Predefined ConvenienceVariables oo, 7-6

POWErPC REgIStErS . .. oottt e 7-7
Location SPeCifiers.o 7-9
Qualifier SPeCifiers.o 7-10
Eventpoint Specifiers 7-12
Regular EXPreSSiONS oottt et e e e 7-12
Wildcard Patternso 7-14

Repeating Commands oot 7-15

Replying to Debugger QUESLIONS.ot e 7-16

Controllingthe Debugger.ot 7-16
QUItiNg NIghtVIew. 7-17

QUIT. oo e e 7-17
Managing DialOgUES.ottt e e 7-18
(OGN, 7-18
debug . ..o 7-20
NOAEDUG . . . oot 7-20
trandate-object-file 7-21
[OQOUL. . . o 7-23
oNdialogue 7-24
applyondiadlogue. 7-25
Dialogue Input and OULPUL oot 7-27
D 7-27
S-S0 . o et 7-28
LS 10, 7-29
ManNaging PrOoCESSES oottt e et e e 7-30
TUN 7-30

Contents

SE-NOLITY . oo 7-30
NOtITY . o e 7-31
1= 1 7-32
detaCh ... 7-32

Kl 7-33
symbol-file ... 7-33
corefile. . 7-34
exec-file. . .o 7-35

(o a o] 0T =T 0 7-36
APPIY ONPIOGraM . ..o et e e et e e 7-38
ONTEStarT . .. 7-38
CheCKPOINt 7-39
family .. 7-40
set-children ... oo 7-41

S EXIt . ot 7-42
IEESEIVE . . ottt et e e e e e 7-43
Setting MOOES. 7-44
Sl 00 - . e 7-44
SE-lANQUAE. . . . o o et 7-44
SEt-qUAlifier .. 7-46
SE-NISIONY . 7-46
SE-lMITS . 7-46
SEE-PrOMPL . .. 7-47
SE-tErMINGLOr 7-48
SEE-SAf LY . . 7-49
SEt-Testart . . . 7-49
SE-1OCEl . . o 7-50
SE-PACh-BrEaSIZE. . . o o 7-50
INtEreSt. . . 7-51
Set-auto-frame. 7-54
set-overload. 7-54
SEE-SEAICN . L oo 7-54
SE-AITOr . . o 7-55
Debugger Environment Control 7-56
oo 7-56
W . e 7-56
SOUrCE RIS . . o 7-57
Viewing Source Fileso 7-58
P 7-58
AirECIONY .ot 7-60
SEANCNING . . oo 7-61
forward-search. 7-61
FEVErSE-SEAICH . . . ottt 7-61
Source Line DeCorationsottt e 7-63
Examining and Modifying. 7-65
backtrace. 7-65
DIt L 7-66
S 7-67
G 7-68
OULDUL . .o 7-71
ECN0. . o 7-71
datadisplay.o 7-72
AiSPlay .o 7-72
UNAISPlaY .. oo 7-74

13

NightView User’s Guide

FEAiSPlaY . . oo 7-74
PN L 7-75
o 7-75
VECION-SBL. . . e 7-76
Manipulating EVentpoints 7-77
Eventpoint Modifiers 7-79
7= 010 7-79
breakpointo 7-80
PALCNPOINT . . o 7-81
SE-ITACE. . . ottt 7-83
traCEPOINt . .. oo 7-84
MONITOPOINE ettt e e e e e 7-85
MCONEIOl . . e e e e e 7-87
BOENTPOINT . . o e e e 7-88
ClEar. . o 7-89
COMMANGS. . . oo ettt et et e e et e e e e 7-90
CONAILION . . oot 7-90
delete. .. 7-91
disable. ... 7-92
ENADl e L 7-93
o 0] 7-94
toreak .. 7-94
L1071 0 7-95
WALCHPOINT. .« . o 7-96
ControlliNg EXECULION oo 7-98
CONEINUE. . . ottt et et e e e e et e e e 7-98
FESUIMIE. . ottt ittt e e et e e e e e e e 7-99
S 7-100
DXL . . e 7-101
= 7-102
1 7-103
NS . L 7-103
SOP 7-104
JUMD 7-104
SIONA . . 7-105
handle 7-106
SEleCting CoNtEXE oottt 7-109
frame. .. 7-109
U ottt e e e 7-110
JOWN . 7-110
SElECt-CONtEXE . . .o 7-111
Miscellaneous Commands.ottt 7-112
Rl . . 7-112
FE PO . L 7-113
SNE 7-113
SOUICE . vttt e e e e e et e e et e e e 7-114
delay .o 7-114
INFOCOMMANASot e 7-115
Status Information. 7-116
INFO 0. . .o 7-116
iNfoeventpoint. o 7-116
infobreakpoint. 7-117
INfOtracepoInto 7-118

info patchpoint. 7-119

14

Contents

infoMoNItOrpoint.o 7-120
infoagentpoint. o 7-121
infowatchpoint 7-122
iNfoframe 7-123
INFOITECIONIES.o e 7-124
INfOCONVENIENCE.t e 7-124
infodisplay ... 7-124
INfONIStOrY ... 7-125
INFOIIMITS oo 7-125
INfOrEgIStErS . .o 7-125
iNfoSignal 7-126

INFO PrOCESS . . . o 7-126
INFOMEMOrY ... 7-127
infodialogue 7-127
infofamily. 7-128
INfoNaMe. 7-128
infoondialogue. 7-129
INfFOON Program. 7-129
infoonrestart 7-129
iNfoEXCEPLion o 7-130
infothreads 7-130
Symbol Table Information 7-131
INFOAIGS. . . oo 7-131
INFOIOCAlS . ..o 7-131
infovariables. 7-131
iNfoaddress. o 7-132
INFOSOUNCES . . . oo 7-132
infofuNCtions. 7-132
INfO Y PES. 7-133
iNfowhatis. 7-133
inforepresentation.t 7-133
infodeclaration 7-134
iNfofiles. ... 7-134
INfOlINE. .. 7-134
Defining and USINg MaCrOS.ottt et e 7-135
define ... 7-135
Referencing Macrosot 7-138
INFOMBCIOS. . . . o e 7-140

Chapter 8 Simple Full-Screen Interface

Using the Simple Full-Screen Interface. 8-1
Editing Commands in the Simple Full-Screen Interface. 8-2
Monitor Window - Simple Full-Screen. ... 8-2

Chapter 9 Graphical User Interface

NightView GUI CONCEPES oottt 9-1
GUI OVEIVIBIW e e e e e e e e e e 9-1
GUIONIINneHEID ... 9-2

Context-Sensitive Helpo 9-3
HelpMenu. 9-3
HeElpBUONS oo e 9-5

15

NightView User’s Guide

HelpCommand 9-5
GUI COMPONENESottt e ettt 9-5
TeXtINPULANEES 9-5
COMBDOBOXES .. ottt e 9-6
SPIN BOXES. . . et 9-6
MESSagE ATEaS.o 9-6
File Selection Dialog BOXo v i e 9-8

List Selection Policies. 9-9
Dialoguesand Diadlog BOXES oo v i 9-10
Keyboard FOCUS. o 9-10
KBS, 9-11
SASNES 9-12
Toggle BULtONS. oo 9-12
GUI Command History. oo e 9-12
Understanding the Debug Window., 9-12
Debug Window Behavior i 9-13
Single ProcessModeo 9-14
Group ProcessModeo 9-14
Confirm Exit Dialog BoXo 9-15
Warning and Error Dialog BoXeso 9-15
Warning Dialog BOXo 9-15
Error Dialog BOX . . . oottt 9-16
Dialogue WINdowo 9-16
Dialogue MenU Bar.ot 9-16
Dialogue NightView Menu i 9-17
DialogUEMENU . . . oo e 9-17
Dialogue HEIpMenu 9-17
Dialogue Identification Area 9-18
Dialogue MESSA0E AT . . .\ ottt e et e e 9-18
Dialogue /O Ar€a.o oo 9-18
Dialogue Interrupt Button. 9-18
Dialogue Qualifier Area 9-18
Dialogue Command Area.ottt 9-19
ProCeSS SUMMAIYot 9-19
Dialogue Window DialogBOXeSt 9-19
Program ArgumentsDialogBoxX 9-19
Attach Dialog BOX. . .. oo 9-20
Debug WINdow 9-21
Debug Menu Bar.o 9-21
Debug NightView Menu 9-21
Debug ProcessSMenU.ot 9-22
Debug SoUrCEMENUo 9-23
Debug Eventpoint Menuo 9-25
Debug View Menu.t 9-27
Debug Display Menu. 9-29
DebugHelpMenuo 9-30
DebUg MESSAgE ATBa . . . o oot e 9-30
Debug ldentification Areat 9-30
Debug Source Lock Button.o 9-30
Debug Source FileName 9-31
Debug StAtUS ATEA oo 9-31
Debug SourceDisplayo voii 9-33
Debug Command BULONS.t 9-34
Debug Interrupt BULtON.o 9-37

16

Contents

Debug Qualifier Area. 9-37
Debug Command Ar€a.o oo 9-37
DebUg GroUP AFEaL. . . . oot e 9-37
Debug DIidlog BOXES. oottt 9-38
Debug Group Selection DialogBoOXo 9-38
Debug Source Selection Dialog BOX. . ..o v i 9-39
Debug File Selection Diadlog BOX oo oo v e 9-40
Debug Eventpoint Dialog BOXES.o i 9-40
Debug Eventpoint Summarize/Change DidlogBox 9-44
Remote Login Dialog BOX oou it 9-47
Monitor Window - GUIo 9-50
DataWInNdOWo 9-51
DataMenuBar. 9-51
DataNightView Menu e 9-51
DataOptioNSMENU oottt e e 9-51
DataDisplay Menut 9-52
DataHelpMeNU e 9-52
DataDisplay Ar€aot 9-52
Dataltems. 9-53
ExpressionDataltem. ... 9-53

Loca VariablesDataltemc.oo .. 9-54
RegistersDataltem ... 9-54

Stack Dataltem 9-54
ThreadsDataltem 9-54
DataltemPopupMenu. 9-54
DataWindow Diadlog BOXES.o ottt 9-57
DataWindow ItemDialogBOX.o 9-57
DataWindow Add EXPressionou e 9-57
DataWindow Add Loca Variables., 9-58
DataWindow Add Registers. 9-58
DataWindow Add Stacko 9-58
DataWindow Add Threads. 9-58
Data Window Copy EXPressionc.oiiiniiininnnnannn. 9-58
Data Window Default Label Columns 9-59
Data Window Default Scroll Lines., 9-59
Data Window Edit EXPressionoouiiiiineinnannnnanns 9-59
DataWindow EXpand Tree.o e 9-59
DataWindow Label Columns. 9-59
Data Window MOVE EXPressionovve i een 9-60
DataWindow Move Local Variables 9-60
DataWindow Move Registers 9-60
DataWindow MoveStack. 9-60
DataWindow MoveThreads, 9-60
DataWindow Scroll Lines 9-60
DataWindow SUbSCIipt Arrayoooo e 9-61
Data Window Subscript ENUM ATTaY . ..o o 9-61
DataWindow TeXt QUENY oot e 9-61
DataWindow Value QUENYt 9-61
Global WINAOW 9-61
Global MenuBar 9-62
Global NightView Menu. ... 9-62
Global HElpMenu. 9-62
Global OULPUL ATEAot e 9-62
Global Interrupt BULtON e 9-62

17

NightView User’s Guide

Global Qualifier Area. 9-63
Global Command Area.t 9-63
HeEpWINdowo 9-63

Appendix A System Resource Requirements

Appendix B Summary of Commands

Appendix C Quick Reference Guide

INvoKing NIGhtVIEW. oo e C-1
Controllingthe Debugger.ot C-1
QUItiNg NIghtVIew. C-1
Managing DialOgUES.ottt e C-1
Dialogue Input and OULPULot e C-2
ManNaging PrOCESSES oottt ettt e e C-2
Setting MOOES.o C-3
Debugger Environment Controlt C-4
SOUrCE RIS . o C-4
Viewing Source Files C-4
SEArCNING . .ot C-4
Examining and Modifying. C-4
Manipulating EVentpoints C-5
ControlliNg EXECULION oo C-7
SEleCting CoNtEXE.ot e C-7
Miscellaneous CommandsS.ottt C-8
INFOCOMMANAS oot e e C-8
Status Information. C-8
Symbol Table Information i C-9
Defining and USINg MaCroS.o ettt e C-10

Appendix D GUI Customization

ApPPlICAtION RESOUICES o ottt e e e e e e e e e D-1
NIghtStar RESOUICES o oottt e e e e e D-1
Using NightStar ReSOUrCeso oot e D-2
NightStar FONt RESOUICES oo vt e D-3
NightStar Color RESOUICESo ettt D-4
NIghtVIew RESOUICESot D-5
FONt SElECtion D-6
Color SEleCtion.o D-6
Monochrome Displayot D-7
ColOr DisPlay . . oot D-7
WINdoW GEOMELTY . . . o .ttt et e e e e D-7
Widget Hierarchyo D-8

Appendix E Implementation Overview

Appendix F Performance Notes

Debug Agent Performance.t F-1

18

Contents

Appendix G Tutorial Files

CRIES. .o G-1
MSO. N . G-1
7= 11 X G-1
PArENL.C . . . G-2
Child.c .. G-2
Fortran Files. G-3
01 PP G-3
MaIN . G-3
ParENt.f. L G4
Child.f. . G-4
AdaFIlEs. ... G-5
7= 11 - G-5
PArENL.A . . . e G-6
childa G-7

Appendix H Reporting Bugs

Glossary

Index

Tables
Table 3-1. Eventpoint SUMMaryoouu it e 39
Table 7-1. Special '$ CONSIIUCES oot 7-4
Table 7-2. Predefined Convenience Variables 7-6
Table 7-3. POWErPC REQISErSottt e e e 7-8
Table 7-4. Regular EXPreSSioNnSo v vttt e e 7-12
Table7-5. Wildcard Patternsot e e 7-14
Table 7-6. Source LineDecorationS. vt it 7-63
Table 7-7. Eventpoint Commandsiiit i 7-78

19

NightView User’s Guide

20

A Quick Start

1
A Quick Start

This chapter is for people who want to start using the command-line version of the
debugger before reading the whole manual. Y ou may also be interested in the graphical-
user-interface (GUI) version of this chapter in Chapter 2 [A Quick Start - GUI] on page
2-1. Thereisamore thorough tutorial in Chapter 4 [Tutorial] on page 4-1.

If you are familiar with the GNU debugger, gdb™, you should have very few problems
with NightView. The commands are almost all identical. The biggest difference
between NightView and other debuggers is how you tell NightView what program to
debug and how you start that program.

If you get any errors, the error message tells which section of the manua can help you
determine what went wrong. At any time, you can ask the debugger to display help on an
error message by mentioning that section's name as the argument to the hel p command
(see “help” on page 7-112).

The rest of this chapter goes through a sample debug session on a small program. Feel
free to dive right into the debugger. If you get into trouble, use the hel p command to
get out of it.

Sample Program

This section lists the program used as an example through the remainder of the chapter.
The program does not have any bugs in it; it will be used to show how to run a program,
set breakpoints, look at variables, etc. You can copy this file from /usr/1i b/
N ght Vi ew f act . c into your own directory. The following program is in the file
fact.c:

11

NightView User’s Guide

Starting Up

1-2

1 #include <stdio. h>

2

3 static int factorial(x)

4 int x;

5 |

6 if (x <= 1) {

7 return 1,

8 } else {

9 return x * factorial (x-1);
10 }

1}

12

13 void

14 mai n(argc, argv)

15 int argc;

16 char ** argv;

17 {

18 int i, errors;

19 for (i =1; i < argc; ++i) {
20 long xl;
21 int x;
22 int answer;
23 char * ends = NULL
24 xI = strtol (argv[i], &ends, 10);
25 x = (int)xl;
26 answer = factorial (x);
27 printf("factorial (%) == %\n", X, answer);
28 }
29 exit(0);
30 }

The remainder of this chapter assumes that you compiled f act . ¢ and put the resulting
executableinf act :

cc -g -o fact fact.c

You can start NightView with or without a program name. If you start it with a program
name, NightView offers you the chance to debug the program in a dialogue shell (see
“Dialogues’ on page 3-4). If you start NightView without a program name or you want to
debug another program, you must execute the program with the r un command (see “run”
on page 7-30) in adiaogue shell.

Below is an example of starting up the debugger with a program name. Note that
throughout the quick start, the version and the link time might not match exactly for your
version of NightView. Also, some of the shell output and other messages may not come
out exactly as shown. Some messages might not appear, or additional messages might
appear, depending on your environment.

Getting Help

A Quick Start

$ nview -nogui ./fact
N ght Vi ew debugger - Version 5.1, linked Thu Jan 13 10:24:51 EST 2000
Copyright (C 2000, Concurrent Conputer Corporation

In case of confusion, type "help"

Note that you invoked NightView with a program name argument . / f act . NightView
responded with information about the debugger.

Now NightView will prompt you for information about running the program.

Do you want to debug program'./fact'? y

Type in the argunents you want to supply to program'./fact'.
Argunents: 7

New process: |ocal:2347 parent pid: 2340
Process | ocal : 2347 is executing /users/bob/fact.
Readi ng synbols from /users/bob/fact...done
Executable file set to /users/bob/fact

/usr/1ib/ N ghtVi ew ReadyToDebug

$ /usr/1ib/ N ghtView / ReadyToDebug

$./fact 7

(1l ocal)

NightView requested information about the program and its arguments and you
complied.

NightView always runs a special program, / usr/ 1 i b/ Ni ght Vi ew/ ReadyToDebug.
This program helps NightView synchronize with the shell. That's why you see that line
in the output. You might see only one echo of /usr/lib/N ghtView
Ready ToDebug, depending on how quickly the dialogue shell starts. The dollar signs
("$") are prompts from the shell.

NightView automatically created a dialogue named | ocal ; it also displayed the string
I ocal asthe prompt, showing that by default, commands apply to that diaogue (or the
processes running in that dialogue).

The debugger waited for the new program to get started. Because sending input to a
dialogue is just like typing commands to a shell (the dialogue is really running the same
shell program you normally use), this caused the f act program to be executed with the
single argument 7.

If the f act program had required input, you would have used the! command to send the
input to the program. See “!” on page 7-27.

When the dial ogue executed the program, NightView got control and informed you that a
new process was just started in dialogue | ocal and told you that the process id was
2347.

Because this is the only program running in dialogue | ocal , you do not have to do
anything specia to cause any commands you type to refer to this process; the default
qualifier is aready set to | ocal , so commands will automatically apply to the one
process running there.

Next you will enter a bogus command. Note that throughout this section, the help text
and display size may not exactly match your NightView session.

1-3

NightView User’s Guide

(local) foo

Error: Unrecogni zabl e command "foo". [E-comrand_proc003]

NightView responded to the bogus command with an error message and an error code
([E- command_pr oc003]).

Now get NightView to tell you more about the error message.

(local) help
E- command_pr oc003:
Unr ecogni zabl e command "string".

STRING is not a valid N ghtView command. See "Summary of
Comands" .

You typed hel p without any arguments to see more information about the error
message. NightView showed the extended error information.

In the command-line and and simple screen interfaces, online help is available only for
error messages. Consult a printed manua or view the online help with NightView's
graphical user interface or with nhel p(1) .

If you are familiar with gdb, the remainder of this chapter will be fairly boring because
(once you get the program started) NightView and gdb look very much alike (at least for
all the commands demonstrated in this simple example).

Setting a Breakpoint

1-4

Youwill now usethel i st command to look at the source.

(local) I 1

1 | #include <stdio.h>

2 |

3 | static int factorial (x)
4 | int x;

5 | {

6 * | if (x <= 1) {

7 * | return 1;

8 | } else {

9 * | return x * factorial (x-1);}
10 | }

(local)

Youtoldthel i st command (abbreviated to| inthisexample) to list at line 1.

Y ou how decide where you want to set a breakpoint. An interesting spot in this program
isther et ur n statement in the recursive routine f act or i al where it is about to start
backing out of the recursive calls.

(local) b 7
| ocal : 2347 Breakpoint 1 set at fact.c:7
(local)

Finishing up

A Quick Start

Ther et urn wasonline 7, so you used the br eakpoi nt command (abbreviated to b)
to set abreakpoint online 7.

Complete descriptions of the commands you used here appear in “list” on page 7-58 and
“breakpoint” on page 7-80.

Now run the program until it reaches the breakpoint.

(local) c

| ocal : 2347: at Breakpoint 1, 0x100026fc in factorial (int
x = 1) at fact.c line 7

7 B return 1;

(local)

You used the cont i nue command (abbreviated to ¢) without any arguments. This told
the program to start running. It ran until it hit the breakpoint that you had set on line 7.
Note that your process ID and addresses will differ.

Now look at the call stack.

(local) bt

#0 0x100026fc in factorial (int x = 1) at fact.c line 7
#1 0x1000271c in factorial(int x = 2) at fact.c line 9
#2 0x1000271c in factorial(int x = 3) at fact.c line 9
#3 0x1000271c in factorial(int x = 4) at fact.c line 9
#4 0x1000271c in factorial(int x =5) at fact.c line 9
#5 0x1000271c in factorial(int x = 6) at fact.c line 9
#6 0x1000271c in factorial(int x =7) at fact.c line 9
#7 0x10002784 in main(int argc = 2, char **argv =

Ox2f f 7eaec)
at fact.c line 26
(local)

You used the bt (backt race) command to display the call stack. You saw all the
expected recursive calls (see“ backtrace” on page 7-65).

Now look at the value of the variable x.
(local) p x
$1: x =1
(local)

You used the p (pri nt) command to print the variable x, verifying that it was egual to
1.

Now finish running the program.
(local) c

factorial (7) == 5040
Process | ocal : 2347 is about to exit normally

1-5

NightView User’s Guide

1-6

#0 0x100027ac in nmain(int argc = 2, unsigned char
**argv = Ox2ff 7eaec)
at fact.c line 29
29 <> exit(0);
(local)

You used thec (cont i nue) command to allow the process to run to completion.
Exit from NightView.

(local) ¢

Kill all processes being debugged? y
You are now | eaving N ghtView ..
Process | ocal : 2347 exited normal |y
D al ogue | ocal has exited.

$

Finally you typed g (qui t) to leave the debugger. The fact program had not fully
exited, so NightView prompted, asking if the program should be killed. Y ou responded
with y, and the sample session ended. The commands used in this section appear in
“continue” on page 7-98, “backtrace” on page 7-65, “print” on page 7-66, and “quit” on
page 7-17.

A Quick Start - GUI

2
A Quick Start - GUI

This chapter is for people who want to start using the graphical-user-interface (GUI)
version of the debugger before reading the whole manual. You may aso be interested in
the command-line version of this chapter in Chapter 1 [A Quick Start] on page 1-1. There
is amore thorough tutorial in Chapter 5 [Tutorial - GUI] on page 5-1.

In this manual, the words click, drag, press, and select always refer to mouse button 1.

This entire manual is available through the online help system built into the debugger. 1f
you get any errors, the error message tells which section of the manual can help you
determine what went wrong. At any time, you can ask the debugger to display any
section of the manua by clicking on the Help menu or using the H mnemonic. See
“Help Menu” on page 9-3. Click on the Table of Contents menu item or use the n
mnemonic. NightView puts up a Help Window that displays the table of contents for the
manual. See “Help Window” on page 9-63. You can read this manua section by
clickingon A Quick Start - GUI.

The rest of this chapter goes through a sample debug session on a small program. Feel
free to dive right into the debugger. If you get into trouble, use the Help menu to get out
of it.

Sample Program - GUI

This section lists the program used as an example through the remainder of the chapter.
The program does not have any bugs in it; it will be used to show how to run a program,
set breakpoints, look at variables, etc. You can copy this file from /usr/1i b/
N ght Vi ew f act . c into your own directory. The following program is in the file
fact. c:

2-1

NightView User’s Guide

1 #include <stdio. h>

2

3 static int factorial(x)

4 int x;

5 |

6 if (x <= 1) {

7 return 1,

8 } else {

9 return x * factorial (x-1);
10 }

1}

12

13 void

14 mai n(argc, argv)

15 int argc;

16 char ** argv;

17 {

18 int i, errors;

19 for (i =1; i < argc; ++i) {
20 long xl;

21 int x;

22 int answer;

23 char * ends = NULL

24 xI = strtol (argv[i], &ends, 10);
25 x = (int)xl;

26 answer = factorial (x);

27 printf("factorial (%) == %\n", X, answer);
28 }

29 exit(0);

30 }

The remainder of this chapter assumes that you compiled f act . ¢ and put the resulting
executableinf act :

cc -g -o fact fact.c

Starting Up - GUI

2-2

You can start NightView with or without a program name. If you start it with a program
name, NightView offers you the chance to debug the program in a dialogue shell (see
“Dialogues’ on page 3-4). If you start NightView without a program name or you want to
debug another program, you must execute the program in the dialogue I/O area (see
“Dialogue 1/0 Area’ on page 9-18). (The didogue /O area is labeled Dialogue 1/O:
Run your programs in this shell.)

Below is an example of starting up the debugger with a program name. Note that
throughout the quick start, the version and the link time might not match exactly for your
version of NightView. Also, some of the messages might not come out exactly as shown.
Some messages might not appear, or additional messages might appear, depending on
your environment.

A Quick Start - GUI

$ nview ./fact

NightView displays the Dialogue Window and a dialog box. See “Diaogue Window” on
page 9-16 and “Program Arguments Dialog Box” on page 9-19. The dialog box says the
following:

To debug program'./fact', enter any command-li ne
argunents you want to supply to the program and press OK

Press Cancel if you do not want to debug program
"./fact'.

Enter the number 7 as an argument and click on the OK button.
The dialogue 1/0 area displays the following information:

/usr/1ib/ N ghtVi ew release/ Ready ToDebug
$ /usr/lib/ N ghtViewrelease/f ReadyToDebug
$./fact 7

NightView aways runs a specid program, /usr/|ib/ N ghtVi ew release/
Ready ToDebug (release isthe NightView release level). This program helps NightView
synchronize with the shell. That's why you see that line in the output. You might see
only one echo of /usr/1ib/Ni ghtVi ew release/ ReadyToDebug, depending on
how quickly the dialogue shell starts. The dollar signs (""$ ") are prompts from the shell.

When NightView started, it automatically created a dialogue named | ocal ; it aso
displayed the string local as the qualifier, showing that by default, commands apply to
that dialogue (or the processes running in that dia ogue).

Y our answers to the dialog box sent the line ./fact 7 tothel ocal dialogue and caused
the debugger to wait for the new program to get started. Because sending input to a
dialogue is just like typing commands to a shell (the dialogue is really running the same
shell program you normally use), this caused the f act program to be executed with the
single argument 7.

If the fact program had required input, you would have typed the input into the
dialogue I/O area.

NightView puts up a Debug Window (see “Debug Window” on page 9-21). The debug
message area (see “Debug Message Ared’ on page 9-30) contains a message like the
following:

New process: |ocal: 2347 parent pid: 2340
Process | ocal : 2347 is executing /users/bob/fact.
Readi ng synbol s from/users/bob/fact...done
Executable file set to

[users/bob/ fact

Swi tched to process | ocal:2347.

When the dial ogue executed the program, NightView got control and informed you that a
new process was just started in dialogue | ocal and told you that the process id was
2347.

The debug identification area displays the program name f act . See “Debug Identifica-
tion Area’ on page 9-30. The debug source file nameisf act. c. See“Debug Source

2-3

NightView User’s Guide

Getting Help -

2-4

File Name” on page 9-31. The debug status areashows Stopped for exec. See“Debug
Status Area” on page 9-31. The source code from file f act . ¢ appears in the debug
source display, centered around nai n. See“Debug Source Display” on page 9-33.

GUI

Next you will enter a bogus command. Note that throughout this section, the help text
and display size may not exactly match your NightView session.

The debug command area is labeled Command:. Click in the debug command area (see
“Debug Command Ared” on page 9-37) and issue the following command:

f oo
Press Return to enter the command.
NightView responded to the bogus command with the following message and error code:

Error: Unrecogni zabl e command "foo0". [E-comrand_proc003]

Now get NightView to tell you more about the error message. Click on the Help menu or
use the H mnemonic. See “Help Menu” on page 9-3. Click on the On Last Error
menu item or use the E mnemonic. NightView puts up a Help Window that displays the
following extended error information:

E-command_proc003
MESSAGE

ERROR: Unrecognizable command "string".

EXPLANATION

string isnot avalid NightView command. See Summary of Commands.

Next, dismiss the Help Window by selecting Exit from the File menu. See “Help
Window” on page 9-63.

Next you will read about the | i st command. Click on the Help menu or use the H
mnemonic. See “Help Menu” on page 9-3. Click on the On Commands menu item or
use the m mnemonic. NightView puts up the following Help Window with a menu of
NightView commands.

Summary of Commands

This section gives a summary of all the commandsin NightView. Thetableis
organized a phabetically by command. The abbreviations for the commands are
included with the corresponding commands, rather than al phabetically.

A Quick Start - GUI

Also, remember that you can abbreviate commands by using a unique prefix.

Pass input to a dia ogue.
agent poi nt

Insert acall to adebug agent at a given location.
(etc.)

Most of the information would not fit on your display. The Help Window showed this by
having only a small thumb or slider on the vertical scroll bar. Scroll down to the | i st
command by moving the thumb or by clicking on the arrow heads of the vertical scroll
bar. Click on the | i st command. NightView displayed the following Help Window
with information about thel i st command.

l'ist

List asource file. Thiscommand has many forms, which are summarized bel ow.
l'i st where-spec

List ten lines centered on the line specified by where-spec.

I i st where-specl, where-spec2

List the lines beginning with where-specl up to and including the where-spec2 line.
(etc.)

To see more about the | i st command, you could move the thumb or click on the arrow
heads of the vertical scroll bar. However, rather than reading more, you make the Help
Window go away by selecting Exit from the File menu.

Setting a Breakpoint - GUI

Y ou how decide where you want to set a breakpoint. An interesting spot in this program
isther et ur n statement in the recursive routine f act ori al where it is about to start
backing out of the recursive calls.

Click on the line with the return statement (line 7) in the debug source display. Then
click on the Breakpoint debug command button.

Ther eturn wason line7, so you clicked on that line, then clicked on the Breakpoint
debug command button to set a breakpoint on that line. The source line decoration beside
line 7 is now a B for breakpoint. See “breakpoint” on page 7-80 and “Source Line
Decorations’ on page 7-63.

NightView responds with:

| ocal : 2347 Breakpoint 1 set at fact.c:7

2-5

NightView User’s Guide

Finishing up -

2-6

GUI

Now you want to run the program until it reaches the breakpoint. Click on the Resume
button. See“Debug Command Buttons’ on page 9-34.

Clicking on Resume told the program to start running. It ran until it hit the breakpoint
that you had set on line 7. The source line decoration beside line 7 isnow aB=.

NightView responds with:

| ocal : 2347: at Breakpoint 1, 0x100026fc in factorial (int
x = 1) at fact.c line 7

Note that your process ID and addresses will differ. Now look at the call stack. Click in
the debug command area and issue the following command:

bt

You used the bt (backt r ace) command to display the call stack. See “backtrace” on
page 7-65. You saw all the following expected recursive calls in the debug message area.
See “Debug Message Ared’ on page 9-30. Note that the output may scroll in the debug
message area.

#0 0x100026fc in factorial (int x = 1) at fact.c line 7
#1 0x1000271c in factorial(int x = 2) at fact.c line 9
#2 0x1000271c in factorial(int x = 3) at fact.c line 9
#3 0x1000271c in factorial(int x = 4) at fact.c line 9
#4 0x1000271c in factorial(int x =5) at fact.c line 9
#5 0x1000271c in factorial(int x = 6) at fact.c line 9
#6 0x1000271c in factorial(int x =7) at fact.c line 9
#7 0x10002784 in main(int argc = 2, unsigned char **
argv = Ox2ff7eaec) at fact.c line 26

Now look at the value of the variable x. Drag the mouse pointer over the variable x
anywhere it appears in the source display. Click on the Print button. See “Debug
Command Buttons” on page 9-34.

NightView showed that the value of x was equal to 1. Y ou saw the following output in
the debug message area.

$1: x =1

Now finish running the program. Click on the Resume button. See “Debug Command
Buttons” on page 9-34.

This allowed the process to run to completion. NightView showed the call to exi t (0)
in the debug source display and displayed the following message in the debug message
area.

Process | ocal : 2347 is about to exit normally

NightView displays the following message in the dialogue I/O area. See “Diaogue 1/0
Area’ on page 9-18.

factorial (7) == 5040

A Quick Start - GUI

Exit from NightView by selecting the dialogue NightView menu or debug NightView
menu. See “Dialogue NightView Menu” on page 9-17 or “Debug NightView Menu” on
page 9-21. Click on NightView or use the N mnemonic. Click on the Exit (Quit
NightView) menu item or use the X mnemonic.

NightView responds with awarning dialog box. The warning dialog box says:
Kill all processes bei ng debugged?

Finally you click on the OK button to leave the debugger. The f act program had not
fully exited, so NightView prompted, asking if the program should be killed. You
responded by clicking OK, and the sampl e session ended.

2-7

NightView User’s Guide

2-8

Concepts

3
Concepts

This section describes concepts you will need to understand in order to use the debugger
effectively.

Many of the concepts described in this section are also defined in the glossary. The
glossary is an alphabetical list of the concepts — the description here is organized
hierarchically.

Debugging

The term debugger is actually a misnomer. A debugger does not remove bugs from your
program. Instead, it is atool to help you monitor and examine your program so that you
can find the bugs and remove them yourself.

A debugger primarily lets you do two things:

1. start and stop the execution of your program; and,

2. examine and alter the contents of the program's memory.

There are many ways to do these things, so there are lots of debugger commands. Also,
some of the commands control the debugger itself.

NightView is a symbolic debugger. That means that you can talk about your program
using the same high-level language constructs that you use when you write programs.
You can refer to variables, expressions and procedures as they appear in your program
source. You can aso refer to source files and line numbers within those files. For
example, you can tell your program to stop at a particular line. In order to use the
symbolic capahilities of the debugger, you must compile and link your program with
options that tell the compiler and linker to save the symbolic information aong with your
program.

Sometimes, you want to be able to debug at a lower level, referring to machine language
instructions and registers. NightView letsyou do that, too.

Accessing Files

During the course of debugging, NightView will likely have to access a number of files:
executable files for programs being debugged, source files for those programs, and
possibly object and library files. Those files must all reside, or be accessible from, the
system on which NightView is executing.

3-1

NightView User’s Guide

If you are debugging processes running on some other system, you will probably want to
have some of that system's files mounted via NFS™ on the system running NightView.
Furthermore, your debugging will probably go much easier if the pathnamesto those files
(especially the executables) are the same on both systems. This will allow NightView to
find the executable files automatically most of the time. See “Finding Y our Program” on
page 3-8. If the pathnames of the executable files are different, you can use the
transl at e-object-file command to tell how to transate the names. See
“transl ate-object-file” on page 7-21.

Programs and Processes

It is necessary to distinguish between a program and a process. A program is something
that you write, compile and link to form a program file. A process is an instance of
execution of aprogram. There may be several processes running the same program.

Multiple Processes

Families

3-2

The most typical use for NightView is debugging a single program running as a single
process, but NightView can also be used to debug an application consisting of multiple
processes, so the debugger has ways to describe multiple processes. If you come to a
section of the manual that describes multiple processes, and you are only debugging one
process, you can usually just ignore the parts about multiple processes.

You may inadvertently create multiple processes, even though you only want to debug
one. This may happen if your program forks. For example, your program may call
system This call works by using the f or k service to create another process, which
then runs a shell. A process created this way is called a child process. Because
NightView has the capability of debugging child processes, you are notified when this
happens. If you don't want to debug the child process, then you should det ach from it,
which allows it to run without further interference from the debugger. See “detach” on
page 7-32. If you know in advance that you don't want to debug any child processes, you
can usetheset - chi | dr en command to specify this. See “set-children” on page 7-41.

If you use pipelines in the dialogue shell, or invoke shell scripts which call many other
programs, you are likely to get multiple processes which you are not interested in
debugging. (Diaogues are described in a later section, see “Dialogues’ on page 3-4.)
Again, if you don't want to debug those other processes, you should detach from them.

Another way to determine which processes are debugged is to use debug and nodebug,
which let you describe which processes you want to debug by their program names. See
“nodebug” on page 7-20.

One of the handy things NightView lets you do is group processes together into families.
You do this by giving the family a name and telling the debugger what processes are in

Attaching

Detaching

Concepts

that family. For example, you might have several processes executing the same program,
and you might want to set a breakpoint at the same source linein all of them. You could
define a family containing all of the processes and then use that family name with the
br eakpoi nt command. See*“family” on page 7-40.

Sometimes you want to debug a process that is already running, rather than starting up a
new process running the same program. You can do this with the att ach command
(see “attach” on page 7-32).

In order to attach to a process, you must know its process identifier (or PID). Y ou can get
alist of running processes and their PIDS by running the ps(1) program. You can use
the shel | command (see “shell” on page 7-113) to run ps(1) . If you want to attach to
a process running on another machine, you may have to use the remote shell command
(/usr/ucb/rsh)torunps(1) ontheright machine.

Once you have attached to a process, you can debug it in the same way you would debug
a process started normally from a didogue. An attached process is debugged using
/ proc (see“Debugger Mechanisms’ on page 3-17).

For the security restrictionson at t ach, see“Attach Permissions’ on page 3-36.

If the process to which you attach is stopped (<CONTROL z> stops a foreground processin
most shells), then the attach will not take effect until the process is continued from the
shell.

Detaching a process is the inverse of attaching one. When you detach a process it starts
running independently of the debugger. Nothing it does will get the debugger's attention.
Any children it forks will aso be ignored by the debugger. Y ou have to explicitly attach
to the process again to make the debugger notice it.

Detaching from an exited or terminated process completely removes the process from the
system. See “Exited and Terminated Processes’ on page 3-16. Detaching from or killing
a pseudo-process associated with a core file (see “Core Files’ on page 3-4) is the only
way to make that pseudo-process go away.

Detaching from a process causes NightView to forget all the eventpoint settings and other
information it remembers about the process.

NightView typically uses some memory in the debugged process. If you detach and re-
attach repeatedly, NightView will eventually be unable to find memory where it needsit in
the process. See Appendix E [Implementation Overview] on page E-1. See also “ set-
patch-area-size” on page 7-50.

3-3

NightView User’s Guide

Core Files

Qualifiers

Dialogues

34

A core file is a snapshot image of a process created by the system when the process
aborts (typical reasons for creating a core file include referencing an address outside the
memory allocated to the process, dividing by zero, floating-point exceptions, etc.).
NightView alows you to debug core files as well as processes (see “core-file’ on page
7-34). Since a corefile is not actualy arunning process, al you can do islook at it. None
of the commands which require a running process will work on core files (for example,
you cannot cont i nue a core file and you cannot evaluate any expression containing a
function call).

If a core fileis from a process that used dynamic linking, the core file must be debugged
on the same system where the process was running, otherwise information from the
libraries may not match the core file.

If you are not debugging multiple processes, you will probably never need to worry about
command qualifiers, but for multiprocess debugging, they are essential. A qualifier is
used to restrict a command so it operates only on specific processes. There is always a
default qualifier in effect, but any command may be given an explicit qualifier.

Most qualified commands act as though the command was specified once for each
process (for instance, the br eakpoi nt command sets a separate breakpoint in each of
the processes specified in its qualifier).

Some commands treat the qualifier in specia ways, and other commands ignore the
qualifier. Any specia treatment is described in the section on each command.

Qualifiers are specified as a prefix on the command. The complete description may be
found in “Command Syntax” on page 7-1 and “Qualifier Specifiers” on page 7-10.

Dialogues are one of the most important (and unique) concepts in NightView.
Essentially, a dialogue is just an ordinary shell where you run commands as you would
normally run them in the shell (in fact, you are running your normal shell), but in a
dialogue, you have the opportunity to debug any or al of the programs you run in the
dialogue shell. Most debuggers have special commands to tell the debugger which
program to debug and what arguments to give it. In NightView, the way to debug a
program is to run it within a dialogue shell. This means you can debug a program that is a
member of a pipe, or isinvoked by some other program, and you can run the program in
the debugger using the exact same invocation you would normally use outside the
debugger. For instance, if your programs run under the control of the Frequency-Based
Scheduler, you could invoker t uti | or NightSim™ from your dialogue.

The environment variable NI GHTVI EW ENV is set to 1 within a dialogue shell. This
allows you to alter the behavior of programs and scripts running in the dialogue shell.

Dialogue 1/O

Concepts

For example, you may wish to avoid running some programs in a shell initiaization file
when the shell is adialogue shell.

Once the shell is started, you can change directory, set environment variables, or set
ul i mt(2) parametersjust like anormal shell. Any processes you start in the dialogue
will automatically be debugged, except for programs in the standard directories such as
/ bi n. You may alter this default behavior using the debug and nodebug commands.
See “debug” on page 7-20 and “nodebug” on page 7-20.

When you start a program in a dialogue shell, the debugger prints a message describing
the new process that just started in the dialogue. The information printed includes the
program name, the arguments it received on startup and the process identifier (PID). This
new process is stopped immediately prior to executing any code. At this point you can
decide what to do with the process (set breakpoints, etc.) and tell it to continue, or detach
from it and let it run without being debugged.

At startup, NightView provides an initial dialogue named | ocal . This initial dialogue
shell inherits the current working directory and environment variables in existence at the
time you started the debugger.

You may create additional dialogues at any time (see “login” on page 7-18). Multiple
dialogues allow you to debug distributed systems of processes running on different
computers. Each didogue has a name. Unless you specify otherwise, the name of a
dialogue is the host name of the system to which it is connected. You may use dialogue
names in command qualifiers to tell NightView to which system you wish to talk, such
as, when you want to run a command in a particular dial ogue.

Y ou send input to a dialogue shell or to a program you are debugging in the dialogue by
using the ! command (see “!” on page 7-27) or the r un command (see “run” on page
7-30). The qudifier on the command determines which dialogue receives the input data
In the graphical user interface, you can send input to a dialogue with the dialogue I/0
area (see “Dialogue 1/0 Area’ on page 9-18) for that dialogue.

Since each dialogue is a separate shell, the programs running in separate dialogues may
generate output at any time. In the command-line interface, it would be confusing to
have these print at any time. Instead, all the output generated by each dialogue shell and
the programs running in it is logged by NightView. You can control this log using the
set - show command (see “set-show” on page 7-28), and you can review the log with
the show command (see “show” on page 7-29). In the graphical user interface, dialogue
output goesto the dialogue I/O areafor that dialogue.

Real-Time Debugging

By running NightView on a development system and starting a dialogue on a rea-time
system you are debugging, you can minimize the impact of the debugger on the real-time
system. Most of the debugger runs on the development system, and only a NightView
control program and the dialogue shell run on the rea-time system. Y ou can also control
the CPU, memory, and other resource allocations of debugger processes to help minimize

3-5

NightView User’s Guide

the impact of the debugger on critical resources. See “Remote Dialogues’ on page 3-6.

Monitorpoints provide a means of monitoring the value of variables in your program
without stopping it. See“Monitorpoints’ on page 3-10.

You may also want to use the debug agent mechanism in addition to / proc. See
“Debugger Mechanisms” on page 3-17. The debug agent allows you to manipulate your
process while it is running.

NightTrace™ is another tool you may find useful in debugging rea-time programs. It
allows you to gather performance information and record limited amounts of data with
minimal overhead. NightView provides facilities for using NightTrace from within the
debugger; see “ Tracepoints” on page 3-11.

Remote Dialogues

3-6

A remote dialogue is a shell, controlled by NightView, running on a system other than the
one on which NightView was initialy invoked. We refer to the system where NightView
was invoked as the "local system”, while the system where the remote dialogue shell is
running is referred to as the "target” or "remote system”.

Y ou may need to use aremote dialogue if:

¢ you need to debug programs running on multiple target systems simulta-
neously;

¢ your gpplication uses most of the system's CPU or memory resources, leav-
ing insufficient resources for NightView;

¢ the source filesfor your programs are not accessible on the target system;

¢ you do not wish to install all of NightView on the target system, perhapsto
conserve disk space on the target;

* you need to reduce network traffic on the target system by eliminating
NightView's GUI overhead;

* you need to reduce disk loading on the target system by eliminating Night-
View'sreading of source and object files.

When you use a remote dialogue, the NightView user interface runs on the local system,
while another process, named NightView.p, runs on the remote system to access and
control the processes you are debugging. The following activities are performed on the
local system in this case:

¢ dl user interaction, including command input/output and window manipu-
lation and updating;

¢ reading source and object files, including reading and interpreting debug
information in your program;

* evauation of expressionsin commands such as pri nt and x, except that
retrieving data from a debugged process (such as variable values) is per-
formed on the remote system.

ReadyToDebug

Concepts

The activities performed on the remote system are limited to storing and retrieving data to
and from a debugged process, controlling execution of a debugged process, and
supplying target-dependent information to the local system portion of NightView.
Additionally, NightView sometimes runs the C compiler on the target system to generate
code for eventpoints. See “ Eventpoints” on page 3-8.

You may wish to control how the target system alocates resources to NightView.p and
the dialogue shell, both to prevent them from interfering with your application and to
ensure that they get sufficient resources to give adequate response in NightView. You
can control the allocation of CPU and memory resources as well as the scheduling policy
and priority through either the | ogi n command or the remote login dialog. See “login”
on page 7-18. See“Remote Login Dialog Box” on page 9-47.

Note that the parameters you specify for the remote dialogue will be inherited by
processes you execute within that dialogue shell. Y ou may wish to usether un(1) shell
command when you run your application in the dial ogue shell.

There are some things you need to be aware of when you use a remote dialogue. Because
source files and debug information are read on the local system, those files (or copies of
them) need to be accessible on the local system. This is particularly true of the
executable program file, because that is where the debug information resides. When a
debugged process execs a new program, NightView attempts to determine the location
of the executable program file. See“Finding Y our Program” on page 3-8. With aremote
dialogue, NightView assumes that the pathname of the executable program file is the
same (or locates identical files) on both systems. If thisis not true, then NightView is not
able to read debug information for that program until you specify the correct pathname
with the synbol - fi | e command or use object filename trandations. See “symbol-
file’ on page 7-33. Also, see “trandate-object-file” on page 7-21.

You may need to configure your local and remote systems to be able to use NightView
remote dialogues. See Appendix A [System Resource Requirements] on page A-1 for
more information about configuring systems for NightView.

Creating a new dialogue involves logging into a system (see “login” on page 7-18). You
may login again as yourself, or as another user (subject to a password check). When a
dialogue s created, it executes your login shell (or, more accurately, the login shell of the
user whom you logged in as).

Logging in runs your . pr of i | e or other initialization file appropriate to your normal
login shell. The environment variable NI GHTVI EW ENV is set to the name of the local
system (that is, the one you are logging in from) during the shell initialization. Y our
. profi | e should avoid reading from the standard input if NI GHTVI EW_ENV has a non-
empty value.

The program /usr/lib/ N ghtVi ewrel ease/ ReadyToDebug is a specid
program used by NightView to synchronize with the didlogue shell (release is the
NightView release level). You will probably see this program name echoed when a
dialogue shell starts up. When NightView sees this program run, it knows that the shell
is through with any initiaization. NightView then considers any new processes that run
in the shell to be candidates for debugging. This allows the initialization to take place

3-7

NightView User’s Guide

without debugging the programs that might run during that time.

Finding Your Program

When a program is started up from a dialogue, NightView is notified that a new program
is executing, but there is currently no way for NightView to find out exactly what
program is running.

NightView tries to guess the name of your program by looking at the arguments, the
current working directory, and the PATH environment variable of the program. Usualy,
these correctly identify the program name, but not always. Then NightView can't tell
what the program nameis. Also, sometimes NightView may guess wrong.

NightView prints a message with the name of the program when the program starts up. If
this name is wrong, then you will need to tell NightView the name of the program by
using theexec- fi | e command. See“exec-file” on page 7-35.

Most shells aready do this correctly, so you will rarely need to worry about it. The
problem sometimes occurs in programs that run other programs.

Controlling Your Program

Eventpoints

3-8

NightView provides many ways to control the execution of a program you are debugging.

An eventpoint is a generic term which includes breakpoints, patchpoints, monitorpoints,
agentpoints, tracepoints, and watchpoints. All of these are different ways to debug or
modify the behavior of your program, and all of them are assigned unique numbers by the
debugger when you create them. These numbers are unique across all processes. For
example, if you use a command qualifier to set a breakpoint in many processes at once,
each breakpoint in each process is assigned a unique eventpoint number.

Agentpoints, breakpoints, monitorpoints, patchpoints and tracepoints are inserted
eventpoints. They are implemented by inserting code into your process. A watchpoint is
not an inserted eventpoint. This difference is mostly transparent to the user, but it does
cause some minor differences in behavior. Those differences are noted where

appropriate.

NightView allows you to set conditions on eventpoints, so the action associated with the
eventpoint is taken only if the condition is satisfied. For inserted eventpoints, the
condition is an arbitrary expression in the language of the routine where the eventpoint is
set (in other words, if you set a conditional eventpoint in a Fortran subroutine, you would
write the conditional expression in Fortran). NightView actually compiles the conditional
expressions and patches them into the program, so evaluating the condition does not

Concepts

require the debugger to take control. This means that setting a conditiona eventpoint only
adds the overhead required to evaluate the condition and the program will run at almost
full speed until the condition is satisfied. See “condition” on page 7-90. However, a
condition on a watchpoint is evaluated in the debugger. For watchpoints, the language of
the expression is determined by your language setting. See “set-language” on page 7-44.
Because watchpoint conditions are always evaluated in the global scope, if your language
setting is aut o, NightView eval uates the condition in the language of the main program.

You can aso specify an ignore count for an eventpoint. This means you must execute
past the eventpoint a certain number of times before it might be taken. The ignore count
is checked prior to the condition, so if you have both ignore counts and conditions, the
condition will not be checked until the ignore count is down to zero. See “ignore” on
page 7-94. Like conditions, the code to implement ignore counts is patched into the
program for inserted eventpoints, so the program will execute at nearly full speed until
the ignore count reaches zero. An ignore count on a watchpoint is evaluated in the
debugger.

There are several commands to manipulate eventpoints, but not every type of manipula-
tion makes sense for every type of eventpoint. Deleting, disabling, enabling, and attaching
ignore counts and conditions works for all types of eventpoints. See “Manipulating
Eventpoints’ on page 7-77.

Table 3-1. Eventpoint Summary

. Codeis May have
Action .
inserted commands
agentpoint call the debug agent X
breakpoint stop the process when the X X
breakpoint is reached
monitor point display the value of X X
expressionsin the moni-
torpoint window
patchpoint execute an expression or X
modify the flow of the
program
tracepoint record an event when exe- X
cution reaches the trace-
point
watchpoint stop the process when the X
process reads or writesa
variable in memory

Inserted eventpoints eval uate their conditions and ignore counts at full program speed, and
may be manipulated while the process is running. Watchpoint conditions and ignore
counts are evaluated in the debugger. Watchpoints may be enabled and disabled only
while the processis stopped.

3-9

NightView User’s Guide

Breakpoints

Monitorpoints

Patchpoints

3-10

A breakpoint is one of the most frequently used features of a debugger. You can set a
breakpoint at any place in a program you are debugging, and when execution reaches that
point, the program will stop. You may then use the debugger to examine the current
values of variables, set additional breakpoints, etc. See “breakpoint” on page 7-80.

You may aso specify an arbitrary set of debugger commands to execute each time a
breakpoint is hit (if it is a conditional breakpoint, that means only when the condition is
satisfied). See*commands’ on page 7-90.

If you are debugging a real-time program, you may wish to monitor the value of one or
more variables without interrupting the execution of your program. Monitorpoints allow
you to do this. A monitorpoint is code inserted at a specified location by the debugger
that will save the value of one or more expressions, which you specify. Because the
expressions are evaluated by the program within a specific context, the expressions may
reference loca stack variables and machine registers and may call functions in your
program. The saved values are then periodically displayed by NightView in a Monitor
Window (see “Monitor Window” on page 3-28). You can set a monitorpoint using the
nmoni t or poi nt command. See “monitorpoint” on page 7-85.

Note that the expressions you specify are evaluated every time execution passes the
location of the monitorpoint (unless the monitorpoint is disabled or has a condition or an
ignore count). However, NightView may not display every vaue saved by the
monitorpoint. If the monitorpoint location is executed more frequently than NightView
can update the Monitor Window, you will miss seeing some of the values evaluated by
the monitorpoint.

Note that there may be some delay between the time that NightView reads the values
saved by a monitorpoint and the time the values appear on your display. Therefore,
values sampled by different monitorpoints cannot reliably be related in time. However,
you may be sure that all the values sampled by a single monitorpoint were all evaluated at
the same time.

During the course of debugging, you may find a small error you would like to fix, but
you would aso like to continue debugging the program without recompiling and
relinking. The pat chpoi nt command (see “patchpoint” on page 7-81) alows you to
patch in a change to the memory image of the process and continue running. (Note that it
does not change the disk copy of the program file; recompiling and relinking is the only
way to make a permanent change.)

A patchpoint can cause an expression (including function calls) to be evaluated, modify a
variable, or cause the program to branch to a new location.

The | oad command (see “load” on page 7-75) provides the ability to make larger scale
changes by loading in whole object files. This feature may be used to replace defective
routines, or to load custom designed debugging routines that can do things like verify
complex data structures, or search through linked lists.

Tracepoints

Agentpoints

Watchpoints

Concepts

The manual for the NightTrace tool describes a library that may be used to generate trace
records by calling trace routines in your program. If you didn't initially build a program
with trace calls, (or you did, but decided later additional trace calls were necessary) the
tracepoi nt command (see “tracepoint” on page 7-84) may be used to patch in
tracepoints. The values traced may then be examined with the nt r ace tool. For more
information on NightTrace, seent race(1) .

Because the program runs at full speed through a tracepoint, you can use tracepoints in
real-time applications where breakpoints are unacceptable.

One significant difference between a tracepoint and a monitorpoint is that values
recorded by a tracepoint are all available for later analysis, values will not be "lost"
because of delays in displaying, as they may with a monitorpoint. Anocther differenceis
that tracepoints provide a reliable means of relating values of expressions at different
points of execution to the times those values were evaluated. Monitorpoints do not.
However, monitorpoints have the advantage of displaying information as it is happening,
whereas tracepoint data may be analyzed only after execution isfinished.

NightView allows you to control when the overhead of debugging occurs relative to your
program's execution, if you modify the program dlightly to insert calls to a special Debug
Agent (see “Debug Agent” on page 3-17). This can be useful for some rea-time
programs. NightView can insert the necessary code in your process for you, using the
agent poi nt command. See“agentpoint” on page 7-88. These inserted calls are called
agentpoints.

A watchpoint stops your program when a particular area of memory is read or written.
Thisis most useful in determining when a variable (or other program element) is being
changed to a "bad" value during execution. You could set a watchpoint on the variable,
and then the program would stop whenever the variable is modified. Watchpoints are set
with thewat chpoi nt command. See “watchpoint” on page 7-96.

Often you know what the bad valueis. If so, you can set a condition on the watchpoint so
that the program will stop only when the variable is changed to the bad value. The condi-
tion is evaluated after the instruction that triggers the watchpoint has completed. Night-
View provides two process-local convenience variables, $i s and $was, that are useful in
watchpoint conditional expressions. See “Convenience Variables” on page 3-31. $i s
contains the value of the variable (or other program el ement) after the instruction that trig-
gers the watchpoint has completed. $was contains the value of the variable before the
instruction began.

A watchpoint condition is evaluated relative to the global scope of your program. The lan-
guage of the condition is controlled by your current language setting. If the setting is
aut o, then the condition is evaluated in the language of the main program.

Unlike other eventpoints, a watchpoint is not associated with a code location. A watch-
point is not an inserted eventpoint. See “Eventpoints’ on page 3-8.

31

NightView User’s Guide

Signals

3-12

You can have multiple watchpoints per process, but at most one watchpoint can be enabled
at atimein each process.

A watchpoint can be set only on a program element in memory, not in a register. You
should be careful about setting awatchpoint on avariable on the stack, because the watch-
point probably will not be meaningful once the routine that contains the variable returns.

For watchpoint restart information, NightView always uses the same address that it cal cu-
lates when you originally create the watchpoint. Note that the specific address may or
may not be interesting in another run of your program, depending on exactly what your
program does. For example, a variable on the heap may always be allocated in the same
place each time your program runs, or it may be allocated at a different address depending
on when it is alocated, what other allocations are done, timing of external events, etc.
You may need to delete a watchpoint that was created by restarting and create a different
watchpoint. See “Restarting a Program” on page 3-14.

When you have a watchpoint set, your process does not incur any performance penalty
until it references the addresses being watched. When that happens, NightView gets con-
trol. The mechanism NightView uses for watchpoints always watches exactly 8 bytes on
an 8-byte boundary. If the variable you are watching is not 8 byteslong and aligned on an
8-byte boundary, then NightView automatically resumes the process for accesses outside
the variable, although there is still considerable overhead associated with stopping and
resuming the process, so the process does not run at full speed in this case. If the variable
extends outside the aligned 8-byte range, because it is not aligned or because it is bigger
than 8 bytes, then only the smallest address bytes of the variable are watched.

Once any watchpoint has been set in a process, NightView must control calls to
get cont ext and set cont ext for that process, which adds overhead to these calls.
Note that returning from asignal handler implicitly callsset cont ext .

Because watchpoints are not inserted eventpoints, the debugger evaluates any ignore
count and condition, so the ignore count and condition are not evaluated at full program
speed. See “Eventpoints’ on page 3-8.

A watchpoint is not triggered if the variable is accessed by other processes through shared
memory (unless they are also being debugged and have watchpoints set) or if the variable
is accessed through 1/O using direct memory access (DMA), such as alow-level r ead
from disk. A watchpoint is not triggered by accesses during a system service call.

NightView has no good way to handle watchpoint traps from the | war x and st wex
instructions. (These instructions are typically used in very tight loops to synchronize with
other processes.) If NightView gets a watchpoint trap from one of these instructions, it
stops the process and gives you an error message. If this happens, you should set a break-
point nearby, disable the watchpoint (see “disable” on page 7-92), let the process run to
the breakpoint, and then enable the watchpoint (see “enable” on page 7-93).

Usually, your process is stopped and the debugger gets control if the process receives a
signal. Signals may be generated by error conditions (such as dividing by zero or trying
to write to a write-protected location). Other signals may be generated under program
control (the program can request the system to send it a SIGALRM periodically, or another
program may explicitly send asignal with theki | | (2) system service).

Concepts

Severa ways in which to handle a signal are described in the handl e command (see
“handle” on page 7-106).

In addition, you may use the debugger to explicitly send a signal to a process (see
“signa” on page 7-105). This is useful if you need to test the signal handler code in a
program (however, the debugger itself uses SIGTRAP, so it should not be used in any of
your code).

If you specify nost op, nopri nt, and pass for asigna, then the system will deliver
the signal to the process normally and bypass the debugger. This avoids any performance
penalty to your program if it makes frequent use of signals.

Signals may cause somewhat different behavior when you are single-stepping your
program (see “Controlling Execution” on page 7-98). If a signal occurs while you are
single-stepping, NightView's reaction depends on whether you specified stop or
nost op and pass or nopass in the handl e command (see “handle” on page 7-106).
The four possible combinations are explained bel ow.

nost op, pass

The single-step operation continues, but the signal will be passed to the program. If
you have a signal handler in your program, it will be executed without single-step-
ping. When the handler finishes executing, single-stepping will be resumed until it
is complete or another signal occurs.

nost op, nopass

The signa has no effect (other than temporarily interrupting execution). The single-
step operation continues until it is completed or another signal occurs.

st op, pass

The single-step operation is terminated and the process is stopped. If you issue
another single-step command or acont i nue command, or ar esune command
with no argument, the signal is passed on to the process when it resumes execution.

st op, nopass

The single-step operation isterminated and the processis stopped. Thesignal isdis-
carded.

Some signals can have additional information passed to the signa handler via
si gi nfo(5). However, NightView has no mechanism for the user to specify this
information, so signals sent to the process using the si gnal or r esune commands will
have no associated si gi nf o(5) information.

If a process stops with a signal that has associated si gi nf o(5) information, that
information is preserved by NightView whenever possible. If you specified pass for that
signal and you continue execution using the conti nue command or the r esune
command with no argument, the si gi nf o(5) information will be delivered to the
process along with the signal. However, no si gi nf o(5) information is ever delivered
if you explicitly specify asignal number onthe si gnal or r esume commands.

3-13

NightView User’s Guide

Restarting a Program

Restarting execution of a program under NightView is different than in many other
debuggers, because instead of being executed directly by the debugger, programs are
executed from a dialogue shell, or by other programs. The typical way you restart a
program isto invoke it again in the dialogue shell. See “run” on page 7-30.

When NightView recognizes that a program is being run again, it automatically applies
the same eventpoints, and other information, to the new instance of the program.
NightView considers two programs to be the same if they have the same full pathname.

This method of restarting programs was chosen because of NightView's multi-process
nature. Y ou may actually want to debug multiple copies of the same program, and in that
case you may or may not want to have the same eventpoints set in each copy. However,
if you are debugging just one instance of one program, you can easily restart its execution
without having to manually duplicate your eventpoint settings.

Occasionaly you may wish to run a program again and again without stopping when it
execs or when it exits. For instance, if a program sometimes dies with a signal, you
could run it repeatedly until the signal occurs and then examine where it occurred. To
avoid having the process stop when it execs, put ar esune command (see “resume’ on
page 7-99) inside an on pr ogr amcommand (see “on program” on page 7-36), like this:

on program your program do
resune
end on program

The resune command will not actualy take effect until after the process has been
initialized, so on programand on restart commands that set eventpoints and
otherwise modify the process work as expected. Note that the process does actually stop
when it execs, but the resune command tells it to start running again as soon as
NightView isfinished initiaizing it.

To avoid having the process stop when it exits, use the set - exi t command. See “set-
exit” on page 7-42. These two mechanisms, in combination, allow you to run a program
repeatedly and only stop it if it hits a breakpoint or awatchpoint or gets asignal.

The following sections describe the details of how restarting works. Most users will not
need to know these details. The normal automatic mechanism handles most situations.

Restart Mechanism

3-14

At certain times in the execution of a program, NightView takes a checkpoint on that
program. A checkpoint saves information about the eventpoints, signal disposition, etc.
This information is called the restart information. Each checkpoint replaces the previous
restart information.

The restart information is stored as a sequence of commands associated with your
program name via an on restart command. See “on restart” on page 7-38. The
commands restore the eventpoints and other information in the new program.

Each time you execute a program, NightView checks to see if an on restart
command matches your program. If one matches, NightView executes the sequence of

Concepts

commands associated with your program.
NightView takes a checkpoint on a process when:

* |tisabout to exit, terminate with asignal, or be killed by NightView.
* |tisabout to exec anew program.

* You enter acheckpoi nt command. See“checkpoint” on page 7-39.

It is not possible to turn off checkpoints. However, you can control whether restart
information is applied. See “set-restart” on page 7-49.

Note that if you have a program that has not yet taken a checkpoint and you start a new
instance of that program, then no restart information is applied to the new instance
because there is none for that program.

You can save restart information to a file. See “info on restart” on page 7-129. This
allows you to save the information across debug sessions. Or, you can edit the file to
change the restart information. In either case, you would then sour ce the file to restore
the restart information. See “source’ on page 7-114.

Restart Information

This section describes the restart information saved during a checkpoint.

* Any memory reservations made with the nr eser ve command. See“mre-
serve” on page 7-43.

* Eventpoints, including any names, conditions, ignore counts and com-
mands associated with each eventpoint. See “Eventpoints” on page 3-8.

¢ Directory search path. See“directory” on page 7-60.

* Child disposition. See*“set-children” on page 7-41.

¢ Signal and exception disposition. See “handl€” on page 7-106.
* Display list. See“display” on page 7-72.

* Symbol file. See*“symbol-file’ on page 7-33.

¢ Default language. See “set-language” on page 7-44.

* Whether or not the process will stop before exiting. See “ set-exit” on page
7-42.

* The interest level threshold, the interest level for i nl i ne, j ustlines,
and nodebug, and any explicit interest levels for subprograms. See
“interest” on page 7-51.

¢ |Information to reproduce the items in the Data Window. See “Data Win-
dow” on page 9-51. See “data-display” on page 7-72.

3-15

NightView User’s Guide

Restart Macros

If anon restart command is created by a checkpoint, then in addition to commands
to restore eventpoints and other program information, there are two macros:
restart_begin_hook, a the beginning of the commands, and
restart _end_hook at the end of the commands. Both macros are caled with the
name of the program being restarted as an argument.

These macros let you customize restart processing. The initial definition of these macros
is

define restart_begi n_hook(program nane) apply on program
define restart_end_hook(program nane) echo

This means that on pr ogr amcommands will be applied before any restart processing,
and nothing will be done afterwards. (r est art _end_hook is defined as echo because
thereis no way to make an empty macro.)

Y ou can define these macros to be anything you wish. See “Defining and Using Macros’
on page 7-135. For example, you could definer est art _begi n_hook to be echo to
disablethe on pr ogr amprocessing. See*on program” on page 7-36.

Exited and Terminated Processes

When a process terminates normally, it flushes its 1/0 buffers, closes any open files, then
calls the exit service. By default, NightView automatically arranges for a process to stop
when it callstheexi t system service. (Y ou may alter this behavior with the set - exi t

command. See “set-exit” on page 7-42.) When a process terminates abnormally, it
receives a signal, which causes the process to stop and NightView to get control. Thus,
you may always examine a program that is about to exit or terminate abnormally. The
process will still exist, so you can examine memory and registers.

If you continue execution of a process in one of these states, the process will cease to
exist and NightView will forget about all the eventpoints set in that process. The PID for
that process will be removed from all families (see “Families’ on page 3-2) in which it
appears. Detaching from such a process has the same effect (see “Detaching” on page
3-3).

Process States

3-16

A processis normally in one of two states; it is either running, or it is stopped. A process
is said to be stopped when it gets a signal (and it is being debugged) or it hits a
breakpoint or watchpoint (meaning that the point of execution reached the breakpoint or
the watchpoint was triggered, and all the conditions on the breakpoint or watchpoint were
satisfied). When it is stopped, the debugger has control. The debugger may continue to
execute commands attached to that breakpoint or watchpoint, but once the debugger
initially gets control, the process is considered to be stopped. (This is not the same type
of stop asjob control in the C shell or the Korn shell.)

Concepts

Some debugger commands require the process to be stopped. It is meaningful to examine
or modify stack locations or variables only if the processis stopped. Monitorpoints and
tracepoints provide ways to examine variables without stopping a process. See
“Monitorpoints” on page 3-10. See “Tracepoints’ on page 3-11. The first inserted
eventpoint in a process must be set while the process is stopped. See “Eventpoints” on
page 3-8. A watchpoint may be enabled or disabled only when the process is stopped.
See “Watchpoints” on page 3-11.

In addition to being stopped or running, a process may be exiting or terminated, or it may
be a pseudo-process associated with a core file. A pseudo-process cannot be continued.
Continuing an exiting or terminated process causes the process to cease existence.

Debugger Mechanisms

/proc

Debug Agent

NightView has two mechanisms it uses to interact with and control your program: /proc
and the debug agent. These are described in subsections below.

The primary debugger mechanismis called / pr oc (or procfs), which is afile system that
allows one program (such as NightView) to control the execution of another program.
NightView uses/ pr oc whenever you start up aprogram in a Dialogue (see “ Dialogues”
on page 3-4) or attach to a running process (see “ Attaching” on page 3-3).

The / proc mechanism provides for comprehensive control of a process, including
control over what happens when your program is about to get a signal. / pr oc can read
and write static variables while the process is executing, but it cannot read or modify
stack variables or registers unless the process is stopped. See “Operations While the
Process I's Executing” on page 3-18.

Another mechanism NightView can use is called a debug agent. A debug agent is a code
subsystem that executes as part of your process and communicates with NightView
through shared memory. The debug agent contains a subroutine that, when called,
performs an operation on behalf of NightView. When NightView needs to perform an
operation using the debug agent, it sends a message to the agent and waits for the agent to

reply.

The debug agent mechanism allows NightView to examine and control your program
while it is running. Because you control where in your program the debug agent is
called, it can be aless intrusive means of debugging your program. However, the debug
agent, by itself, does not provide comprehensive control of your program; you cannot get
control when your program gets asignal, for example.

The debug agent was originally created for operating systems that do not support / pr oc.

3-17

NightView User’s Guide

The advantages of using the debug agent with / pr oc are much smaller because / pr oc
gives you the ability to read and modify memory while the process is running. The only
advantages of using the debug agent are: 1) the program has greater control of exactly
when the overhead of performing debugger operations occurs, and 2) there is no
restriction on how the first eventpoint must be set. See “Operations While the Process Is
Executing” on page 3-18. A watchpoint may not be set or deleted using the debug agent.

NightView allows you to use multiple mechanisms when debugging a single process, by
allowing you to add a debug agent to your program while you are debugging it with
/ proc. This gives you the advantages of both methods: comprehensive control over
your program, along with control over debugger overhead. See “Using /proc and the
Debug Agent Together” on page 3-19.

Y ou control where the call to the debug agent is placed in your application, by placing an
agentpoint in your process. See “Using /proc and the Debug Agent Together” on page
3-19. To effectively use the debug agent, you will need to choose this location carefully;
the guidelines that follow will help you do this.

First, the debug agent executes as part of your process, so it has some effect on the
performance of your application. The debug agent is very fast and efficient, though, so
the impact should be minimal. Nevertheless, we recommend you avoid placing the debug
agent call in a time-critical location. See “Debug Agent Performance” on page F-1 for
information about the performance of the debug agent.

Second, the debug agent call must occur fairly frequently, at least a few times a second,
to ensure reasonabl e response time from NightView. Each debug agent call does at most
one NightView operation (such as read or write a memory location), to keep the overhead
per debug-agent call as small as possible. A given NightView command may require
several such operations, each of which requires that the debug agent be called. If your
application uses the Frequency-Based Scheduler, a good place to call the agent is usually
right before the call tof bswai t . You may include multiple calls to the debug agent in a
program, if you wish.

Operations While the Process Is Executing

3-18

This section lists what you can do with either / pr oc or the debug agent while the
process is executing (i.e., running).

¢ Examine and modify statically-allocated variables. Thisincludesst ati c
and global variablesin C, and COMMON variables and variables with the
SAVE attribute in Fortran. 1t does not include variables allocated to regis-
ters or the stack.

¢ Examine and modify absolute memory locations. This includes accessing
memory referenced by a pointer variable, if the pointer variable is accessi-
ble as noted above.

¢ Evduate expressions involving the above items. See “Expression Evalua-
tion” on page 3-20. Notethat afunction call isnot alowed.

For the purposes of establishing the scope and meaning of variable names,
and also the language for the expression, NightView uses the location
where the process was last stopped to determine the context of the expres-

Concepts

sion (see “Context” on page 3-24). You can use the special forms Night-
View provides to change this context, if you want to access variables local
to aprocedure, for instance. See* Special Expression Syntax” on page 7-4.
However, note that the forms that refer to specific stack frames are not
allowed while the process is running, because the state of the stack is inde-
terminate.

* Examine, modify, and disassemble executable code.

* Create, manipulate, and destroy inserted eventpoints (agentpoints, break-
points, monitorpoints, patchpoints and tracepoints). See “Eventpoints’ on
page 3-8. These types of eventpoints may be enabled and disabled, have
conditions added or removed, and have ignore counts modified. You may
modify the commands attached to breakpoints, monitorpoints and watch-
points. You may also get information about any type of eventpoint. See
“Manipulating Eventpoints’ on page 7-77.

Enabling or disabling watchpoints requires the process to be stopped. Any
of the other operations may be performed on watchpoints while the process
is executing. However, since, by default, watchpoints are enabled when
created, and disabled when destroyed, you cannot ordinarily create or
destroy a watchpoint while the processis executing. See“Watchpoints’ on
page 3-11.

There are two rules about manipulating eventpoints while your processis running
with/ proc:

- The first inserted eventpoint within a particular text region must be
set while the processis stopped. A text region is either your program
or the dynamic libraries it references.

- The first monitorpoint must be set while the process is stopped,
regardless of whether other eventpoints have been set in that region.
See “Monitorpoints’ on page 3-10.

This is necessary because NightView needs to do special processing when the first
eventpoint is created within atext region, or when the first monitorpoint is created.
That special processing requires the process to be stopped.

These restrictions do not apply to the debug agent, which handles the special pro-
cessing in adifferent way.

While the process is executing, you may not use forms of commands that depend on
knowing the program counter or the value of any machine register. See “Predefined
Convenience Variables’ on page 7-6.

Note that monitorpoints and tracepoints also provide ways of monitoring your program
without stopping it. See“Real-Time Debugging” on page 3-5.

Using /proc and the Debug Agent Together

Using the debug agent together with / pr oc is easy. To debug a program this way, you
first get control of it with / pr oc, by either running the program in a dialogue shell or

3-19

NightView User’s Guide

using the at t ach command. See “Dialogues” on page 3-4, “Attaching” on page 3-3, and
“attach” on page 7-32.

Once you have control of your process, you can use the agent poi nt command to insert
the call to the debug agent in your program. An agentpoint is a type of eventpoint (see
“Eventpoints’ on page 3-8). You can create multiple agentpoints in your process; you
might want to do thisif you cannot find one single place that will be executed sufficiently
frequently.

For a description of the operations you can do using the debug agent, see “Operations
While the Process I's Executing” on page 3-18.

While your process is executing, NightView uses the debug agent for reading and writing
memory. If the process stops, either because you ask NightView to stop it, or because of
a breakpoint, watchpoint, or signal, NightView automatically switches to using / pr oc
for al access to the process. When you resume execution again, NightView
automatically switches back to using the debug agent.

Examining Your Program

If you specify running processes in the qualifier of a command which requires stopped
processes, you get a warning message about each running process, but the command
executes normally on any of the stopped processes in the qualifier.

Expression Evaluation

3-20

Because NightView is a symbolic debugger supporting multiple languages, you are
allowed to evaluate expressions written in different languages, but this does not mean you
have access to all the features of each language. (Specific language syntax is not
described here; consult the reference manuals for the language for that information.)

One important point to note is that the debugger may not always precisely follow the
language semantics when evaluating an expression. In particular, the results of afloating-
point expression evaluated by the debugger may not be bit for bit identical to the results
the same expression would give if it were compiled and executed in your program. See
“Specia Expression Syntax” on page 7-4.

A program written in multiple languages may define identical names for different global
objects. NightView looks first for the name as defined in the language of the current
context (see “Context” on page 3-24). If there is no current context, it uses the current
language setting to determine which symbols to look at first (see “set-language” on page
7-44).

The debugger can evaluate arithmetic or logical expressions (essentially anything that
may appear on the right hand side of an assignment). The debugger cannot declare new
variables.

In general, the debugger cannot execute statements, it can only evaluate expressions.
However, for Ada and Fortran, the concept of an expression is extended to assignment.

Ada Expressions

Concepts

In some ways the debugger is more flexible than the compiler. The debugger usually
allows you to evaluate expressions or assignh new values to variables without the type
checking done by the compiler. Unless the expression simply makes no sense, the
debugger will evaluateit.

Remember that the debugger handles expressions (plus assignment and procedure calls),
not executable statements. You must leave off the trailing semicolon for an Ada
assignment or procedure call.

Most Ada expression forms are supported, but there are some restrictions and limitations,
summarized in the list below.

* Datatypes
All data types are supported, with afew exceptions:

- Task types are not fully supported as a data type. They are treated
simply as an address.

- Accessto subprogram is not supported.

* Type conversions are supported as defined for the Ada language, and using
the same syntax asthat of the language (i.e. type_mark(expression)), with
certain exceptions and additions. As defined by the language, conversions
involving numeric types convert the value of the expression, not the repre-
sentation. For example, f | oat (1) would return 1. 0. NightView alows
conversions from avalue of any type to any target type, not just those cases
alowed by the Ada language. Note that NightView does not perform rep-
resentation changes when converting to or from derived or convertible
array types with differing representations. Conversions involving non-
numeric types are performed by simply interpreting the left justified bit
pattern of the value as the value of the target type with the corresponding
left justified bit pattern. Note that, if the target type is smaller than the
source value, the rightmost bits of the converted value are indeterminate.

* NightView treats user-defined character types (i.e., enumerations which
have character literals as enumeration values) strictly as enumerations, not
as a character type. The chief effect of thisisthat you cannot use string-lit-
eral notation (e.g., "abc") to form arrays of these types. In NightView,
string literals are always interpreted as arrays of the built-in type char ac-
ter.

¢ Aggregatevaues, suchas(a => 1, b => 2), arenot supported. Other
expressions that yield aggregate values are allowed.

¢ Subprogram calls

A NightView expression can contain subprogram calls (either functions or proce-
dures), provided that the arguments are either scalar types, statically-sized record
types, or arrays. Note that this excludes subprograms with a formal argument that is
an unconstrained record with discriminants, but unconstrained arrays are supported.
Functions that return arrays or records are supported.

3-21

NightView User’s Guide

C Expressions

C++ Expressions

3-22

Overloaded operators and functions are supported in NightView with help from the
user to select the correct function. See “Overloading” on page 3-23.

¢ Attributes
Subprograms that rename attributes are not supported.

The following attributes are not supported: ' cal | abl e, count, ' key, ' | ock,
"shmid,'term nated,and' unl ock.

The' fore and' af t attributes of fixed-point types may not give correct results.

Other attributes are supported in such commands as pri nt and set , but they can-
not be used in monitorpoint, patchpoint, or tracepoint expressions, nor in an event-
point conditional expression.

One attribute, * sel f , is supported as alanguage addition in the debugger. When
used on a tagged type object or access to a tagged type object, the’ sel f attribute
returns the same object with the type set to the actual type of the real object as deter-
mined from the run time type information provided by the compiler.

* The catenation operator, &, is not implemented.
* Logical operations (e.g., the and operator) on arrays are not supported.

* Relational operations that require ordering (e.g., <) are not supported for
all arrays; they are supported only for arrays of character. Equality opera-
tions (= and/ =) are supported for all arrays.

&variable may be used as a synonym for variable' addr ess.

Any exceptions raised in a monitorpoint, a patchpoint, or atracepoint, or in an eventpoint
conditional expression are propagated to the program.

All C expressions are supported.
The debugger supports array slices in expressions using the following syntax:

array_name{l..u

where | is the lower bound and u is the upper bound. The array name may be any
expression that denotes either an array object or apointer. The type of an array sliceisan
array whose bounds are the values of | and u, respectively.

Most C++ expressions are supported, with afew exceptions noted bel ow.
The debugger supports array slicesin C++. See also “C Expressions” on page 3-22.

In function calls and assignments, the debugger copies an object by copying the bytes of
the object. No copy constructor or user-defined assignment operator is called.

Concepts

These C++ features are not supported:

* Exceptions.

* Templates.

Operator and function overloading is supported with additional input from the user used
to select the desired function. See “ Overloading” on page 3-23.

A special case form of the dynani c_cast <> function is supported. You may use
dynam c_cast <>, spelled exactly this way (with no type name given as a template
argument inside the <>). This form of dynamic casting will cast an object or a pointer to
the actual type of that object as determined by run time type information provided by the
compiler.

Fortran Expressions

Overloading

All Fortran expressions are supported.

Fortran subroutines are treated as if they were functions with no return value. Fortran
assignments are supported except for Concurrent Fortran array assignments.

The debugger cannot execute statements of any kind (except assignments and procedure
calls), including Fortran 1/0 statements.

Overloading means that more than one entity with the same name is visible at the same
point in the program. Overloading is allowed for location specifiers and for expressions.
In C++ language mode, overloading of functions and operators is allowed. In Ada
language mode, overloading of enumeration constants, functions, operators and
procedures is allowed. See “set-language” on page 7-44. NightView refers to the
appropriate entity if it has enough context to determine that there is only one choice.
Otherwise, you need to provide NightView with additional information in the form of
special syntax added to the expression or location specifier where the overloaded name is
used.

Thisis typically atwo step process. You run the command once and get an error which
displays the possible choices. Then you run the command again with additional syntax to
request the specific candidate number from that list.

The special syntax used to request candidates from the list is described in “Selecting
Overloaded Entities’ on page 7-2. Overloaded names are supported in language
expressions (see “Expression Evaluation” on page 3-20) and location specifiers (see
“Location Specifiers’ on page 7-9), and the same syntax is used for both.

The set - over | oad command (see “set-overload” on page 7-54) may aso be used to
make NightView automatically generate overload candidate lists by turning on either of
the two separate overload modes for routine names and language operators. This
automates the first step of the two step process. The special syntax may be used to
request overload candidate information for a single function or operator even when the
corresponding overload mode is off.

3-23

NightView User’s Guide

If overloading is on, NightView interprets overloaded entities according to the current
language. If overloading is off, NightView uses the built-in meaning of al operators, if
possible, and interprets all function and procedure calls as referring to one function or
procedure it arbitrarily picks from the list of candidates. If operator overloading is off
and the built-in operator does not make sense in the context in which it is used,
NightView gives an error.

If overloading is on, but a unique meaning for an overloaded operator or routine cannot
be determined, NightView gives an error that includes the list of the possible overload
candidates. Y ou may then run the command again, adding the syntax to select the correct
candidate.

The numbers assigned to the choices are unique for the specific context (see “ Context” on
page 3-24) where the expression or location specifier appears. If, for example the 5th
item in a list of choices refers to a particular instance of the overloaded function
f uncnane when you are stopped at one point in your program, you may not assume the
5th item will refer to that same instance when you are stopped at a different location.

The one number you can rely on is 1 for overloaded operators. The built in language
operator is always number 1, and any user or library defined operators have numbers
greater than 1.

Program Counter

Context

3-24

When a process is stopped, it has stopped at one specific place in the program, which is
the address of the next instruction to be executed. This place is where the program counter
points. Different machines have different sets of registers, but the program counter is
always referred to as $pc.

If the currently selected frame is not the most recently called frame, then the $cpc register
points to the instruction that made the call and the $pc register points to the place where
execution will return after the call. Inthe most recently called frame, $cpc and $pc point
to the same place.

The location pointed to by $cpc implies a specific context for evaluating expressions.
$cpc islocated in some procedure (or routine, or function — the terms are used inter-
changeably throughout this document). This procedure was coded in some language (Ada,
C, C++, Fortran, or assembler). By default, the language of the routine containing the
$cpc isthe language used to evauate any expressions.

Another component of the context is the current stack frame (see “Current Frame” on
page 3-25). It establishes which instance of a given local variable you are actually
referring to in an expression. NightView provides specia syntax (see “Special
Expression Syntax” on page 7-4) for referencing variables in other contexts besides the
current one.

Scope

Stack

Current Frame

Concepts

Most languages have scoping rules, with local variables visible only in inner blocks and
more widely visible variables in outer blocks. Often the same name is used for different
variables in different scopes. Just as the $cpc islocated in a particular routine, it is also
located in a particular block of the routine. The variables that are directly visible to the
debugger are determined by the language rules and current block nesting structure of the
program at that point.

When debugging, you may need to look at other variables which would normally not be
visible by the strict language rules. NightView makes every effort to make any additional
variables visible for use in expressions (as long as the names do not conflict). If you
cannot reference a variable due to a naming conflict, NightView provides special syntax
(see “Specia Expression Syntax” on page 7-4) for referencing variables visible in other
scopes.

When a process stops, it not only stops at a particular program counter, but it also has a
current stack. The stack isused to hold local variables and return address information for
each routine. As a routine calls another routine, new entries (called frames) are made on
the stack. The stack can be examined to show the routines which were caled to get to the
current routine using the backt r ace command (see “backtrace” on page 7-65).

The debugger assigns numbers to each frame. The most recent frame is always frame
zero.

In aprogram with multiple threads or Adatasks, each thread or task hasits own stack. See
“sel ect-context” on page 7-111.

Frames corresponding to uninteresting subprograms are not numbered and they are not
shown in abacktrace. See“Interesting Subprograms’ on page 3-27.

When a process stops, the current frame is initially the stack frame associated with the
most recently called routine (where $cpc points). This frame contains the local variables
for that routine, and these variables may be referenced in expressions you evaluate. Each
frame also contains the return address indicating the specific point in the older routine
where the $pc will be located when the current frame returns.

You may wish to examine the variablesin one of the routines that called the current rou-
tine. To do that, you may use the up command (“up” on page 7-110) or the f r ame com-
mand (“frame’ on page 7-109) to change the current frame. As you move up the stack
(towards older routines, or in the same direction a return will go), the new stack frame
becomes the current frame. Any variables referenced are now evaluated in the context of
this new frame and new $cpc indicated by the called frame.

NightView also provides special syntax in expressions as an alternative to using the up or

3-25

NightView User’s Guide

Registers

f r ame commands. See“ Special Expression Syntax” on page 7-4.

Each stack frame a so contains | ocations where registers are saved while in one routine so
they can be restored when returning to the calling routine. As the current frame is moved,
the debugger notices which registers will be saved and restored. If you look at registers
using thei nf o regi st ers command, or examine local variables which are being kept
in registers, you see the values as they will be restored when the process finally returns to
that frame. Referencing a specific register using the predefined convenience variable al so
refersto the register relative to the current frame.

When examining a variable allocated to a register, you must be aware that the variable
may exist in that register for only a short time. Therefore, the contents of the register
may not accurately reflect the value of the variable. See “ Optimization” on page 3-33 for
more information.

Inline Subprograms

3-26

Ada and C++ programs can have inline subprograms. The code for these subprogramsis
expanded directly into the calling program rather than being called with a transfer of con-
trol. Thereis usually atime savings, sometimes at a cost in the size of the code.

NightView generally treatsinline subprogram calls the same as non-inline calls. Although
an inline call does not create a stack frame, NightView creates a frame for it to match the
semantics of the language and to simplify the model of debugging. You can use the usual
commands to move up and down the stack frames and view variables within each frame.
See “Current Frame” on page 3-25.

You can use single step commands to step into inline subprograms, to step over them, or to
finish them. See*“step” on page 7-100, “next” on page 7-101, and “finish” on page 7-103.

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
the call.

If you set an eventpoint within an inline subprogram, NightView modifies each instance of
the subprogram. If thereare alot of callsto the subprogram, this may take along time. If
execution is stopped in an inline subprogram and you set an eventpoint using the default
location specifier (which corresponds to $pc), the location specifier refers only to that
particular instance of the inline subprogram as opposed to all instances. See “Location
Specifiers’ on page 7-9.

Concepts

You can set an interest level for individual inline subprograms. The interest level applies
to al instances of an inline. You can also set an interest level to avoid seeing any inline
subprograms. See “Interesting Subprograms’ on page 3-27. This may be desirable
depending on how your program uses inline subprograms.

You may not call an inline subprogram in an expression, unless the compiler has created
an out-of-line instance of the subprogram. See “ Expression Evaluation” on page 3-20.

Interesting Subprograms

NightView considers some subprograms to be interesting and the rest to be uninteresting.
NightView avoids showing you uninteresting subprograms. Single-step commands do not
normally stop in an uninteresting subprogram. See “step” on page 7-100. A stack walk-
back does not display frames corresponding to uninteresting subprograms. See “ Stack” on
page 3-25.

In general, subprograms compiled with debug information are usualy interesting and the
rest are usually uninteresting. NightView gives you control over which subprograms are
considered interesting by using thei nt er est command. See “interest” on page 7-51.

Each process has a current interest level threshold. The default threshold is 0. NightView
uses rules to decide on the interest level of a subprogram. If the interest level of the sub-
program is greater than or equal to the interest level threshold, then the subprogram is con-
sidered to be interesting.

NightView uses these rules, in order, to determine the interest level for a subprogram:

1. Theinterest level may be specified for that subprogram with the i nt er -
est command.

2. If the subprogram is an inline subprogram, the value of thei nl i ne inter-
est level is compared to the interest level threshold. If thei nl i ne interest
level isless than the interest level threshold, then the interest level for the
subprogram is the minimum value. Otherwise, continue with the next rule.

3. The interest level may be recorded in the debug information for that sub-
program by the compiler. Some compilers have a way of designating an
interest level in the source.

4. If the subprogram has debug information, but no explicit interest level, the
interest level isO.

5. If the subprogram has line number information, but no other debug infor-
mation, the interest level isthe value of thej ust | i nes interest level for
that process.

6. If the subprogram has no debug information at al, the interest level is the
value of the nodebug interest level for that process.

In some situations there may be no interesting subprograms on the stack. In that case, the
most recently called subprogram is considered interesting.

3-27

NightView User’s Guide

You can make all subprograms interesting by setting the interest level threshold to the
minimum value.

Monitor Window

The Monitor Window shows the values of expressions being monitored by monitorpoints
(see “Monitorpoints’ on page 3-10). When you set a monitorpoint (see “monitorpoint”
on page 7-85), the Monitor Window is created if it does not already exist, and the
expressions associated with that monitorpoint are automatically displayed in the Monitor
Window. The values in the window are updated approximately once a second to show
the values computed the last time each monitorpoint was executed.

The ncontrol command (see “mcontrol” on page 7-87) controls the monitorpoint
display. You can remove monitorpoint items from the display window (and add them
back in later). You can change the rate at which the window updates take place, and you
can stop updates completely, then start them again later. You can aso turn the Monitor
Window off to remove it from your screen, then restoreit later.

Note that interrupting the debugger implicitly causes the Monitor Window to stop
updating. See “Interrupting the Debugger” on page 3-30.

The Monitor Window is not available in the command-line interface of the debugger.
You must use either the simple full-screen interface (see Chapter 8 [Simple Full-Screen
Interface] on page 8-1) or the graphica user interface (see Chapter 9 [Graphica User
Interface] on page 9-1) in order to take advantage of monitorpoints.

The monitored items are displayed in the Monitor Window using built-in information
about the precision of the data type to decide how many columns to use for the value.
Y ou have some control over this by using the format codes on the print command.

Y ou also have some control over the layout of the items in the window. New items are
added across a line, from left to right, until there is not enough space remaining on the
line to add the current item. Then a new line is started. If you remove some items (by
using ncont r ol nodi spl ay or by removing the monitorpoints), the remaining items
are shifted left and up to pack the display. If you then add the items back, they are added
at the end of the display (not in their original positions).

By default, each item is displayed with an identification string, a stale data indicator, then
the value itself laid out left to right. The stale data indicator can be turned on and off via
ntont rol . Thereare 3 possible states that thisindicator can denote:

Updated

The monitorpoint location was executed and values were saved since the last time
NightView updated the display. Note that the location may have been executed
many times in between successive display updates. The displayed value represents
the value as it existed the last time the monitorpoint location was executed.

Not executed

Execution has not reached the monitorpoint location since the last time NightView
updated the display. This may happen if that location is executed infrequently, if the

3-28

Concepts

process gets suspended for some reason, or if the process is stopped by a signal or
breakpoint. The displayed value still represents the value as it existed the last time
the monitorpoint location was executed.

Executed but not sampled

Execution reached the monitorpoint location, but no values were saved because of
an ignore count or unsatisfied condition. In this case, the displayed valueis not nec-
essarily the same as the vaue of the expression the last time the monitorpoint loca-
tion was executed.

The actual form of the stale data indicator depends on the interface being used. See
“Monitor Window - Simple Full-Screen” on page 8-2. See “Monitor Window - GUI” on
page 9-50.

Errors

NightView error messages always have this format:
severity: text [error-message-id]
The severity can be one of:
Caut i on
Usually just an informational message. It is not serious.
War ni ng

A little more serious, but NightView tries to finish the current command as
you requested.

Error

A serious error. Thislevel of error terminates the current command. It also
terminates a command stream. See “Command Streams’ on page 3-30.

Abor t

So serious that NightView cannot continue running. This does not usually
indicate that you have done something wrong; either there is a system problem
or thereisabug in NightView.

The text isa brief explanation of the problem.

The error-message-id is a section name you can use with the hel p command to find out
more about the error and possibly how to fix it. An error-message-id beginswith E-.

3-29

NightView User’s Guide

NOTE

Some libraries used by NightView, such as the X Window Sys-
tem™, issue their own error messages in certain circumstances.
These error messages do not follow the format described above.
You can recognize these messages because they do not have the

[error-message-id] appended to the message.

Command Streams

A command stream is a set of commands that the debugger executes sequentially. There
are three kinds of command streams:

¢ |nteractive command streams. These are commands entered directly by the
user.

¢ A file of commands being read by the sour ce command is also a com-
mand stream. Execution of the sour ce command suspends execution of
the command stream it appears in and creates a new one that endures until
the file is exhausted.

¢ Event-driven command streams. For example, commands attached to a
breakpoint are an event-driven command stream. Each instance of hitting a
breakpoint creates a new command stream; the stream terminates when the
commands attached to the breakpoint are finished. These non-interactive
command streams always operate with safety level set to unsaf e (see
“set-safety” on page 7-49).

The debugger may interleave the execution of two or more command streams. For
instance, it may execute some of the commands attached to one breakpoint, then execute
some of the commands attached to a different breakpoint (on behaf of a different
process), then execute more of the commands attached to the first breakpoint.

The debugger stops executing a command stream if it encounters a serious error (such as
an unknown command, or a badly formed command). A less severe error (such as a
warning about a process not being stopped) simply generates an error message, but the
debugger continues to execute the remaining commands. If a serious error terminates a
command stream, and that command stream was created by another command stream,
then the older command stream is also terminated. This goes on until the interactive
command stream is reached. The interactive command stream is not terminated.

Interrupting the Debugger

The shell interrupt character (normally <CONTROL C>) does not terminate NightView.
Instead, it terminates whatever command is currently executing, if any. You may wish to
useit if you accidentally ask NightView to print a large quantity of information you don't
want. To type <CONTROL C>, press the ¢ key while holding down the control key.

3-30

Concepts

In the graphical user interface, you can interrupt the debugger by clicking the Interrupt
button in any of the mgjor windows. See Chapter 9 [Graphical User Interface] on page
9-1. See“Debug Interrupt Button” on page 9-37.

If you interrupt the debugger, all command streams except the standard input stream are
terminated. The standard input stream is interrupted, but not terminated, so it will prompt
for the next command immediately.

Furthermore, any output from debugged processes is temporarily halted (it is still
buffered, but not displayed) until after you enter the next debugger command. This gives
you a chance to type a command without interference from the debugger or the debugged
processes. See “Dialogue 1/0” on page 3-5 for more information about controlling the
output from debugged processes.

Interrupting the debugger stops the Monitor Window from updating. See “Monitor
Window” on page 3-28.

Macros

A macro is a named set of text, possibly with arguments, that can be substituted later in
any NightView command. When you define a macro, you specify its name, the names of
the forma arguments, and the text to be substituted. The text to be substituted is called
the body of the macro.

When you reference the macro in a NightView command, you again specify its name,
along with the actual arguments. Actual arguments are the text you want substituted for
the references to the formal arguments in the macro body. See “Defining and Using
Macros” on page 7-135 for details on how to define and reference macros.

Macro expansion, the process of replacing the reference to a macro with its body, is
simply atextual substitution. Very little analysis is performed on the substituted text, so
macros can be a very powerful facility. Furthermore, a macro reference is expanded only
when it is needed.

Macros provide a way for you to extend the set of NightView commands. They aso
provide away to define shortcuts for things frequently used in commands or expressions.

Convenience Variables

NightView provides an unlimited number of convenience variables. These are variables
you can assign values and reference in expressions, but they are managed by the
debugger, not stored in your program. You don't have to declare these variables, just
assign to them. They remember the data type and value last assigned to them.

There are two kinds of convenience variables — global and process local. Variables are
global by default, but by using theset - | ocal command (“set-local” on page 7-50) you
can make a variable local to a process. Once you declare a variable name process local,
each process maintains a separate copy of that convenience variable (a variable cannot be

3-31

NightView User’s Guide

Logging

Value History

loca in one process, but shared among al other processes). It is possible to imagine
other types of scoping for convenience variables (such as breakpoint local or dialogue
local), but process local and global are the only kinds currently implemented.

Because conditions on inserted eventpoints and the expressions associated with monitor-
points, patchpoints, and tracepoints are compiled code executed in the process being
debugged, references to convenience variables in these expressions always treat the con-
venience variable as a constant, using the value the variable had at the time the expression
was defined. On the other hand, the commands associated with a breakpoint or watch-
point, and conditions attached to watchpoints, are always executed by the debugger, so a
convenience variable referenced in a command gets the value at the time the command or
condition is evaluated.

Each dialogue retains a buffer showing the output generated by the programs run in that
dialogue shell. This output may also be logged to afile (see “set-show” on page 7-28).

In addition to the output log for each dialogue, you may log the commands you type, or
the entire debug session (see “set-log” on page 7-44).

NightView keeps the results of the pri nt command (see “print” on page 7-66) on a
value history list. There isonly onelist for al the processes, and all printed values go on
this list regardless of the process. Y ou can review this history (see “info history” on page
7-125), or use previous history values in new expressions (see “Special Expression
Syntax” on page 7-4).

Command History

3-32

NightView keeps a record of the commands you enter during a debugging session. There
are mechanisms in the simple full-screen interface and in the graphical user interface to
retrieve any of these commands, edit them, and re-enter them if desired. See “Editing
Commands in the Simple Full-Screen Interface” on page 8-2. See “GUI Command His-
tory” on page 9-12.

NightView does not add a command to the command history if it is the same as the previ-
ous command. Empty lines are never added. Commands are added only from interactive
command streams. See “Command Streams” on page 3-30.

Concepts

Initialization Files

Optimization

When the debugger starts up, it looks for a file named . Ni ght Vi ewr ¢ in the current
working directory. If it can not find one there, it looks for $hone/ . Ni ght Vi ewr c. The
file, if found, is then automatically executed as though it appeared as an argument to the
sour ce command (see “source” on page 7-114).

Y ou can specify other initiaization files, and you may disable the automatic execution of
the default initiaization files, using options on the NightView command line. See
Chapter 6 [Invoking NightView] on page 6-1.

The problems of debugging optimized code are described in Compilation Systems
Volume 2 (Concepts).

These are the most common problems, but there are others:

* Machine language code may be moved around so that it does not corre-
spond line for line to the source code in your program.

¢ Variables may not have the values you expect. The most common reason
for thisis that the value of the variable is not needed at the current location
in your program and the register storing the value of the variable has been
reused for another value.

In general, you must be aert to the possibility that the compiler has changed things in
your program.

Concurrent compilers generate debugging information at high optimization levels
because it is more useful than to have nothing; however, the debug information is often
inadequate to describe an optimized program. (Future compilers may generate more
accurate debug information.) So, be careful and consult the appropriate manual for
details.

Debugging Ada Programs

Packages

Ada programs employ several concepts that are different from C, C++ and Fortran
programs. NightView provides methods to assist in debugging programs that utilize these
concepts.

Ada packages come in two parts: the specification, which gives the visible interface, and

3-33

NightView User’s Guide

the body, which contains the details. NightView knows what source file to display
depending on the execution context. For the Ada user, what is displayed is the body. If
the unit specification is of interest the | i st command with the ' speci fi cation
modifier on the unit name may be used. (The modifier may be abbreviated.) See“list” on
page 7-58.

An Adaunit name may be used to specify alocation for those NightView commands that
need a location specifier. See “Location Specifiers’ on page 7-9. For example, locations
are required for commands that manage eventpoints and the | i st command. All Ada
unit names recorded in the debug table may be listed with the i nfo functi ons
command.

With Ada programs, declarations are elaborated in linear order. The elaboration of a dec-
laration brings the item into existence, then evaluates and assigns any initial value to it.
Elaboration occurs before any statements are executed. If the program has just started,
you can step into the elaboration code of library-level units with the st ep command. See
“step” on page 7-100.

Exception Handling

Ada exception handling provides a method to catch and handle program errors. Each unit
may have exception handlers. Exceptions which occur in a unit without appropriate
handling code are propagated to the invoking unit. The unwinding process may be
complex, therefore NightView provides several mechanisms to assist in debugging. The
handl e / except i on command specifies whether to stop execution and notify the user
that an exception has occurred. See “handl€” on page 7-106.

Multithreaded Programs

3-34

NightView gives you facilities for debugging threads, Ada tasks, and Lightweight Pro-
cesses. A Lightweight Process (Lwp) isadistinct thread of control managed by the operat-
ing system. Adatasks are serviced by Lwps, as are threads created by the threads library.
See “Programming with the Threads Library” in the PowerMAX OS Programming Guide.

When a process containing multiple Ada tasks, threads, or Lwps stops, the operating
system will choose one LwP to represent the process. This is the execution state that
NightView will present to you by default. Whatever task or thread was being serviced by
that Lwp is the task or thread you will be viewing. To see other tasks, threads, or Lwps,
use the sel ect-cont ext command (see “select-context” on page 7-111). This
command alows you to select the Ada task, thread, or LwP whose context you wish to
view.

The sel ect - cont ext command allows you to view the context of an Ada task or
thread whether or not it is currently being serviced by an Lwp. If the task or thread is
currently being executed by an Lwp, the sel ect - cont ext command automatically
selects the context of that LwP.

It is important to note that NightView does not allow you to control the execution of a
task, thread, or Lwp independently of the others in that process. When you resume

Concepts

execution (see “resume’ on page 7-99), all Lwps are allowed to execute, and they may
service any of the threads or Adatasks that are available to run. If you issue asingle-step
command (see “step” on page 7-100), the selected task, thread, or Lwp will be stepped
according to the command, but the other LwpPs may also execute one or more instructions
— they are not restricted to stepping the current line or instruction.

Each time your process stops, NightView automatically sets the current context to the
context of the Lwp that caused the process to stop. You may then use the sel ect -
cont ext command to change the context.

Note that an Lwp attached to a user-level interrupt cannot be stopped and continues to run
when the other Lwps are stopped. See “User-Level Interrupts’ on page 3-37.

Using NightView with Other Tools

NightView normally communicates with other programs via KoalaTalk. For example,
other tools can start a debug session for a program, using NightView as a debug server.

Thisfunctionality is available only in the graphical user interface.

If you want to disable this mode, use - nokt al k (see Chapter 6 [Invoking NightView] on
page 6-1 or set the useKoal aTal k resourceto Fal se. (See Appendix D [GUI Custom-
ization] on page D-1.)

Limitations and Warnings

Setuid Programs

Setuid and setgid programs can be run in adialogue shell. If you are the superuser or the
owner of the setuid program, you may also debug the program. Otherwise, NightView
issues a warning message telling you that it has automatically detached from the process
and the program runs without being debugged. In this case, you aso cannot debug any
child processes of such a program.

One or more privileges may be associated with a program. These behave in a manner
similar to setuid programs. |If you run NightView with a privilege set that includes the
privileges associated with the program you are attempting to debug, NightView is able to
debug it. Otherwise, NightView automatically detaches from the process and the program
runs without being debugged.

Note that programs run using the shel | command (see “shell” on page 7-113) are not
controlled by the debugger and so may run setuid.

3-35

NightView User’s Guide

Attach Permissions

You are only allowed to attach to processes running as the same user as the dialogue
specified on the at t ach command. More precisely, the dialogue's effective uiD must be
the same as the real and saved uID of the process you want to attach, and the dialogue's
effective GID must be the same as the real and saved GID of the process you want to
attach.

An exception to the above rule is made for the superuser or users with P_DACREAD and
P_DACWRI TE privileges.. These users are allowed to attach to any process.

Frequency-Based Scheduler

When a process running under control of the Frequency-Based Scheduler (FBS) hits a
breakpoint or watchpoint, or receives a signal that is handled by the debugger, the FBs
stops running. This means that other processes under control of the same FBs will no
longer be scheduled. Any other processes that are currently running will continue to run,
but once they do an f bswai t (2) call, they will not start running again until the FBS is
restarted (it isasif the clock running the scheduler was stopped).

If you continue the stopped process, it will resume running, but once it executes an
fbswai t (2) call, it will also go to sleep and not wake up until the scheduler is
restarted.

It is your responsibility to start the scheduler running again. This can be done via the
resume command of the rtcp(1l) program (perhaps using NightView's shel |
command), fromthert util (1) program, or by clicking Resume in NightSim.

NightTrace Monitor

The tracepoi nt command (see “tracepoint” on page 7-84) can be used to trace
variables in a process. Tracing only works if the nt raceud(1) monitor program has
been started prior to adding tracepoints to the process. It is the responsibility of the user
to make sure that the monitor is started (it may be started from within NightView using
theshel I command, see“shell” on page 7-113).

Memory Mapped I/O

3-36

Specia purpose programs often attach to regions of memory mapped to I1/0 space. This
memory is sometimes very sensitive to the size of reads and writes (often requiring an 8-
bit or 16-bit reference). With the / pr oc or debug agent mechanisms, the debugger may
access memory using 8-bit, 16-bit, or 32-bit references. See “/proc” on page 3-17. See
also “Debug Agent” on page 3-17. This means you should probably avoid referencing
I/0 mapped memory unless the size of access does not matter.

Be especially careful of printing pointers to strings (e.g., variables declared to be (char *)
in C or C++), because the debugger automatically dereferences these variables to print

Concepts

the referenced string.

Note that accesses made by tracepoints, monitorpoints, and patchpoints will be made
according to the natural data type of the variable accessed, so those accesses should
normally work correctly.

Blocking Interrupts

If you are debugging a program containing sections of code that raise IPL and block
interrupts, you can easily get a CPU hung or crash the system by attempting to single step
through this code (or by hitting a breakpoint or watchpoint in a section of code which
executes with IPL raised). In particular, the trace library routines do this, so do not try to
single step through them.

User-Level Interrupts

Debugging a process that attaches to a user-level interrupt requires special care. There
are certain restrictions you must obey and certain actions you must take to ensure correct
operation. Note that this refers to user-level code attached directly to a hardware
interrupt, not an ordinary signal handler, which reguires no special treatment to debug.

Y ou must never set a breakpoint or an agentpoint in any code that might be executed by
the interrupt routine. If a user-level interrupt routine hits a NightView breakpoint, it will
almost certainly crash the system. You may, however, set monitorpoints, patchpoints,
and tracepoints, but be certain that none of the expressions associated with these
eventpoints perform any actions not alowed by user-level interrupt code. See
“Eventpoints’ on page 3-8. Note that you can set a breakpoint or agentpoint in the
process as long as you ensure they are not executed while servicing a user-level interrupt.
Y ou may set watchpoints in a process with user-level interrupts, however the watchpoint
will not be in effect within the user-leve interrupt routine.

You may attach to a process that has attached to user-level interrupts only if there is at
least one Lightweight Process that is not attached to an interrupt. See “Multithreaded
Programs” on page 3-34.

If you set an eventpoint in code that will be executed while servicing a user-level
interrupt, you must make sure that all memory referenced by the eventpoint is locked in
physical memory. NightView alocates memory regions where it places the code and
data for eventpoints, so those regions must be locked in memory as well. Y ou may either
call the m ockal | (3C) service, specifying MCL_ CURRENT, after you have set all the
eventpoints that will be executed by user interrupt code, or you may cal
m ockal | (3C) and specify MCL_ FUTURE.

If your process has attached an LwP to a user-level interrupt but also has other Lwps not
attached to an interrupt, then the non-interrupt Lwps can be stopped by NightView, either
using the st op command (see “stop” on page 7-104), by hitting a breakpoint or
watchpoint (see “Breakpoints’ on page 3-10 and “Watchpoints” on page 3-11), or by
receiving asignal (see “Signals’ on page 3-12). NightView indicates that the process has
stopped, but the Lwps serving user-level interrupts continue to run and service interrupts.
Only the Lwps not attached to an interrupt are stopped.

3-37

NightView User’s Guide

If you use the sel ect - cont ext command (see “select-context” on page 7-111) to
examine the state of an Lwp attached to an interrupt, the context will not be consistent.
The registers will probably reflect the values they had when the Lwp called the
i enabl e(2) service. PowerMAX OS does not allow you to stop an Lwp attached to a
user-level interrupt.

Debugging with Shared Libraries

3-38

NightView provides the ability to debug programs that reference shared libraries, but
there are a few things you need to know to use this effectively. This section describes
how NightView interacts with shared libraries.

Shared libraries are a mechanism that alows many programs to share libraries of
common code without duplicating that code in each executable file. The executable files
for those programs contain the names of the shared-library files referenced by that
program. These references must be resolved before the program can reference data or
functions in the libraries. When the program first starts executing, a routine called the
dynamic linker gets control and resolves references to shared libraries.

However, NightView gets control of a process befor e the dynamic linker executes. This
is useful for NightView, but not very useful for you the user, because until the dynamic
linker runs, you cannot reference any of the data or functions in the shared libraries. For
instance, you could not set a breakpoint in afunction residing in a shared library.

Therefore, when NightView detects that the process references shared libraries, it lets the
dynamic linker execute before giving you control of the process. This alows you to
debug the entire program, without needing to know which parts reside in which shared
library.

One consequence of this action, however, concerns signals. If your process should
receive a signal while the dynamic linker is running, NightView will detect it and give
you an error message. You will not be able to reference the shared-library parts of your
program, and most likely the process will not be able to continue executing properly.
One source of such asignal is the dynamic linker itself. If it cannot find one or more of
the shared-library files referenced by the program, it will abort the process with a signal.

Some programs require more flexibility in their use of shared libraries. These programs
call the dl open(3X) service to load a shared library when it is needed. Because this
happens after the program has initialized, NightView is unaware that a new shared library
has been brought into the program's address space.

However, it is easy to make NightView aware of any dynamically loaded libraries at any
time. Once your program has loaded alibrary or librariesusing dI open, you can use the
exec-fil e command to force NightView to reexamine the list of shared libraries
referenced by the program. See “exec-file” on page 7-35. After your program has called
dl open, enter the following command:

exec-fil e program-name

where program-name is the name of the program you are running (the one that cals
dl open). NightView updates its database of shared libraries, and you can then reference
data and procedures in the dynamically loaded libraries.

Concepts

You can issue thisexec-fi | e command as often as you wish. If your program loads
severa libraries at various points during its execution, you may want to issue the exec-
fil e command several times.

3-39

NightView User’s Guide

3-40

Tutorial

4
Tutorial

Thisisthe tutoria for the command-line version of NightView. NightView’'s command-
line interface runs on all terminals. For more information about the command-line inter-
face, see Chapter 7 [Command-Line Interface] on page 7-1. You may also be interested in
the graphical -user-interface (GUI) version of this chapter in Chapter 5 [Tutorial - GUI] on
page 5-1. Thereisamuch shorter tutorial in Chapter 1 [A Quick Start] on page 1-1.

About the Tutorial

This tutorial shows only the most common debugger commands and features. It expects
you to know the basics about processes and signals, but you do not need to know about
NightView and debugging concepts.

The supplied tutorial program spawns achild process. The parent writes a message to std-
out, sleeps, sends signal sIGUSRL1 to the child, and loops. The child writes a message to
stdout when it receives the signal .

Become familiar with the tutorial’s source code; see Chapter G [Tutoria Files] on page
G-1 or the files under the/ usr/ | i b/ Ni ght Vi ew/ Tut ori al directory. The source

filesare:
C Fortran Ada
nsg. h nsg. i - Defines constants
nmai n. c mai n. f nai n. a Forks a child and calls other rou-
tines
parent.c parent . f parent.a Sends signals to the child
child.c child.f child. a Receives signals from the parent

Thistutorial takes at least two hours to do. Each section must be performed in order.

Exercisesin thistutoria tell you to do things and ask you questions. Make the most of this
tutorial and the manual; follow the steps bel ow:

1. Look up the information.

2. Try to figure out the answer on your own.

4-1

NightView User’s Guide

3. Apply the provided solution. (Warning: Type the solutions exactly as
they appear or your results may differ from those provided in later steps of
the tutorial. Do not type anything until you see the words "you should
enter" in thetutorid.)

You do not need to follow cross referencesin this tutoria unless you are explicitly told to
read them.

This tutorial often displays process IDs. Your process IDs will probably differ from those
shown. Also, the tutorial displays hexadecimal addresses. The addresses for your pro-
gram may differ from those shown. Additionally, the line breaksin your output may differ
from those shown because the lengths of displayed dataitems may vary.

The code produced when you create your program may vary slightly from the programs
used to prepare thistutorial. In particular, the line shown as the return address from a sub-
program may be different from what is shown here.

Some messages might not appear, or additional messages might appear, depending on
your environment.

Creating a Program

4-2

NightView is mainly used with executables that contain debug information. To create
such aprogram, compile source files with a particular option, and link edit them.

Exercise:

Create a directory named nvi ew where you can create files for this tutorial, and move
into that directory.

Solution:
You should enter:

$ nkdir nview
$ cd nview

Note: do not enter the $. Itispart of the shell prompt.

Exercise:

Use the manual to find out what compiler option is necessary for debugging. (Hint: use
the index.)

Solution:

From the index, Compiling has this information. The - g compiler option puts debug
information into an executable.

Tutorial

Exercise:

Decide what language program you want to debug. Do not copy the source files from the
fusr/1ib/N ghtView Tutorial directory, just compile and link these files. Make
the ms g program contain debug information. What command or commands did you use?

Solution:
For C, you should enter:

$cc -g -onmsg /usr/lib/NghtView Tutorial/*.c
For Fortran, you should enter:

$ f77 -g -0 nsg /usr/lib/NightView Tutorial/*.f
For MAXAda, you should enter:

$ /usr/ada/ bin/a.nkenv -g

$ /usr/ada/bin/a.path -1 obsol escent

$ /usr/ada/bin/a.intro /usr/lib/Ni ghtView Tutorial/*.a
$ /usr/ada/bin/a.partition -create active -main main
neg

$ /usr/ada/bin/a.build -v nmsg

$ /usr/ada/ bin/a.rmenv .

For HAPSE Ada, you should enter:

$ /usr/hapse/bin/fa.nmklib -g -f

$ /usr/hapse/bin/a.make -v -lib . -0 nmsg main\
-f Jusr/lib/N ghtView Tutorial/*.a

$ /usr/hapse/binfa.rmib

You should now have a msg program with debug information in your nvi ew directory.
Note that for this tutoria, the source files should not be in this directory.

Starting NightView

You are ready to start up NightView without the graphical-user interface.

Exercise:
Read how to invoke the command-line interface of NightView. (You can find thisinfor-

mation in the manual, on the man page, or by invoking nvi ewwith the - hel p option.)
Start up the command-line interface of NightView.

Solution:
In the index, Sarting the debugger, I nvoking the debugger, and nvi ew, invoking have

thisinformation. See Chapter 6 [Invoking NightView] on page 6-1. You should enter one
of:

4-3

NightView User’s Guide

4-4

$ nvi ew - nogui
$ nvi ew - nog

Note that in thistutorial nsg does not appear on the nvi ewinvocation line.
NightView responds with:

$ nvi ew - nogui

N ght Vi ew debugger - Version 5.1, |inked Mon Jan 17
13: 57: 27 EST 2000

Copyri ght (C 2000, Concurrent Computer Corporation

In case of confusion, type "help"

Use the 'run’ command to run your program under the
debugger
(local)

These messages include NightView version information, copyright information, help
information, and the command prompt, (| ocal) . Your version number and date may
differ. Youwill use online help later in this tutorial.

A dialogue contains a shell where you run shell commands and debug running programs.
Each dialogue has a name; the default dialogueis| ocal . The default qualifier is also
| ocal . The default command prompt is the qualifier in parentheses. For information
about dialogues, see “Dialogues” on page 3-4. For information about qualifiers, see
“Qualifiers’ on page 3-4. For information about prompts, see“ Command Syntax” on page
7-1.

In the command-line interface, NightView sometimes displays the command prompt
before it completes its output display. You think NightView may have some undisplayed
output.

Exercise:
To see the undisplayed output, wait amoment, press Space, then press Return.
NightView responds with:

/usr/1ib/ N ght Vi ew release/ Ready ToDebug
$ /usr/lib/ N ghtViewrelease/f ReadyToDebug
$ (local)

NightView runs the Ready ToDebug program and your executable in the dialogue shell.
You might see only one echo of / usr/ | i b/ Ni ght Vi ew- release/ Ready ToDebug,
depending on how quickly the dialogue shell starts (release is the NightView release
level). For information about Ready ToDebug, see “ReadyToDebug” on page 3-7. Note
that in thistutorial the dialogue shell prompt is*“$. Yours may differ.

Tutorial
Getting General and Error Help

This tutoria expects you to look up information in the NightView manual. For the com-
mand-line and simple screen interfaces, online help is available only for error messages.
For genera help you need to read the printed manual or consult the online help via Night-
View’s graphical user interface or vianhel p(1). When this tutoria refers to another
section of the manual, use one of those methods to read the section.

Exercise:

Try to use the non-existent "foo" command.

Solution:
You should enter:
(local) foo
Note: do not enter the (1 ocal) . Itis part of the command prompt.
NightView responds with:

Error: Unrecogni zabl e command "foo".
(local)

[E- command_pr oc003]

Exercise:

Now, invoke help without any arguments.

Solution:
You should enter one of:

(local) help
(local) he

NightView displays additional information about your most recent error and prints a new
command prompt.

Note that he is not an official abbreviation for the hel p command; however, you may
abbreviate NightView commands and some keywords to the shortest unambiguous prefix.
For more information, see “Command Syntax” on page 7-1. You cannot abbreviate file
names, symbolic names, or NightView construct names.

Exercise:

Once again, invoke help without any arguments.

Solution:

You should enter one of:

4-5

NightView User’s Guide

(local) help
(local) he

Note that NightView does not redisplay the extended error information; it assumes that
you have aready read that information. If there had been earlier errors, NightView would
display help for the next most recent error now. However, there are no earlier errors, so
NightView gives an error message indicating that.

NightView responds with the command prompt.

Starting Your Program

4-6

Most NightView commands operate on existing processes in arunning program. Because
you did not specify a program when you started the debugger, there haven't been any pro-
cesses to debug. You must start nsg now to debug it and to use most of the rest of the
NightView commands in this tutorial.

Exercise:

Read about ther un command. Useit to start the nsg program and have the program wait
for debugging.

Solution:
You should enter one of:

(local) run ./nsg
(local) ru ./nsg

The preceding "./" is a safety precaution. Avoid accidentally debugging the wrong pro-
gram by always providing some path information.

NightView responds with:

./ neg

New process: |ocal: 15625 parent pid: 16428
Process | ocal : 15625 is executing /users/bob/ nvi ew nsg.
Readi ng synbol s from /users/bob/nvi ew nsg. .. done
Executable file set to

/user s/ bob/ nvi ew nsg

(local)

If msg was dynamically linked, NightView & so displays the following messages:

Program was dynanically |inked.

Dynani ¢ |inking conpl et ed.

The file "file'" does not contain synbolic debug
i nformati on,

only external symbols will be visible.

The long message may not appear.

Tutorial

NightView shows the process ID (PID) of the new process and its parent process, the path
where your executable exists, and another local dialogue prompt. Your pIDs and the path
where your executable exists will probably differ from those in this tutorial. For informa-
tion about processes, see “Programs and Processes’ on page 3-2.

Note that by appending an ampersand (&) to the r un command, you could have started
your program in the background of the dialogue shell. Thisis generally a good idea
because it gives you the flexibility to debug multiple programs in one NightView session;
however, in this tutorial, you will be supplying the program with input, so the program
needs to be running in the foreground.

Note also that although thistutorial does not ask you to do so, you can use the r un com-
mand to rerun a program.

Debugging All Child Processes

By default, NightView debugs child processes only when they have called exec(2) . In
the ns g program, the child process never calls exec. To be able to debug this child pro-
cess, you must use the set - chi | dr en command before nsg forks the child process.
Also, you haveto issue the set - chi | dr en command after the r un command so the
set - chi | dr en command can be applied to existing processes.

Exercise:

Read about theset - chi | dr en command. Issuetheset - chi | dr en command so that
the child processin msg can be debugged.

Solution:
You should enter one of:

(local) set-children all
(local) set-c a

Handling Signals

By default, signals stop execution under the debugger. Inthe nsg program, the parent
process sends signal SIGUSR1 to the child process. It then sleeps as a crude way of syn-
chronizing the sending and receiving of signals. Having execution stop because of this
signal is not desirable in this case.

Exercise:

Read about the handl e command. Use it to adjust the default handling of the sIGusR1
signal so that the process does not stop.

4-7

NightView User’s Guide

Solution:
You should enter one of:

(local) handle SI GUSRL nostop
(local) ha usrl nos

NightView responds with:

Si gnal handling conpl ete
(local)

Note: you had to issue the handl e command after the r un command so the handl e
command could be applied to existing processes.

Listing the Source

48

You probably want to look at the source files before debugging them.

Exercise:

Read about the | i st command. Notice all the syntax variations for this command, and
use one of them to examine the source file where mai n is defined.

Solution:
You should enter one of:

(local) list main.c:1 (for the C program)

(local) | main.c:1 (for the C program)
(local) list main.f:1 (for the Fortran program)
(local) | main.f:1 (for the Fortran program)
(local) list main.a:1 (for the Ada program)
(local) I main.a: 1l (for the Ada program)
(local) list main

(local) | main

(local) Ilist

(local) |

NightView responds by displaying ten numbered source lines. (You will see a different
ten source lines depending on how you ran thel i st command.) Executablelines have an
asterisk (*) source line decoration beside the line numbers. For more information about
source line decorations, see “ Source Line Decorations” on page 7-63.

Thel i st command isrepeatable. PressReturn.
Now you see the next ten lines of the sourcefile.

Keep pressing Return until you get an end of file message.

Tutorial

Exercise:

List the source file so the display is centered around line 16.

Solution:
You should enter one of:

(local) list main.c:16 (for the C program)

(local) | nmain.c:16 (for the C program)
(local) list main.f:16 (for the Fortran program)
(local) | nmain.f:16 (for the Fortran program)
(local) list main.a:16 (for the Ada program)
(local) I nain.a:16 (for the Ada program)
(local) list 16

(local) | 16

NightView responds by listing the lines.

Setting the First Breakpoints

A breakpoint is set on the executable statement where you want program execution sus-
pended. The program stops at the breakpoint before it executes the instruction where the
breakpoint is set.

Exercise:

Read about the br eakpoi nt command. Set a separate breakpoint to stop at each of the
following places:

* Theline that prompts for the number of signals to send
* Thecalltochild routine

* The comment before the call to par ent _r out i ne

Solution:
For the C program, this part of your debug session should look something like this:

(local) b 18
| ocal : 15625 Breakpoint 1 set at nain.c:18
(local) b 25
| ocal : 15625 Breakpoint 2 set at nain.c:25
(local) b 30
| ocal : 15625 Breakpoint 3 set at mmin.c: 30

For the Fortran program, this part of your debug session should look something like this:

(local) b 15
| ocal : 15625 Breakpoint 1 set at nain.f:15

4-9

NightView User’s Guide

(local) b 21
| ocal : 15625 Breakpoint 2 set at nmain.f:21
(local) b 23
| ocal : 15625 Breakpoint 3 set at nain.f:23

For the Ada program, this part of your debug session should look something like this:

(local) b 18
| ocal : 15625 Breakpoint 1 set at nain.a: 18
(local) b 25
| ocal : 15625 Breakpoint 2 set at nain.a:25
(local) b 27
| ocal : 15625 Breakpoint 3 set at nmin.a:27

Note that the preceding examples could have spelled out the br eakpoi nt command.
NightView gives each breakpoint an ordinal identification number beginning at 1. By
default, breakpoints are set in the current list file, mai n. ¢, mai n. f, or mai n. a in this
tutorial.

Note that you can put breakpoints only on executable statements. NightView did not give
you an error for attempting to put a breakpoint on a comment line. Instead, it put the
breakpoint on the executable statement that immediately follows the comment line.

Listing a Breakpoint

NightView changes the list display when you set a breakpoint.

Exercise:

Issuethel i st command that will relist the current lines.

Solution:
You should enter one of:

(local) list =
(local) | =

NightView redisplays the ten lines you were viewing. Note that if you are displaying a
line with a breakpoint on it, that line now has a B (for breakpoint) source line decoration.

Continuing Execution

To make use of the breakpoints you set, you must alow the nsg program to execute up to
the statement with the breakpoint.

4-10

Tutorial

Exercise:

Read about the cont i nue command. Use it to continue program execution up to the
statement with the breakpoint.

Solution:

You should enter one of :

(local) continue
(local) c

NightView displays the statement with the breakpoint. Note that the source line decora-
tion isnow aB=. The B still indicates a breakpoint, and the = indicates that execution is
stopped there.

Not Entering Functions

Execution is stopped at the line that prompts for the number of signalsto send. You don’t
want to enter the code for the output statement (or function) because it is part of the
library, not part of your program.

Exercise:

Read about the next command. Use it to skip over the output statement (or function).

Solution:
You should enter one of:

(local) next
(local) n

The msg program writes the prompt "How many signals should the parent send the
child?'. NightView displays the next line. The = source line decoration shows that execu-
tion is stopped there.

Entering Input

You must respond to the nsg program prompt "How many signals should the parent send
the child?"'. By default, NightView interprets all input as debugger commands.

Exercise:

Assume that you want to send ten signals. See what problems arise when you simply enter
the number ten.

4-11

NightView User’s Guide

Solution:
You should enter:
(local) 10

NightView responds with an error message.

Exercise:
Read about the! command. Use it to make NightView understand that the 10 is data for
the msg program. (For information about Dialogue /O, see “Dialogue I/O” on page 3-5
and “!” on page 7-27.)
Solution:
You should enter:
(local) 110
NightView responds with:
(local)

As described in “ Starting NightView” on page 4-3, NightView sometimes has output that
does not appear until you pressReturn.

Press Space, then press Return to see your input echoed.
NightView responds with:

10
(local)

Creating Families

4-12

Naming a process or process group has the following advantages over specifying PIDs.

* Mnemonic names are often easier to remember and type than numeric PIDs.

* You can group PIDS with a single name so that qualified NightView com-
mands act only on the processes in the group.

* You can write generic NightView command files that use process names
instead of specific PIDS.

In this tutorial, you will want to issue some NightView commands that pertain only to the
parent process and others that pertain only to the child process.

Tutorial

Exercise:

Read about the f ani | y command. Use it to give the name par ent to all processes that
currently exist in your program. (Thereisonly one process so far.)

Solution:
You should enter one of:

(local) famly parent all
(local) fa parent all

Note that to name only the parent process, you had to issue this command before Night-
View executesthe f or k in the nsg program. Note also that at this point, the al | argu-
ment represents only one process, the parent process. Later you will seeit represent mul-
tiple processes.

You will use the par ent family name later in the tutorial.

Continuing Execution Again

Before you can examine aspects of par ent _routi ne andchi | d_routi ne, you must
get NightView to stop at the callsto these routines.

Exercise:

Continue executing the program so it stops at the next statement with a breakpoint.

Solution:
You should enter one of:

(local) continue
(local) c

For the C program, NightView responds with:

New process: |ocal: 13504 parent pid: 15625
#0 0x10002838 in main() at main.c line 20
20 < | pid = fork();

| ocal : 15625: at Breakpoint 3, 0x1000284c in namin() at
main.c line 31

31 Be| parent _routine(pid, total _sig);
(local)

For the Fortran program, NightView responds with:

New process: |ocal: 13504 parent pid: 15625
#0 0x100038e4 in main() at main.f line 17

4-13

NightView User’s Guide

17 < | pid = fork()

| ocal : 15625: at Breakpoint 3, 0x10003904 in namin() at
main.f line 24

24 B=| call parent_routine(pid)

(local)

For the Ada program, NightView responds with:

New process: |ocal: 13504 parent pid: 15625
#0 0x10010bc8 in main() at main.a line 21
21 < | pid := posix_1003_1.fork;

| ocal : 15625: at Breakpoint 3, 0x10010bdc in nain() at
main.a line 28

28 B=| parent _routine(pid, total _sig);
(local)

The first few lines are from the child process. They show that you are currently calling
f or k. The < source line decoration indicates that this line made a subprogram call which
has not yet returned. The subprogram that implements f or k is hidden. NightView usu-
ally does not show you system library routines. See “Interesting Subprograms” on page
3-27.

In this example, the child process has process 1D 13504, and the parent process has process
ID 15625. Note that your process IDs will differ. Note also that after the f or k, only the
parent process continued execution; the child processis still at the f or k.

The source line decoration in the parent process is now a B=. The B still indicates a break-
point and the = indicates that execution is stopped there.

Creating Families Again

4-14

In this tutorial, you will want to issue some NightView commands that pertain only to the
parent process and others that pertain only to the child process.

Exercise:

Use the f am | y command to give the name chi | d to only the newly forked child pro-
cess.

Solution:
You should enter one of:

(local) famly child all - parent
(local) fa child all - parent

At thistime, theal | argument consists of both the parent and child PIDs. In section “Cre-
ating Families” on page 4-12, you created the par ent family so it consists of only the
parent PID. Subtraction leaves only the child PiD inthe chi | d family.

You will usethechi | d family name later in the tutorial .

Tutorial

Note that to name only the child process, you had to issue this command after NightView
executes the f or k in thensg program.

Catching up the Child Process

To individually manipulate the parent and child processes, you must qualify your debug-
ger commands.

Exercise:

Read about qualifiers. Get the child process to continue execution up to the breakpoint on
thecall tochi |l d_routi ne (line25inmain. c, line2linmai n. f, andline 25 in
nmain. a).

Solution:
You should enter one of:

(local) (child) continue
(local) (child) c

For the C program, NightView displays:

| ocal : 13504: at Breakpoint 5, 0x10002840 in namin() at
main.c line 25

25 Be| child_ routine(total _sig);

(local)

For the Fortran program, NightView displays:

| ocal : 13504: at Breakpoint 4, 0x100038fc in nain() at
main.f line 21

21 Be| call child_routine()

(local)

For the Ada program, NightView displays:

| ocal : 13504: at Breakpoint 4, 0x10010bdO in nain() at
main.a line 25

25 Be| child_ routine(total _sig);

(local)

This breakpoint in the child corresponds to breakpoint 2 in the parent. Inherited event-
points get new identifiers. The order of eventpoint numbersin the child is unpredictable,
so you might see a breakpoint number of 4, 5, or 6.

Note that you could have qualified the command with the child's process ID number
instead of thechi | d family name.

4-15

NightView User’s Guide

Verifying Data Values

You want to look at the value of variablesin the msg program.

Exercise:

Read about the pri nt command. Useit to check that thet ot al _si g variable hasthe
value 10.

Solution:
You should enter one of:

(local) print total _sig
(local) p total _sig

NightView responds with:

Process | ocal : 15625:
$1: total _sig = 10
Process | ocal : 13504:
$2: total _sig = 10

By default, the 10 is printed in decimal. NightView keeps ahistory of printed values. The
$1 meansthat thisisthe first valueinthis history. For more information about the printed
value history, see “Vaue History” on page 3-32.

Note that if you had looked at thet ot al _si g variable after its last use, you might have
seen gibberish. This happens when the location holding a value gets overwritten. For
more information, see “Optimization” on page 3-33. In the Fortran program,
t ot al _si g was putin COMMON so you could consistently seeits value in the tutorial .

NightView displays values for both processes because there are multiple processes in the
default qualifier | ocal .

Entering Functions

4-16

At this point, the parent processis about to run par ent _r out i ne, and the child process
isabouttorunchi | d_routi ne.

Exercise:

Read about the st ep command. Use it to simultaneously enter both routines.

Solution:

You should enter one of:

Tutorial

(local) step
(local) s

Note that if you had wanted to enter aroutine in only one process, you would have had to
qualify the st ep command. (For information about qualifiers, see “ Qualifiers” on page
3-4))

In all the following output descriptions, NightView displays the line you stepped to. The
= source line decoration indicates that execution is stopped there.

For the C program, NightView displays:

#0 0x10002884 in child routine(int total_sig = 10) at
child.c line 14
#0 0x10002944 in parent _routine(pid_t child pid =
13504, int total _sig = 10)

at parent.c line 11

14 = | signal (SIGQUSRL, signal _handler);
11 = | int isec = 2;
(local)

Line 14 isfrom the child process. Line 11 is from the parent process.
For the Fortran program, NightView displays:

#0 0x1000393c in child_routine() at child.f line 17

17 = | ireturn = csignal (SIGUSRL, signal _handler,
-1)
#0 0x10003a48 in parent _routine(INTEGER child pid /
13504 /)

at parent.f line 15
15 = | do 10 sig ct =1, total _sig
(local)

Line 17 isfrom the child process. Line 15 is from the parent process.
For the Ada program, NightView displays:

#0 0x100108fc in child_routine(total_sig : INinteger =
10) at child.a line 26
#0 0x10010578 in parent_routine(child pid: INpid t =
13504,

total _sig : INinteger = 10) at
parent.a line 6

26 = | procedure child routine(total _sig : integer) is
6 = | procedure parent_routine(child pid :

posi x_1003_1.pid_t; total _sig : integer) is

(local)

Line 26 is from the child process. Line 6 is from the parent process.

NightView tells you when a st ep command takes you into (or out of) a subprogram call.
The lines that begin with #0 announce that you have entered chi | d_r out i ne in the
child process and par ent _r out i ne in the parent process.

Note that the order of the lines displayed may vary.

4-17

NightView User’s Guide
Examining the Stack Frames

It is often helpful to see how you got to a certain point in aprogram.

Exercise:

Read about the backt r ace command. Useit to display the list of currently active stack
frames.

Solution:
You should enter one of:

(local) backtrace
(local) bt

For the C program, NightView responds with:

Backtrace for process |ocal: 13504
#0 0x10002884 in child routine(int total _sig = 10) at
child.c line 14
#1 0x10002848 in main() at main.c line 25
Backtrace for process local: 15625
#0 0x10002944 in parent _routine(pid_t child pid =
13504, int total _sig = 10)
at parent.c line 11
#1 0x10002854 in main() at main.c line 31
(local)

For the Fortran program, NightView responds:

Backtrace for process |ocal: 13504
#0 0x1000393c in child_routine() at child.f line 17
#1 0x10003900 in main() at main.f line 21
Backtrace for process local: 15625
#0 0x10003a48 in parent_routine(l NTEGER child_pid /
13504 /)
at parent.f line 15
#1 0x10003910 in main() at main.f line 24
(local)

For the Ada program, NightView responds:

Backtrace for process |ocal: 13504
#0 0x100108fc in child_routine(total_sig : INinteger =
10) at child.a line 26
#1 0x10010bd8 in nain() at main.a line 25
#2 0x10022750 in <anonynous>()
Backtrace for process local: 15625
#0 0x10010578 in parent_routine(child pid: INpid t =
13504,

total _sig : INinteger = 10) at
parent.a line 6

4-18

Moving in the

Tutorial

#1 0x10010be4 in main() at main.a line 28
#2 0x10022750 in <anonymous>()
(local)

Note the order of the displayed lines may vary.

On lines labeled #0, NightView shows its location within the current routine. On lines
labeled #1, NightView shows the location of the call to the current routine within the call-
ing routine.

In the Ada program, stack frame #2 isfrom the library level elaboration routine, which has
no name.

Stack Frames

You may want to move among the stack frames to examine and modify variables, run
functions, etc., in other frames. For example, suppose that you want to examine the value
of local variablet r acefi |l e inmai n.

Exercise:

Read about the up command. Qualify the up command so the current stack frame of the
parent processis mai n.

Solution:
You should enter:
(local) (parent) up
For the C program, NightView responds with:

Qut put for process |ocal: 15625

#1 0x10002854 in nain() at main.c line 31
31 B<| parent _routine(pid, total_sig);
(local)

For the Fortran program, NightView responds with:

Qut put for process |ocal: 15625

#1 0x10003910 in main() at main.f line 24
24 B<| call parent_routine(pid)
(local)

For the Ada program, NightView responds with:

Qut put for process |ocal: 15625

#1 0x10010bed4 in nain() at main.a line 28
28 B<| parent _routine(pid, total _sig);
(local)

4-19

NightView User’s Guide

The < source line decoration indicates that this line made a subprogram call which has not
yet returned.

Note that you could have qualified the command with the parent’s process ID number
instead of the par ent family name.

Verifying Data Values in Other Stack Frames

From mai n, you can examine local variables, run functions, etc.

Exercise:

Qualify apri nt command so it displaysthevalue of local variablet racefil einmai n
only for the parent process.

Solution:
You should enter one of:

(local) (parent) print tracefile
(local) (parent) p tracefile

For the C program, NightView responds with:

$3: tracefile = 0x30003100 "nmsg file"
(local)

For the Fortran and Ada programs, NightView responds with:

$3: tracefile = "nsg _file"
(local)

Note that you could have qualified the command with the parent’s process ID number
instead of the par ent family name.

Returning to a Stack Frame

4-20

You want to return to par ent _r out i ne.

Exercise:

Read about the down command. Qualify the down command so the current stack frame
of the parent processispar ent _routi ne.

Tutorial

Solution:
You should enter one of:

(local) (parent) down
(local) (parent) do

For the C program, NightView responds with:

Qut put for process |ocal: 15625
#0 0x10002944 in parent _routine(pid_t child pid =
13504, int total _sig = 10)
at parent.c line 11
11 = | int isec = 2;
(local)

For the Fortran program, NightView responds with:

Qut put for process |ocal: 15625
#0 0x10003a48 in parent _routine(INTEGER child pid /

13504 /)

at parent.f line 15
15 = | do 10 sig ct =1, total _sig
(local)

For the Ada program, NightView responds with:

Qut put for process |ocal: 15625
#0 0x10010578 in parent_routine(child pid: INpid t =
13504,

total _sig : INinteger = 10) at
parent.a line 6

6 = | procedure parent_routine(child pid :
posi x_1003_1.pid_t; total _sig : integer) is
(local)

Note: it is not meaningful to do a down without doing an up first (as you did in section
“Moving in the Stack Frames” on page 4-19).

Resuming Execution

You want to continue the execution of the child process so that it will get signals as soon
asthey are sent by the parent process. The cont i nue command can do this, but it tiesup
the debugger’s input mechanism while waiting for the process. You don’t want to wait.

Exercise:

Read about the r esune command. Qualify ther esune command to resume execution
of the child process without the waiting that occurs with the cont i nue command.

4-21

NightView User’s Guide

Solution:
You should enter one of:

(local) (child) resune
(local) (child) res

Note that you could have qualified the command with the child's process ID nhumber
instead of the chi | d family name.

Setting the Default Qualifier

As described in “ Starting NightView” on page 4-3, the default qualifier is| ocal , which
means that unqualified commands affect all processes. It is cumbersome to keep qualify-
ing commands that operate on a subset of these processes. The rest of the commandsin
thistutoria apply only to the parent process.

Exercise:

Read about the set - qual i fi er command. Useit to tell NightView that the default
qualifier for the remaining commands is the family that consists of only the parent pro-
Cess.

Solution:

You should enter one of:

(local) set-qualifier parent
(local) set-q parent

NightView changes the prompt to your new qualifier, par ent .

Removing a Breakpoint

4-22

Breakpoint 1 (set in “ Setting the First Breakpoints’ on page 4-9) is no longer needed.

Exercise:

Read about the del et e command. Useit to remove breakpoint 1.

Solution:
You should enter one of:

(parent) delete 1
(parent) d 1

Tutorial
Setting Conditional Breakpoints

It is often useful to suspend execution conditionally.

Exercise:

Read about the br eakpoi nt command. Set a breakpoint on the line that displays how
long the parent is sleeping in par ent _r out i ne; the breakpoint should suspend execu-
tion when the value of i sec equalsthevalueof t ot al _si g.

Solution:
For the C program, you should enter one of:

(parent) breakpoint 16 if isec == total _sig
(parent) b 16 if isec == total _sig

For the Fortran program, you should enter one of:

(parent) breakpoint 16 if isec .eq. total _sig
(parent) b 16 if isec .eq. total _sig

For the Ada program, you should enter one of:

(parent) breakpoint 15 if isec = total _sig
(parent) b 15 if isec = total _sig

For the C program, NightView responds with:

| ocal : 15625 Breakpoint 7 set at parent.c: 16
For the Fortran program, NightView responds with:

| ocal : 15625 Breakpoint 7 set at parent.f:16
For the Ada program, NightView responds with:

| ocal : 15625 Breakpoint 7 set at parent.a: 15

Attaching an Ignore Count to a Breakpoint

Sometimes you won't want to monitor each iteration of aloop. For example, assume that
aloop runs many times, and somewhere during the loop an error occurs. You could ignore
the first half of the loop values to determine in which half of the iterations the error
occurred.

4-23

NightView User’s Guide

Exercise:

Read about the i gnor e command. Set a br eakpoi nt command on the line that dis-
plays how long the parent is sleeping in par ent _r out i ne. NightView has a predefined
name for the most-recently set breakpoint. For more information about this name, see
“Eventpoint Specifiers’ on page 7-12. Usethisnameon ani gnor e command on thisline
in par ent _r out i ne; ignorethe next five iterations.

Solution:
For the C and Fortran programs, you should enter:

(parent) breakpoi nt 16
(parent) ignore . 5

or

(parent) b 16
(parent) ig . 5

For the Ada program, you should enter:

(parent) breakpoi nt 15
(parent) ignore . 5

or

(parent) b 15
(parent) ig . 5

For the C program, NightView responds with:

| ocal : 15625 Breakpoint 8 set at parent.c: 16
WII ignore next 5 crossings of Breakpoint #8 in
| ocal : 15625.

For the Fortran program, NightView responds with:
| ocal : 15625 Breakpoint 8 set at parent.f: 16
WI I ignore next 5 crossings of Breakpoint #8 in
| ocal : 15625.
For the Ada program, NightView responds with:
| ocal : 15625 Breakpoint 8 set at parent.a: 15

WII ignore next 5 crossings of Breakpoint #8 in
[ocal : 15625.

Attaching Commands to a Breakpoint

You can attach arbitrary NightView commands to a breakpoint. They run when that partic-
ular breakpoint is hit.

4-24

Tutorial

Exercise:

Read about the commands command. Attach acommand stream that prints out the value
of t ot al _si g only when you hit the breakpoint you set in the previous step. Note: use
the NightView predefined name for the most-recently set breakpoint.

Solution:
You should enter one of:

(parent) conmands .
(parent) com.

NightView responds with:

Type conmmands for when the breakpoints are hit, one per
line.
End with a line saying just "end".
>
You should enter:

> print total _sig
> end

or

> p total _sig
> end

Automatically Printing Variables

You can create alist of one or more variables to be printed each time execution stops.

Exercise:

Read about the di spl ay command. Use adi spl ay command to display the value of
thesi g_ct variable.

Solution:
You should enter one of:

(parent) display sig_ct
(parent) disp sig_ct

Note that this di spl ay command runs every time execution stops, and the pri nt com-

mand from “ Attaching Commands to a Breakpoint” on page 4-24 runs only when execu-
tion stops at a specific breakpoint.

4-25

NightView User’s Guide

Watching Inter-Process Communication

4-26

You aready resumed the execution of the child process, so NightView gave you a prompt
and did not wait for the child process.

Exercise:

Now continue execution for the parent process.

Solution:
You should enter one of:

(parent) continue
(parent) c

NightView responds with something like the following:

1. Parent sleeping for 2 seconds
2. Parent sleeping for 2 seconds
Child got ordinal signal #1
3. Parent sleeping for 2 seconds
Process | ocal : 13504 received Sl GUSRL
Child got ordinal signal #2
4. Parent sleeping for 2 seconds
Process | ocal : 13504 received Sl GUSRL
Child got ordinal signal #3
5. Parent sleeping for 2 seconds
Process | ocal : 13504 received Sl GUSRL
Child got ordinal signal #4
Process | ocal : 13504 received Sl GUSRL
Child got ordinal signal #5
| ocal : 15625: at Breakpoi nt 8, 0x10002950 in parent_routine(
pid_t child_pid = 13504, int total _sig = 10)
at parent.c line 16
16 B=| printf("%l. Parent sleeping for %l seconds\n", sig_ct, isec);
1: sigct =6
(parent)

Note the order of the displayed lines may vary. For the Fortran and Ada programs, Night-
View printsthe argument or argumentsto par ent _r out i ne differently.

Because of thei gnor e command on breakpoint 8, the parent process sent only five out of
ten signals to the child process before the breakpoint was hit. The source code is written
so that the lines that begin with a number come from the parent process, and the lines that
begin with the word "Child" come from the child process. The lines that mention signal
SIGUSR1 appear because the handl e command isimplicitly set to pri nt and explicitly
set to nost op. Two lines show where execution stopped; these lines will differ depend-
ing on your programming language. Another line shows the value of si g_ct because of
thedi spl ay command.

Note that the pri nt total _si g output did not appear because NightView returned
your prompt before the commands in the conmands command stream completed their
output.

Exercise:

Toseetheprint total _si goutput, enter aspace and Return.

Tutorial

WARNING
If you press Return without the space, you will repeat the con-
ti nue command.)

NightView responds with the following:

$4: total _sig = 10
(parent)

Patching Your Program

You just watched the parent process sleep for 2 seconds between sending signals to the
child process. Look at how thisisdone in the source.

Exercise:

List the sourcefile for the par ent _r out i ne so the display is centered around line 13.

Solution:
You should enter one of:

(parent) list parent.c:13 (for the C program)

(parent) | parent.c:13 (for the C program)
(parent) list parent.f:13 (for the Fortran program)
(parent) | parent.f:13 (for the Fortran program)
(parent) list parent.a:13 (for the Ada program)
(parent) | parent.a: 13 (for the Ada program)

You will notice that the variable i sec always has the value 2. Instead, you could vary the
sleep interval i sec by assigning it a value from 1 through 3, based on the signal count
sig_ct. Hint: In C the %operator, in Fortran the nod function, and in Adather em
operator may be useful.

Exercise:

Read about the pat chpoi nt command. In the parent process, on the line that displays
how long the parent is sleeping, patch in the assignment expression just described.

Solution:
For the C program, you should enter:
(parent) patchpoint at 16 eval isec = sig_ct %3 + 1

For the Fortran program, you should enter:

(parent) patchpoint at 16 eval isec = nod(sig_ct, 3) +1

4-27

NightView User’s Guide

For the Ada program, you should enter:
(parent) patchpoint at 15 eval isec :=sig ct rem3 + 1
For the C program, NightView responds with the following:
| ocal : 15625 Patchpoint 9 set at parent.c: 16
For the Fortran program, NightView responds with the following:
| ocal : 15625 Patchpoint 9 set at parent.f: 16
For the Ada program, NightView responds with the following:

|l ocal : 15625 Patchpoint 9 set at parent.a: 15

Disabling a Breakpoint

You want to run nsg to completion without stopping at breakpoint 8.

Exercise:

Read about the di sabl e command. Use it to disable breakpoint 8 (set in section
“Attaching an Ignore Count to a Breakpoint” on page 4-23).

Solution:
You should enter one of:

(parent) disable 8
(parent) disa 8

Examining Eventpoints

4-28

An eventpoint is a generic term which includes breakpoints, patchpoints, monitorpoints,
agentpoints, and tracepoints. You want to examine the locations, associated commands,
and statistics related to the eventpoints you have set in nsg.

Exercise:

Read about thei nf o event poi nt command. Useit to examineall eventpoints.

Solution:
You should enter one of:

(parent) (local) info eventpoint

Tutorial

(parent) (local) i ev
(parent) (all) info eventpoint
(parent) (all) i ev

For the C program, NightView responds with the following:
Eventpoints for process | ocal: 15625:

ID Typ Enb Wher e

2 B Y min.c:25

3 B Y min.c:30
#crossi ngs=1 #hits=1

7 B Y parent.c:16
only if isec ==total_sig
#crossi ngs=6

8 B N parent.c:16
#crossi ngs=6 #hits=1
conmmands:

print total _sig

9 P Y parent.c:16

eval = isec =sigct %3 + 1

Eventpoints for process | ocal: 13504:

ID Typ Enb Wher e

4 B Y nain.c:18
#crossi ngs=1 #hits=1
5 B Y min.c:25
#crossi ngs=1 #hits=1
6 B Y min.c:30
(parent)

For the Fortran program, NightView responds with the following:

Event poi nts for process | ocal: 15625:

ID Typ Enb Wher e

2 B Y min.f:21
3 B Y min.f:23
#crossi ngs=1 #hits=1
7 B Y parent.f:16
only if isec .eq. total_sig
#crossi ngs=6
8 B N parent.f:16
#crossi ngs=6 #hits=1
conmmands:
print total _sig
9 P Y parent.f:16
eval = isec = nod(sigct, 3) +1

Eventpoints for process | ocal: 13504:

4-29

NightView User’s Guide

4-30

ID Typ Enb Wher e

4 B Y min.f:21
#crossi ngs=1 #hits=1
5 B Y min.f:23
6 B Y min.f:15
#crossi ngs=1 #hits=1
(parent)

For the Ada program, NightView responds with the following:

Event poi nts for process | ocal: 15625:

ID Typ Enb Wher e

2 B Y min.a: 25

3 B Y min. a:27
#crossi ngs=1 #hits=1

7 B Y parent.a:1l5
only if isec =total _sig
#crossi ngs=6

8 B N parent.a:15
#crossi ngs=6 #hits=1
conmmands:

print total _sig

9 P Y parent.a:l15

eval = isec :=sigct rem3 + 1

Eventpoi nts for process | ocal: 13504:

ID Typ Enb Wher e

4 B Y nmain.a:25
#crossi ngs=1 #hits=1
5 B Y min. a:27
6 B Y min. a: 18
#crossi ngs=1 #hits=1
(parent)

NightView displays all eventpoints for process | ocal : 15625 followed by the event-
points for process| ocal : 13504.

Breakpoints 1, 2, and 3 were set in “ Setting the First Breakpoints® on page 4-9. Breakpoint
1 has no entry because it was deleted in “Removing a Breakpoint” on page 4-22. Break-
points 2 and 3 are still enabled. Breakpoint 3 has been crossed once and hit once. This
means that its line has been executed once and stopped on once.

When the child process was forked, it inherited the parent process’s breakpoints. The
child's breakpoints 4, 5, and 6 correspond to the parent’s breakpoints 1, 2, and 3. The
order of the eventpoint numbers for inherited eventpoints is not necessarily the same asin
the parent.

Breakpoint 7 was set in “Setting Conditional Breakpoints” on page 4-23 and is still
enabled; note that NightView displays the condition on this breakpoint. This breakpoint

Continuing to

Tutorial

has been crossed six times without being hit. This means that the line has been executed
six times, but the condition has not been true yet.

Breakpoint 8 was set in “Attaching an Ignore Count to a Breakpoint” on page 4-23 and
was disabled in “Disabling a Breakpoint” on page 4-28; note that NightView displays the
commands (print total _sig) atached to thisbreakpoint. This breakpoint has been
crossed six times and has been hit only once. This means that the line has been executed
six times, but the i gnor e command has prevented the breakpoint from being hit more
than once.

Patchpoint 9 was set in “Patching Your Program” on page 4-27 and is still enabled; note
that NightView displays the expression associated with this patchpoint. This patchpoint
has not been crossed or hit yet so these statistics are omitted from the display.

Completion

There's nothing else to look at, so you decide to run msg to completion.

Exercise:

Usethecont i nue command to continue execution.

Solution:
You should enter one of:

(parent) continue
(parent) c

NightView responds with something like this:

6. Parent sleeping for 1 seconds

7. Parent sleeping for 2 seconds

Process | ocal : 13504 recei ved SI GUSRL

Child got ordinal signal #6

8. Parent sleeping for 3 seconds

Process | ocal : 13504 recei ved SI GUSRL

Child got ordinal signal #7

9. Parent sleeping for 1 seconds

Process | ocal : 13504 recei ved SI GUSRL

Child got ordinal signal #8

10. Parent sleeping for 2 seconds

Process | ocal : 13504 recei ved SI GUSRL

Child got ordinal signal #9

Process | ocal : 13504 recei ved SI GUSRL

Child got ordinal signal #10

Process | ocal : 15625 is about to exit normally
Process | ocal : 13504 is about to exit normally
#1 0x1000285¢c in main() at main.c line 34
#1 0x1000285¢c in main() at main.c line 34

4-31

NightView User’s Guide

34 <> exit(0);
34 <> exit(0);
--> Undi spl ayed itens:
1: (print) sig_ct
(parent)
Note the order of the displayed lines may vary.

The source code is written so that the lines that begin with a number come from the parent
process, and the lines that begin with the word "Child" come from the child process. Note
that the sleep interval varies from 1 through 3 because of the patch you made. The lines
that mention signal SIGUSR1 appear because the handl e command is implicitly set to
print and explicitly set to nost op.

Thelast two lines say that si g_ct isnot displayed. This message appears because of the
di spl ay command and because the si g_ct variable is not visible at this point in the

parent process. For the Fortran program, si g_ct isdisplayed, because it is still avail-
able.

Leaving the Debugger

Thetutorial isover.

Exercise:

Read about the qui t command. Use it to leave the debugger.

Solution:
You should enter one of:

(parent) quit
(parent) ¢

Neither process has completely exited, so NightView asks the following question:

Kill all processes bei ng debugged?

Exercise:

Make the processes go away.

Solution:
You should respond:
Kill all processes bei ng debugged? y

NightView responds with:

4-32

Tutorial

You are now | eaving N ghtView ..
Process | ocal : 13504 exited nornally
Process | ocal : 15625 exited nornally
D al ogue | ocal has exited.

4-33

NightView User’s Guide

4-34

Tutorial - GUI

5
Tutorial - GUI

This isthe tutorial for the graphical user interface (GUI) version of NightView. Night-
View’'s graphical user interface runs only on X servers. For more information about the
graphical user interface, see Chapter 9 [Graphica User Interface] on page 9-1. You may
also be interested in the command-line version of this chapter in Chapter 4 [Tutorial] on
page 4-1. Thereisamuch shorter tutorial in Chapter 2 [A Quick Start - GUI] on page 2-1.

About the Tutorial - GUI

This tutorial shows only the most common debugger commands and features. It expects
you to know the basics about window system concepts, processes, and signals, but you do
not need to know about NightView and debugging concepts.

The supplied tutorial program spawns achild process. The parent writes a message to std-
out, sleeps, sends signal sIGUSRL1 to the child, and loops. The child writes a message to
stdout when it receives the signal .

Become familiar with the tutorial’s source code; see Chapter G [Tutorial Files] on page
G-1 or the files under the/ usr/ | i b/ Ni ght Vi ew/ Tut ori al directory. The source

filesare:
C Fortran Ada
nsg. h nsg. i - Defines constants
mai n. c mai n. f nmai n. a Forks a child and calls other rou-
tines
parent.c parent . f parent.a Sends signals to the child
child.c child.f child. a Receives signals from the parent

This tutorial takes at least two hours to do. Each section must be performed in order. If
you do not have two hours, you may want to see Chapter 2 [A Quick Start - GUI] on page
2-1.

Exercisesin thistutoria tell you to do things and ask you questions. Make the most of this
tutorial and the manual; follow the steps bel ow:

1. Look up the information.
2. Try to figure out the answer on your own.

3. Apply the provided solution in the correct window. (Warning: Perform
the solutions exactly as indicated, or your results may differ from those

5-1

NightView User’s Guide

provided in later steps of the tutorial. Do not do anything until you see the
words "you should" in the tutorial.)

You do not need to follow cross referencesin this tutoria unless you are explicitly told to
read them.

Sometimes NightView displays a status so briefly that it seems to flash before being
replaced by another status. Thistutorial documents only the last status displayed.

This tutorial often displays process IDs. Your process IDs will probably differ from those
shown. Also, the tutorial displays hexadecimal addresses. The addresses for your pro-
gram may differ from those shown. Additionally, the line breaksin your output may differ
from those shown because the lengths of displayed dataitems may vary.

The code produced when you create your program may vary slightly from the programs
used to prepare thistutorial. In particular, the line shown as the return address from a sub-
program may be different from what is shown here.

Some messages might not appear, or additional messages might appear, depending on
your environment.

Some of the shortened commands that appear in this tutoria are not official abbreviations
for NightView commands; however, you may abbreviate NightView commands and some
keywords to the shortest unambiguous prefix. For more information, see “Command Syn-
tax” on page 7-1. You cannot abbreviate file names, symbolic names, or NightView con-
struct names.

Field names that begin with the word "dialogue" are part of the Dialogue Window. Field
names that begin with the word "debug" are part of the Debug Window.

You could run this entire tutorial with commands and operations from the keyboard.
However, to reduce confusion, use the mouse whenever possible during this tutorial. Use
mouse button 1 when you are told to click, drag, and select.

Creating a Program - GUI

5-2

NightView is mainly used with executables that contain debug information. To create
such aprogram, compile source files with a particular option, and link edit them.

Exercise:

Create a directory named nvi ew where you can create files for this tutorial, and move
into that directory.

Solution:
You should enter:

$ nkdir nview
$ cd nview

Tutorial - GUI

Note: do not enter the $. Itispart of the shell prompt.

Exercise:

Use the manual to find out what compiler option is necessary for debugging. (Hint: use
the index.)

Solution:

From the index, Compiling has this information. The - g compiler option puts debug
information into an executable.

Exercise:

Decide what language program you want to debug. Do not copy the source files from the
fusr/1ib/N ghtView Tutorial directory, just compile and link these files. Make
the ms g program contain debug information. What command or commands did you use?

Solution:
For C, you should enter:

$cc -g -onmsg /usr/lib/NghtView Tutorial/*.c
For Fortran, you should enter:

$ f77 -g -0 nsg /usr/lib/NightView Tutorial/*.f
For MAXAda, you should enter:

$ /usr/ada/ bin/a.nkenv -g

$ /usr/ada/bin/a.path -1 obsol escent

$ /usr/ada/bin/a.intro /usr/lib/Ni ghtView Tutorial/*.a
$ /usr/ada/bin/a.partition -create active -main main
neg

$ /usr/ada/bin/a.build -v nmsg

$ /usr/ada/ bin/a.rmenv .

For HAPSE Ada, you should enter:

$ /usr/hapse/binfa.nmklib -g -f

$ /usr/hapse/bin/fa.make -v -lib . -0 nmsg main\
-f Jfusr/lib/N ghtView Tutorial/*.a

$ /usr/hapse/binfa.rmib

You should now have a msg program with debug information in your nvi ew directory.
Note that for this tutoria, the source files should not be in this directory.

5-3

NightView User’s Guide

Starting NightView - GUI

You are ready to start up NightView with the graphical user interface.

Exercise:

Read how to invoke the graphical user interface of NightView. (You can find thisinfor-
mation in the manual, on the man page, or by invoking nvi ewwith the - hel p option.)
Start up the graphical user interface of NightView.

Solution:

In the index, Sarting the debugger, I nvoking the debugger, and nvi ew, invoking have
thisinformation. See Chapter 6 [Invoking NightView] on page 6-1. You should enter:

$ nview
Note that in thistutorial nsg does not appear on the nvi ewinvocation line.
NightView responds by displaying a Dialogue Window.

A Diaogue Window is used to control a NightView dialogue and for input and output with
the dialogue shell. A dialogue contains a shell where you run shell commands and debug
running programs. Each dial ogue has a name; the default dialogueis| ocal . Thedialogue
qualifier area shows the command qualifier, for this dialogue, | ocal . For information
about dialogues, see “Diaogues’ on page 3-4. For information about Dialogue Windows,
see “Dialogue Window” on page 9-16. For information about command qualifiers, see
“Qualifiers’ on page 3-4.

The dialogue 1/0 areadisplays:

fusr/1ib/ N ghtVi ew release/ Ready ToDebug
$ /usr/lib/ N ghtViewrelease/f ReadyToDebug
$

NightView runs the Ready ToDebug program automatically as part of initialization. You
might see only one echo of / usr/1i b/ Ni ght Vi ew- release/ Ready ToDebug,
depending on how quickly the dialogue shell starts (release is the NightView release
level). For information about Ready ToDebug, see “ReadyToDebug” on page 3-7. Note
that in thistutorial the dialogue shell prompt is*“$. Yours may differ.

Getting General and Error Help - GUI

54

This tutorial expects you to look up information in the NightView manual. You may read
the hard copy or the similar online manual. The online manual is accessible through each
major window’s Help menu.

Tutorial - GUI

Exercise:

Try to use the non-existent "foo" command.

Solution:

In the dialogue command area, you should enter:
f oo

and press Return.

NightView displays in the dialogue message area:

Error: Unrecogni zabl e command "foo". [E-command_proc003]

Exercise:

Read about this error message.

Solution:
In the Dialogue Window, you should click on the Help menu and select On Last Error.
The Help Window displays additional information about your most recent error.

Read the information. Notethat Summary of Commands appears highlighted.

Exercise:

Read about getting information about all NightView commands.

Solution:
In the Help Window, you should click on Summary of Commands.

The Help Window displays alist of NightView commands with each command high-
lighted. The vertical and horizontal scroll bars next to the help display et you examine the
rest of the help text.

Exercise:

Read about the menu bar in the Dialogue Window.

Solution:
In the Dia ogue Window, you should click on the Help menu and select On Context.
NightView changes your pointer to a modified question mark.

Click on the menu bar of the Dialogue Window.

5-5

NightView User’s Guide

NightView restores your pointer. The Help Window displays information about the Dia-
logue Window menu bar.

When thistutorial asks you to read about buttons, use this same procedure.

For now, you are finished using help.

Exercise:

Close the Help Window.

Solution:

In the Help Window, you should click on the File menu and select Exit. (The Help Win-
dow is running a separate program, so only that program will exit. NightView will still be
running.)

The Help window goes away.

Thistutorial discussesthe Help menu againin “Debugging All Child Processes - GUI” on
page 5-8. For more information about help, see“GUI Online Help” on page 9-2.

Starting Your Program - GUI

5-6

Most NightView features operate on existing processes in a running program. Because
you did not specify a program when you started the debugger, there haven't been any pro-
cesses to debug. You must start nsg now to debug it and to use most of the rest of the
NightView featuresin thistutorial.

Exercise:

Start the msg program, and have it wait for debugging.

Solution:

In the dialogue 1/O area, you should enter:
./ neg

and press Return.

The preceding "./" is a safety precaution. Avoid accidentally debugging the wrong pro-
gram by always providing some path information.

NightView displays the Principa Debug Window. (You can create other Debug Windows,
but you won't do that for this tutorial.)

The debug identification area shows that ns g isthe executable program the processisrun-
ning.

Tutorial - GUI

The debug message area shows:

New Process: local: 15625 parent pid: 17882
Process | ocal : 15625 is executing /users/bob/ nvi ew nsg.
Readi ng synbol s from /users/bob/nvi ew nsg. .. done
Executable file set to

[user s/ bob/ nvi ew nsg

Swi tched to process |ocal:15625.

If msg was dynamically linked, NightView & so displays the following messages:

Program was dynanically |inked.

Dynani ¢ |inking conpl et ed.

The file "file' does not contain synbolic debug
i nformati on,

only external symbols will be visible.

The long message may not appear.

NightView shows the process ID (PID) of the new process and the path where your execut-
able exists. Your PID and the path where your executable exists will probably differ from
those in this tutoria. For information about processes, see “Programs and Processes’ on

page 3-2.

The message Swi t ched to process | ocal : 15625. indicates that this processis
the currently displayed process.

The debug source file name field shows the name of the source file that is being displayed
in the debug source display, nmai n. c, mai n. f, or nai n. a.

In the debug source display, NightView displays numbered source lines. Executable lines
have an asterisk (*) source line decoration beside the line numbers. For moreinformation
about source line decorations, see “ Source Line Decorations’ on page 7-63. The vertical
and horizontal scroll bars next to the debug source display et you examine the rest of the
source file.

The debug status area shows the status Stopped for exec. This means that the process
has just exec(2) 'ed anew program image.

The debug qualifier area shows the qualifier, | ocal : 15625.

The debug group area has an entry for this process. The entry shows the qualifier,
| ocal : 15625, the name of the program this process is running, nsg, and the status of
the process, St opped for exec. See“Debug Group Ared” on page 9-37.

The Switch To button and the buttons below the label Switch To Stopped Process
are disabled (dimmed) because there is only one process present at this time.

The Dialogue Window lists an entry for process 15625 and says the process is running
nsg.

Note that by appending an ampersand (&) to the . / msg, you could have started your pro-
gram in the background of the dialogue shell. Thisis generally a good idea because it
gives you the flexibility to debug multiple programs in one NightView session; however,
in this tutorial, you will be supplying the program with input, so the program needs to be
running in the foreground.

5-7

NightView User’s Guide

Note also that although this tutorial does not ask you to do so, you can rerun a program by
invoking it again.

Debugging All Child Processes - GUI

5-8

By default, NightView debugs child processes only when they have called exec(2) . In
the ns g program, the child process never calls exec. To be able to debug this child pro-
cess, you must use the set - chi | dr en command before nsg forks the child process.
Also, you have to issue the set - chi | dr en command after invoking . / msg so the
set - chi | dr en command can be applied to existing processes.

Exercise:

Read about the set - chi | dr en command.

Solution:

You should click on the Help menu of either window and select On Commands. Scroll
down to the set - chi | dr en command. Click on the highlighted text. Read the infor-
mation that the Help Window displays about the set - chi | dr en command.

Exercise:

Use the File menu to close the Help Window.

Solution:
In the Help Window, you should click on the File menu and select Exit.
The Help Window goes away.

When thistutorial asks you to read about commands, use this same procedure.

Exercise:

Issuetheset - chi | dr en command so that the child processin msg can be debugged.

Solution:
In the debug command area, you should enter one of:

set-children all
set-c a

and press Return.

NightView echoes this command in the debug message area.

Tutorial - GUI

Handling Signals - GUI

By default, signals stop execution under the debugger. In the nsg program, the parent
process sends signal sIGUSR1 to the child process. It then sleeps as a crude way of syn-
chronizing the sending and receiving of signals. Having execution stop because of this
signal is not desirable in this case.

Exercise:

Read about the handl e command. Use it to adjust the default handling of the sIGusR1
signal so that the process does not stop.

Solution:
In the debug command area, you should enter one of the following:

handl e SI GUSRL nost op
ha usr1 nos

and press Return.
NightView echoes this command and displaysin the debug message area:
Si gnal handling conpl ete

Note: you had to issue the handl e command after invoking . / msg so the handl e
command could be applied to existing processes.

Setting the First Breakpoints - GUI

A breakpoint is set on the executable statement where you want program execution sus-
pended. The program stops at the breakpoint before it executes the instruction where the
breakpoint is set.

Exercise:

Read about the Breakpoint debug command button in the Debug Window. Set a separate
breakpoint to stop at each of the following places:

* Theline that prompts for the number of signals to send
* Thecalltochild routine

* The comment before the call to par ent _r out i ne

5-9

NightView User’s Guide

Solution:

You should alternate between clicking on a prospective breakpoint line in the debug
source display and clicking on the Breakpoint debug command button. Pause between
each click so that NightView can respond.

For the C program, the lines are 18, 25, and 30. NightView displays the following infor-
mation in the debug message area.

| ocal : 15625 Breakpoint 1 set at nain.c:18
| ocal : 15625 Breakpoint 2 set at nain.c:25
| ocal : 15625 Breakpoint 3 set at mmin.c: 30

For the Fortran program, the lines are 15, 21, and 23. NightView displays the following
information in the debug message area.

| ocal : 15625 Breakpoint 1 set at nmain.f:15
| ocal : 15625 Breakpoint 2 set at nmain.f:21
| ocal : 15625 Breakpoint 3 set at nain.f:23

For the Ada program, the lines are 18, 25, and 27. NightView displays the following infor-
mation in the debug message area.

| ocal : 15625 Breakpoint 1 set at nain.a: 18
| ocal : 15625 Breakpoint 2 set at nain.a:25
| ocal : 15625 Breakpoint 3 set at nmin.a:27

An eventpoint is a generic term which includes breakpoints, patchpoints, monitorpoints,
agentpoints, and tracepoints. NightView gives each eventpoint an ordinal identification
number beginning at 1.

Note that you can put breakpoints only on executable statements. NightView did not give
you an error for attempting to put a breakpoint on a comment line. Instead, it put the
breakpoint on the executabl e statement that immediately follows the comment line. How-
ever, the message in the debug message area has the number of the line you clicked on.

NightView changes the debug source display when you set a breakpoint. Note that each
line with a breakpoint on it now hasaB (for breakpoint) source line decoration.

Continuing Execution - GUI

5-10

To make use of the breakpoints you set, you must alow the nsg program to execute up to
the statement with the breakpoint.

Exercise:

Read about the Resume debug command button in the Debug Window. Use it to con-
tinue program execution up to the statement with the breakpoint.

Tutorial - GUI

Solution:
In the Debug Window, you should click on the Resume button.

The debug status area shows the status Stopped at breakpoint 1. This meansthat the
process hit breakpoint number 1. The debug group area shows the same status.

NightView changes the source line decoration on the statement with the breakpoint to B=.
The B till indicates a breakpoint, and the = indicates that execution is stopped there.

For the C program, NightView displays the following in the debug message area:

| ocal : 15625: at Breakpoint 1, 0x10002818 in namin() at
main.c line 18

For the Fortran program, NightView displays the following in the debug message area:

| ocal : 15625: at Breakpoint 1, 0x10003878 in namin() at
main.f line 15

For the Ada program, NightView displays the following in the debug message area:

| ocal : 15625: at Breakpoint 1, 0x10010b18 in namin() at
main.a line 18

Not Entering Functions - GUI

Execution is stopped at the line that prompts for the number of signalsto send. You don’t
want to enter the code for the output statement (or function) because it is part of the
library, not part of your program.

Exercise:

Read about the Next debug command button in the Debug Window. Use it to skip over
the output statement (or function).

Solution:
In the Debug Window, you should click on the Next button.

The msg program writes the prompt "How many signals should the parent send the
child?' in the dialogue 1/O area.

In the debug source display, NightView changes the source line decoration of the next line
to =, which shows that execution is stopped there.

The debug status area and the debug group area show the status Stopped after step.
This means that the process has finished a stepping command.

511

NightView User’s Guide

Entering Input - GUI

You must respond to the nsg program prompt "How many signals should the parent send
the child?".

Exercise:

Send ten signals.

Solution:
In the dialogue 1/O area, you should enter:
10

and press Return.

Continuing Execution Again - GUI

5-12

Before you can examine aspects of par ent _routi ne andchi | d_routi ne, you must
get NightView to stop at the callsto these routines.

Exercise:

Continue executing the program so it stops at the next statement with a breakpoint.

Solution:
In the Debug Window, you should click on the Resume debug command button.

The debug status area and the debug group area show the status Stopped at break-
point 3. This means that the process hit breakpoint number 3.

For the C program, NightView displays the following in the debug message area:

| ocal : 15625: at Breakpoint 3, 0x1000284c in nain() at
main.c line 31

For the Fortran program, NightView displays the following in the debug message area:

| ocal : 15625: at Breakpoint 3, 0x10003904 in namin() at
main.f line 24

For the Ada program, NightView displays the following in the debug message area:

| ocal : 15625: at Breakpoint 3, 0x10010bdc in nain() at
main.a line 28

Tutorial - GUI

The source line decoration is now a B=. The B still indicates a breakpoint, and the = indi-
cates that execution is stopped there.

The debug group area has a new entry for the child process. The child process is the one
with the status New Process.

The Switch To button and the buttons below the label Switch To Stopped Process
are now enabled (not dimmed).

You would like to view the child process in the Debug Window.

Exercise:

Read about the debug group area. Switch to the child process.

Solution:

In the process list of the debug group area, you should click on the entry for the child pro-
cess. Then you should click on the Switch To button.

Now the Debug Window is displaying the child process.

The debug identification area still showsthat nsg isthe executable program the processin
this window is running. (The child is executing the same program as the parent.) The
qualifier specifier field now shows the qualifier of the child process.

For the C program, the debug message area shows:

Swi tched to process | ocal: 13504.
New process: |ocal: 13504 parent pid: 15625
#0 0x10002838 in main() at main.c line 20

For the Fortran program, the debug message area shows:

Swi tched to process | ocal: 13504.
New process: |ocal: 13504 parent pid: 15625
#0 0x100038e4 in main() at main.f line 17

For the Ada program, the debug message area shows:

Swi tched to process | ocal:13504.
New process: |ocal: 13504 parent pid: 15625
#0 0x10010bc8 in main() at main.a line 23

In this example, the child process has process 1D 13504, and the parent process has process
ID 15625. Note that your process IDs will differ. Note also that after the f or k, only the
parent process continued execution; the child processis still at the f or k.

The debug source display shows the main program because execution is stopped in arou-
tine (f or k(2)) which is hidden because it is uninteresting. NightView usually does not
show you system library routines. See “Interesting Subprograms” on page 3-27. The <
source line decoration indicates that this line made a subprogram call which has not yet
returned.

5-13

NightView User’s Guide

The debug status area shows the status New process. This means that the process has
just been created by af or k(2) call in the parent process. The process is stopped. See
“Multiple Processes’ on page 3-2.

The debug qualifier area shows the qualifier, | ocal : 13504.

The Diaogue Window lists entries for processes 15625 and 13504.

Catching up the Child Process - GUI

Exercise:

Get the child process to continue execution up to the breakpoint on the call to
child_routine (line25inmai n. c,line2linmai n. f,andline25in mai n. a).
Solution:

In the Debug Window, with the child as the currently displayed process, you should click
on the Resume debug command button.

For the C program, NightView displaysin the debug message area:

| ocal : 13504: at Breakpoint 5, 0x10002840 in namin() at
main.c line 25

For the Fortran program, NightView displays in the debug message area:

| ocal : 13504: at Breakpoint 4, 0x100038fc in nain() at
main.f line 21

For the Ada program, NightView displays in the debug message area:

| ocal : 13504: at Breakpoint 4, 0x10010bdO in nain() at
main.a line 25

The debug source file nameisnai n. ¢, mai n. f, or nai n. a.

NightView puts a B= source line decoration in the debug source display on line 25 for the
C and Ada programs and line 21 for the Fortran program.

The debug status area and the debug group area show the status Stopped at break-
point 5. This means that the process hit breakpoint number 5. Breakpoint 5 in the child
corresponds to breakpoint 2 in the parent. Inherited eventpoints get new identifiers, but the
order of the eventpoint identifiers is unpredictable, so your breakpoint may have a differ-
ent number.

5-14

Tutorial - GUI
Verifying Data Values - GUI

You want to look at the value of variablesin the msg program.

Exercise:

Read about the Print debug command button in the Debug Window. Use it to check that
thet ot al _si g variable hasthe value 10.

Solution:

In the debug source display of the Debug Window, start at one side of any instance of the
t ot al _si g variable, hold down mouse button 1, drag it across the entire variable name,
and release. (Alternatively, you could double click on the variable name where it appears
surrounded by spaces.) Only the variable name should be highlighted. Click on the Print
button.

NightView displays in the debug message area:
$1: total _sig = 10

The Print button always printsintegersin decimal. NightView keeps a history of printed
values. The $1 means that thisis the first value in this history. For more information
about the printed value history, see “Value History” on page 3-32.

Note that if you had looked at thet ot al _si g variable after its last use, you might have
seen gibberish. This happens when the location holding a value gets overwritten. For
more information, see “Optimization” on page 3-33. In the Fortran program,
t ot al _si g was putin COMMON so you could consistently see its value in the tutorial.

Listing the Source - GUI

You want to look at the source code for chi | d_r outi ne.

Exercise:

Read about the Debug Window’s Source menu’s List Function/Unit... itemin
“Debug Source Menu” on page 9-23. With the parent as the currently displayed process,
use thisitem to display the source code for chi | d_routi ne.

Solution:

You should switch to the parent process by clicking on the parent process's entry in the
debug group area process list and then clicking on the Switch To button. Then you
should click on the Source menu, and select List Function/Unit....

5-15

NightView User’s Guide

After pressing Switch To, Switched to process local:15625 appears in the debug
message area. The debug status area shows St opped at breakpoi nt 3. Thedebug
source display shows that execution is stopped at the call to par ent _r out i ne.

After clicking in the Source menu, NightView puts up the Select a Function/Unit
dialog box.

Exercise:

Read about the Search button in the Select a Function/Unit dialog box. Useit to
search for chi I d_routi ne.

Solution:

Inthe Select a Function/Unit dialog box, you should enter chi | d_r out i ne asthe
regular expression, and click on the Search button. (For more information about regular
expressions, see “Regular Expressions”’ on page 7-12.)

NightView findsthechi | d_r out i ne function and putsitin thelist.

Exercise:

Read about the OK button in the Select a Function/Unit dialog box. Useit to change
the debug source display.

Solution:
Inthe Select a Function/Unit dialog box, you should click on the OK button.
NightView closesthe Select a Function/Unit dialog box.

NightView changes the debug source file nameto chi | d. ¢, chil d. f,orchi |l d. a,
and the debug source display shows the source code.

Entering Functions - GUI

5-16

At this point, the parent processis about to run par ent _r out i ne, and the child process
isabouttorunchi | d_routi ne.

Exercise:
Change to group process mode.

Read “Group Process Mode” on page 9-14.

Tutorial - GUI

Solution:

From the debug menu bar, you should select Group Process Mode from the View
menu. The debug qualifier areadisplays[G- oup Mde] . NightView displays this mes-
sage in the debug message area: Changed t o group process node.

Exercise:

Read about the Step debug command button. Use the Step button to simultaneously
enter both routines.

Solution:
In the debug command button area, you should click on the Step button.

Because both the parent and child processes are listed in the debug group area of this
Debug Window, and the Debug Window isin group process mode, the Step button causes
both processesto step.

For the C program, NightView displaysin the debug message area:

#0 0x10002884 in child routine(int total_sig = 10) at
child.c line 14
#0 0x10002944 in parent _routine(pid_t child pid =
13504, int total _sig = 10)

at parent.c line 11

For the Fortran program, NightView displays in the debug message area:

#0 0x1000393c in child_routine() at child.f line 17
#0 0x10003a48 in parent_routine(l NTEGER child_pid /
13504 /)

at parent.f line 15

For the Ada program, NightView displays in the debug message area:

#0 0x100108fc in child_routine(total_sig : INinteger =
10) at child.a line 26
#0 0x10010578 in parent_routine(child pid: INpid t =
13504,

total _sig : INinteger = 10) at
parent.a line 6

NightView tells you when a st ep command takes you into (or out of) a subprogram call.
The lines that begin with #0 announce that you have entered chi | d_r out i ne in the
child process and par ent _r out i ne in the parent process.

Note that the order of the lines displayed may vary.

Both the State: fields in the debug group area show the status Stopped after step.
This means that the processes have finished a stepping command. The debug status area
shows the same status for the parent process.

NightView changes the debug source file name to parent . c, parent . f, or par -
ent . a, and the debug source display shows the source code.

5-17

NightView User’s Guide

Line1l of parent. c,linel15of parent. f, or line6 of par ent . a in the debug source
display hasthe = source line decoration, which indicates that execution is stopped there.

Examining the Stack Frames - GUI

It is often helpful to see how you got to a certain point in aprogram.

Exercise:

Read about the backt r ace command. Useit to display the list of currently active stack
frames for both processes.

Solution:
In the debug command area, you should enter one of:

backtrace
bt

and press Return.
NightView echoes this command in the debug message area.
For the C program, NightView displaysin the debug message area:

Backtrace for process local: 15625
#0 0x10002944 in parent _routine(pid_t child pid =
13504, int total _sig = 10)
at parent.c line 11
#1 0x10002854 in main() at main.c line 31
Backtrace for process |ocal: 13504
#0 0x10002884 in child routine(int total _sig = 10) at
child.c line 14
#1 0x10002848 in main() at main.c line 25

For the Fortran program, NightView displays in the debug message area:

Backtrace for process local: 15625
#0 0x10003a48 in parent_routine(l NTEGER child_pid /
13504 /)
at parent.f line 15
#1 0x10003910 in main() at main.f line 24
Backtrace for process |ocal: 13504
#0 0x1000393c in child_routine() at child.f line 17
#1 0x10003900 in main() at main.f line 21

For the Ada program, NightView displays in the debug message area:

Backtrace for process local: 15625
#0 0x10010578 in parent_routine(child pid: INpid t =
13504,

5-18

Moving in the

Tutorial - GUI

total _sig : INinteger = 10) at
parent.a line 6
#1 0x10010bed4 in nain() at main.a line 28
#2 0x10022750 in <anonynous>()
Backtrace for process |ocal: 13504
#0 0x100108fc in child_routine(total_sig : INinteger =
10) at child.a line 26
#1 0x10010bd8 in nain() at main.a line 25
#2 0x10022750 in <anonynous>()

On lines labeled #0, NightView shows its location within the current routine. On lines
labeled #1, NightView shows the location of the call to the current routine within the call-
ing routine.

Inthe Ada program, stack frame #2 isfrom the library level elaboration routine, which has
no name.

Stack Frames - GUI

You may want to move among the stack frames to examine and modify variables, run
functions, etc., in other frames. For example, suppose that you want to examine the value
of local variablet r acefi | e inmai n.

Exercise:

Change back to single process mode and make sure the parent processisthe currently dis-
played process.

Solution:

From the debug menu bar, you should select Single Process Mode from the View
menu. The debug qualifier area displays the qualifier for the currently selected process.
NightView displays these messagesin the debug message area:

Changed to single process node.
Swi tched to process | ocal:15625.

If the parent process is not the currently displayed process, you should switch to it.

Exercise:

Read about the up command. Use the up command to make the current stack frame of the
parent process be mai n.

Solution:

In the debug command area, you should enter:

up

5-19

NightView User’s Guide

and press Return.
NightView echoes this command in the debug message area.

NightView changes the debug source file nameto mai n. ¢, mai n. f , or mai n. a, and the
debug source display shows the source code.

For the C program, NightView displaysin the debug message area:

Qut put for process |ocal: 15625
#1 0x10002854 in main() at main.c line 31

For the Fortran program, NightView displays in the debug message area:

Qut put for process |ocal: 15625
#1 0x10003910 in main() at main.f line 24

For the Ada program, NightView displays in the debug message area:

Qut put for process |ocal: 15625
#1 0x10010be4 in main() at main.a line 28

The > source line decoration in the debug source display indicates that execution will
resume there when the called routine returns. This source line decoration appears on line
34 of mai n. c, line27 of mai n. f, and line 31 of nai n. a.

The < source line decoration in the debug source display indicates that this line made a
subprogram call which has not yet returned. This source line decoration appears on line
31 of mai n. c, line24 of mai n. f, and line 28 of nai n. a.

Verifying Data Values in Other Stack Frames - GUI

5-20

From mai n, you can examine local variables, run functions, etc.

Exercise:

Use the Print debug command button to display the value of local variablet racefil e
in mai n for the parent process.

Solution:

In the debug source display, start at one side of any instance of thet r acefi | e variable,
hold down mouse button 1, drag it across the entire variable name, and release. (Alterna-
tively, you could double click on the variable name. Note that this does not work in the C
source because double clicking would highlight text delimited by spaces; in this case, it
would highlight the* with the variable name.) Only the variable name should be high-
lighted. Click onthe Print button.

For the C program, NightView displaysin the debug message area:

$2: tracefile = 0x30003100 "nsg file"

Tutorial - GUI

For the Fortran and Ada programs, NightView displays in the debug message area:

$2: tracefile = "nsg file"

Returning to a Stack Frame - GUI

You want to return to par ent _r out i ne.

Exercise:

Read about the down command. Use the down command to make the current stack frame
of the parent process be par ent _r out i ne.

Solution:
In the debug command area, you should enter one of:

down
do

and press Return.
NightView echoes this command in the debug message area.
For the C program, NightView displaysin the debug message area:

Qut put for process |ocal: 15625
#0 0x10002944 in parent _routine(pid_t child pid =
13504, int total _sig = 10)

at parent.c line 11

For the Fortran program, NightView displays in the debug message area:

Qut put for process |ocal: 15625
#0 0x10003a48 in parent _routine(INTEGER child pid /
13504 /)

at parent.f line 15

For the Ada program, NightView displays in the debug message area:

Qut put for process |ocal: 15625
#0 0x10010578 in parent_routine(child pid: INpid t =
13504,

total _sig : INinteger = 10) at
parent.a line 6

NightView changes the debug source file name to par ent . c, parent . f, or par -
ent . a, and the debug source display shows the source code.

5-21

NightView User’s Guide

The = source line decoration in the debug source display indicates that execution stopped
there. This source line decoration appears on line 11 of par ent . c, line 15 of par -
ent. f,andline6 of parent. a.

Note: it is not meaningful to do a down without doing an up first (as you did in section
“Moving in the Stack Frames - GUI” on page 5-19).

Resuming Execution - GUI

5-22

You want to continue the execution of the child process so that it will get signals as soon
as they are sent by the parent process.

Exercise:

Use the Resume debug command button to resume execution of the child process.

Solution:

You should switch to the child process by clicking on the child process's entry in the
debug group area process list and then clicking on the Switch To button. Then you
should click on the Resume button.

After pressing Switch To, the debug source file shownischil d. c,chil d.f or
chi | d. a. Switched to process local:13504 appears in the debug message area.

After pressing Resume, NightView disables (dims) most of the debug command buttons.

The debug status area and the debug group area show the status Running. This means
that the processis currently executing.

Exercise:

The remainder of this tutorial does not deal with the child process directly. Arrange for
the remaining commands to affect only the parent process.

Solution:

You should switch to the parent process by clicking on the parent process's entry in the
debug group area process list and then clicking on the Switch To button.

After clicking Switch To, the debug source file name, source display area and status are
changed to their values for the parent. The debug message area shows Swi t ched to
| ocal : 15625. The buttons that were dimmed for the child process are no longer
dimmed.

Tutorial - GUI
Removing a Breakpoint - GUI

Breakpoint 1 (set in “Setting the First Breakpoints - GUI” on page 5-9) is no longer
needed.

Exercise:

Read about the Debug Window’s Eventpoint menu's Summarize/Change... itemin
“Debug Eventpoint Menu” on page 9-25. Use this item to remove breakpoint 1.

Solution:
You should click on the Eventpoint menu. Select Summarize/Change....
NightView displays the debug eventpoint summarize/change dialog box.

Three eventpoints appear in the eventpoint list. NightView displays the following mes-
sage below the eventpoint list: 3 eventpoints were found.

Exercise:

Read about the Delete button in “Debug Eventpoint Summarize/Change Dialog Box” on
page 9-44. Use it to delete the breakpoint.

Solution:
You should select breakpoint 1 from the eventpoint list, and click on the Delete button.

NightView puts up awarning dialog box.

Exercise:

Read the message in the warning dialog box, allow the delete to proceed, and make the
dialog box go away.

Solution:

In the warning dial og box, you should click on the OK button.

NightView closes the warning dialog box and del etes the breakpoint from the eventpoint
list.

NightView displays the following message below the eventpoint list: Deleted 1 event-
point: 1.

You have finished removing this breakpoint.

Exercise:

M ake the debug eventpoint summarize/change dialog box go away.

5-23

NightView User’s Guide

Solution:

In the debug eventpoint summarize/change dialog box, you should click on the Close
button.

NightView closes the window.

Setting Conditional Breakpoints - GUI

5-24

It is often useful to suspend execution conditionally.

Exercise:

Read about the Debug Window’s Eventpoint menu's Set Breakpoint... itemin
“Debug Eventpoint Menu” on page 9-25. Use this feature to set a breakpoint on the line
that displays how long the parent is sleeping in par ent _r out i ne; the breakpoint
should suspend execution when the value of i sec equalsthevaueof t ot al _si g.

Solution:
In the debug source display, you should click on theline. For par ent . c and par -
ent. f,itisline16. For parent. a,itisline 15. You should click on the Eventpoint
menu. Select Set Breakpoint....
NightView displays the breakpoint dialog box.
Do not press Return after you enter the following text.
For the C program, you should enter in the condition text input area:
isec == total _sig
For the Fortran program, you should enter in the condition text input area:
isec .eq. total _sig
For the Ada program, you should enter in the condition text input area:
isec = total _sig

You are ready to finish setting the conditional breakpoint.

Exercise:

Save your changes and make the breakpoint dialog box go away.

Solution:
In the breakpoint dialog box, you should click on the OK button.

NightView closes the breakpoint dialog box.

Tutorial - GUI

For the C program, NightView displaysin the debug message area:

| ocal : 15625 Breakpoint 7 set at parent.c: 16
For the Fortran program, NightView displays in the debug message area:

| ocal : 15625 Breakpoint 7 set at parent.f:16
For the Ada program, NightView displays in the debug message area:

| ocal : 15625 Breakpoint 7 set at parent.a: 15

The indicated line gets a B source line decoration in the debug source display.

Attaching an Ignore Count to a Breakpoint - GUI

Sometimes you won't want to monitor each iteration of aloop. For example, assume that
aloop runs many times, and somewhere during the loop an error occurs. You could ignore
the first half of the loop values to determine in which half of the iterations the error
occurred.

Exercise:

Set a breakpoint on the line that displays how long the parent is sleeping in
par ent _rout i ne, ignoring the next five iterations.

Solution:

In the debug source display, you should click on the line. For par ent . c and par -
ent. f,itisline16. For parent. a,itisline15. You should click on the Eventpoint
menu. Select Set Breakpoint....

NightView displays the breakpoint dialog box.

Enter 5 intheignore count text input area. Do not press Return.

You are ready to finish attaching an ignore count to a breakpoint.

Exercise:

Save your changes and make the breakpoint dialog box go away.

Solution:

In the breakpoint dialog box, you should click on the OK button.
NightView closes the breakpoint dialog box.

For the C program, NightView displaysin the debug message area:

| ocal : 15625 Breakpoint 8 set at parent.c: 16

5-25

NightView User’s Guide

For the Fortran program, NightView displays in the debug message area:
| ocal : 15625 Breakpoint 8 set at parent.f:16
For the Ada program, NightView displays in the debug message area:

| ocal : 15625 Breakpoint 8 set at parent.a: 15

Attaching Commands to a Breakpoint - GUI

You can attach arbitrary NightView commands to a breakpoint. They run when that partic-
ular breakpoint is hit.

Exercise:

Attach a command stream that prints out the value of t ot al _si g only when you hit the
breakpoint you set in the previous step (set in “ Attaching an Ignore Count to a Breakpoint
- GUI” on page 5-25).

Solution:

You should click on the Eventpoint menu. Select Summarize/Change....

NightView displays the debug eventpoint summarize/change dialog box.

Exercise:

Read about the Change... button in “Debug Eventpoint Summarize/Change Dialog
Box” on page 9-44. Useit to add commands to this breakpoint.

Solution:

Notice that some of the buttons are disabled (dimmed), because you have not yet selected
an eventpoint from the eventpoint list. Select breakpoint 8 from the eventpoint list, which
will enable the buttons, and click on the Change... button.

NightView displays the breakpoint dialog box.

Note that 5 isintheignore count text input areafrom “Attaching an Ignore Count to a
Breakpoint - GUI” on page 5-25.

Do not press Return after you enter the following text.
Inthe commands text input area, you should enter one of:

print total _sig
p total _sig

5-26

Tutorial - GUI

Exercise:

In the breakpoint dialog box, save your changes and make the dialog box go away.

Solution:
In the breakpoint dialog box, you should click on the OK button.

NightView closes the breakpoint dialog box.

Exercise:

M ake the debug eventpoint summarize/change dialog box go away.

Solution:

In the debug eventpoint summarize/change dialog box, you should click on the Close
button.

NightView closes the window.

Automatically Printing Variables - GUI

You can create alist of one or more variables to be printed each time execution stops.

Exercise:

Read about the di spl ay command. Use adi spl ay command to display the value of
thesi g_ct variable.

Solution:
In the debug command area, you should enter one of:

di splay sig_ct
disp sig_ct

and press Return.
NightView echoes this command in the debug message area.

Note that this di spl ay command runs every time execution stops, and the pri nt com-
mand from “ Attaching Commands to a Breakpoint - GUI” on page 5-26 runs only when
execution stops at a specific breakpoint.

5-27

NightView User’s Guide
Watching Inter-Process Communication - GUI

You aready resumed the execution of the child process, so NightView did not wait for the
child process.

Exercise:

Now continue execution for the parent process.

Solution:
In the Debug Window, you should click on the Resume button.
In the dialogue I/O area, NightView responds with something like the following:

1. Parent sleeping for 2 seconds
2. Parent sleeping for 2 seconds
Child got ordinal signal #1
3. Parent sleeping for 2 seconds
Child got ordinal signal #2
4. Parent sleeping for 2 seconds
Child got ordinal signal #3
5. Parent sleeping for 2 seconds
Child got ordinal signal #4
Child got ordinal signal #5

Because of the ignore count on breakpoint 8, the parent process sent only five out of ten
signals to the child process before the breakpoint was hit. The source code is written so
that the lines that begin with a number come from the parent process, and the lines that
begin with the word "Child" come from the child process.

The debug status area and the debug group area show the status Stopped at break-
point 8. This means that the process hit breakpoint number 8.

For the C program, NightView displays something like the following in the debug mes-
sage area:

| ocal : 15625: at Breakpoint 8, 0x10002950 in
parent _routine(
pid t child pid = 13504, int total _sig
= 10)
at parent.c line 16
1. sig_ct =6
$3: total _sig = 10

For the Fortran program, NightView displays something like the following in the debug
message area:

| ocal : 15625: at Breakpoint 8, 0x105d0 in parent_routine(
I NTEGER child_pid / 13504 /) at

parent.f line 16

1. sig_ct =6

$3: total _sig = 10

5-28

Tutorial - GUI

For the Ada program, NightView displays something like the following in the debug mes-
sage area:
| ocal : 15625: at Breakpoint 8, 0x30324 in parent_routine(
child pid : INinteger = 13504,
total _sig : INinteger = 10) at
parent.a line 15
1. sig_ct =6
$3: total _sig = 10

Initial lines show where execution stopped. One line shows the value of si g_ct because
of the di spl ay command. Another line shows the value of t ot al _si g from the
pri nt command attached to breakpoint 8.

Note that the order of the displayed lines may vary.

Patching Your Program - GUI

You just watched the parent process sleep for 2 seconds between sending signals to the
child process. Look at how thisisdone in the source.

You will notice that the variable i sec always has the value 2. Instead, you could vary the
deep interval i sec by assigning it a value from 1 through 3, based on the signal count
si g_ct. Hint: in C the %operator, in Fortran the nod function, and in Adather em
operator may be useful.

Exercise:

Read about the Debug Window’s Eventpoint menu’s Set Patchpoint... itemin
“Debug Eventpoint Menu” on page 9-25. In the parent process, on the line that displays
how long the parent is sleeping, patch in the assignment expression just described.

Solution:

You should click on the Eventpoint menu. Select Set Patchpoint....

NightView displays the patchpoint dialog box.

Do not press Return after you enter the following text.

For the C program, you should enter in the evaluate text input area:
isec = sigct %3 + 1

For the Fortran program, you should enter in the evaluate text input area:
isec = nod(sigect, 3) +1

For the Ada program, you should enter in the evaluate text input area:

isec :=sig ct rem3 + 1

5-29

NightView User’s Guide

You are ready to finish patching your program.

Exercise:

Save your changes and make the patchpoint dialog box go away.

Exercise:
In the patchpoint dialog box, you should click on the OK button.
NightView closes the patchpoint dialog box.

Note that the line in the debug source display with a patchpoint on it now has a BP= (for
breakpoint, patchpoint, and execution stopped here) source line decoration.

For the C program, NightView displaysin the debug message area:
| ocal : 15625 Pat chpoint 9 set at parent.c: 16
For the Fortran program, NightView displays in the debug message area:
| ocal : 15625 Patchpoint 9 set at parent.f: 16
For the Ada program, NightView displays in the debug message area:

| ocal : 15625 Pat chpoint 9 set at parent.a: 15

Disabling a Breakpoint - GUI

You want to run nsg to completion without stopping at breakpoint 8.

Exercise:

Disable breakpoint 8 (set in section “ Attaching an Ignore Count to a Breakpoint - GUI” on
page 5-25).

Solution:

You should click on the Eventpoint menu. Select Summarize/Change....

NightView displays the debug eventpoint summarize/change dialog box.

Exercise:

Read about the Disable button in “ Debug Eventpoint Summarize/Change Dialog Box”
on page 9-44. Useit to disable the breakpoint.

Solution:

Select breakpoint 8 from the eventpoint list, and click on the Disable button.

5-30

Tutorial - GUI

The eventpoint list shows that breakpoint 8 is disabled. NightView also displays the fol-
lowing message below the eventpoint list: Disabled 1 eventpoint: 8.

Exercise:

M ake the debug eventpoint summarize/change dialog box go away.

Solution:

In the debug eventpoint summarize/change dialog box, you should click on the Close
button.

NightView closes the debug eventpoint summarize/change dia og box.

Examining Eventpoints - GUI

You want to examine the types, locations, and statuses of the eventpoints you have set in
nsg.

Exercise:

Change to group process mode.

Solution:

From the debug menu bar, you should select Group Process Mode from the View
menu. The debug qualifier areadisplays[G- oup Mde] . NightView displays this mes-
sage in the debug message area: Changed to group process mode.

NightView displays in the debug message area:

Process | ocal : 13504 recei ved SI GUSRL
Process | ocal : 13504 recei ved SI GUSRL
Process | ocal : 13504 recei ved SI GQUSRL
Process | ocal : 13504 recei ved SI GUSRL
Process | ocal : 13504 recei ved SI GUSRL

The lines that mention signal SIGUSR1 appear because the handl e command isimplicitly
set to pri nt and explicitly set to nost op. These messages were saved while the Debug
Window was in single process mode with another process as the currently displayed pro-
cess, now that the Debug Window isin group process mode, messages from all processes
are displayed, including any saved messages.

Exercise:

Examine all eventpoints.

5-31

NightView User’s Guide

5-32

Solution:

You should click on the Eventpoint menu. Select Summarize/Change....

NightView displays the debug eventpoint summarize/change dialog box.

For the C program, NightView displaysin the eventpoint list:

EvptID Type Enabled

Enabl ed
Enabl ed
Enabl ed
Di sabl ed
Enabl ed
Enabl ed
Enabl ed
Enabl ed

OO O©OWONWN

For the Fortran program, NightView displaysin the eventpoint list:

EvptID Type Enabled

Enabl ed
Enabl ed
Enabl ed
Di sabl ed
Enabl ed
Enabl ed
Enabl ed
Enabl ed

OO O©OWONWN

For the Ada program, NightView displays in the eventpoint list:

EvptID Type Enabled

Enabl ed
Enabl ed
Enabl ed
Di sabl ed
Enabl ed
Enabl ed
Enabl ed
Enabl ed

OO OWONWN

NightView displays all eventpoints for process | ocal : 15625 followed by the event-

points for process| ocal : 13504.

Breakpoints 1, 2, and 3 were set in “ Setting the First Breakpoints - GUI” on page 5-9.
Breakpoint 1 has no entry because it was deleted in “Removing a Breakpoint - GUI” on

Process - Address

125
- 30
.c: 16
.c: 16
.c: 16
118
125
- 30

| ocal :
| ocal :
| ocal :
| ocal :
| ocal :
| ocal :

Process - Address

| ocal :
| ocal :
| ocal :
| ocal :
| ocal :
| ocal :
| ocal :
| ocal :

Process - Address

| ocal :
| ocal :
| ocal :
| ocal :
| ocal :
| ocal :
| ocal :
| ocal :

page 5-23. Breakpoints 2 and 3 are still enabled.

When the child process was forked, it inherited the parent process's breakpoints. The
child's breakpoints 4, 5, and 6 correspond to the parent’s breakpoints 1, 2, and 3. The
order of the eventpoint numbers for inherited eventpoints is not necessarily the same asin

the parent.

n. a:
n. a:
n. a:

125
1 27

a: 15
a: 15
a: 15
25
27
18

Continuing to

Tutorial - GUI

Breakpoint 7 was set in “ Setting Conditional Breakpoints - GUI” on page 5-24 and is still
enabled.

Breakpoint 8 was set in “ Attaching an Ignore Count to a Breakpoint - GUI” on page 5-25
and was disabled in “ Disabling a Breakpoint - GUI” on page 5-30.

Patchpoint 9 was set in “Patching Your Program - GUI” on page 5-29 and is still enabled.

Exercise:

M ake the debug eventpoint summarize/change dialog box go away.

Solution:

In the debug eventpoint summarize/change dialog box, you should click on the Close
button.

NightView closes the debug eventpoint summarize/change dia og box.

Exercise:

Change back to single process mode and make sure the parent processisthe currently dis-
played process.

Solution:

From the debug menu bar, you should select Single Process Mode from the View
menu. The debug qualifier area displays the qualifier for the currently selected process.
NightView displays these messagesin the debug message area:

Changed to single process node.
Swi tched to process | ocal:15625.

If the parent process is not the currently displayed process, you should switch to it.

Completion - GUI

There's nothing else to look at, so you decide to run nsg to completion.

Exercise:

Continue execution of nsg.

Solution:
In the Debug Window, you should click on the Resume button.

NightView displaysin the dialogue |/O area:

5-33

NightView User’s Guide

6. Parent sleeping for 1 seconds

7. Parent sleeping for 2 seconds

Child got ordinal signal #6

8. Parent sleeping for 3 seconds

Child got ordinal signal #7

9. Parent sleeping for 1 seconds

Child got ordinal signal #8

10. Parent sleeping for 2 seconds
Child got ordinal signal #9

Child got ordinal signal #10

The source code is written so that the lines that begin with a number come from the parent
process, and the lines that begin with the word "Child" come from the child process. Note
that the sleep interval varies from 1 through 3 because of the patch you made in “Patching
Your Program - GUI” on page 5-29.

Note the order of the displayed lines may vary.
The debug source display shows the main program, at the call to exi t .

The debug status area and the debug group area show the status About to exit. This
means that the process has called the exit system service. See “Exited and Terminated Pro-
cesses’ on page 3-16. The debug group area shows the same status for the child.

For the C and Ada programs, NightView displays in the debug message area:
Process | ocal : 15625 is about to exit normally
--> Undi spl ayed itens:
1: (print) sig_ct

Thelast two lines say that si g_ct isnot displayed. This message appears because of the
di spl ay command and because the si g_ct variable is not visible at this point in the
parent process.

For the Fortran program, the variable sig_ct is till available, so it is displayed:

1. sig_ct =11

Leaving the Debugger - GUI

5-34

Thetutorial isover.

Exercise:

Read about the Debug Window’s NightView menu. Use it to leave the debugger.

Solution:

You should click on the NightView menu of any window. Select Exit (Quit Night-
View).

Tutorial - GUI

Neither process has completely exited, so NightView puts up a warning dialog box, asking
the following question:

Kill all processes bei ng debugged?

Exercise:

Make the processes go away.

Solution:
In the warning dialog box, you should click on the OK button.

All windows are removed.

5-35

NightView User’s Guide

5-36

Invoking NightView

6
Invoking NightView

This section describes how to start a NightView session.

You can start NightView without any arguments at all, if you wish. The arguments
available on the NightView command line control the initia state of the debugger, and
optionally allow you to specify the first program to be debugged. The command line to
invoke NightView looks like this:

nview [-attach pid] [-editor program] [-help] [-ktalk]
[-nogui] [-noktal k] [-nolocal] [-nx] [-pronpt string
[-saf ety safemode] [-sinpl escreen] [-version]

[- Xoption ...] [-x command-file] [-xeditor]

[program-name [corefile-name] |

-attach pid

Attach to the process specified by pid in the local dialogue. Thisissimilar to using
the at t ach command. See “attach” on page 7-32. This option is not meaningful
with - nol ocal .

-editor program

Use program to edit source files. (See “Edit” on page 9-24.) Thisoption isvalid
only in the graphical user interface.

-hel p

Causes NightView to print its command line syntax followed by a brief description
of each option and then exit with code 0.

-ktal k

Allows NightView to communicate with other tools via KoalaTalk. (See “Using
NightView with Other Tools’ on page 3-35.) Thisisthe default mode of operation.
Use - nokt al k to disable thismode. Thisoptionisvalid only in the graphical user
interface.

- nogui

Prevents NightView from automatically invoking the graphical user interface. See
Chapter 9 [Graphical User Interface] on page 9-1.

- nokt al k

Prevents NightView from being used as adebug server viaKoaaTalk. (See“Using
NightView with Other Tools’ on page 3-35.) Thisoptionisvalid only in the graph-
ical user interface.

6-1

NightView User’s Guide

6-2

- nol ocal

-NXx

Prevents NightView from starting a dialogue on the local system. See “Dialogues’
on page 3-4. In the graphical user interface, if - nol ocal isused, NightView pops
up a Remote Login Dialog Box (see “Remote Login Dialog Box” on page 9-47).
(- nol ocal isimplied on Intel/Red Hat Linux)

Prevents NightView from reading commands from the default initialization file. See
“Initialization Files” on page 3-33.

- pronpt string

Sets NightView'sinitial prompt string to string. See “ set-prompt” on page 7-47.

- saf et y safe-mode

Sets the initial safety level to safe-mode, which can be f or bi d, veri fy, or
unsaf e. The default level isveri fy. This controls the debugger's response to
dangerous commands. See “set-safety” on page 7-49.

-si npl escreen

Directs NightView to use a simple full-screen interface. This option implies
- nogui . See Chapter 8 [Simple Full-Screen Interface] on page 8-1.

-version

Causes NightView to display its current version and then exit with code 0.

- Xoption

Any standard X Toolkit command line option (see X(1)). These options are
allowed only when using the graphical user interface.

- X command-file

Directs NightView to read commands from command-file before reading commands
from the default initialization file or from standard input. You may supply more
than one - x option if you like; the files are read in the order of their appearance on
the command line.

-xedi t or

Usethis option if the program specified by - edi t or communicates with X directly
(see X(1)). For example, if nedi t (1) isspecified by the - edi t or option, you
should specify - xedi t or. However, if vi (1) is specified as the editor, you
should not use this option because vi must run from within an xt er n{ 1) . This
option isvalid only in the graphical user interface.

program-name

If no coréfile-name argument is specified, then NightView will prompt you for argu-
ments to supply to program-name and start debugging that program. If you inad-
vertently specified the program-name argument, you will have the opportunity to
cancel its effect when you are prompted for arguments.

Invoking NightView

corefile-name

When you supply both program-name and corefile-name arguments, NightView
starts out by creating a pseudo-process for the given core file, using the given pro-
gram-name as the executable image for that corefile. See“Core Files” on page 3-4
and “ core-file” on page 7-34.

All options may be abbreviated to unique prefixes. For example,
nvi ew - si
invokes NightView with the simple full-screen interface.

If the environment variable DISPLAY is set, or the standard X Toolkit command line
option -di spl ay is used, then NightView communicates through a graphical user
interface. In this case, other standard X Toolkit command line options are also alowed,
e.g., - Xr mresourcestring. See Chapter 9 [Graphical User Interface] on page 9-1.

NightView must be run with the Elan License Manager. If your site has multiple license
servers, and you need to indicate a server on a particular system, you can set the
environment variable PONERWORKS EL MVHOST to the name of the server's system before
invoking NightView. For more information about the license manager, see the Elan
License Manager Release Notes.

All NightView command line options are case-insensitive. However, note that X Toolkit
options are case-sensitive.

When NightView starts execution, it first attempts to read commands from any files
specified in -x options. It then looks for any initialization files to read (see
“Initialization Files” on page 3-33), unless the - nx option was specified. When those
files have al been processed, NightView reads commands from standard input until it
encounters the end of the file or the qui t command is executed (see “quit” on page
7-17).

6-3

NightView User’s Guide

6-4

Command-Line Interface

7
Command-Line Interface

This chapter describes how to interact with NightView through commands.

In some cases, this may be your only means of directing the debugger's actions. If you
are using the graphical user interface (see Chapter 9 [Graphical User Interface] on page
9-1), however, commands are only one of several ways to control the debugger and your
programs.

Command Syntax

This section describes the general syntax and conventions of NightView commands.
Most commands have three parts. A qualifier appears first (in parentheses) and is used to
restrict the command to a certain set of processes or dialogues. Next comes the keyword
indicating which command is to be executed. The command arguments follow as the
third part. In general, you must separate syntactic items (like keywords and argument
values) with white space, unless they are separated by punctuation characters. White
space consists of one or more blank or tab characters. These rules may be different
within expressions, where the rules of the programming language apply.

Some commands apply to individual processes, others apply to dialogues. The qualifier
is a prefix that determines the dialogues and/or processes to which the following
command applies. A qualifier is simply alist of dialogues and/or processes enclosed in
parentheses. If a command applies only to dialogues, and the qualifier includes specific
processes, the command applies to the dialogues containing the processes. |If a command
applies only to processes, but the qualifier includes dial ogues, the command applies to all
processes in those dialogues. |f a command affects neither dialogues nor processes, the
qualifier isignored. You can set a default qualifier that will be applied when you don't
provide one. For more information on the syntax and operation of quaifiers, see
“Qualifier Specifiers” on page 7-10.

On startup, NightView provides you with a dialogue, | ocal , for debugging on the local
machine. The initial default qualifier is set to al | to indicate al dialogues and
processes.

After the qudifier, if any, all commands start with a keyword, which may be abbreviated
to the shortest unambiguous prefix. Many frequently used commands also have special
abbreviations. Most commands have one or more arguments; some arguments are also
keywords, while others are information you supply. A keyword argument can usually be
abbreviated if it is unambiguous,; any exceptions to this rule are noted in the section
describing the command. Both command and argument keywords are case-insensitive;
they can be entered in either upper or lower case. You cannot abbreviate file names,
symbolic names, or NightView construct names.

Commands are terminated by the end of the input line.

7-1

NightView User’s Guide

If you enter a line interactively consisting solely of a newline, NightView will usualy
repeat the previous command. This is explained more fully later; see “Repeating
Commands” on page 7-15.

Y ou can include comment lines with your commands. A comment line starts with the #
character, which must be the first non-blank character on the line, and terminates at the
end of theinput line. Comments are most useful when you write debugger source files or
macros (see “ Defining and Using Macros’ on page 7-135 and “source” on page 7-114).

NightView prompts you for input. The format of the prompt may be controlled by the
set - pronpt command (see “set-prompt” on page 7-47). The default prompt includes
the names of all the dialoguesin the default qualifier and looks like this:

(local)

Some NightView commands require multiple lines of input. For these commands, the
command-line and simple full-screen interfaces change the prompt to > to remind you
that you are entering a multi-line command.

>

To terminate NightView, usethe qui t command, which can be abbreviated g (see “ quit”
on page 7-17).

The subsections below explain some common syntactic constructs that are used in a
variety of NightView commands.

Selecting Overloaded Entities

7-2

For general information about function and operator overloading, see “ Overloading” on
page 3-23.

The specia overloading syntax used in both expressions and location specifiers is always
introduced by anumber sign character (#) used as a suffix directly following the entity (an
operator in an expression or a function or procedure name). The # is followed by addi-
tiona information indicating the specific kind of overload request. There are three forms
of # syntax:

1. #7?

A number sign followed by a question mark is a query. It always makes the com-
mand it appears in fail, but the error message shows all the possible choices for
overloading the name or operator (even if there is only 1 choice). The choices will
be numbered starting at 1, and the number may be used to select the specific func-
tion.

2. ##

Two number signsin arow act just asif set - over | oad were on for that one
name. If there is only one possible choice, it is used; if there are multiple choices,
the command fails and the error message shows the list.

Command-Line Interface

3. #<digits>

A number sign followed by a number is the syntax used to pick a specific over-
loaded function or operator from the list printed in the error message.

In C++, the function call and subscript operators don’'t appear in a single location, but are
"spread out" with arguments or subscripts between the parenthesis or brackets. In these
cases the final bracket or parenthesis is the character which should be suffixed with the #.
For example:

functi on#5(12, 3)
This picks the 5th instance of the name f unct i on from alist of overloaded functions.
obj ect (12, 3) #5

This, on the other hand, picks the 5th version of an overloaded oper at or () function
call operator applied to the obj ect variable.

The following example shows a use of the overloaded "+" operator in Ada. The #? isfirst
used to do a query, then the desired operator is selected with #1 when the expression is
evaluated again.

(local) print a +#? b

War ni ng: | ocal : 5865 Cannot eval uate argument expression:
Reason foll ows [E-print_cnd007]

Unr esol ved overl oaded functi ons or operators:

#1 native |anguage operator +

#2 interval tinmer.a:294
FUNCTION "+" (I : INtime, r : INtime)
RETURN ti ne
#3 interval timer.a: 328
FUNCTION "+" (I : INtinme, r : INinteger)
RETURN ti ne
#4 interval timer.a:375
FUNCTION "+" (I : INtime, r : INtime)
RETURN | ong_fI oat
#5 interval timer.a:391
FUNCTION "+" (I : INtime, r : INtime)
RETURN f | oat
#6 interval tinmer.a: 407
FUNCTION "+" (I : INtime, r : INtime)

RETURN duration
(local) print a+#1 b
$1: a +#1 b = 11

The following example shows that the set - over | oad command may be used to turn on
automatic overloading, in which case you will see the same error message without needing
the #? syntax.

(local) set-overl oad operator=on

Overl oad node set to operator=on routine=off

(local) print a + b

War ni ng: | ocal : 5865 Cannot eval uate argument expression:

7-3

NightView User’s Guide

Reason foll ows [E-print_cml007]

#1 native |anguage operator +

#2 interval tinmer.a:294
FUNCTION "+" (1 : INtime, r : INtime)
RETURN ti ne
€tc...

Overloaded procedures may aso be referenced with similar syntax.

(local) set ada.text _io.put#?("Hello world")
War ni ng: | ocal : 5865 Unabl e to eval uate expression
' ada.text_io.put#?("Hello world")": Problemfollows [E-
set _cnd007]
Unr esol ved overl oaded functi ons or operators:
#1 phase2/predefined/text_io_b. pp: 1247
PROCEDURE text io.put(file : INfile ptr, item: IN
character)
#2 phase2/ predefined/text_io_b. pp: 1269
PROCEDURE text _io.put(item: |IN character)
#3 phase2/ predefi ned/text i o_b. pp: 1469
PROCEDURE text io.put(file : INfile ptr, item: IN
string)
#4 phase2/ predefined/text_io_b. pp: 1491
PROCEDURE text_io.put(item: IN string)
(local) set ada.text _io.put#4("Hello world")

Special Expression Syntax

For general information about expression evauation, see “Expression Evauation” on
page 3-20. In addition to the standard language syntax, NightView offers a specia syntax
for referencing convenience variables and variables from other scopes or stack frames.

The specid constructs all start with’$’ as shown in the following table.

Table 7-1. Special '$’ Constructs

$
A simple’$ by itself isaspecia convenience variable which always refers to the
last value history entry (see “print” on page 7-66). See “Value History” on page
3-32.

$$
The name’$$ refersto the value history entry immediately priorto’$' . See“Value
History” on page 3-32.

$number

A'$ followed by a number refers to that number entry in the value history. See
“Value History” on page 3-32.

7-4

Command-Line Interface

${ - number}

A% followed by a negative number enclosed in braces refers to value history
entries prior to the most recent one. '${-0}" is a complicated way to refer to the
samething as'$’, and '${ -1} isthe same as’$$'. This syntax is useful when you
want to reference values farther back than -1. See “Vaue History” on page 3-32.

$identifier

This is the standard syntax for convenience variables. Many names are predefined
(for instance, all the machine registers may be referenced using predefined conve-
nience variables). See “Convenience Variables’” on page 3-31, and “Predefined
Convenience Variables’ on page 7-6.

${ file: line expression}

This syntax is used to evaluate the expression in the context specified by the given
file and line number. Thisis most useful for referencing static variables which are
not visible in the current context. If you reference alocal stack or register variable
from some other context, the results are not defined.

${ +number: routine expression}

This syntax is used to go up the stack (see “up” on page 7-110) until you see number
previous occurrences of routine relative to the current frame. (It does not matter
what the current routine nameis, this construct always backs up the frame first, then
starts looking for frames associated with the given routine.) The given expressonis
then evaluated in that context. For example, *${+1:fred x}’ refers to the variable
named 'x’ in the first routine named f r ed above the current routine.

${ +number expression}

This syntax simply refers to previous stack frames, regardless of the routine name.
The immediately previousframeis’+1'.

${ - number: routine expression}
This syntax is useful only if you have changed your current frame with the up com-
mand. This allows you to refer to frames down the stack and is analogous to the ver-
sion above which usesthe’+' syntax.

${ - number expression}

Thisis also analogous to the corresponding '+’ syntax, but refers to frames down,
rather than up the stack.

${ =number expression}

This syntax evaluates the expression in the context of the given absolute frame num-
ber, regardless of the current frame. You can determine absolute frame numbers by
using the backt r ace command (see“backtrace” on page 7-65).

${ * frame-addr expression}

This syntax uses frame-addr, which must be a numeric constant, as an absolute
frame address. It evaluates expression in the context of this frame address, regard-

7-5

NightView User’s Guide

less of the current frame. If there is no frame on the current stack with this address,
the results are undefined.

You may wish to use this form in di spl ay expressions (see “display” on page 7-72) to
refer to a specific stack frame regardless of where it appears relative to the current frame.
You can use thei nfo franme command (see “info frame” on page 7-123) to get the
frame address for any stack frame.

The above constructs may be used freely in any language expression. This means they
may be nested (in case you want to do something like back up the stack frame, then shift
to a different local scope in that routine). Because different frames may be associated
with routines in different languages, the expressions evaluated in any given context may
be expressions in different languages. This might not aways make sense because
different languages support different data types. If NightView cannot figure out how to
evaluate a mixed language expression, it returns an error.

If you use any of these constructs in a conditional expression for an inserted eventpoint
(breakpoint, agentpoint, monitorpoint, patchpoint or tracepoint), or in a monitorpoint,
patchpoint or tracepoint expression, they are evaluated at the time you establish the
expression, not when the expression is evaluated within the eventpoint. This is because
the eventpoint expressions are compiled into your program by the debugger, and these
constructs must be evaluated at compile time.

In the rare case of a user program which contains variables that have a’$' in their name,
the user program variable is always referenced in preference to the convenience variable.

Predefined Convenience Variables

You may create any number of convenience variables simply by assigning values to new
names, but some variables are predefined and have special values. The '$ and '$$
variables have adready been documented (see “ Special Expression Syntax” on page 7-4).
The following specia variables are all automatically defined on a per process basis.

Table 7-2. Predefined Convenience Variables

7-6

$

This variable holds the address of the last item dumped with the x command (see
“X” on page 7-68). It is also set by the eventpoint status commands to the address of
the last eventpoint listed, and thei nf o | i ne command to the address of the first
executable instruction in the line. If you were dumping words, it holds the address
of the last word. If you were dumping bytes, it holds the address of the last byte, etc.
See “X” on page 7-68, “info eventpoint” on page 7-116, “info breakpoint” on page
7-117, “info tracepoint” on page 7-118, “info patchpoint” on page 7-119, “info mon-
itorpoint” on page 7-120, “info agentpoint” on page 7-121, and “info line” on page
7-134.

This variable holds the contents of the last item printed by the x command. If you
were dumping words, it holds the last word. If you were dumping bytes, it holds the
last byte, etc.

Command-Line Interface

$pc

This variable provides access to the program counter. This is a machine register, but
every machine hasa $pc, so this name is common to all machines. When a program
is stopped, $pc is the location where it stopped. On any given machine, $pc may
not map directly onto a specific machine register (RISC machines often have multi-
ple program counters), but it always represents the address at which the program
stopped. See “Program Counter” on page 3-24.

$cpce

$cpc issimilar to $pc. Inframe O, if there are no hidden frames below frame 0
(because of uninteresting subprograms), $cpc has the same value as $pc. See
“Interesting Subprograms’ on page 3-27. In other frames (including frame O if there
are hidden frames below it), $cpc is the address of the instruction that is currently
executing. In most cases, thisis the call instruction that caused the frame immedi-
ately below the current frame to be created. For the frame immediately above asig-
nal-handler stack frame, $cpc is the address of the instruction that was executing
when the signal occurred.

$sp
Most machines have a stack pointer. The stack pointer is aways called $sp.
$fp

Most machines either have a frame pointer, or have an implicit frame pointer
derived from information in the program. The $f p variable always represents the
frame address (even if it is not a specific hardware register), and local variables are
always described with some offset from the frame pointer (see “info address’ on
page 7-132).

$is

$i s isdefined when a watchpoint is triggered. See “Watchpoints” on page 3-11.
$i s isthe value of the variable being watched after the instruction that causes the
trigger has completed.

$was

$was is defined when a watchpoint is triggered, before the condition is evaluated.
See “Watchpoints” on page 3-11. $was is the value of the variable being watched
before the instruction that causes the trigger has begun.

PowerPC Registers

The PowerPC machines are based on the IBM/Motorola PowerPC 604™ architecture
(see Power PC Microprocessor Family: The Programming Environments for architectural
details). See“info registers’ on page 7-125.

In addition to the common register definitions for stack pointer, frame pointer, and

program counter, the PowerPC machines support the registers shown in the following
table.

7-7

NightView User’s Guide

Table 7-3. PowerPC Registers

7-8

$r 0 through $r 31

These names map onto the 32 general purpose registers (note that $sp is the same
as $r 1, and $f p will typicaly be either $r 1 or $r 2, depending on the kind of code
generated by the compiler).

$f 0 through $f 31

These names map onto the 32 floating-point registers. The floating point registerson
the PowerPC aways hold double precision format values.

$lr

The link register.
$ctr

The counter register.
$cr

The condition register.
$crf 0 through $cr f 7

These names map onto the eight individual condition fields contained in the condi-
tion register $cr.

$f pscr

The floating point status and condition register.
$xer

The integer exception register.
$srr 0 through $srrl

The exception state save and restore register. (The $sr r 0 register isthe same asthe

$pc register).

$my
The $nq register does not really exist on the machine, and the compilers will not
generate references to it, but for backward compatibility with older architectures, it
is emulated by the operating system, and you can refer to it in the debugger.

$dabr

The data address breakpoint register. NightView uses this register to implement
watchpoints. See “Watchpoints” on page 3-11. Users should not modify this regis-
ter.

Note that the floating point registers are not normally displayed by the info
regi st ers command. If you want to display all the floating-point registers, you can do
so with the following command:

Command-Line Interface

info registers f.*
The Power Hawk 700 Series supports additional registers:
$v0 through $v31

Vector registers. To change the value of these registers with the debugger, see “vec-
tor-set” on page 7-76.

$vrsave
This register describes which vector registers are in use by the program. Thisis
used by the operating system when context-switching. Avoid modifying thisregis-
ter.

$vscr

Vector status and control register.

Location Specifiers
A location-spec is used in various commands to specify a location in the executable
program. It can be any of the following:
function_name or unit_name[' speci fi cati on| body]

specifies the beginning of the named function or Ada unit. Note that ' speci fi -
cat i on and' body are meaningful only with an Ada unit. If aunit name is speci-
fied and neither ' speci fi cati on nor' body aregiven, then' body isassumed.
" speci ficationand' body may be abbreviated to unique prefixes.

file_name: line_number
specifies the first instruction generated for the given line in the given file
file_name: function_name

specifies the beginning of the specified function declared in the given file (thisis
required for st at i ¢ functions that are not globally visible).

line_number
specifies the first instruction generated for the given linein the current file
line_number: unit_name[' speci fi cati on| body]

specifies an Ada unit name, which may be specified as a fully expanded unit name,
preceded by the line number in the source file. If neither ' speci fi cati on nor
' body aregiven, then' body isassumed. ' speci fi cati onand' body may be
abbreviated to unique prefixes.

Note that when specifying aline number and a unit name as alocation specifier that

the line number comes first; whereas when specifying a filename with aline num-
ber, the line number is last.

7-9

NightView User’s Guide

* expression
specifies the address given by expression

If a location specifier is omitted, then the location used is the next instruction to be
executed in the current stack frame. See “Current Frame” on page 3-25.

Function names always refer to the location of the first instruction following any
prologue code (the prologue is code that allocates local stack space, saves the return
address, etc.). To refer to the actual entry point of a function, use the *expression form
and write an expression that evaluates to the function entry point address (in C language
mode, thiswould look like * & unct i on).

NOTE

A location specifier may sometimes designate multiple locations;
for instance, aline number within an Ada procedure that has been
expanded inline several times will designate every location where
that procedure was expanded. If such alocation specifier is used
to set an eventpoint (see “Manipulating Eventpoints’ on page
7-77), NightView will set the eventpoint at each of the corre-
sponding locations. An eventpoint set at multiple locations is still
considered to be a single eventpoint. If you wish to set an event-
point at some subset of the locations that are implied by a particu-
lar location specifier, thei nf o | i ne command may be used to
determine the locations corresponding to the particular location
specifier. The* expr essi on form of location specifier may then
be used to designate the proper location.

Wherever a file_name appears, it may be enclosed in double quotes. This is necessary if
the file_name contains special characters.

Wherever afunction name appears in alocation specifier, it may also appear with an over-
loading suffix to distinguish between multiple functions with the same name (see “ Select-
ing Overloaded Entities” on page 7-2). The names of operator functionsin Ada or C++
may also be used as function names. In Ada, the operator name must appear in double
quotes, and in C++ the keyword oper at or should be followed by the operator name (the
same syntax used to declare operator functions in the language). Because the function
name form of operator functions is always used in location specifiers, the only set -

over | oad mode which affects |ocation specifiersis the routine mode (see “ set-overload”
on page 7-54).

All commands that accept a location-spec argument allow the keyword at to precede the
location-spec. In most cases, the at keyword is optional, but a few commands require it
to be present. The syntax of each command indicates whether the keyword is required or
optional.

Qualifier Specifiers

7-10

Qualifiers are used to apply NightView commands to specific processes or dialogues. A

Command-Line Interface

qualifier is smply alist of qualifier specifiers, each specifier representing one or more
processes or dialogues. You can supply a qualifier explicitly, in parentheses as a prefix
to the command, or implicitly, by using the set - qual i fi er command (see “set-
qualifier” on page 7-46). In aprefix qualifier, the list of specifiersis separated by either
blanks or tabs.

Each qualifier specifier can be any one of the following items:
family-name

A name given by you to a set of processes, called a family. See “family” on page
7-40.

dialogue-name

The name of adialogue in your NightView session. Thisis usually the name of the
system on which the dialogue is running, but you may also specify a different name
(see“login” on page 7-18). In contexts where the qualifier isbeing used to specify a
set of processes, a dialogue-name refers to all the processes being debugged in that
dialogue.

PID

The numeric value of the process ID of one of the processes being debugged by
NightView. You can usethisform only if the process ID is unique among all the pro-
cesses being debugged. This may not be true if you have multiple dialogues, but it
isawaystrue if you have only one dialogue.

dialogue-name:PID

This is how you specify a particular process when processes in different dialogues
have the same process ID.

al |
This keyword designates all processes or dialogues known to NightView.
aut o

This keyword designates the one process that is currently stopped and has been
stopped for the longest time. You may want to specify aut o as your default quali-
fier if you want to work on only one process at a time (see “set-qualifier” on page
7-46). NightView givesyou an error message if you use aut o when there are no
processes stopped.

Note that, because a qualifier specifier can be either a family name or a dialogue name,
you cannot have a dial ogue with the same name as a process family.

In general, the specifiers in a qualifier are not evaluated until a qualified command
requests the information. A qualifier is evaluated when a command qualified by it needs
the information; that is, when the command is applied to the processes or dialogues in the
qualifier. Certain NightView commands ignore their qualifier, so they do not request
evaluation of the specifiersin the quaifier. This has several effects on you:

¢ A family-name appearing in a qualifier may remain undefined until a com-
mand requires evaluation of the qualifier. You may also change the defini-

7-1

NightView User’s Guide

tion of a family-name currently in use in a qualifier; such a change will
affect the next command that evaluates that qualifier.

¢ Evaluating a dialogue-name yields al the processes in the dialogue at the
time of the evaluation. Since evaluation is generally delayed until the last
possible moment, using a dialogue-name is usually a good way to refer-
ence all the currently-existing processesin a dialogue.

* Thespecifiersal | and aut o are evaluated at the time a command is actu-
ally executed.

Eventpoint Specifiers

Eventpoints may be grouped together and assigned a name (see “name’ on page 7-79).
In addition, the name ’.’ is a reserved name that always refers to the set of eventpoints
most recently created by a single command. Eventpoint numbers and eventpoint names
are the two different types of eventpoint specifiers. Eventpoint specifiers that refer only to
breakpoints may also be called breakpoint specifiers (tracepoint specifiers, patchpoint
specifiers, agentpoint specifiers, monitorpoint specifiers, and watchpoint specifiers are
similarly defined).

Regular Expressions

A regexp is used by many of the commands to specify a pattern used to match against a set
of names (like variable names or register namesin thei nf o commands). Regular expres-
sions may be case-sensitive or case-insensitive depending on the set - sear ch command
(see “ set-search” on page 7-54).

Regular expressions are similar to wildcard patterns, but are more flexible. Regular
expressions and wildcard patterns are used for different things in the debugger (see
“Wildcard Patterns” on page 7-14). The descriptions of the commands tell if they take a
regular expression or awildcard pattern.

The regular expression syntax recognized is similar to that recognized by many other
common tools, but the details (as always) vary somewhat.

Table 7-4. Regular Expressions

7-12

A dot matches any character except a newline.

A star matches zero or more occurrences of the preceding regular expression. For
example, . * matches zero or more of any character except anewline.

A plus matches one or more occurrences of the preceding regular expression.

Command-Line Interface

{m}

Matches exactly m occurrences of the preceding regular expression.
{m,}

Matches m or more occurrences of the preceding regular expression.
{m, n}

Matches from mto n occurrences of the preceding regular expression.

A caret matches at the beginning of a string.

A dollar sign matches at the end of a string.

()

Parentheses are used to group regular expressions.

Brackets define a set of characters, any one of which will match. Within the brack-
ets, additional special characters are recognized:

AN

If the first character inside the brackets is a caret, then the set of characters
matched will be the inverse of the set specified by the remaining charactersin
the brackets.

A range of characters may be matched by specifying the starting and ending
characters in the range separated by a dash.

To define a set that includes a - character, specify the dash as the first or last
character in the set.

Any other character matches itself.

To literally match one of the special characters defined above, use a backslash (\)
character in front of it (to literally match a backslash, use two of them (\ \)).

The mand n match counts above must be positive integers less than 256.

Most commands that use regular expressions do not require the use of '~ and'$ because
they implicitly assume that an anchored match is called for. Other commands (such as the
forward-search and rever se-search commands) assume that only a partia
match is called for (and does not imply an anchored match). The description of each
command that uses regular expressions specifies whether or not it implicitly assumes its
regular expressions are to be anchored.

If you do not need the full expressive power of regular expressions, you can just use a

7-13

NightView User’s Guide

normal string.
Examples:
r[1-5]

This example matches the strings 'r1, 'r2', 'r3', 'r4', and 'r5'. This might be a good
expression to match register names.

child_pid

This example matches only the string ‘child_pid'. This might be a good expression to
match a program variable name.

Wildcard Patterns
Wildcard patterns are used by the commands debug, nodebug and on program See
“debug” on page 7-20, “nodebug” on page 7-20, and “on program” on page 7-36.

Wildcard patterns are similar to regular expressions, but are usually more convenient for
representing file names. See “ Regular Expressions’ on page 7-12.

If the wildcard pattern starts with a /, it is assumed to be a pattern that must match a
complete absolute path name. Otherwise the pattern is matched against the rightmost
(trailing) components of the program name. Patterns are always matched to component
boundaries. Spaces and tabs are not allowed in wildcard patterns.

Wildcards are similar to wildcardsin sh.
Table 7-5. Wildcard Patterns
Matches zero or more characters (but does not match a/).
{[chars] }
Matches any of the charactersin the set. A dash (-) can be used to separate arange

of characters and aleading bang (!) matches any characters except the ones in the
set (but nota/).

Matches any single character (except a/).
Any other character matches itself.
Unlikesh, a* matchesaleading dot (.) in afile name.
If you do not need the full expressive power of wildcards, you can just use the file name.
Examples:

/ bi n/*

7-14

Command-Line Interface

This matches any file in the directory / bi n.
test*

This matches any file that begins with the letterst est , in any directory.
*.C

This matches any source file that ends with . ¢, in any directory. This might be a good
expression to match file names.

[usr/bob/ nyprog

Thismatches only thefile/ usr/ bob/ mypr og.

Repeating Commands

A line typed from an interactive terminal consisting solely of a newline (no other
characters, including blanks) generally causes NightView to repeat the previous
command. Note that the blank line must come from an interactive device; ablank linein
amacro or in a disk file read by the sour ce command does not cause repetition. The
command that gets repeated may, however, come from a macro.

Not al commands can be repeated in this manner. In general, commands whose result
would not be any different when repeated will not repeat. Typing a blank line after a non-
repeating command has no effect; it acts the same as a comment. If the description of a
command does not say it is repeatable, then it isn't.

A few commands, such asl i st or X, alter their behavior slightly when repeated: instead
of exactly repeating the command, they typically repeat the action on a different set of
data. These differencesin behavior are documented in the description of the command.

In the following examples, assume all commands were entered interactively.

(local) list func:20
(local)
(local)

In this example, lines 16-25 (approximately) of function f unc would be listed by the
l'i st command. Repeating this command lists the next set of 10 lines, lines 26-35.
Notethat | i st isone of the commands whose behavior changeswhen it is repeated.

(local) define mac(ln) as
> list func:@n

> end define
(local) @mac(20)

(local)

(local)

This example is equivalent to the previous one. It demonstrates that the repeated
command may come from amacro.

7-15

NightView User’s Guide

(local) define mac(vn) as

> x/20x @n
> echo

> end define
(local) @ac(xstruct)
(local)

(local)

This example demonstrates how to write a macro that does not repeat at al. Since echo
is a non-repeating command, entering a blank line after the @rac(xstruct) line does
nothing.

Replying to Debugger Questions

This section describes how to respond when the debugger asks you a question.

Certain forms of some debugger commands are considered unsafe and will check the
debugger's safety-level (see “set-safety” on page 7-49) before executing. When the
safety-level is veri fy, these commands will ask a question of the user and wait for
verification. The possible responses to the question are aways "yes' and "no" (case
insensitive). These responses may be abbreviated to their first letter if desired. The
response must be terminated by a carriage return.

A "yes' response indicates that the unsafe action is to be performed.
A "no" response indicates that the unsafe action is not to be performed.

In the graphical user interface, the debugger pops up a warning dialog box. See
“Warning Dialog Box” on page 9-15.

Controlling the Debugger

This section describes how to exit NightView, and the commands used to control
debugged processes and your interaction with them.

7-16

Command-Line Interface
Quitting NightView

quit
Stop everything. Exit the debugger.
qui t
Abbreviation: g
This command terminates the debugger. If the safety level (see “set-safety” on page 7-49)
isf or bi d, you will not be allowed to quit unless there are no processes being debugged.
In other safety levels, any active processes will be killed when you quit. |If the safety

level is verify, you will be prompted for confirmation before quitting causes any
debugged processes to be killed (see “Replying to Debugger Questions” on page 7-16).

The processes killed include al active processes started in any dialogue shell and not
explicitly detached. NightView detaches from any processesthat are being controlled but
are not being debugged by you because of a nodebug command. See “Detaching” on
page 3-3. See“nodebug” on page 7-20.

Processes started using the shel | command are independent of the debugger, and are
not affected by aqui t .

7-17

NightView User’s Guide

Managing Dialogues

A dialogue is an interaction with a particular host system for the purpose of debugging
one or more processes on that system under a particular user name. You may have as
many dialogues as you wish; there can even be more than one diaogue with a particular
host system. Dialogues are described in more detail in the Concepts chapter (see
“Dialogues’ on page 3-4).

login

Login to anew dialogue shell.

login [/conditional] [/popup] [nanme=dialoguename]

[user =loginname] [others ...] machine

NOTE

If present, the options/ condi t i onal and/ popup must appear
before the machine name and before any keywords.

Thel ogi n command takes many keyword parameters. The most commonly used are:

/ condi ti onal

Ignore this| ogi n command if adialogue with this name aready exists. This
is useful from macros (see “Defining and Using Macros’ on page 7-135) and
for other programs that communi cate with NightView.

/ popup

Pop up the Remote Login Dialog Box (see “Remote Login Dialog Box” on
page 9-47) initialized with the machine name and the values of the nane=and
user = keywords. No other keywords are allowed with this option. This
option is meaningful only in the graphical user interface.

name=dialogue name

Give this parameter to specify a name for the dialogue you are creating. If you
leave it off, the dialogue name is the same as the name of the machine running
the dialogue. To run multiple dial ogue shells on the same machine you must
give them unique names. No dialogue name may be the same as a family
name (see “family” on page 7-40). A dialogue name must start with an alpha-
betic character and may be followed by any number of alphabetic, numeric, or
underscore characters.

user =login name

7-18

Login as this user. Normally your current user name is used, but you may
login as any user.

Command-Line Interface

machine

Specify the machine where the programs to be debugged are located and the
dialogue shell will run. Thisisarequired parameter. It may be a host name,
with or without domain qualification, or it may be an IP address.

The following parameters are less frequently used, but are provided to allow you to
control the execution environment of the remote dial ogue.

ni ce=nice value

The dialogue normally runs with normal interactive priority. A positive nice
value lowers the priority (makes other programs seem more important). You
must have specia privileges to specify anegative nice value.

cpu=cpu list

Set the CPU bias for the dialogue.
nmenor y=flags

Control what sort of memory (loca or global) will be used for the dialogue.
priority=value

Specify the priority of the remote dialogue processes. The scheduling policy
determines what values may be specified for the priority.

schedul i ng=sched_keywords

Control the scheduling policy that will be used for the dialogue. The alowed
keywords are: sched _fifo,fifo,sched _rr,rr,sched_other, and
ot her.

quant unrrtime
Control the time slice quantum size for the process.

The cpu, nenory, schedul i ng, priority, and quant umparameters all accept the
same arguments as the corresponding options on the r un(1) command — see the man
page for details.

Any programs started in the dialogue shell will inherit al the above parameters. The
run(1) command can control all these parameters, and may be used within the dial ogue
shell to debug programs and change the parameters.

When you use the | ogi n command you are asked for a password. See “Remote
Dialogues” on page 3-6 for ageneral discussion of how to use remote dialogues.

Example:

(afamly) login fred

To begin a renote debug session on 'fred', enter the
password for user 'wlna'.

Password: enter wilnm's password

(afamily) 1 ogin user=barney nane=fredll fred

To begin a renote debug session on 'fred', enter the

7-19

NightView User’s Guide

debug

nodebug

7-20

password for user 'barney'.
Password: enter barney's password
(af am ly)

The above example shows the creation of two new dialogues. The first | ogi n command
starts a dialogue on a machine named f r ed and logsin asthe current user (Wi | na in this
example). This dialogue is named f r ed, because no explicit name was given.

The second creates a dialogue on machine f r ed named f r edl | . In this case the user
logged into f r ed isbar ney.

The | ogi n command is creating a new diaogue, so the qualifier has no effect on this
command.

Specify names for programs you wish to debug.
debug pattern . ..
pattern

A wildcard pattern matching the name of a program to be debugged. Spaces
and tabs are not allowed in pattern. See “Wildcard Patterns’ on page 7-14.

This command and its inverse (see “nodebug” on page 7-20) allow you to control which
programs get debugged. The list of programs applies to the individual dialogues specified
in the debug command qudifier (different dialogues may have different lists of
programs to be debugged).

The debug and nodebug commands work by remembering the list of debug and
nodebug commands. When a new file needs to be checked to see if it should be
debugged, the name isfirst compared to the pattern in the most recent command, then the
pattern in the next most recent command, and so on.

The first pattern that matches the file name determines what to do with the associated
process. If the matching pattern is on a debug command, then the process will be
debugged. If it was on anodebug command, then the process will not be debugged.

The pattern * matches everything, so the list of patterns is always reset when * appears
as an argument. Since each dialogue always starts with either debug * or nodebug *
in theligt, it isimpossible to pick afile name that does not match at some point in the list.

The default pattern list for adialogueis:

nodebug /usr/ccs/lib/* [usr/ccs/bin/* [sbin/* /usr/sbin/* /[bin/*
[usr/bin/* [usr/ucb/* [usr/bin/X11/* Jusr/lib/*

debug *

To print the list of debug and nodebug patterns, see “info dialogue” on page 7-127.

Specify names for programs you do not wish to debug.

Command-Line Interface

nodebug pattern . . .
pattern
A wildcard pattern matching the name of a program to avoid debugging.

This command is typicaly used in combination with the debug command to control
which programs are debugged in a dialogue. The complete syntax of wildcards and the
algorithm used to match files is described in the debug command (see “ debug” on page
7-20).

Example:

(afam ly) nodebug *
(afami ly) debug x*

This example uses nodebug * to turn off al debugging. It then uses debug to turn on
debugging for any programs started where the basename begins with the letter x.

Note that even if one command is not debugged, its children may be debugged. To avoid
debugging a command as well as any children, you must use the det ach command (see
“detach” on page 7-32).

To print the list of debug and nodebug patterns, see “info dialogue” on page 7-127.

translate-object-file

Translate object filenames for aremote dialogue.
transl at e-object-file [from [to]]
Abbreviation: x|
from
The filename or filename prefix as seen by the remote system.
to
The filename or filename prefix as seen by the local system.
If both from and to are present, a trandation is added. If only from is present, the

trandlation exactly matching from is removed. If neither is present, all trandations are
removed.

NOTE

from and to are not wildcard patterns or regular expressions. See
“Wildcard Patterns’ on page 7-14. See“Regular Expressions’ on
page 7-12.

The t ransl at e- obj ect - fi | e command manages translations for object filenames

7-21

NightView User’s Guide

7-22

for each dialogue in the qualifier. Translations are useful when:

* An object file is visible from both systems, but its position in the file sys-
tem is different. For example, / usr on system f r ed may be mounted as
/ fred/ usr onthelocal system.

* An object fileis not visible from the local system, but you have a copy of
thefile. For example, you might have a development directory from which
the image on the remote system is created.

* The object file on the remote system has been stripped, but you have a copy
with debugging information.

Object filenames from exec-fi | e and | oad commands are subject to object filename
trandation. See “exec-file” on page 7-35. See “load” on page 7-75. Dynamic library
names are also subject to object filename trandation. See “Debugging with Shared
Libraries’ on page 3-38. Object filenames from synbol -fil e commands are not
subject to object filename translation. See “ symbol-file’ on page 7-33.

NightView attempts to match trandations to the initia characters of the filename.
Filename component boundaries are not treated as a special case. If you want to match to
component boundaries, include slashes in the strings. NightView tries all translations
that match the strings, beginning with the longest matching translation, until it finds a
translated filename with the same text segment contents as the executing program. If no
file is found with the same text segment contents, NightView gives a warning and uses
the first translation that matched the object filename.

If an exec-file command fails because you don't have any translations or the
tranglations are wrong, you can re-issue the exec- f i | e command again after fixing the
tranglations.

NightView automatically supplies a default set of translations when a remote dialogue is
created. The default set is made by inspecting the local system mount table and by
considering the set of cross-development environments on the local system. In many
cases, these translations are sufficient; additional translations are not necessary.

Examples:

Suppose the object files that exist on the remote system under the directory
/wi | ma/ pebbl es exist on the local system under the directory pebbl es (relative to
your current working directory).

(fred) xI /wil ma/ pebbl es/ pebbles/

This command translates any object filename beginning with the string
/wi | ma/ pebbl es/ to the same filename with / w | na/ pebbl es/ replaced by
pebbl es/ . For example, / wi | ma/ pebbl es/ hai r becomes pebbl es/ hai r. Note
that pebbl es/ hair will be evaluated relative to NightView's current working
directory. See“pwd” on page 7-56.

Suppose the object files that exist on the remote system under / bet t y exist on the local
system under / bar ney. However, the files under / bett y whose name begins with
bamshould be found under / di no.

(fred) xI /betty/ /barney/
(fred) xI /betty/bam/dino/bam

logout

Command-Line Interface

These commands translate any object filename beginning with the string / bet t y/ to the
same filename with /betty/ replaced by /barney/ and any object filename
beginning with the string / bet ty/ bam to the same filename with / bet t y/ bam
replaced by / di no/ bam NightView picks / bet t y/ bamin preference to / bet t y/
because/ bet t y/ bamislonger. For example,

/ betty/ dress becomes/ bar ney/ dr ess
/ bet ty/ banbambecomes/ di no/ banbam
/ bet ty/ banbi no becomes/ di no/ banbi no

A good place to put at ransl at e- obj ect-fil e commandisinanon di al ogue
command in your . Ni ght Vi ew c file. See “on dialogue” on page 7-24. Also, see
“Initialization Files” on page 3-33.

Example:
(al'l) on dialogue fred.* do
> x|l fusr/ [fred/usr/
> end on di al ogue

This command translates the directory / usr on the remote system to the directory
[usr/ fredonthelocal system, for dialogues whose name beginswith f r ed.

Terminate a dialogue.
| ogout

The | ogout command terminates any dialogues named in the command qualifier. If
your safety-level isunsaf e then all processes being debugged in the dialogues are killed
(see “set-safety” on page 7-49). If your safety-level isver i fy then you are prompted for
confirmation before the logout causes any debugged processes to be killed (see “ Replying
to Debugger Questions” on page 7-16). If your safety-level is f or bi d, then the logout
does not occur. If you want any processes to continue running, you must det ach them
prior to using | ogout (see “detach” on page 7-32). NightView detaches from any
processes that are being controlled but are not being debugged by you because of a
nodebug command. See“Detaching” on page 3-3. Also, see “nodebug” on page 7-20.

If the didlogue shell is still running at | ogout time, it is killed (you may send an exit
command to the shell to terminate it normally prior to logging out).

Example:

(adi al ogue) detach
(adi al ogue) !exit
(adi al ogue) | ogout

The example shows how to avoid having any processes killed. The det ach command
allows al processes in the dialogue to continue running independently of the debugger.
The !'exit command sends an exit command to the dialogue shell to terminate it
normally, then thel ogout command terminates the debugger dial ogue.

7-23

NightView User’s Guide

on dialogue

7-24

Specify debugger commands to be executed when adialogue is created.
on di al ogue [regexp|

on di al ogue regexp command

on di al ogue regexp do

regexp

A regular expression to match against the names of newly created dialogues.
See “Regular Expressions” on page 7-12.

command

A debugger command to be executed when a new dialogue whose name
matches regexp is created.

In the third form of the on di al ogue command, the debugger commands to be
executed must begin on the line following the do keyword. The list of debugger
commands to execute is terminated when a line containing only the words end on
di al ogue isencountered.

Theon di al ogue command allows a user-specified sequence of one or more debugger
commands to be executed immediately after creating a new dial ogue within NightView.
When a new dialogue is created, the list of al on di al ogue regular expressions is
checked to see if any of them match the name of the new dialogue. The most recently
specified on di al ogue command whose regular expression matches the dialogue name
will have its commands executed.

In its first form (given only a regular expression), the on di al ogue command will
remove any commands that were associated with the given regular expression. If no
regular expression is given, then all previously defined on di al ogue commands are
removed. If your safety level is set to f or bi d, you are not allowed to remove all on
di al ogue commands. If your safety level is set to verify, NightView requests
verification before removing all on di al ogue commands. See “set-safety” on page
7-49.

In its second and third forms, the on di al ogue command will associate a sequence of
one or more user-specified debugger commands with the given regular expression. Macro
invocations are not expanded when reading the commands to associate with the regular
expression.

If dialoguel ocal is started up automatically by NightView, then it will exist before any
commands inyour . Ni ght Vi ewr ¢ file areread. In this case, NightView automatically
runs the on di al ogue command after all the initialization files have been processed.
See “apply on dialogue” on page 7-25. See “Initialization Files’ on page 3-33.

The default qualifier for all commands associated with the given regular expression will
be the newly created dialogue.

The commands specified by on di al ogue are event-triggered commands: they have
an implied safety level (which may be different from the safety level that was set using
set-safety).

apply on dialogue

Command-Line Interface

If you wish to list al on di al ogue commands, or see which on di al ogue
commands would be executed for a particular dialogue name, you should use the i nf o
on di al ogue command.

Example:
(local)on di al ogue ben.* nodebug /usr/bin/*

After issuing the above command, if we now create a new dialogue named ben_hur,
then we will automatically set it up so that programs residing in the directory named
[usr/ bi n are not debugged by NightView.

Now suppose we do the following:

(local) on dialogue .*jerry do

> nodebug /usr/renote/*
> nodebug /usr/local /*
> end on di al ogue

At this point, if we create another dialogue named ben_n_j erry, then this newly
created dialogue will automatically be set up so that programs residing in the directories
/fusr/remote and /usr/ | ocal are not debugged by NightView. Note that even
though the name ben_n_j erry also matches the regular expression ben. *, this
dialogue will try to debug programs that reside in the directory / usr/bi n. Thisis
because on di al ogue regular expressions are matched in reverse-chronologica order
(most recent first), and only the first match found is used.

(local) info on dialogue ben_n_jerry
on dial ogue .*jerry do
nodebug /usr/renote/*
nodebug /usr/| ocal / *
end on di al ogue

If we were to now issue the command:
(local) on dialogue .*jerry

Then this would remove . *j erry (and its associated commands) from the debuggers
on dial ogue command list. Now, if we create yet another diadogue named
benny_and_j erry, then this third dialogue will not automatically debug programs
that reside in the directory /usr/bin, but it will debug programs that reside in
fusr/remoteand/usr/local (justlikethefirst onedid).

(local) info on dialogue benny_and_jerry
on di al ogue ben.* do

nodebug /usr/bin/*
end on di al ogue

Execute on di al ogue commands for existing dialogues.
apply on di al ogue

The apply on dial ogue command allows on di al ogue commands to be

7-25

NightView User’s Guide

7-26

executed for existing dialogues. See “on dialogue” on page 7-24. For each dialogue
specified by the qualifier, the on di al ogue commands which would match the name
of the dialogue are immediately executed on behalf of the diaogue.

When the debugger automatically creates al ocal dialogue, it does an on di al ogue
command with a qualifier of (1 ocal) after processing all the initialization files. See
“Initidlization Files’ on page 3-33. Because diadogue | ocal exists before the
customization commands in the user's . N ght Vi ewr ¢ file are interpreted by the
debugger, the on di al ogue command by itself cannot initialize the environment for
dialogue local (since it only applies to dialogues that will be created after theappl y on
di al ogue command is issued). The automatic on di al ogue executes any on
di al ogue commands that refer to dialoguel ocal .

Command-Line Interface

Dialogue Input and Output

Because each dialogue is a separate shell, each dialogue has its own input and output
streams. NightView has several options for sending input to dialogues and managing the
output data generated by the dialogue shell and the programs being run within it.

Pass input to a dialogue.
I' [inputline]
input line

If input line is specified, it is passed to the dialogue (or dialogues) determined
by the command qualifier.

If input line is not specified, then this command switches to a special dial ogue
input mode.

If the qualifier for this command specifies more than one dialogue, then the same input
data is sent to all the dialogues. This can make sense if you are doing something like
debugging two versions of the same program and you want to see where they diverge. It
is up to you to insure that the input is sensible to al the dialogues (or that the command
qualifier only refers to one dial ogue).

When you use the! command without an input line argument to switch to dia ogue input
mode, everything you type goes to the specified dialogues. Nothing you typeistreated as
a debugger command until a specia terminator string is recognized. The default
terminator string is "-." (note that this is not the same as the " ~." used by r | ogi n(1)

orcu(l)). See“set-terminator” on page 7-48, for information on how to change the
terminator string.

The ! command without an input line argument cannot be used inside a macro (see
“Defining and Using Macros’ on page 7-135), nor can it be used in the graphical or full-
screen user interfaces.

Macros are not expanded when reading the input (or arguments) to this command.

This command does not care if it is talking to the dialogue shell or to a program running
in the shell. If you start a program that requests input, you can pass the input to it using
this command.

See “Repeating Commands’ on page 7-15.
Example:

(afamly) !pwd
(afamly) !

PATH=/ extr a/ pr ogs: $PATH
ulimt -m 200

ulimt -d 100

ulimt -s 100

7-27

NightView User’s Guide

i;':lfarrily)

Thefirst line just sends a pwd command to the dialogue. The second switches to dia ogue
input mode and then severa lines of input are sent directly to the diaogue to set up
environment variables and limits on the amount of memory subsequent processes will be
allowed touse. Thefina "- . " switches back to norma command input mode.

Note that if you just want to send a program name to the shell and wait for that program
to start, you may want to use the r un command instead. See“run” on page 7-30.

set-show

Control where dialogue output goes.

set-show [silent | notify=mode | conti nuous=mode]
[1 og[=filename]] [buf f er =number]

si | ent

Just buffer the dialogue output, do not display it. The showcommand may be
used to see what has accumulated (see “show” on page 7-29).

not i f y=mode

Do not display the dialogue output, but do print a notice when output first
becomes available.

cont i nuous=mode
Display dialogue output when it is generated.

The notify and conti nuous modes both accept one of the following keyword
arguments:

i mredi at e

In immediate mode the notification or actual output is displayed as soon as
output becomes available.

at pr onpt

In the atprompt mode, the output is displayed only when the debugger is not
requesting input. Thisistypically immediately prior to printing a new prompt
to request additional commands, but it aso prints output when the debugger is
waiting for some event and has not yet prompted for new input.

Additiona parameters on the set - show command control logging to afile and the size
of the internal buffer.

| og[=filename]

Thel og parameter without the =filename option turns off logging to afile and
resumes buffering alimited amount of output in memory. When afile nameis

7-28

show

Command-Line Interface

specified, the output from the dialogue is logged to that file until the log
parameter is changed.

buf f er =number

The buf f er parameter is used to set the size of the buffer holding all the
most recent output from the dialogue. The default size is 10240 (10K bytes).
When the buffer fills up, the oldest output is discarded. When logging to afile,
this parameter does not have any effect — alog file may grow until disk space
is exhausted.

This command only logs the output from dialogues. It does not log debugger commands,
nor does it directly log the input to a dialogue; however, the input will normally be
echoed by the system, so it will be logged as output from the dia ogue.

To log the entire debug session, see “set-log” on page 7-44.
Each dialogue starts off in the default mode:

(al'l') set-show buffer=10240 conti nuous=at pronpt

Control dialogue output.
show [number | all | none] [| shel-command]
number
The number of old output lines you wish to see again.
al |

Specifying al | instead of a number means show all the buffered output from
the diaogue shell.

none

Thenone keyword isused to tell the debugger you are not interested in any of
the buffered output. It pretends you have aready seen any data currently inthe
buffer.

| shell-command

You may use avertical bar (shell pipe operator) to request the output be sent to
an arbitrary shell command, rather than being displayed. You may use thisto
run the output through a pager or filter of some kind.

The debugger always internally buffers output generated by dialogues. The show com-
mand displays any buffered output from a dial ogue which you have not yet seen. The num-
ber or al | arguments tell the debugger to display that many lines of previous output in
addition to the new output (so the total number of lines displayed may be greater than
number). The set - show command is used to control when dialogue output is printed
without a specific request viathe showcommand (see “set-show” on page 7-28).

7-29

NightView User’s Guide

Managing Processes

run

set-notify

7-30

Run a program in a dialogue and wait for NightView to start debugging it.
run inputline
input line
The shell command that will start a program (or programs) to debug.

This command is very similar to the ! command (see “!” on page 7-27): it sends the
specified input line to the dialogue shell (or shells) specified by the qualifier. The
difference between r un and ! isthat r un waits for a new process to be debugged in one
of the dialogues specified by the qudlifier.

NOTE

Even if the qualifier specifies multiple dialogues, the r un com-
mand terminates as soon as one new process has started.

The r un command does not check the given input line for validity; it smply passes it
unchanged to the dialogue shell, just like the I command. If it does not start a new
process to be debugged, then r un will just continue waiting forever (or until you type
<CONTROL C>). If you issue arun command that starts more than one program, r un
will only wait until one of them starts up and is noticed by NightView. The other
programs will start up and be debugged, but you probably won't know about them until
after you have entered the next command.

If you just want to send input to a program that is reading from the shell's input terminal,
or you want to start up a program or programs without waiting for them, just use the !
command.

If you want to run the same program again, use the r un command again. See“Restarting
a Program” on page 3-14. If you want multiple programs to run concurrently, end the
shell commands with & (ampersand). (You can't do this if your program expects input
from you.)

Control how you are naotified of events.
set-notify [silent | continuous=mode
si | ent

Only report events when explicitly requested.

notify

Command-Line Interface

cont i nuous=mode
Display events when they happen.
The cont i nuous mode accepts one of the following keyword arguments:
i mredi at e
In immediate mode the notification is displayed as soon as the event happens.

at pr onpt

In the atprompt mode, the natification is displayed only when the debugger is
not reguesting input. Thisis typically immediately prior to printing a new
prompt to request additional commands, but it also prints notifications when
the debugger is waiting for some event and has not yet prompted for new
input.

This command controls how the debugger tells you what is happening to the processes
you are debugging. Individua processes may be set to notify you in different ways
(using the command qualifier).

Events that might cause notification include hitting a breakpoint or watchpoint, getting a
signal (but see “handle” on page 7-106), or 'exec’ing a new program. New processes to
be debugged also cause notification, but this notification is controlled by the notification
setting of the parent of the new process. Processes created directly by the dialogue shell
always cause notification in the default notify mode. When a process exits, you will be
notified by the process' dialogue (but see “show” on page 7-29 and “set-show” on page
7-28).

The output generated by any commands attached to a breakpoint (or watchpoint) or any
automatic display expressionsis aso controlled by set - not i fy. If you set notify mode
to sil ent for a process, all debugger output associated with that process will be
buffered up and saved until you ask to see it.

Any change to the notify mode of a process takes place immediately, so changing the
mode from si | ent to cont i nuous may also result in large amounts of accumulated
event notifications and other buffered output being generated.

The noti fy command (see “notify” on page 7-31) can be used to explicitly request
notification of any events that have been saved up (thisis the only way to find out about
events that have happened in a process where the notify modeissi | ent).

If no arguments are givento the not i f y command, then the current notify mode of each
process in the qualifier is printed.

The default notify modeis:

(all) set-notify conti nuous=at pronpt

Ask about pending event notifications.

notify

7-31

NightView User’s Guide

attach

detach

7-32

If you have been suppressing event notification on certain processes (see “set-notify” on
page 7-30), the not i fy command may be used to request any notifications that have not
yet been printed. It only tells you about pending events in the processes specified by the
command qualifier.

Attach the debugger to a process that is already running.
attach pPD
PID
The process ID of the running process.

This command alows a program to be debugged even if it was not started from a
debugger dialogue shell (see “Attaching” on page 3-3). The qualifier on this command
must specify a single dialogue indicating which machine is running the specified PID. An
error is reported if the qualifier implies multiple dialogues. It is also an error to attempt
to attach to a program already being debugged, or to attach any of the processes required
to run the debugger.

Since the program to which you are attaching is already running independently of the
debugger, you will not be able to send it input through the normal diaogue input
mechanism (see “!” on page 7-27) or see the output it generates (the input and output for
the process remain connected to the same streams they were connected to prior to the
attach).

Once you attach to a process, any future children it forks will also be debugged. See
“set-children” on page 7-41. Children created prior to the attach must be explicitly
attached if you want to debug them.

See “Attach Permissions’ on page 3-36 for a description of what processes you are
allowed to attach.

Stop debugging alist of processes.
det ach

The det ach command terminates the debugger's connection to al the processes named
in the command qualifier. Any breakpoints, monitorpoints, or watchpoints set in those
processes are removed, but patchpoints, tracepoints, and agentpoints remain if they are
enabled when you execute the det ach command. See “breakpoint” on page 7-80,
“patchpoint” on page 7-81, “monitorpoint” on page 7-85, “agentpoint” on page 7-88,
“tracepoint” on page 7-84, and “watchpoint” on page 7-96.

The processes are allowed to continue running normally and the debugger will not be
notified of any subsequent events that occur in those processes. If any of the processes
fork or exec new programs, the debugger will not see them.

When the safety level is unsaf e (see “set-safety” on page 7-49), detaching a process

kill

symbol-file

Command-Line Interface

that was stopped while evaluating a debugger expression containing a function call aborts
any expression evaluation in progress. Thisreturns the process to the state it was in when
you asked to evaluate the expression. Atveri fy safety level, it asks first, and at safety
level f or bi d, it refuses to let you detach the process.

For another way of avoiding debugging certain processes, see “nodebug” on page 7-20.
Also, see “set-children” on page 7-41.

Terminate alist of processes.
Kill
Theki I | command terminates all the processes named in the command qualifier.

In the graphical user interface, if you use a’Kill’ button (as opposed to manually typing
the ki I I command) the debugger will check your safety level (see “set-safety” on page
7-49) before permitting you to kill the desired processes. If your safety level isf or bi d
then you will not be permitted to kill the selected processes. If your safety leve is
veri fy then you will be prompted for verification (see “Warning Dialog Box” on page
9-15). If your safety level isunsaf e then the processes are terminated with no questions
asked.

Establish the file containing symboalic information for a program.
synbol -fil e program-name
program-name

This must be the name of an executable file corresponding to the programs
running in the specified processes. It should contain symbolic debug informa-
tion for the program.

If program-name is a relative pathname, it isinterpreted relative to Night-
View's current working directory.

program-name is not subject to object filename trandations. See “translate-object-file”
on page 7-21.

A symbol file is an executable file from which NightView obtains information about
symbols in a program being debugged. Normally, the symbol file is the same as the
program's executable file, but it may be different if, for example, you are debugging a
stripped program (see strip(1)). In this case, you need to specify an unstripped
version of the program in the synbol -fil e command, if you want to access
information symbolically.

The synbol -fi | e command is applied to each process in the quadifier. You should
make sure that each of those processes is running the same program; otherwise, you may
get unpredictable results from the debugger when you examine variables or memory.

7-33

NightView User’s Guide

core-file

7-34

Note: If you have not specified a symbol file for a process, NightView attempts to obtain
the information from the executable file (see “exec-file” on page 7-35).

In some situations, an object filename translation is more appropriate than a synbol -
fil e command. See"“translate-object-file” on page 7-21.

Create a pseudo-process for debugging an aborted program's core image file.
core-fil e corefilename [exec-fi | e=program-name]
corefile-name
The name of acorefile.

If corefile-nameis arelative pathname, it is interpreted relative to NightView's
current working directory.

exec-fil e=program-name
Specifies the name of the executable program that created the given corefile.

If program-name is a relative pathname, it isinterpreted relative to Night-
View's current working directory.

A core file is a copy of a processs memory made when a process is terminated
abnormally. You can examine these core files using NightView by specifying the core
file name in the core-fil e command. NightView responds with a process ID (PID)
corresponding to a newly-created pseudo-process. Thisis not areal executing process; a
pseudo-process is merely a mechanism for dealing with core files in NightView. The pID
NightView assigns does not correspond to any running process, but you can use it in
qualifiers, and you can also include it in process families using the f anmi | y command.
See “family” on page 7-40.

The qualifier for the core-file command is used only to determine with which
dialogue the pseudo-process should be associated. (Among other things, this determines
the type of machine that created the core file.) Thus, the qualifier should specify exactly
one dialogue; otherwise, NightView issues an error message and refuses to honor the
command.

If you specify the exec- fi | e=program-name option, it is equivalent to executing an
exec-fil e command (see “exec-file’ on page 7-35) on the pseudo-process created by
the core-file command. This is seldom required, since NightView attempts to
determine the location of the executable program from information saved in the core file
(see “Finding Your Program” on page 3-8). If NightView is unable to correctly
determine the executable program, you will need to specify the exec-f i | e=program-
name option or use the exec-fil e command to specify the name of the executable
program.

When debugging a core file, NightView uses the executable program file for two
purposes. NightView uses this file to obtain symbolic information about variables and
procedures in your program, just as it does when debugging normal processes. For core
files, NightView also must use this file to obtain the contents of read-only memory,
including the machine instructions of the program. If NightView is unable to locate the

exec-file

Command-Line Interface

executable program, then you will only be able to examine writable memory by absolute
address. You can specify the file, or files, NightView should use by specifying the
exec- f il e=program-name option or by using the exec-fil e and synbol -file
commands (see “ exec-fileg’ on page 7-35 and “symbol-fil€” on page 7-33).

Note that, unlike other debuggers, NightView alows you to examine the core file of a
process at the same time you are executing the program that produced the core file. This
allows you to try executing your program again to try to find the problem, while still
accessing information from the core file. For instance, you may find from the core file
that a certain global variable has an incorrect value. You could then run the program
again, stopping it at interesting points to check the value of that global variable. By using
an appropriate qualifier, you can easily print out the values of variables in both the
running program and the core file for easy comparison.

Specify the location of the executable file corresponding to a process.
exec-fil e program-name
program-name

Specifies the file containing the executable program corresponding to the
specified processes.

If program-name is a relative pathname, it isinterpreted relative to Night-
View's current working directory.

program-name is subject to object filename translations. See “translate-
object-file” on page 7-21.

This command tells NightView where to find the executable file corresponding to the
processes specified by the qualifier. Obviously, you should ensure that all those
processes are, in fact, running the same program; otherwise, you may get strange
behavior. (NOTE: NightView does not do this verification for you because the processes
may be executing different copies of the same program on several different systems.
NightView would not be able to tell that these were the same program.)

You usualy use this command in conjunction with the core-fil e command (see
“core-file” on page 7-34). You may aso need to use it if NightView is unable to
determine the executable file corresponding to a new process being debugged. See
“Finding Y our Program” on page 3-8.

If you do not explicitly specify a symbol file for a process (see “symbol-file’ on page
7-33), NightView uses the executable file. Since the symbolic information is usually
contained in the executable file anyway, this is most often what you want. You can
specify the executable file and symbol file in any order for a given process.

When a new executable file is specified, any on pr ogr amcommands that match the
new file name are executed. See “on program” on page 7-36.

Examples:

(local) core-file ./mycore
New process: |ocal: 65536

7-35

NightView User’s Guide

on program

7-36

/user s/ bob/ nycore

was | ast nodified on Wed Nov 18 17:48:38 1992
Core file indicates the executable file is
[user s/ bob/ nyprog

Executable file set to

[user s/ bob/ nyprog

Pseudo- process assi gned PI D 65536

Process 65536 terminated with SIGQU T
(local) famly mycore 65536

(local) (nycore) exec-file ./stripped_prog
(local) (nycore) synbol-file ./full_prog

The first command creates a new pseudo-process for the file mycor e in NightView's
current directory. NightView assigns this pseudo-process PID number 65536. The
fam | y command then gives the name mycor e to this pseudo-process. The exec-
fi | e command then establishesthe file st ri pped_pr og as the executable file for that
process, while the symbol - fi | e command establishesf ul | _pr og as the name of the
symbol file.

Specify debugger commands to be executed when a program is’ exec’ ed.

on program [pattern]
on program pattern command

on program pattern do
pattern

A wildcard pattern to match against the executable file names of newly
'exec’ed programs. See “Wildcard Patterns’ on page 7-14.

command

A debugger command to be executed when a new program whose executable
file name matches patternis’exec’ed.

In the third form of the on pr ogr amcommand, the debugger commands to be executed
must begin on the line following the do keyword. The list of debugger commands to
execute is terminated when a line containing only the words end on programis
encountered.

Theon programcommand allows a user-specified sequence of one or more debugger
commands to be executed immediately after 'exec’ing a program that is being debugged
by NightView. When a debugged process performs an 'exec’ (or the exec-file
command is used to change the location of the executable file name), the list of on
pr ogr am patterns for that process's controlling dialogue is checked to see if any of the
patterns match the executable file name of the program that was just ' exec’ ed. The most
recently specified on pr ogr am command whose pattern matches the executable file
name of the newly "exec’ed program will have its commands executed.

on programprocessing is related to on restart processing. When a program

Command-Line Interface

execs(ortheexec-fi | e command isused), NightView first checkstheon restart
patterns. See “on restart” on page 7-38. If a match is found, then the commands
associated with the matching pattern are executed. In this case, no on program
patterns are checked. However, on restart commands created by a checkpoint
always begin with acall tothe macror est art _begi n_hook. Theinitia definition of
this macro invokesthe appl y on pr ogramcommand. So, by default, on program
patterns are checked and matching commands are run before the on restart
commands are run. See “Restarting a Program” on page 3-14.

If no match is found in the on restart patterns, then NightView checks the on
pr ogr ampatterns.

In its first form (given only a pattern), the on pr ogr am command will remove any
commands that were associated with the given pattern for each dialogue specified in the
qualifier. If no patternis given, then all previously defined on pr ogr amcommands are
removed from each dialogue specified in the qualifier. If your safety level is set to
forbi d, you are not dlowed to remove al on pr ogramcommands. If your safety
level is set to verify, NightView requests verification before removing all on
pr ogr amcommands. See “set-safety” on page 7-49.

In its second and third forms, the on pr ogr amcommand will associate a sequence of
one or more user-specified debugger commands with the given pattern for each dialogue
specified by the qualifier. Macro invocations are not expanded when reading the
commands to associate with the pattern.

The default qualifier for all commands associated with the given pattern will be the
process performing the "exec’.

The commands specified by on pr ogr amare event-triggered commands: they have an
implied safety level (which may be different from the safety level that was set using
set -saf ety), and may be terminated automatically if they resume execution of the
"exec’ing process. See “Command Streams” on page 3-30.

If you wish to list dll on progr amcommands, or see which on pr ogr amcommands
would be executed for a particular program name, you should use the i nfo on
pr ogr amcommand.

Example:
(local)on programren* break main.c:24

After issuing the above command, if we now run a program in dialogue | ocal named
ren_n_sti npy, then we will automatically set a breakpoint in it a line 24 of the file
main. c.

Now suppose we do the following:

(local)on program *sti npy do

> handl e 5 noprint nostop
> handl e 6 noprint nopass
> end on program

At this point, if we run ren_n_st i npy again, then this newly ’exec’ed program will
handle signals 5 and 6 in the specified manner. Note that even though the name
ren_n_sti npy aso matches the pattern r en* that a breakpoint will not automatically
be set at line 24 of mai n. c in this new invocation of ren_n_st i npy. Thisis because

7-37

NightView User’s Guide

apply on program

on restart

7-38

on progr am patterns are matched in reverse-chronological order (most recent first),
and only the first match found is used.

(local) info on programren_n_sti npy
on program *stinmpy do
handl e 5 noprint nostop
handl e 6 noprint nopass
end on program

If we were to now issue the command:
(local)on program *sti npy

Then this would remove *stinpy (and its associated commands) from the on
progr amlist for dialogue | ocal . Now, if we run r en_n_st i npy athird time, then
this third invocation will automatically have a breakpoint set at line 24 of mai n. ¢ (just
like the first one did).

(local) info on programren_n_sti npy
on programren* do

break main.c: 24

end on program

Execute on pr ogr amcommands for existing processes.
apply on program

The apply on programcommand alowson programcommands to be executed
for existing processes. (See “on program” on page 7-36). For each process specified by
the qualifier, the on pr ogr amcommands which would match the executable file name
of the process are immediately executed on behalf of the process.

Example:

Suppose | want to set a breakpoint at the subroutine named rrai n in all programs both
new and old that are debugged in dialogue | ocal . Using the on programand appl y
on pr ogr amcommands, this could be accomplished as follows:

(local) on program* b min
(local) apply on program

Specify debugger commands to be executed when a program is restarted.

on restart [pattern]
on restart pattern command

on restart pattern do

checkpoint

Command-Line Interface

pattern

A wildcard pattern to match against the executable file names of newly
execed programs. See “Wildcard Patterns’ on page 7-14.

command

A debugger command to be executed when a new program whose executable
file name matches patternis execed.

In the third form of theon rest art command, the debugger commands to be executed
must begin on the line following the do keyword. The list of debugger commands to
execute is terminated when a line containing only the words end on restart is
encountered.

Theon restart command is primarily intended to be used internally by the debugger
as part of the restart processing. See “Restarting a Program” on page 3-14. Y ou may use
on restart explicitly, if desired, but you should be wary of conflicts with the
debugger's use. The debugger creates on restart commands as a result of a
checkpoint.

on restart isvirtualy identica to on programin form and function. See “on
program” on page 7-36 for a description of the parameters and functionality of these
commands. That section also describes the interaction of these two commands.

If youwishto list al on restart commands, or see whichon restart commands
would be executed for a particular program name, use the info on restart
command. See“info on restart” on page 7-129.

Takearestart checkpoint now.
checkpoi nt

The checkpoi nt command saves restart information for the program running in each
process in the qualifier.

In most cases, you do not need to use the checkpoi nt command, because checkpoints
are taken automatically at certain times. See “Restarting a Program” on page 3-14.
checkpoi nt gives you a way to explicitly take a checkpoint at a time you choose.
Note that any later checkpoints (either explicit or automatic) will replace the restart
information.

Example:

In this example, you are debugging a complex program. Y ou know some good places to
set breakpoints, and you know that you need some more to find the bug, but are not sure
yet where they should be. You set your known breakpoints, take a checkpoint, and save
the restart information to afile. Then you experiment with some different breakpoints.

(local) # set known good breakpoints
(local) breakpoint fred.c:123
set ot her known breakpoints ...

7-39

NightView User’s Guide

family

7-40

(local) checkpoi nt
(local) info on restart output=restart_info

(local) # now try experinental breakpoints
(local) breakpoint pebbles.c: 456
set ot her experinmental breakpoints ...

You decide to start the program again and want only the known breakpoints. You kill
your process, which takes a checkpoint, including the experimental breakpoints. Then
you sour ce the file containing the restart information. The restart information is
replaced with only the known breakpoints. When you restart your program, only the
known breakpoints are restored.

(local) kill
(local) source restart_info
restart program

Give anameto afamily of one or more processes.
fam |y family-name [[-] qualifier-spec]
family-name

The family nameto be defined. This must not be the same as the name of any
dialogue you currently have. The family-name must consist only of alphanu-
meric characters and underscores and must begin with an alphabetic character.
The family-name may be of arbitrary length.

qualifier-spec

I dentifies one or more processes to be included or excluded in the family
named by family-name. See “Qualifier Specifiers’ on page 7-10.

The total set of processes is accumulated by scanning the qualifier-spec arguments left to
right. An argument is added to the set unless it is preceded by a’-’, in which caseiit is
subtracted from the set accumulated so far.

If no qualifier-specis included, then this command removes any previous definition of the
family-name. If your safety level is set to f or bi d, you are not alowed to remove the
definition of a family-name that is present in the default qualifier. If your safety level is
set to veri fy, NightView requests verification before removing such a definition. See
“set-safety” on page 7-49.

If one or more qualifier-spec arguments are supplied, they are immediately evaluated (see
“Qualifier Specifiers’ on page 7-10) and the family-name is defined as the list of
processes indicated by those arguments. Evaluation of the arguments has the following
implications:

* Any family-name appearing in the argument list must be defined. Subse-
guent changes made to the definition of that family-name will have no

set-children

Command-Line Interface

effect on the processes implied by the family-name being defined in the
fam | y command.

* The processes denoted by any dialogue-name appearing in the argument
list are just those that exist at the timethe f ami | y command is executed.

* The argument al | denotes only those processes that exist at the time the
fam | y command is executed.

* The argument aut o denotes the process that has been stopped the longest
at thetimethef am | y command is executed.

Any qudlifier applied to this command has no effect.

Note that you may use a family-name in a qualifier before it is actually defined, but you
must define the family-name before executing any command that needs to know what the
family-name refers to.

Examples:

(local) famly faml 12 25 18
(local) famly fan2 fanl 99
(local) famly faml fanl 16

The first command gives the name fam1 to the processes identified by PiDs 12, 18, and
25. The second command gives the name fam2 to the three processes in faml plus
process 99. The third command extends the definition of faml to include process 16; thus
faml is a synonym for four processes: 12, 16, 18, and 25. Note that extending fam1 has
no effect on fam?2, which still consists of processes 12, 18, 25, and 99.

Using the families defined in the previous examples, the use of a minus sign on
arguments can be illustrated by the following examples:

(local) famly fanB fanl fanR -12
(local) famly fanB fanl -12 fan®

The first command defines fam3 to be the processes 16, 18, 25, and 99. In contrast, the
second command defines fam3 to be the processes 12, 16, 18, 25, and 99. In this case,
the argument - 12 removed process 12 from the set accumulated from fami, but the
f an? argument adds that process back in. In general, it is a good idea to put al the
subtracted arguments at the end of the list.

Control whether children should be debugged.
set-children { all [resune] | exec | none }
al |

Debug all children. If the optional keyword r esumne is specified, then a child
processisr esumed automatically after NightView has prepared it for debug-
ging. Thisis useful if your program creates many child processes that you
want to debug, but all you need to do is inherit the eventpoints and debug set-
tings from the parent process. See“Multiple Processes” on page 3-2.

7-41

NightView User’s Guide

set-exit

7-42

exec

Debug children only when they have called exec(2) (that is, when they are
running a different program). The program name is checked against the
debug/nodebug list for the controlling dialogue to seeif the program should be
debugged. See “debug” on page 7-20. This is the default setting for direct
children of the dialogue shell and processes debugged with the at t ach com-
mand. See“attach” on page 7-32.

none
Ignore all children.

Sometimes you are not interested in the child processes of the process you are debugging.
For example, your program may make many calls to syst en{ 3) which you are not
interested in debugging. The set - chi | dr en command gives you away of controlling
which children will be debugged without having to detach from each one individualy.
See “detach” on page 7-32.

The set - chi | dr en command applies to future children of the processes specified by
the qualifier. Existing children are not affected.

This mode isinherited by future children.

Control whether a process stops before exiting.
set-exit [stop | nostop]
stop
The process will stop if the exi t system serviceis called.
nost op
The process will not stop before exiting.

The set - exi t command controls whether the processes specified by the qualifier will
stop before exiting. The default state for a process is to stop before exiting. See “Exited
and Terminated Processes” on page 3-16.

If no arguments are specified to the command, the command prints the current state for
each process in the qualifier. If an argument is specified, the command changes the state
of each process in the qualifier accordingly and then printsthe new state.

Note that the set - exi t mode is inherited by a child process if a process forks. Note
also that the mode persists for the entire life of the process, even across an exec system
cal, until modified by another set - exi t command. In the case of an exec, an on
programor on restart command might specify a set-exit command that
changes the mode. See “on program” on page 7-36 and “on restart” on page 7-38. See
also “ Restarting a Program” on page 3-14.

If you also want a process to automatically resume execution after an exec, put a
resune command in an on progr amspecification. See “resume” on page 7-99 and

mreserve

Command-Line Interface

“on program” on page 7-36.

Reserve aregion of memory in aprocess.
nreserve start=address {| engt h=bytes | end=address}
st art =address
Specify the start address of the region.
| engt h=bytes
Specify the length of the region in bytes.
end=address
Specify the end address of the region.

The st art =address parameter is required. You must specify either al engt h or an
end address.

The nr eser ve command reserves a region of memory for each process specified by the
qualifier. This means that NightView will not alocate space for patch areas in that
region. See Appendix E [Implementation Overview] on page E-1.

This command does not directly affect the process. It is only an indication to NightView
to avoid placing patch areas in the specified region, presumably because your program
will be using that region later in its execution.

nr eser ve only affects future allocations. Y ou should reserve memory before using any
commands that allocate space in the process, including eventpoint commands, the | oad
command, or any command with an expression that involves a function call. See
“Eventpoints’ on page 3-8. See “load” on page 7-75. See “Expression Evaluation” on
page 3-20.

Y ou should exercise some caution with this command. It is possible to reserve memory
in such away that NightView cannot function.

For convenience, you are alowed to specify reservations that overlap or contain existing
regionsin your process.

Memory reservations are printed as part of the i nfo nenory command. See “info
memory” on page 7-127.

Memory reservations are remembered as part of the restart information. See “Restart

Information” on page 3-15. During restart, memory reservations are applied before any
commands that would allocate space in the process.

7-43

NightView User’s Guide
Setting Modes

set-log

set-language

7-44

Log session to file.
set -1 og keyword filename

keyword

The keyword parameter must be one of the following:

al |
Log entire session (commands as well as the output generated by com-
mands).

conmands
Log just commands typed.

cl ose
Closealog file.

filename

Name of thelog file.

This command starts logging the debugger session to a file. If the file already exists, the
log information is appended to it. You may log just the commands (by using the
conmmands keyword) or the entire session (al | keyword) to a file (if the named file is
aready an open log file, specifying a different keyword simply changes the mode of the
log). You may open multiple log files (although more than one of each type of log would
be rather redundant).

The cl ose keyword is used to close the log associated with the file. (See “info log” on
page 7-116).

The qualifier does not have any effect on this command. Any logs are global to the debug
Session.

Note that this command logs everything that happens during the debug session
(essentially, everything you see on your terminal). The set - show command may be
used to log output from a single dialogue (see “set-show” on page 7-28).

Establish a default language context for variables and expressions.

set-1anguage {ada | auto | ¢ | c++ | fortran}

Command-Line Interface

ada
Indicates that the default language should be Ada.
aut o

Indicates that the default language should be determined automatically.

Indicates that the default language should be C.
Cc++
Indicates that the default language should be C++.
fortran
Indicates that the default language should be Fortran.
The arguments to this command can be in any mixture of upper and lower case.

For each process specified by the qudlifier, set -1 anguage sets the default language
used to interpret expressions and variables in commands. If a default language has not
been established, or if the default has been set to aut o, NightView decides the language
in one of two ways. If the object file contains DWARF, then it contains the language
information. Otherwise, NightView infers the language from the extension (the last few
characters) of the source file name associated with the frame selected when the
expression or variable is mentioned. The following extensions are recognized:

.a
The language is assumed to be Ada.
.C
The language is assumed to be C.
.C
The language is assumed to be C++.
f
The language is assumed to be Fortran.
.S

Although this indicates an assembler source file, NightView uses the C lan-
guage for such files. C expressionsinclude nearly al the operators alowed by
the assembler, plus much more.

The language determines the meaning of operators and constants in expressions;
determines the syntax of some kinds of expressions (e.g., C type casts); controls the
visibility of variable names; and controls the significance of case (upper versus lower) in
variable names. The language also controls the formatting of output from the pri nt
command (see “print” on page 7-66), especialy the way the type of an expression is

7-45

NightView User’s Guide

set-qualifier

set-history

set-limits

7-46

indicated.

Specify the default list of processes or dialogues that will be affected by subsequent
commands which accept qualifiers.

set-qualifier [qualifier-spec ...]
qualifier-spec
Specifies a process or dialogue to be included in the default qualifier list (see
“Qualifier Specifiers’ on page 7-10). Any family names in the qualifier-spec
are evaluated at the time of each command, not at the time of set - qual i -

fier.

If no argument is specified, the default qualifier is set to null, meaning that a qualifier
must be supplied to subsequent commands that require qualification.

Specify the number of itemsto be kept in the value history list.
set - hi st ory count
count
The number of itemsto be kept in the value history.

The qudifier is ignored on this command. The default history list size is 1000. If more
history items than that are created, the oldest ones are discarded. No matter how many
items are in the list, each new history item gets the next highest number.

Specify limits on the number of array elements, string characters, or program addresses
printed when examining program data.

set-limts {array=number | string=number | addresses=number}
ar r ay=number

The ar r ay keyword parameter specifies the maximum number of array ele-
ments to be printed. If you want unlimited output, specify zero as the limit.

st ri ng=number

The st ri ng keyword parameter specifies the maximum number of charac-
ters of astring to be printed. 1f you want unlimited output, specify zero as the
limit.

set-prompt

Command-Line Interface

addr esses=number

The addr esses keyword parameter specifies the maximum number of
addresses to be printed for a particular location (See “Location Specifiers’ on
page 7-9). If you want unlimited output, specify zero as the limit.

Thearray, string, andaddr esses keywords may be specified in any order.

The qualifier isignored on this command. The limits set by set-1i m ts apply to all
output of variables or expressions or program locations. If a printed value is truncated
because of these limits, the value will be followed by ellipses.

Note that the limitation on array elements applies to each dimension of a multi-
dimensional array. If you print a50 x 20 two-dimensional array, and you have the
array limit set to 5, then you will see the first 5 elements of the each of the first 5 rows
(or columns, for Fortran).

The default limits are 100 array elements, 100 characters, and 10 addresses. To find out
what the current limits are, usethei nfo |im ts command (See “info limits’ on page
7-125).

Set the string used to prompt for command input.
set - pronpt string
string

Specify the string the debugger uses to prompt for command input. The string
must be enclosed in double quotes. If you include any of the following sub-
strings in the prompt, they will be expanded by the debugger immediately
prior to printing the prompt.

%

Expands to the current default qualifier. This prints out the same way
the qualifier was defined. If you used afamily name, it showsthe family
name (not the individual PIDs), etc. If the default qualifier isaut o, it
prints the current automatically selected PID.

%

Expands to the complete list of PiDsimplied by the current default qual-
ifier.

%l

Expands to the complete list of dialogues implied by the current default
qualifier.

Ya

Expands to the complete list of dialogues, if the current default qualifier
isal | . Otherwise, this expands to the current default qualifier.

7-47

NightView User’s Guide

set-terminator

7-48

%%
Expands to the single character %

The string argument may aso include the escape sequences recognized in C language
strings, such as'\n’ to indicate a newline.

The string " (%&) " is the default prompt.
The qualifier on the set - pr onpt command isignored.

Examples:
(afam ly) set-pronpt "%> "
| ocal : 2047, 2048>

The above example shows what happens when the default qualifier is a process family
named af am | y assumed to contain two PIDs (2047 and 2048), both in dialogue | ocal .
The initial prompt is"(%q) " and the set - pr onpt command changes it to expand to a
list of PIDs.

(afam ly) set-pronpt "Dial ogues: %l\ nProcesses: %>"
D al ogues: nmachl, mach2
Processes: nmachl: 15 nmach2: 15, 549, 2047, 2048>

The above example prints two lines as a prompt, the first containing a list of dialogues
and the second containing a list of processes.

Set the string used to recognize end of dialogue input mode.
set-term nator string
string

Define the string used to terminate dialogue input mode (see “!” on page
7-27).

When the I command is used to switch all input to a dialogue, the terminator string is
recognized to switch input back to the debugger. The terminator string must appear on a
line by itself to be recognized. The default string is "- . " (different from r | ogi n and
cu).

Unlike norma debugger commands, this string must be typed exactly as specified in the
set-term nat or command. The case of the letters must match, and the full string
must be typed.

Only one terminator string is defined. The qualifier on this command isignored.

Leading and trailing whitespace in the specified terminator string isignored. Macros are
not expanded when reading the new terminator string.

If no terminator string is given, then the current terminator string is printed, otherwise the
new terminator string is printed.

Command-Line Interface

set-safety

Control debugger response to dangerous commands.
set-safety [forbid | verify | unsafe]
forbid

In f or bi d mode, the debugger simply refuses to execute a dangerous com-
mand and explains why it will not execute. (You may have tried to qui t
while processes were still running, etc.).

verify

Inveri fy mode, the debugger tells you what dangerous thing you are about
to do and asksif you really meant that (see “Replying to Debugger Questions”
on page 7-16). If you answer yes, it goes ahead and does it. Thisis the
default safety level of the debugger.

unsaf e

In unsaf e mode, the debugger simply tells you what it did. It assumes you
meant what you said and does not try to stop you.

If no mode is specified then the set - saf et y command prints the current safety level.

The qualifier on the set - saf et y command isignored.

set-restart

Control whether restart information is applied.
set-restart [always | never | verify]
al ways

Restart information is unconditionally applied when a program starts. Thisis
the default mode.

never
Restart information is never applied when a program starts.
verify

When a program starts, you are asked whether to apply restart information to
it.

If no keyword is specified then the set - rest art command prints the current restart
mode.

The restart mode is a global mode, not a per-process or per-dialogue mode. The qualifier
ontheset - restart command isignored.

See “Restarting a Program” on page 3-14.

7-49

NightView User’s Guide

set-local

Define process local convenience variables.
set-| ocal identifier ...
identifier

The name of a convenience variable (the leading '$’ on each identifier, nor-
mally used to reference convenience variables, is optional).

Each named identifier is defined to be a process local convenience variable.

A process local variable always has a unique value in each process. If the variable was
already defined as a global at the time it appearsin aset -1 ocal command, then each
process gets a separate copy of the current global value, but future changes will be unique
for each process.

The command qualifier does not have any effect on this command. It is not possible to
define a variable to be local for only one process, but globaly shared among other
processes.

set-patch-area-size

7-50

Control the size of patch areas created in your process.

set - patch- area-si ze {dat a=data-size | event poi nt =eventpoint-size |
noni t or =monitor-size | t ext =text-size}

dat a=data-size
The dat a keyword parameter specifies the size of the data area in kilobytes.
noni t or =monitor-size

The noni t or keyword parameter specifies the size of the shared memory
region used by all monitorpoints in this dialogue, in kilobytes.

t ext =text-size
Thet ext keyword parameter specifies the size of the text areain kilobytes.
event poi nt =eventpoint-size

The event poi nt keyword parameter specifies the size of the eventpoint
areas in kilobytes.

Thedat a, noni t or, t ext, and event poi nt keywords may be abbreviated and may
be specified in any order.

NightView creates some regions in your process, and uses these regions to store text and
data. There is usualy one data region, one text region, one or more eventpoint regions,
and, if there are any monitorpoints in the process, one shared memory region for the
monitorpoints. These regions are called patch areas. See Appendix E [Implementation
Overview] on page E-1.

interest

Command-Line Interface

Y ou can adjust the sizes of the patch areas with this command. For example, if you have
alot of conditional eventpoints, then you may need to make the size of the eventpoint and
text regions larger so that NightView has room to allocate al the code necessary for those
eventpoints. Similarly, if you have a lot of monitorpoints, then you may need to make
the size of the monitorpoint shared memory region larger. On the other hand, if system
memory resources are scarce, then you may need to make some of these regions smaller.

The patch area size vaues are associated with each dialogue and apply to all processes
within the dialogue. This command sets the values for each dialogue specified in the
qualifier.

Note that these values only apply to patch areas created in the future. Existing regions are
not changed. Therefore, if you want to debug a program and use a large text or data area,
you need to specify that before you run your program (i.e., before the process cals
exec). (For f or k, the child process inherits its regions from the parent, so the regions
are the same size in the child and the parent.)

Each process has its own data, eventpoint and text areas, but the monitorpoint shared
memory region is shared by all the processes that have monitorpoints in the dialogue, and
by the dialogue itself. Therefore, if you want to change the size of the monitorpoint
shared memory region, you need to do so before creating any monitorpoints in the
dialogue. See “Monitorpoints” on page 3-10.

Theinitial vaues of the patch area sizes are 512 kilobytes each for the data and text patch
areas, 256 kilobytes for the eventpoint areas, and 32 kilobytes for the monitorpoint shared
memory region. Thisis adequate for most applications.

Usei nfo dial ogue to see the current patch area size values. (see “info dialogue” on
page 7-127).

You can see information about the patch areas in an existing process with the i nf o
menor y command (see “info memory” on page 7-127).

Control which subprograms are interesting.
interest [level] [[at] [location-spec]]
Set or query theinterest level for a subprogram.
interest inline[=levd]
interest justlines[=leve]
i nt erest nodebug] =level]
i nterest threshol d[=level]
Set or query the interest keyword values.

level

Specify alevel for the subprogram defined by location-spec, or avalue for the
specified keyword. level is a signed integer or the keywords m ni numor

7-51

NightView User’s Guide

7-52

maxi mum If this argument is not present, then this command queries the
level of the subprogram or the specified keyword.

[at] location-spec

Set or query the interest level for the subprogram specified by location-spec.
See “Location Specifiers’ on page 7-9. If no location-spec is present, it
defaultsto * $cpc. If the at keyword is present, it must be followed by a
location-gpec. If no level is specified, then the at keyword is required to dis-
tinguish some forms of location specifiers from a level.

inline

Set or query the inline interest level. If thislevel islessthan the interest level
threshold, then all inline subprograms have the m ni muminterest level unless
their interest level has been explicitly set withi nt er est level location-spec.
Theinitial value of thislevel isO.

justlines

Set or query the interest level for subprograms with line number information
but no other debug information. Theinitial valueis- 2.

nodebug

Set or query the interest level for subprograms with no debug information
(e.g., system library routines). Without debug information, the interest level
cannot be specified for individua subprograms, so NightView uses the value
specified by thisform. Theinitia valueis- 4.

t hr eshol d

Set or query the interest level threshold NightView uses to decide whether a
subprogram isinteresting. Theinitia valueisO.

Thei nt er est command sets or queries the information NightView uses to decide which
subprograms are interesting for each process in the qualifier. See “Interesting Subpro-
grams” on page 3-27.

The m ni mumkeyword specifies the lowest possible interest level. The maxi mumkey-
word specifies the highest possible interest level.

A query printsthe interest information requested. If aninterest level isbeing set, the com-
mand prints the new interest level.

Some compilers provide a means to specify the interest level of a subprogram through the
debug information. If the subprogram has debug information, but it does not specify an
interest level, the default level isO. Thei nt er est command overrides an interest level
set at compiletime.

The interest levels and the interest level threshold are remembered as part of the restart
information. See “Restart Information” on page 3-15. For away to see all theinterest lev-
elsthat have been explicitly set, see “info on restart” on page 7-129.

If an interest level or the interest level threshold is changed, then NightView checks the
current frame to see if it has become uninteresting. See “Current Frame” on page 3-25. |If

Command-Line Interface

it has, then the current frame is reset to frame 0 of the current context and frame informa-
tion is printed. See “select-context” on page 7-111. Even if the current frame does not
haveto bereset, it gets adifferent frame number if frames bel ow it have become hidden or
unhidden.

Examples:

(local) run fact 7

...process startup information...

(local) interest

| ocal : 6729: Interest level is -4 (uninteresting) for
0x100024d0 (nodebug)

You query the interest level, using the default location specifier of * $cpc. The program
begins in the C runtime startup routine, which has no debug information, so it is uninter-
esting.

(local) breakpoint 26

| ocal : 6729 Breakpoint 1 set at fact.c:26

(local) continue

| ocal : 6729: at Breakpoint 1, 0x10002780 in main(int argc
= 2, unsigned char ** argv = Ox2ff7eaed4) at fact.c line
26

26 B=| answer = factorial (x);

(local) step

#0 0x100026f4 in factorial(int x =7) at fact.c line 6
6 = | if (x <= 1) {

(local) interest -1

| ocal : 6729: Interest level set to -1 (uninteresting) for
factorial

#0 0x10002780 in main(int argc = 2, unsigned char **
argv = Ox2ff7eaed4 at fact.c |line 26S

26 B<>| answer = factorial (x);

You step into the f act or i al function, then decide that it is not interesting. You mark
factori al uninteresting, using the default location specifier. Your current frame
becomes uninteresting, so it is reset to frame 0. Frame 0 is now the frame for mai n,
becausef act ori al isnotinteresting. The source decorations for line 26 show that $pc
and $cpc arewithin that line. See“Source Line Decorations’ on page 7-63.

(local) interest threshol d=-1

| ocal : 6729: threshold interest level set to -1

(local) frame

Qut put for process |ocal: 6729

#1 0x10002780 in main(int argc = 2, unsigned char **
argv = Ox2ff7eaed4) at fact.c line 26

26 B<>| answer = factorial (x);

You change the interest level threshold, which makes f act ori al interesting again.
Your current frame is still interesting, so it is not reset to frame 0. Thef r ame command
shows that your current frame is still the frame for mai n, but now that frame is frame
number 1.

7-53

NightView User’s Guide

set-auto-frame

set-overload

set-search

7-54

Control the positioning of the stack when a process stops.
set-auto-franme args ...

The functionality of this command has been subsumed by thei nt er est command. See
“interest” on page 7-51. This command has been retained for compatibility, but it might
be removed in some future release.

Control how NightView treats overloaded operators and routines in expressions.
set-overload [operator={on | off}] [routine={on | off}]
operator={on | off}
Turn operator overloading on or of f .
routine={on | off}
Turn routine overloading on or of f .

The set - over | oad command determines how NightView treats overloaded operators,
functions, and procedures in expressions. See “Expression Evaluation” on page 3-20.
This behavior can be controlled for operators separately from functions and procedures
using the keywords on the command. The specified settings apply to all expressions eval-
uated by NightView. The qualifier isignored by the set - over | oad command. The
rout i ne mode also controls overloading of function names which appear in location
specifiers.

After setting the specified overloading modes, the set - over | oad command prints the
new settings. If no arguments are specified, the command simply prints the existing
overloading modes.

For adiscussion of how overloading worksin NightView see “Overloading” on page 3-23.
For the details of the syntax used to specify overloading in expressions and location spec-
ifiers see “ Selecting Overloaded Entities’ on page 7-2.

When NightView starts, the overloading modes are initially:

set -over | oad operator=of f routine=on

Control case sensitivity of regular expressionsin NightView.
set-search [sensitive | insensitive]
sensitive

Make regular expressions case sensitive (this is the default setting).

set-editor

Command-Line Interface

i nsensitive
Make regular expressions case insensitive.

The set - sear ch command controls case sensitivity for the regular expressions (see
“Regular Expressions’ on page 7-12) used by several commands as well as some dialog
boxesin the graphical interface.

When the set - sear ch command is run with no argument, it reports (but does not
change) the current mode setting.

When the sensi t i ve argument is specified, regular expressions become case sensitive.
The case of alphabetic characters must match exactly as written in the regular expression.
Thisisthe default set - sear ch mode.

When thei nsensi ti ve argument is specified, regular expressions become case insen-
sitive. Either the upper case or the lower case form of an alphabetic character will match
both the upper and lower case form of that same character.

Set the mode for editing commands in the simple full-screen interface.
set-editor mode
mode
One of emacs, gnacs or vi .

Determine which kind of keystroke commands are available to edit commands in the ssim-
ple full-screen interface.

See “Editing Commands in the Simple Full-Screen Interface” on page 8-2.

7-55

NightView User’s Guide

Debugger Environment Control

cd

pwd

7-56

Set the debugger's default working directory.
cd dirname
dirname
The name of the directory.

The cd command changes the working directory of NightView to the specified directory.
You usually use this command to control the search for source files, core files, and
program files. It affectsthe behavior of the following commands:

* shel | (see“shell” on page 7-113)

* |ist (see”lit” on page 7-58)

¢ directory (see“directory” on page 7-60)

¢ synbol -fil e (see“symbol-file" on page 7-33)
e core-fil e (see“corefile” on page 7-34)

¢ exec-fil e (see"“exec-file" on page 7-35)

The cd command does not affect commands executed in dialogue shells (see “login” on
page 7-18). Also, the qualifier does not have any effect on this command.

You can use the pwd command to find out what NightView's current working directory
is. See“pwd” on page 7-56.

Print NightView's current working directory.
pwd

This command prints the current working directory of the debugger. Note that this
directory may not be the same as the current working directory of your dialogue shells,
nor need it be the same as the current working directory of any program you are
debugging.

You can use the cd command to set the current working directory. (see “cd” on page
7-56).

The qudifier does not have any effect on this command.

Command-Line Interface

Source Files

This section describes commands to view source files and to search for text in source
files.

7-57

NightView User’s Guide
Viewing Source Files

list
List asource file. Thiscommand has many forms, which are summarized below.
l'i st where-spec

List ten lines centered on the line specified by where-spec.

i st where-specl, where-spec2
List the lines beginning with where-specl up to and including the where-spec2 line.
i st ,where-spec

List ten lines ending at the line specified by where-spec.

i st where-spec,
List the ten lines starting at where-spec. Note the comma.
list +
List the ten lines just after the lines last listed.
list -
List the ten linesimmediately preceding the lines last listed.
list =

List the last set of lines listed. If the previous command was a search command, list
the ten lines around the line found by the search.

list

If alist command has not been given since the current source file was last estab-
lished (see below), thisform lists the ten lines centered around the line where execu-
tion is stopped in the current source file. Otherwise, thisform lists the ten lines just
after the last lines listed.

Abbreviation: |
Each where-spec argument can be any one of the following forms.
[at] location-spec

Specifies alocation in the program or a source file (See “L ocation Specifiers”
on page 7-9). No matter which form of location-spec you use, it is always
translated into a source line specification for this command. If you give two
argumentsonthel i st command, they cannot specify different source files.

7-58

Command-Line Interface

[at] file_name

Specifies the first line of the file. The file_name may be a quoted or unquoted
string, but be aware that an unquoted string may be ambiguous. A string with-
out quotes will be interpreted first as a function name or an Ada unit name; if
no such function or Ada unit exists, the string will then be interpreted as afile

name.

+n
Specifies the line that is n lines after the last line in the last group listed (see
below). If thisis the second where-spec, it specifies the line n lines after the
first argument.

-n

Like +n, except it specifiesthe line n lines before the last line in the last group
listed (see below). If thisisthe second where-spec, it specifiesthe line n lines
before the first argument.

Thel i st command is applied to each process in the qualifier. If the qualifier specifies
more than one process, you get one listing for each process; each listing is preceded by a
notation indicating which process the listing is for. The specified source file is found
using the directory search path you established using the di r ect ory command (see
“directory” on page 7-60). Note that each program hasits own directory search path.

NightView maintains, for each process, a current source file. The current source file is
usualy the most recent file listed or searched. However, when the process stops
execution, the current source file is automatically set to the file where execution stopped.
The context selection commands (see “Selecting Context” on page 7-109) also set the
current source file to the one associated with the selected stack frame. When a process
first starts execution, the current source file is the one containing the main program. If the
first argument to the | i st command does not explicitly specify a source file, then the
current source fileis used.

When you list one or more lines in a source file, NightView remembers the first and last
line of that group. If you subsequently giveal i st command that uses a relative where-
spec or contains just a + or - argument, those arguments are interpreted relative to the
linesin the last group listed. Arguments containing a + are relative to the last line in the
group, and arguments containing a - are relative to the first line in the group. This aso
affects the f orwar d- search and reverse-search commands. See “forward-
search” on page 7-61 and “reverse-search” on page 7-61.

Repeating the | i st command by entering a blank line behaves differently depending on
the form of | i st you used last. In most cases, repeating the command lists the next ten
lines following the last line in the last group. However, if you used the | i st - form
last, then repetition lists the ten lines preceding the first line in the last group.

The listed source lines are preceded by source decorations. (see “Source Line
Decorations’ on page 7-63).

You can usethei nfo | i ne command to determine the location in your program of the
code for a particular sourceline. (see“infoline” on page 7-134).

7-59

NightView User’s Guide

directory

7-60

Set the directory search path.
directory [dirname ...]
dirname

The name of adirectory to include in the search path. If thisis not an absolute
pathname, it is interpreted relative to NightView's current working directory
and transformed into an absolute pathname. Thus, if you later change Night-
View's working directory, the search path will not be affected. See “cd” on
page 7-56 and “ pwd” on page 7-56.

Thedi r ect ory command sets the directory search path for the program in each process
in the qualifier. The arguments are used in order as the elements of the directory search
path. Subsequent di r ect ory commands contribute directories to the head of the
current search path.

The directory search path is used for displaying source files. When you list a source file
(see“ligt” on page 7-58), NightView looks for the source file in each of the directoriesin
the search path, starting at the beginning of the search path each time.

If no directory command has been specified for the program, the search path
implicitly contains the path to the executable file and NightView's current working
directory. Once adi rect ory command is specified for the program, these directories
are no longer implicit in the search path.

If you enter adi rect ory command with no arguments, the search path is reset to its
initial state.

The directory search path is associated with a program, not with a process. If you debug
multiple instances of a program, the directory search path is the same for each instance.
If your process calls exec(2), the directory search path is implicitly set for the new
program.

Use the info directories command to display the directory search path for a
program. See “info directories” on page 7-124.

For ELF programs, the debugging information contains absolute pathnames to source
files, so the directory search path may not be needed. It is still sometimes useful to
indicate that a source tree is not where the debugging information indicates.

Example:

Suppose your ELF program was compiled from two source files:
[usr/ bob/ src/ mai n/main.c and/usr/ bob/src/doit/doit.c. Youwantto
debug your program, but you have moved the source files to
/usr/joel/main/main.c and /usr/joe/doit/doit.c. Enter adirectory
command to indicate the new root of the source tree:

(local) directory /usr/joe

Searching

forward-search

reverse-search

Command-Line Interface

Search forward through the current source file for a specified regular expression.
forwar d-search [regexp]

Abbreviation: fo

regexp

The regular expression to search for. No anchored match is implied. (see
“Regular Expressions” on page 7-12). If regexp is omitted, the previous
regexp is used.

The search command is applied to the current source file of each process specified by the
qualifier.

The search starts at the first line displayed by the last | i st command, the last place the
process stopped, or the last place a search was satisfied, whichever was most recent, and
proceeds forward through the file to the end. In the graphical user interface, the search
position is not affected by scrolling the source window. If the regular expression is
found, the containing source line is listed. Thiswill affect subsequent | i st commands
that specify relative arguments.

If the end of the file is encountered without finding the regular expression, a message is
printed indicating the search was unsuccessful. For a definition of current source file, see
“list” on page 7-58.

The regular expression case sensitivity depends on the current search mode (see “ set-
search” on page 7-54).

Search backwards through the current source file for a specified regular expression.

rever se- sear ch [regexp]

regexp

The regular expression to search for. No anchored match is implied. (see
“Regular Expressions” on page 7-12). If regexp is omitted, the previous
regexp is used.

The search command is applied to the current source file of each process specified by the
qualifier. The search starts at the last line displayed by the last | i st command, the last
place the process stopped, or the last place a search was satisfied, whichever was most
recent, and proceeds backward through the file to the beginning. In the graphical user
interface, the search position is not affected by scrolling the source window. If the
regular expression is found, the containing source line is listed. This will affect
subsequent | i st commands that specify relative arguments.

7-61

NightView User’s Guide

If the beginning of the file is encountered without finding the regular expression, a
message is printed indicating the search was unsuccessful. For a definition of current

source file, see “list” on page 7-58.

The regular expression case sensitivity depends on the current search mode (see “ set-
search” on page 7-54).

7-62

Command-Line Interface

Source Line Decorations

When NightView lists source lines in your program or displays the assembly instructions
of your program, it precedes each line with decorations providing information about that
line. Every source line gets a line number, which is relative to the beginning of that file.
Each instruction displayed is preceded by the line number of the source line that
generated it (see “X” on page 7-68). Following the line number may be one or more of
the decorations shown in the following table.

Table 7-6. Source Line Decorations

A

B’

"M’

Indicates that one or more agentpoints, possibly disabled, are set somewhere within
this source line. When displaying instructions, this indicates that one or more agent-
points are set on this instruction. (see “agentpoint” on page 7-88).

Indicates that one or more breakpoints, possibly disabled, are set somewhere within
this source line. When displaying instructions, thisindicates that one or more break-
points are set on thisinstruction. (see “breakpoint” on page 7-80).

Indicates that one or more monitorpoints, possibly disabled, are set somewhere
within this source line. When displaying instructions, thisindicates that one or more
monitorpoints are set on thisinstruction. (see“monitorpoint” on page 7-85).

Indicates that one or more patchpoints, possibly disabled, have been inserted some-
where within this source line. (see “patchpoint” on page 7-81). When displaying
instructions, thisindicates the instruction where the patchpoint was inserted, and the
patched expressions are displayed el sewhere.

Indicates that one or more tracepoints, possibly disabled, are set within this source
line. When displaying instructions, this indicates a tracepoint immediately preced-
ing thisinstruction. (see“tracepoint” on page 7-84).

Indicatesthat execution is stopped somewhere within or at the beginning of thisline.
When displaying instructions, this indicates the instruction at which execution is
stopped (the one that will next be executed).

Indicates the line (or instruction) in the current frame (see “frame’ on page 7-109),
where execution will resume when the called routine returns.

This decoration is not displayed if the current frame is frame #0 (with no hidden
frames below frame 0); in this case the'=" decoration will appear in its place.

7-63

NightView User’s Guide

7-64

Indicates the line (or instruction) in the current frame (see “frame”’ on page 7-109),
which was executing when the called frame was created, i.e., $cpc. See“Program
Counter” on page 3-24.

This decoration is not displayed if the current frame is frame #0 (with no hidden
frames below frame 0); in this case the '="decoration will appear in its place.

Indicates that this source line corresponds to executable code. A line that appears
executable may still not have executable code associated with it because of optimi-
zation or conditional compilation. Not used when displaying instructions.

This decoration is not displayed if there are any other indicators also on that line,
since the other indicators imply there is executable code for the line.

Used only when displaying instructions, this character indicates that the associated
instruction isthe first for the corresponding source line.

NightView reserves enough columns for displaying a 3-digit line number, 2 decoration
characters, and a 2-character separator. If the line number and decorations fit within this
space, the source text displayed lines up in columns just as it does in the source file. If
more space is needed for line number or decorations, the line is shifted over accordingly.

In the source listing, the 2-character separator is a vertical bar followed by a space. This
helps distinguish decorations from source characters. In the disassembly listing, the 2-
character separator consists of 2 spaces.

Example source listing:

20 | void

21 * | nmin(argc, argv)

22 | int argc;

23 | char ** argv;

24 | {

25 | int i, errors;

26 * | errors = 0;

27 * | for (i =1; i < argc; ++i) {

28 | long xI;

29 | int x;

30 | int answer;

31 * | char * ends = NULL;

32 T | xI = strtol (argv[i], &ends, 10);
33 Be| x = (int)xl;

34 B | answer = factorial (x);

35 P | printf("factorial (%) == %\n", x, answer);
36 | }

37 * | exit(errors);

38 |}

In this example, line 32 has a tracepoint set on it; line 33 has a breakpoint set somewhere
within the line, and execution is stopped on the line (but not necessarily at the
breakpoint). Line 34 has a breakpoint set somewhere within the line (perhaps on the

Command-Line Interface

return from f act ori al). Line 35 has a patchpoint inserted somewhere within it. Apart
from these lines, the other lines with asterisks on them have executable code associated
with them.

Example instruction listing:

31 @ 0x10002788 <nmi n+52>: li r6,0

31 0x1000278c <nmi n+56>: stw r6, 0x40(r1)

32 @ 0x10002790 <mmi n+60>: slwi r5,r16,2

32 0x10002794 <mai n+64>: lwzx r3,rl17,r5

32 0x10002798 <nmi n+68>: addi r4,r1,64

32 0x1000279¢c <mai n+72>: li r5,10

32 0x100027a0 <mai n+76>: bl 0x100010e0 <strtol >
33 @= 0x100027a4 <mmai n+80>: m r20,r3

34 @ 0x100027a8 <nmi n+84>: bl 0x10002700 <factorial >
34 B 0x100027ac <mmi n+88>: m r5,r3

35 @ 0x100027b0 <nmi n+92>: lis r3,12288

35 0x100027b4 <mai n+96>: addi r3,r3, 12528

35 0x100027b8 <mai n+100>: m r4,r20

35 0x100027bc <mai n+104>: bl 0x10001100 <printf>

Thisisapartia assembly listing for the preceding example source listing.

Examining and Modifying

backtrace

Print an ordered list of the currently active stack frames.
backt race [number-of-frames]
Abbreviation: bt
number-of-frames
Number of stack framesto print, starting with the currently executing frame.

The backt r ace command prints, for each process specified in the qualifier, a summary
of the active stack frames, starting with the currently executing frame. Each subsequent
entry corresponds to the caller of the frame which precedes it in the listing. All active
frames are indicated, unless a value for number-of-frames is given, in which case, the
given number of framesis printed.

Each entry in the backt r ace listing includes the frame number (the first frame is num-
bered 0), the program counter, the subprogram name (if known), the arguments of the sub-
program (if known), the source file name (if known), and the line number (if known).

For information on changing the current stack frame, see “frame” on page 7-109, “up” on
page 7-110, or “down” on page 7-110.

Frames corresponding to uninteresting subprograms are not shown in the listing. See
“Interesting Subprograms’ on page 3-27.

7-65

NightView User’s Guide

print

Print the value of alanguage expression.

print [/ print-format-letter] expression

Abbreviation:

p

print-format-letter

One of the following letters specifying the format in which to print each com-
ponent value of the expression:

a

7-66

Print the value of the expression in hexadecimal and as an address rela-
tive to a program symbol.

Treat the rightmost (least significant) eight bits of the value as a charac-
ter constant and print the constant.

Print the bit representation of the value in signed decimal.

Print the bit representation of the value as a single precision floating-
point number and print using floating-point syntax. If the data type of
the language expression is double precision, however, then the bit repre-
sentation is printed as a double precision floating-point number.

Print the bit representation of the value in octal .

Print the dataas a character string. Arrays of characterswill print as one
character string (terminated with a zero byte if the language is C or
C++); scalar types will print using their default format plus the bytes of
the value will be printed asa string. (You might want to use thisin For-
tran if you put Hollerith datain INTEGER variables.)

See note below about limits on the length of printed strings.

Print the bit representation of the value in unsigned decimal .

Print the bit representation of the value in hexadecimal.

set

Command-Line Interface

expression
A language expression (see “ Expression Evaluation” on page 3-20).

print displays the value of a language expression in each process specified by the
qualifier. When the expression is an aggregate item, such as an array, record, or union,
each component value of the expression is printed, along with the appropriate subscript,
record field name, etc.

The space between print and / may be omitted. If no print-format-letter is given,
expresson is printed in a format corresponding to the data type of the expression in the
currently defined language.

The printed value is given a value history number (see “Value History” on page 3-32),
indicated in the output by $ followed by the history number.

If the value printed contains an array or a character string, the number of array elements
and characters will be limited to the values set by the set -1 i m t s command (see “set-
limits” on page 7-46).

NOTE

For ease in debugging C and C++ programs, the pr i nt command
treats expressions of type 'char *' specially. Whenever pri nt

prints the value of a’char *’ pointer, it also prints the string it
points to, inside double-quote marks; pr i nt assumesthestringis
terminated by anull byte.

Most other commandsthat print expressions or variables also treat
"char *’ pointersin this manner.

Examples:

(local) (12) p/x var_nane*4
(local) (12) p array_nane

The first example prints, in hexadecimal, a number equal to four times the value of
var _nane, for process 12. The second example prints the value of each member of the
array arr ay _narre in aformat based on the data type of ar r ay__nane, for process 12.

Evaluate alanguage expression without printing its value.
set expression
expression
A language expression (see “ Expression Evaluation” on page 3-20).

This command is similar to the pri nt command (see “print” on page 7-66), in that it

7-67

NightView User’s Guide

7-68

evaluates a language expression for each process specified in the qualifier. However,
set does not accept a format specifier, print the value of the expression, or place the
value of the expression in the value history. It is useful for doing assignments to
language objects (e.g., memory addresses preceded by the C language cast syntax,
variables, and array elements) and convenience variables, as well as for performing cals
to subprograms whose return value is unimportant.

Examples:

(local) set $i = 98
(local) (27) set vector[5]
(local) set *(int *)Ox1234
(local) set routine(3,4)

X * 2.5
Oxabcd0123

The first example assigns the value 98 to the convenience variable $i . The second exam-
ple assignsthe value of x * 2.5 to element five of array vect or, in process 27. The
third example assigns the hexadecimal value abcd0123 to the hexadecimal absolute
memory location 1234. Thefina example performsacall to the subprogram r out i ne.

Print the contents of memory beginning at a given address.
X [/ repeat-count] [size-letter] [x-format-letter]] [addr-expression]
repeat-count

Decimal number of consecutive memory units to print, where a unit is defined
by the size-letter and the x-format-letter.

size-letter

One of the following letters specifying the size of each memory unit:

b
Each memory unit is one byte (8 bits) long.
h
Each memory unit is one halfword (two bytes) long.
w
Each memory unit is one word (four bytes) long.
g

Each memory unit is one giant word (eight bytes) long.

The size-letter may appear either before or after the x-format-letter.

Command-Line Interface

x-format-letter

One of the following letters specifying the format in which to print the con-
tents of memory:

a

Print as an integer in hexadecimal and as an address relative to a pro-
gram symbol. Thisformat ignores size-letter and always uses w.

Print as character constants. This format ignores size-letter and always
uses b.

Print as signed integers in decimal format.

Print as floating-point values.

Print as machine instructions in assembler syntax, using the length of
each instruction as the unit size. A repeat-count given with this format
indicates how many instructions to print.

Print as unsigned integersin octal format.

Print as anull-terminated string, using the length of the string (including
the null byte) as the specified unit size; the size-letter, if any, isignored.
A repeat-count given with this format indicates how many strings to
print.

If the string to be printed is longer than the string limit set by the set -
i mts command, theinitial characters of the string are printed, with
an ellipsis following the closing quote. (see “set-limits’ on page 7-46).

Print as unsigned integersin decimal format.

Print as unsigned integersin hexadecimal format.

Print as unsigned integers in hexadecimal format with a display of the
corresponding ASCII characters.

7-69

NightView User’s Guide

7-70

addr-expression

An expression yielding a memory address (see “Expression Evaluation” on
page 3-20).

The x command prints the contents of memory beginning at the address specified by
addr-expression in each process specified by the qualifier. If an addr-expression is not
given, the address corresponds to the byte following the end of the memory contents
printed in the last x command.

The space between x and / may be omitted. If repeat-count is omitted, one memory unit
is printed. If either size-letter or x-format-letter is omitted, the default is the last value
used in an x command (beginning defaults arewand d, respectively).

If the x command is repeated, memory contents are printed using the same repeat-count,
size-letter, and x-format-letter as in the previous x command, and the beginning address
corresponds to the byte following the end of the memory contents printed in the previous
command.

A 0 precedes octal numbers. A Ox precedes hexadecimal numbers. Thus decimal 64
would appear in hexadecimal as 0x40 and in octal as0100.

The x-format-letter z produces a hexadecimal display without the leading Ox prefix. The
character display shows non-printable characters replaced by . (period). Here, printable
is determined by the current locale. The display of charactersisframedin | and| .

After an x command, the convenience variables$_and $ are set and ready to use in
expressions (see “Predefined Convenience Variables’ on page 7-6). The convenience
variable $_is set to address of the last memory unit examined. The convenience variable
$__ isset to the contents and type of the last memory unit examined.

Examples:

(local) (14544) x/4i $pc

7 @= 0x1000271c <factorial +28>: |i r3,1

7 0x10002720 <factorial +32>: |wz r16, 0x40(r1)
7 0x10002724 <factorial +36>: |wz r13, 0x58(r1)
7 0x10002728 <factorial +40> mlr r13

For the process with process id 14544, print memory as four machine instructions starting
with the address of the current program counter. See “Source Line Decorations’ on page
7-63 for a description of the characters at the beginning of each line of this format.

(local) x /4wx 0x40al88

0x0040a188: 0x77767574 0x73727170 Ox6f 6e6d6c 0x6b6a6968
(local) x /8bz 4235656

0x0040a188: 77 76 75 74 73 72 71 70 | wutsrqgp|

(local)

0x0040a190: 6f 6e 6d 6¢c 6b 6a 69 68 | onnikji h|

(local) p $_ - 4235656

17: $ - 4235656 = Oxf

(local) p $__

$18: $__ =104 'n’

Print memory as four words (four-byte memory units) starting at hexadecimal address
0x0040a188 as unsigned integers in hexadecimal format with Ox prefixes.

output

echo

Command-Line Interface

Print memory as eight bytes (one-byte memory units) starting at the same address
expressed in decimal (4235656) as unsigned integers in hexadecimal format with a
display of the printable characters.

Print in the same format and repeat count starting at the next address (0x0040a190).

Print an expression $_ - 4235656 to show the relative difference between the address
of the last memory unit printed $_ - 4235656 and address of the first memory unit
two commands ago 4235656.

Print expression $__ to show the value of the last memory unit printed.

Print the value of alanguage expression with minimal output.
out put [/ print-format-letter] expression
print-format-letter

A letter specifying the format in which to print the expression, as described in
the pri nt command (see “print” on page 7-66).

expression
A language expression (see “ Expression Evaluation” on page 3-20).

out put prints the value of a language expression for each process specified by the
qualifier in the same manner as the pri nt command, except that a newline is not
printed, the value is not entered in the vaue history, and the " $history-number = "
string does not prefix the output.

The space between out put and / may be omitted. If no print-format-letter is given,
expresson is printed in aformat corresponding to the data type of the expression.

Print arbitrary text.
echo text
text

Arbitrary text to be printed, up to the end of theline. Non-printing characters
may be represented with C language escape sequences, such as’\n’ for new-
line.

This command prints the given text. It isintended as an adjunct to the other commands
which print information about the program, so that the output can be customized to
whatever is desired.

A backdlash ("\') may be used to correctly print leading and trailing spaces. In other

7-71

NightView User’s Guide

data-display

display

7-72

words, a backslash may be used at the beginning of text to print leading spaces appearing
after the backslash, and one may be used at the end of text to print the spaces appearing
before the backslash. The backslash characters themselves are not printed.

Note that a newlineis not printed unless the newline sequence ('\n’) isincluded.
Examples:

(local) echo \ Text with two |eading spaces and a new ine\n
(local) echo A backsl ash (\\) and the nunber three (\063)

The first example prints " Text with two leading spaces and a newline", followed by a
newline. The second example prints"A backslash (\) and the number three (3)", but does
not print a newline.

Control itemsin a Data Window.
dat a- di spl ay [/w ndow="windowname'] {/Kki nd=value | expression}
/ wi ndow=" window name"
Determines which Data Window is affected by this command.
ThedefaultisDat a W ndow
/ ki nd=value

value indicates which kind of item to placed in the Data Window. valueis one
of | ocal s,regi sters,call stack ort hreads.

expression

An expression to place in aData Window. There should not bea/ ki nd key-
word in this form of the command.

Thedat a- di spl ay command is not intended to be used directly by users. Its main use
isin restart information. See “Restart Information” on page 3-15. A description of al the
forms of this command is beyond the scope of this document. However, users may some-
times have a use for the simplest forms of the dat a- di spl ay command described here.

Add to the list of expressionsto be printed each time the process stops.

di spl ay [[/ print-format-letter] expression]
di spl ay /[repeat-count] [size-letter] [x-format-letter] addr-expression

Command-Line Interface

print-format-letter

A letter specifying the format in which to print the expression, as in the
pri nt command (see “print” on page 7-66).

expression
A language expression (see “ Expression Evaluation” on page 3-20).
repeat-count

Decimal number of consecutive memory units to print, where a unit is defined
by the size-letter and the x-format-letter.

size-letter

A letter specifying the size of each memory unit, as described in the x com-
mand (see“x” on page 7-68). The size-letter may appear either before or after
the x-format-letter.

x-format-letter

A letter specifying the format in which to print the contents of memory, as
described in the x command (see“x” on page 7-68).

addr-expression

An expression yielding a memory address (see “Expression Evaluation” on
page 3-20).

The display item list contains language and memory address expressions which will be
used to print expression values or contents of memory, respectively, each time one of the
specified processes in the qualifier stops (hits a breakpoint, receives a signal, etc.).
di spl ay addsalanguage or memory address expression to thelist.

In order to determine whether the given expression is a language or address expression,
the parameters before the expression are first examined. If arepeat-count or size-letter is
given, or if either of the x-format-letters’s or 'i’ is given, then the expression is treated
as an addr-expression. Otherwise, the expression is treated as a language expression.

When one of the processes specified by the qualifier stops, each enabled item in the
display item list is evaluated. The indicated expression value or memory location is
displayed, each item beginning on a new line. Each display item has an item number,
followed by the text of the expression and then the expression's value or the contents of
memory. If a language expression for an item cannot be evaluated in the currently
defined language, output will not appear for that item; however, a summary of the
uneva uated items will appear at the end of the di spl ay output.

The space between di spl ay and / may be omitted. If no print-format-letter is given
for alanguage expression, expression is printed in aformat corresponding to the data type
of the expression at the time the process stops. |If repeat-count is omitted, one memory
unit will be printed. If size-letter or x-format-letter is omitted, the defaults are w and d,
respectively.

If di spl ay is entered on a line by itself, the current values of the expressions or
contents of memory for each item on the display list are printed. To simply see the

7-73

NightView User’s Guide

undisplay

redisplay

7-74

expressions themselves, use the i nf o di spl ay command (see “info display” on page
7-124).

Examples:

(local) (12) display/x var_name
(local) (12) display/4d 0x1234

If these commands are entered, then each time process 12 stops, the value of var _name
will be printed in hexadecima on one line, and four words of memory starting at
hexadecimal address 1234 will be printed on the next line.

Disable an item from the display expression list.
undi spl ay item number . ..
item_number

An item number of an item to be disabled in the list of expressions to be
printed each time the program stops, as specified in previous di spl ay com-
mands (see “ display” on page 7-72).

Theundi spl ay command disables the given items in each of the processes specified by
the qualifier. The associated expressions or memory locations cease to be displayed
when the corresponding process stops, until you enable them again using the
redi spl ay command (see “redisplay” on page 7-74). The effect of the qualifier on this
command is to limit the items to be disabled to only those that occur in the specified
processes.

Item numbers prefix each displayed language expression and memory section. The item
numbers also may be viewed by entering the i nf o di spl ay command (see “info

display” on page 7-124).

Enable a display item.
redi spl ay item number ...
item_number

An item number of an item to be enabled in the list of expressions to be
printed each time the program stops, as specified in previous di spl ay com-
mands (see “ display” on page 7-72).

The r edi spl ay command enables the specified display items so that they once again
print data when the corresponding process stops. The r edi spl ay command reverses
the effect of the undi spl ay command. The effect of the qualifier on this command is
to limit the items to be enabled to only those that occur in the specified processes.

printf

load

Command-Line Interface

Item numbers prefix each displayed language expression and memory section. The item
numbers also may be viewed by entering the i nf o di spl ay command (see “info
display” on page 7-124).

Print the values of language expressions using aformat string.
printf format-string[, expression ...]
format_string

A string within guotes containing text to be printed and print formats for
expressions to be printed.

expression
A language expression (see “ Expression Evaluation” on page 3-20).

printf prints user-specified text plus, optionally, values of language expressions
evaluated in the currently defined language, for each process specified in the qualifier.
This command acts the same as the C language library routine pri ntf (3C), with the
exception of the "%n’ format descriptor. As in that routine, each print format (i.e,
substring beginning with '%’ and or width specifier '*") in the format-string corresponds
to one language expression in the specified list. The number of language expressions
entered must match the number of print formats.

If a’%n’ format descriptor is present in the format string, it is considered a syntax error
and the pri nt f command is aborted.

Example:
(local) (27) printf "The value of var_name = %l.\n", var_nane

This example prints "The vaue of var_name = " followed by the decimal vaue of
var _name and anewline, for the process with PID 27.

Dynamically load an object file, possibly replacing existing routines.
| oad object
object
The name of an object file to be loaded into the program.

object is subject to object filename transations (see “translate-object-file” on
page 7-21).

This command dynamically loads the designated object file into the address space of the
running program. If the loaded file contains any routines which are already defined in the

7-75

NightView User’s Guide

vector-set

7-76

program, the entry points of the existing routines are patched to jump directly to the new
routines just loaded. If there are any active stack frames for old routines, the return
addresses in the stack till point to the old code. New calls made following the | oad will
call the new routines.

If you had any breakpoints or other eventpoints set in the old routine, you may need to set
equivalent ones again in the new routine (the old ones are still there, but since the old
routine will never be called again, you will probably never hit any of them).

The primary purpose of this command is to allow you to replace an existing routine with
a new version, avoiding the overhead of forcing you to stop debugging the program,
relink it, and rerun to get back to the point of interest.

This command must be used with care. If the new object file contains any globa data
definitions, you are very likely to wind up with an erroneous program in which old
routines refer to the original data locations and new routines refer to the newly loaded
data definitions. Patching the old routine entry points to jump to the new routine
definitionsis simple, but it is not possible to locate all the places that might refer to data
items defined in the object file, so loading object files that define static data items is
likely to generate unexpected results.

If the object file refersto other routines or external data items that are not already defined
in the program file, you are told about the undefined symbols, and the object file is not
loaded. If you load an object file that defines new symbols, they are added to the symbol
table for the program, so subsequent loads may refer to the new names.

This command checks for obvious problems with the new object file and warns you of
anything that is likely to be a mistake, but it |oads the new object anyway.

Set the value of avector.

vector-set I|-value = component, component . ..

vect or-set l-value = repeat-count, component

The arguments to vect or - set are all expressions separated by commas (', '). The
expressions may not contain commas.

I-value

A vector variable, array element, register, etc., which can be assigned. The -
value may be followed by either acomma or an equals sign ('="). Thisexpres-
sion may not contain an equals sign ('=") or acomma(’, ").

component
One component of the vector.
repeat-count

The number of timesto repeat the following component.

Command-Line Interface

This command creates a vector value by concatenating the component values and assigns
the value to the specified I-value, which must be avector, for each processin the command
qualifier. vect or - set is meaningful only on the Power Hawk 700 Series.

The command operates based on the number of arguments following the I-value. If there
are 2 arguments, then the first argument is taken as a repeat-count. The value of the com-
ponent is replicated to make repeat-count components. The value of the repeat-count must
be oneof 4, 8 or 16. If there are more than 2 arguments, then each argument is a compo-
nent.

The format of each component is determined by the number of components.

Number of Components Component Format

16 1 byte integer
8 2 byte integer
4 4 byte integer or float

For the 4-byte case, the component type, integer or floating-point, is determined by the
type of the component value. NightView warns you if the components are not al of the
sametype. For the integer formats, each component isimplicitly cast to an unsigned inte-
ger.

Examples:

(local) vector-set ny_vec
1, 1, 1, 1, 1, 1
(local) vector-set nmy_vec = 16, 1

1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

Both of these commands set my _vec to 16 bytes, with each bytesetto 1.

(local) vector-set $vO 1.0, 2.0, 0.0, 4.0

Set $v 0 to these floating-point values.

(local) vector-set $v0 = f(0), f(1), f(2), f(3)

Set $v0 to the results of calling function f with various values. The type of the 4 compo-
nents is determined by thereturn typeof f .

Manipulating Eventpoints

This subsection describes the various commands that are used to set and modify
eventpoints.

Some of the commands which operate on breakpoints also operate on patchpoints,

tracepoints, monitorpoints, agentpoints, and watchpoints as well. The following table
indicates which types of eventpoints may be affected by which commands:

7-77

NightView User’s Guide

Table 7-7. Eventpoint Commands

Command
Name

What the Command Applies to

Breakpoints

Patchpoints

Tracepoints

Agentpoints

Monitor points

Watchpoints

name

X

X

X

X

X

X

cl ear

X

X

X

commands

condi tion

del ete

di sabl e

enabl e

i gnore

X | X | X| X| X

X | X | X| X| X

X | X | X| X| X

X | X | X| X[X]| X|X

X| X | X| X|X]| X

t br eak

X | X | X| X[X| X|X

t pat ch

7-78

Command-Line Interface

Eventpoint Modifiers

name

An eventpoint modifier modifies the setting of eventpointsin a program.
The modifiers come after the eventpoint commands as follows:
command [modifier ...]

The eventpoint modifiers are;

/del ete

Causes the eventpoint to be deleted after the first hit. This eventpoint modifier is
valid only with the br eakpoi nt, enabl e and wat chpoi nt commands (see
“breakpoint” on page 7-80, “enable” on page 7-93, and “watchpoint” on page 7-96).

/ di sabl ed

Causes the eventpoint to be created in a disabled state. You must use the enabl e
command to activate the eventpoint (see “enable” on page 7-93).

Give a name to a group of eventpoints.
name [/add] name [[-] eventpoint-spec]
/ add
Add the eventpoints to the named set, rather than redefining the set.
name

The name of the set of eventpoints to be defined. This must not be the same as
the name of any dialogue you currently have, or of any process family that is
currently defined. The name must consist only of a phanumeric characters and
underscores and must begin with an a phabetic character. The name may be of
arbitrary length.

eventpoint-spec
An eventpoint specifier. See “Eventpoint Specifiers” on page 7-12.

The total set of eventpoints is accumulated by scanning the eventpoint-spec
arguments left to right. An argument is added to the set unlessit is preceded
by a’-’, inwhich caseit is subtracted from the set accumulated so far.

If no eventpoint-spec is given, then this command removes any previous definition of
name.

Any qualifier applied to this command has the effect of restricting the set of eventpoints
named to those which exist in the processes specified by the qualifier.

Examples:

7-79

NightView User’s Guide

breakpoint

7-80

(local) name evptl 12 25 18
(local) name evpt2 evptl 99
(local) name evptl evptl 16

The first command gives the name evptl to three eventpoints identified by eventpoints
12, 18, and 25. The second command gives the name evpt2 to the three eventpoints in
evptl plus eventpoint 99. The third command extends the definition of evptl to include
eventpoint 16; thus evptl is a synonym for four eventpoints: 12, 16, 18, and 25. Note that
extending evptl has no effect on evpt2, which still consists of eventpoints 12, 18, 25, and
99.

Using the names defined in the previous examples, the use of a minus sign on arguments
can beillustrated by the following examples:

(local) name evpt3 evptl evpt2 -12
(local) name evpt3 evptl -12 evpt?2

The first command defines evpt 3 to be the eventpoints 16, 18, 25, and 99. In contrast,
the second command defines evpt 3 to be the eventpoints 12, 16, 18, 25, and 99. In this
case, the argument - 12 removed eventpoint 12 from the set accumulated from evpt 1,
but the evpt 2 argument adds that eventpoint back in.

Set a breakpoint.

br eakpoi nt [eventpoint-modifier] [nanme=breakpoint-name]
[[at] location-spec] [if conditional-expression]

Abbreviation: b
eventpoint-modifier
Specifies the breakpoint modifier. See “Eventpoint Modifiers’ on page 7-79.
name=breakpoint-name

Gives aname to the breakpoint for later reference. (see “name” on page 7-79).
If breakpoint-nameis aready defined, then this command adds the newly cre-
ated breakpointsto the list of eventpoints associated with the name.

location-spec
Specifies the breakpoint location. (see “Location Specifiers’ on page 7-9).

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame. See“Current Frame” on page 3-25.

i f conditional-expression

Specifies a breakpoint condition. The language and scope of the expression is
determined by the location at which the breakpoint is set (see “ Scope” on page
3-25 and “Context” on page 3-24). See also “ Expression Evaluation” on page
3-20.

patchpoint

Command-Line Interface

NOTE

Theat, i f, and name keywords may not be abbreviated in this
command.

br eakpoi nt sets a breakpoint in each of the processes specified by the qualifier. This
causes the program to suspend execution at the breakpoint location. An optional
condition may be applied to the breakpoint which causes execution to be suspended only
if the condition evaluates to TRUE. The conditional expression is evaluated in the user
program when the breakpoint location is reached (unless the breakpoint is currently being
ignored, see “ignore” on page 7-94).

If more than one breakpoint is set (through the use of more than one process in the
qualifier) then each breakpoint in each processis assigned a unique breakpoint number.

You can specify debugger commands to be executed when a breakpoint is hit. See
“commands’ on page 7-90.

Itis possible (and sometimes useful) to set more than one breakpoint at the same location
in aprocess. Perhaps you have two breakpoints set at the same place and each has its own
set of commands. By enabling only one of the two breakpoints a a time, you can
effectively toggle the set of commands that gets executed when the process reaches that
location.

If more than one breakpoint is set a the same location in a given process, then the ol dest
breakpoint with an ignore count of zero and a condition that evaluates to TRUE will be the
first breakpoint responsible for stopping the process. After this breakpoint has stopped
the process, before continuing on to the next instruction, NightView will check for any
remaining breakpoints at that location which may stop the process. If there are any, then
the process will stop at least once more (at the same location) before continuing on to the
next instruction.

Example:
(local) (441 115) break name=l oop sort.c: 42

This example sets two breakpoints at line 42 of the file named sort . ¢ and associates
both breakpoints with the name "loop’. One of the breakpoints is set in process 441 and
the other breakpoint is set in process 115. Each of the two breakpoints is assigned a
unique breakpoint number.

Install asmall patch to aroutine.

pat chpoi nt [eventpoint-modifier] [nane=patchpoint-name]
[[at] location-spec] eval expresson

Insert an expression in the program.

pat chpoi nt [eventpoint-modifier] [nane=patchpoint-name]
[[at] location-spec] got o location-spec

7-81

NightView User’s Guide

7-82

Insert a branch in the program.

eventpoint-modifier

Specifies the patchpoint modifier. See“Eventpoint Modifiers” on page 7-79.

name=patchpoint-name

Patchpoints are assigned event numbers, and the name= syntax as well as the
narre command (see “name” on page 7-79) may be used to give them names.
See “Manipulating Eventpoints’ on page 7-77.

at location-spec

eval

Specify the exact point in the program to execute the patchpoint (see “Loca-
tion Specifiers’ on page 7-9). The patchpoint is executed immediately prior to
any existing code at this location.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame. See“Current Frame” on page 3-25.

expression

This variant of the pat chpoi nt command specifies an expression to insert
in the program at the designated location-spec. Ada, C, and C++ programmers
should note that thisis an expression and not a statement; therefore, it does not
end with a semicolon. (The concept of expression is extended to include
assignments and procedure callsin Adaand Fortran.) See “Expression Evalu-
ation” on page 3-20.

got o location-spec

This variant of the pat chpoi nt command specifies alocation to branch to
when the program reaches the point of the patchpoint. The instruction origi-
nally at the patchpoint location will not be executed.

Note that if an expression is used as a location-spec, the expression is evalu-
ated only once for each processin the qualifier. For example, if the location-
spec is * $l r, the value of register | r in the current context is used as the
location to branch to.

NOTE

The keywords nane, at , eval , and got o may not be abbrevi-
ated in this command.

Oncean eval patchpoint isinstalled, the language expression will be executed each time
control reaches location-spec in the program. After the patchpoint is executed, the
original instruction will also execute.

Once a got o patchpoint is installed, the branch will be executed before the patched

instruction each time execution reaches location-spec in the program. It is important to
note that the original instruction is not executed if the patchpoint is hit (that is, depending

set-trace

Command-Line Interface

on the enabled status, the ignore count and any eventpoint condition on the patchpoint). If
the patchpoint is not hit, the original instruction is executed normally.

When patching in agot o, you should be aware that the compiler has probably generated
code which expects certain register contents and altering the flow of control in your pro-
gram can very easily send it to a new location with unexpected values in registers, so the
got o patchpoint should be used only when you are sure you know all the consequences.

You may attach a condition or ignore count to both kinds of patchpoints, using the
condi ti on (see “condition” on page 7-90) or i gnor e (see “ignore” on page 7-94)
commands. This suppresses execution of the patched expression unless the ignore count
is zero and the conditional expression evaluates to TRUE.

Patchpoints are implemented by modifying the executable code for the program, so they
will remain in effect until the program exits, even if you det ach the debugger from the
program, unless the patchpoint was disabled when you detached (see “detach” on page
7-32 and “disable” on page 7-92). Note that the disk copy of the program is not modified;
you must edit your source, recompile and relink to make a permanent modification to the
program.

If multiple patchpoints are made at the same point in the program, they will all be
executed in the order they were applied. This is especially important to note for got o
patchpoints, because once a got o is executed, any subsequent patchpoints (or other
kinds of eventpoints, such as breakpoints and tracepoints) at that same location will not
be executed. If a got o patchpoint is not hit (because it was disabled, or the ignore count
or condition caused it to be skipped), then the branch will not be taken and subsequent
patchpoints will be executed, as well asthe original patched instruction.

Example:
(local) patchpoint file.c:12 eval i=0

This C example patches the code to initialize the variable i to zero immediately prior to
executing line 12 inthefilefi | e. c. Notethat no semicolon appears in this example.

Establish tracing parameters.
set-trace [event map=event-map-file]
event map=event-map-file

Names the file that contains the mapping between symbolic trace-event tags
and numeric trace-event I1Ds. This should be the same as the event-map file
passedtontrace(1).

The set -trace command is used to specify information that may be required before
any tracepoints may be set in a process (see “tracepoint” on page 7-84).

If you want to use symbolic trace-event tags rather than numeric trace-event 1Ds as the
event-id parameter of the t r acepoi nt command, then you must specify an event-map
file. You may specify multiple event-map files by repeating the event map parameter.

7-83

NightView User’s Guide

tracepoint

7-84

As long as the files do not contain conflicting definitions for tags, al the tags will be
defined for use as trace-event identifiers.

Set atracepoint.

tracepoi nt [eventpoint-modifier] event-id [name=tracepoint-name]

[[at] location-spec] [val ue=logged-expression]
[if conditional-expression]

eventpoint-modifier
Specifies the tracepoint modifier. See “Eventpoint Modifiers’ on page 7-79.
event-id

Anidentifier for the trace event to be traced by Ni ght Tr ace. Thisiseither a
numeric trace-event 1D or a symbolic trace-event tag obtained from the event-
map file specified by the eventmap parameter of the set - t r ace command
(see “ set-trace” on page 7-83).

name=tracepoint-name

Gives a name to the tracepoint for later reference. See “name” on page 7-79.
If tracepoint-name is already defined, then this command adds the newly cre-
ated tracepoints to the list of eventpoints associated with the name.

location-spec
Specifies the tracepoint location. See “Location Specifiers” on page 7-9.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame.

val ue=Ilogged-expresson

Specifies that the value of logged-expression should be recorded with the trace
event. The expression is evaluated in the user program, so it obeys the same
rules that conditional and patchpoint expressions do. See “Expression Evalu-
ation” on page 3-20.

i f conditional-expression

Specifies a tracepoint condition. The language and scope of the expression is
determined by the location at which the tracepoint is set (see “ Scope” on page
3-25 and “Context” on page 3-24). See also “ Expression Evaluation” on page
3-20.

NOTE

The name, val ue, andi f keywords may not be abbreviated in
this command.

monitorpoint

Command-Line Interface

The t racepoi nt command sets a tracepoint in each of the processes specified by the
qualifier. This causes the program to emit specia tracing output at the tracepoint
location. An optional condition may be applied to the tracepoint which causes tracing to
be performed only if the condition evaluates to TRUE. The conditional expression
conditional-expression is evaluated in the user program when the tracepoint location is
reached (unless the tracepoint is currently being ignored, see “ignore” on page 7-94).

Tracepoints set in a process remain set even if you det ach the debugger from the
program, unless the tracepoint was disabled at the time you detached (See “detach” on
page 7-32 and “disable” on page 7-92).

NOTE

The nt r ace(3X) routines must have been linked into the pro-
gram when it was built. If the program does not initialize tracing,
then you must initialize tracing manually by evaluating expres-
sions that contain calls to the appropriate trace routines
(trace_start followed by trace_open_t hr ead).

The debugger does not start thent r aceud(1) monitor process.
You must do that manually (see “NightTrace Monitor” on page
3-36).

If more than one tracepoint is set (through the use of more than one process in the
qualifier) then each tracepoint in each process is assigned a unique tracepoint number.

It is possible (and sometimes useful) to set more than one tracepoint at the same location
in aprocess. Perhaps there is more than one noteworthy event that takes place at the same
location in your program. If more than one tracepoint is set at the same location in a
given process, then the tracepoints at that location are recorded in the order they were
defined.

Example:
(local) (441 115) tracepoint 27 name=loop_trace sort.c:42

This example sets two tracepoints at line 42 of the file named sort . ¢ and associates
both tracepoints with the name ’loop_trace’. One of the tracepoints is set in process 441
and the other tracepoint is set in process 115. Each of the two tracepoints is assigned a
unique tracepoint number. The ID of the trace event to trace is given by the number 27.

Monitor the values of one or more expressions at a given location.

noni t or poi nt [eventpoint-modifier] [name=monitor point-name]
[[at] location-spec]

7-85

NightView User’s Guide

7-86

eventpoint-modifier

Specifies the monitorpoint modifier. See “Eventpoint Modifiers” on page
7-79.

name=monitor point-name

Gives a name to the monitorpoint for later reference. See “name” on page
7-79. If monitorpoint-name is aready defined then this command adds the
newly created monitorpoints to the list of eventpoints associated with the
name.

location-spec
Specifies the monitorpoint location. See “Location Specifiers” on page 7-9.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame.

The noni t or poi nt command sets a monitorpoint in each of the processes specified by
the qualifier. Each line following the nmoni t or poi nt command must be a special form
(described later) of pri nt command; each pri nt command specifies an expression to
be evaluated and monitored at the location of the monitorpoint. To end the list of pri nt
commands, typeend mnoni t or on alineby itself.

In the command-line and simple full-screen interfaces, the prompt changes to > while
you are entering the attached pri nt commands. See “Command Syntax” on page 7-1.

When the monitorpoint is executed, the expressions specified in the attached commands
will be evaluated and their values saved in a location reserved by NightView. The
monitored values are displayed periodicaly in a monitor display area; see “Monitor
Window” on page 3-28. For a more detailed description of monitorpoints, see
“Monitorpoints” on page 3-10.

The syntax of the commands attached to a monitorpoint is:
print [/ print-format-letter] [i d="siring"] expression

This syntax is identical to the pri nt NightView command (see “print” on page 7-66),
with the addition of the optional i d="string" argument. The string, if specified, is used
to identify the monitored expression in the monitor display area. If you do not specify the
i d= parameter, the text of the expression itself is used as the identifying string. Note that
you may not abbreviate thei d= keyword to anything shorter (like "i").

Once you have created a monitorpoint, you can change the set of commands attached to it
(and thus the expressions being monitored) using the comands command. See
“commands’ on page 7-90.

Example:

(local) nonitorpoint file.c:12

> print variablel

> print id="Velocity (ft/sec)" variable2
> end nonitor

In this example, two variables will be monitored at line 12 of file.c. The first

mcontrol

Command-Line Interface

variable, vari abl el, will be displayed using its name as the identifying string. The
second variable, var i abl e2, will be displayed with the string Vel ocity (ft/sec).

Control the monitor display window.
ncontrol {display | nodisplay} [monitorpoint-spec . ..]
Turn on or off the display of individual monitorpoints in the monitor window.
ncontrol del ay milliseconds
Set the milliseconds to delay between monitor window updates.
ncontrol {off | on | stale | nostale | hold | rel ease}
Toggle amonitoring parameter.
Abbreviation: hol d
Thisisan abbreviation for ntont r ol hol d.
Abbreviation: rel ease
Thisisan abbreviation for ntontr ol rel ease.
di spl ay nodi spl ay

These keywords are used to enable or disable the display of specific monitor-
points in the monitor window. The monitorpoints appearing in the argument
and in the processes specified by the qudifier are either added to or removed
from the monitor window display area. This does not affect the monitorpoint
itself, it simply determines which monitorpoints are shown in the window. See
“monitorpoint” on page 7-85.

on off

These keywords turn the monitor window on or off. You may wish to turn off
the monitor window to reclaim screen space, then turn it back on later. Turn-
ing of f the window also does a hol d, but turning the window on does not
implicitly doar el ease.

stal e nostal e

The monitor window normally displays a stale data indication next to each
value. The nost al e keyword causes the monitor window to display blank
space rather than one of the stale dataindicators. The indicators may be turned
back on with the st al e keyword.

hol d rel ease

The hol d and r el ease keywords are used to hold or release updates of the
monitor window. When the window is held, the values displayed in the moni-

7-87

NightView User’s Guide

agentpoint

7-88

tor window will no longer change (the processes containing the values are not
affected, they continue to run). The r el ease keyword allows the monitor
window to start updating the values again.

Interrupting the debugger implicitly causes the Monitor Window to stop
updating. See “Interrupting the Debugger” on page 3-30.

del ay

The monitor window normally waits one second (1000 milliseconds) between
updates. A different number of milliseconds may be specified following the
del ay keyword. If you tell it to wait zero milliseconds, it updates the monitor
window as fast asit possibly can.

All of the ntont rol parameters alow you to control various aspects of the monitor
display window (see “Monitor Window” on page 3-28).

You may not combine parameters on the ntont r ol command. Only one keyword may
be used in one invocation of the command. The command qualifier is only used when the
di spl ay or nodi spl ay keywords are used to specify alist of monitorpoints.

Insert acall to adebug agent at a given location.

agent poi nt [eventpoint-modifier] [nane=agentpoint-name]
[[at] location-spec]

eventpoint-modifier
Specifies the agentpoint modifier. See“Eventpoint Modifiers” on page 7-79.
name=agentpoint-name

Gives a name to the agentpoint for later reference. See “name” on page 7-79.
If agentpoint-name is already defined then this command adds the newly cre-
ated agentpointsto the list of eventpoints associated with the name.

location-spec
Specifies the agentpoint location. See “Location Specifiers’ on page 7-9.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame.

Once an agentpoint is installed, a call to a special debug agent (see “Debug Agent” on
page 3-17) will be executed each time control reaches location-specin the program. After
the debug agent is executed, the original instruction will also execute. The debug agent
allows you to debug your process whileit is running.

Y ou may attach a condition or ignore count to an agentpoint, using the condi ti on (see
“condition” on page 7-90) or i gnor e (see “ignore” on page 7-94) commands. This
suppresses execution of the debug agent unless the ignore count is zero and the
conditional expression evaluatesto TRUE.

clear

Command-Line Interface

Agentpoints are implemented by modifying the executable code for the program, so they
remain in effect until the program exits, even if you det ach the debugger from the
program, unless the agentpoint was disabled when you detached (see “detach” on page
7-32 and “disable” on page 7-92).

For best results, the debug agent should be executed frequently. If you cannot find just
one place in your program that is executed frequently enough, you may create multiple
agentpoints, each at a different location. You can enable and disable each agentpoint
independently.

Clear all eventpoints at a given location.
clear [[at] location-spec]
location-spec

Specifies the location from which all eventpoints are to be removed. See
“Location Specifiers’ on page 7-9.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame. See“Current Frame” on page 3-25.

cl ear removes al eventpoints at the specified location in each process. Once an
eventpoint has served its purpose, the eventpoint may be removed by using the cl ear or
del et e commands (see “delete” on page 7-91). Both commands remove an eventpoint.
cl ear removes eventpoints based on where they are in the process. del et e removes
eventpoints specified by name or by eventpoint-number.

NOTE

A location specifier may sometimes designate multiple locations
(see “Location Specifiers’ on page 7-9). Hence, itispossible for a
single eventpoint to be set at multiple locations. If any of the loca-
tions at which an eventpoint is set match any of the locations
implied by the location specifier for the cl ear command, then
that eventpoint will be removed (from all of its corresponding
locations).

It is unnecessary to clear a breakpoint in order to continue execution after the breakpoint
has stopped the program.

Example:
(local) clear sort.c:42

This example removes all eventpoints set at line 42 of the file named sor t . ¢ in each of
the processes specified by the default qualifier.

7-89

NightView User’s Guide

commands

condition

7-90

Attach commands to a breakpoint, monitorpoint, or watchpoint.
commands eventpoint-spec
eventpoint-spec

The breakpoints, monitorpoints, or watchpoints to which the given commands
are attached. See “Eventpoint Specifiers” on page 7-12.

The commands command attaches the given list of commands to the given breakpoints,
monitorpoints, or watchpoints in processes specified by the qualifier. Each line following
the commands command-line should be a command to associate with the eventpoints.
To end the list of commands, type’end’ on aline by itself.

Each of the commands given isimplicitly qualified with the PID of the process associated
with the eventpoint.

In the command-line and simple full-screen interfaces, the prompt changes to > while
you are entering this command. See “Command Syntax” on page 7-1.

If the first line given is "silent’, then the usual message that is printed when a breakpoint
or watchpoint stops the process will be suppressed. Furthermore, the ’silent’ command
will aso prevent the current source line from being listed, and will prevent any displays
from being updated. The’silent’ command is valid only when attached to a breakpoint or
watchpoint and is useful for breakpoints or watchpoints that are intended only to print a
specific message and then resume execution.

Certain commands (such as conti nue, resune, and si gnal), once executed, will
automatically terminate the command stream associated with a set of commands that
were attached to a breakpoint or watchpoint using the conmands command. See
“continue” on page 7-98, “resume’ on page 7-99, and “signal” on page 7-105.

Although you can use the commands command to attach commands to breakpoints,
monitorpoints, or watchpoints, the eventpoints specified on the command line must be all
of the same type. Also note that the commands allowed for monitorpoints are restricted
to pri nt commands. See“monitorpoint” on page 7-85.

Attach a condition to an eventpoint.
condi ti on eventpoint-spec [conditional-expression]
eventpoint-spec

The eventpoints associated with the condition. See “Eventpoint Specifiers’
on page 7-12.

delete

Command-Line Interface

conditional-expression

The condition to be associated with the eventpoints. See “Expression Evalua-
tion” on page 3-20.

The simplest type of breakpoint is one which stops the program each time it is
encountered (an unconditional breakpoint). Often however, you may wish to stop the
program at a given location only after a certain event has occurred or when a specified
condition has been met (a conditional breakpoint). The condi ti on command may be
used to attach a condition to a breakpoint.

In a similar manner, conditions may aso be attached to tracepoints, monitorpoints,
agentpoints, patchpoints, and watchpoints, causing the associated action to take effect
only when the attached condition evaluates to TRUE.

The condi t i on command attaches the condition conditional-expression to one or more
eventpoints in the processes specified by the qualifier. If conditional-expression is
omitted, then any condition attached to the specified eventpoint is removed in each of the
processes specified by the qualifier, and the eventpoint becomes an unconditiona one. If
the specified eventpoint already has a condition attached to it, the existing condition is
replaced with conditional-expression.

Examples:

(local) breakpoint name=l oop at foo.c:12
(local) condition |loop (index == 0)
(local) condition | oop

The first condi ti on command attaches a condition to the breakpoint named 'loop’ so
that it only stops the program when the variable 'index’ is zero. The second condi ti on
command removes any condition associated with the breakpoint named 'loop’ (thus
making it an unconditional breakpoint).

(local) trace MyEvent name=tracel at foo.c:12
(local) condition tracel (x>12)

In this example, atracepoint named "tracel’ is set, and the condition 'x>12' is attached to
the tracepoint. Therefore, the event will be traced only when’x’ is greater than 12.

Delete an eventpoint.
del et e [eventpoint-spec . . .]
Abbreviation: d
eventpoint-spec
The eventpointsto be deleted. See “Eventpoint Specifiers’ on page 7-12.

del et e removes the specified eventpoints in each of the processes specified by the
qualifier. Both del et e and cl ear may be used to delete eventpoints (see “clear” on
page 7-89). The difference is that del et e removes eventpoints specified by name or by

7-91

NightView User’s Guide

disable

7-92

eventpoint-number and cl ear removes eventpoints specified by location.

If eventpoint-spec is omitted and your safety-level is unsaf e then all eventpointsin the
processes specified by the qualifier are removed (see “set-safety” on page 7-49). |If
eventpoint-spec is omitted and your safety-level isveri fy, then you are prompted for
confirmation before the eventpoints are removed (see “ Replying to Debugger Questions’
on page 7-16). If eventpoint-spec is omitted and your safety-level is f or bi d then no
eventpoints are removed.

The effect of the qualifier on this command is to limit the eventpoints deleted to be only
those that occur in the processes specified by the qudifier.

Examples:

(local) d I oop
(local) d 2 5

The first example removes al eventpoints associated with the name "loop’. The second
example removes eventpoints 2 and 5.

Disable an eventpoint.
di sabl e [eventpoint-spec . . .]
eventpoint-spec
The eventpointsto be disabled. See“Eventpoint Specifiers’ on page 7-12.

Thedi sabl e command disables the given eventpoints in each of the processes specified
by the qualifier. Disabling an eventpoint is not quite the same as removing an eventpoint.
When an eventpoint is removed, it is made inoperative and all the information associated
with the eventpoint is removed. When an eventpoint is disabled, it is simply made
inoperative. It may still be seen, however, if you usethei nf o event poi nt command
(see “info eventpoint” on page 7-116). All information associated with the eventpoint is
still retained so that the eventpoint may later be reactivated using the enabl e command
(see “enable” on page 7-93).

If eventpoint-spec is omitted and your safety-level is unsaf e then all eventpointsin the
processes specified by the qualifier are disabled (see “set-safety” on page 7-49). |If
eventpoint-spec is omitted and your safety-level is veri fy, then you are prompted for
confirmation before the eventpoints are disabled (see “ Replying to Debugger Questions’
on page 7-16). If eventpoint-spec is omitted and your safety-level is f or bi d then no
eventpoints are disabled.

The effect of the qudifier on this command is to limit the eventpoints disabled to be only
those that occur in the processes specified by the qudiifier.

Example:

(local) disable 4
(local) (115 441) disable calvin
(local) (549) disable 8 hobbes 12 14

enable

Command-Line Interface

The first example disables eventpoint number 4 in the processes specified by the default
qualifier. The second example disables the eventpoints associated with the name
"cal vi n’ in process 115 and in process 441. The third example disables the eventpoints
associated with the name "hobbes and disables eventpoints numbered 8, 12, and 14 in
process 549.

Enable an eventpoint for a specified duration.
enabl e [/once|/del ete] eventpoint-spec . . .
/ once

Specify whether the given eventpoints are to be enabled once only and then
immediately disabled after the next time they are hit. There need not be a
space between the command name and the '/’

/del ete

Valid only for breakpoints and watchpoints. Specify whether the given break-
points and watchpoints are to be enabled once only and then immediately
deleted after the next time they are executed. There need not be a space
between the command name and the’/".

eventpoint-spec
The eventpoints to be enabled. See “Eventpoint Specifiers’ on page 7-12.

The enabl e command enables for the specified duration each of the eventpoints in the
processes specified by the quaifier. If neither / once nor / del et e is specified, then
the given eventpoints are simply enabled. If /once is specified, then the given
eventpoints are temporarily enabled. The eventpoints will be disabled again after the
next timethey are hit. If / del et e is specified, then for each process in the qualifier, the
given breakpoints and watchpoints are enabled and also marked for deletion. The
breakpoints and watchpoints will be deleted after the next time they are hit.

The effect of the qualifier on this command is to limit the eventpoints enabled to be only
those that occur in the processes specified by the qudifier.

Examples:

(local) enable calvin
(local) enable /once 4 6 23
(local) enable /del ete 8 hobbes

The first example enables all eventpoints associated with the name *calvin’ in the default
qualifier. The second example enables eventpoints number 4, 6, and 23 for once-only
execution (the eventpoints will be disabled after the next time they are hit). The third
example enables breakpoint number 8, and the breakpoints and watchpoints associated
with the name "hobbes' for deletion (these breakpoints and watchpoints will be deleted
after the next time they are hit).

7-93

NightView User’s Guide

ighore
Attach an ignore-count to an eventpoint.
i gnor e eventpoint-spec count
eventpoint-spec
The eventpointsto be ignored. See “Eventpoints’ on page 3-8.
count
The number of times to ignore the eventpoint. Specifying an ignore-count of
zero has the effect of causing the eventpoints to no longer be ignored. The
ignore-count is evaluated in the user's process.
The i gnor e command causes the specified eventpoints to be skipped the next count
times execution reaches them (even if the eventpoint is a conditional eventpoint). Thisis
accomplished by attaching an ignore-count to the given eventpoints. In the case of a
breakpoint, any NightView commands associated with the breakpoint will not be
executed until the breakpoint is hit.
Example:
(local) ignore calvin 4
This example causes the eventpoints associated with the name 'calvin’ to be ignored 4
times before they may be hit again.
tbreak

Set atemporary breakpoint.

t break [name=breakpoint-name] [[at] location-spec]
[if conditional-expression]

name=breakpoint-name

Gives a name to the breakpoint for later reference. See “name” on page 7-79.
If breakpoint-nameis already defined then this command adds the newly cre-
ated breakpointsto the list of eventpoints associated with the name.

location-spec
Specifies the breakpoint location. See “Location Specifiers’ on page 7-9.
i f conditional-expression

Specifies an eventpoint condition. The language and scope of the expression
is determined by the location a which the breakpoint is set (see “Scope” on
page 3-25 and “Context” on page 3-24). See “Expression Evaluation” on
page 3-20.

7-94

tpatch

Command-Line Interface

Note: Theat , i f, and name keywords may not be abbreviated in this command.

Like the br eakpoi nt command (see “breakpoint” on page 7-80), the t br eak
command sets a breakpoint. The difference between the two is that t br eak sets a one-
time-only breakpoint in each of the processes specified by the qualifier. The breakpoint
will be disabled after being hit once.

Example:

(local) (115) tbreak sort.c:48

This example sets a temporary breakpoint in process 115 at line 48 of the source file

sort.c.

Set a patchpoint that will execute only once.

t pat ch [name=patchpoint-name] [[at] location-spec] eval expression

Insert an expression in the program that will be executed the next time the patchpoint is
hit, then never executed again unless explicitly enabled. See“enable” on page 7-93.

t pat ch [nanme=patchpoint-name] [[at] location-spec] got o location-spec

Overwrite an instruction in the program with a branch that will only be taken once.
Subsequent execution will ignore the patchpoint and execute the original instruction.

name= patchpoint-name

Patchpoints are assigned event numbers, and the name= syntax as well as the
narre command (see “name” on page 7-79) may be used to give them names.
See “Manipulating Eventpoints’ on page 7-77.

at location-spec

eval

Specify the exact point in the program to execute the patchpoint. See “Loca-
tion Specifiers’ on page 7-9. The patchpoint is executed immediately prior to
any existing code at this location.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame. See“Current Frame” on page 3-25.

expression

This variant of the pat chpoi nt command specifies an expression to insert
in the program at the designated location-spec. Ada, C and C++ programmers
should note that thisis an expression and not a statement; therefore, it does not
end with a semicolon. (The concept of expression is extended to include
assignments and procedure callsin Adaand Fortran.) See “Expression Evalu-
ation” on page 3-20.

7-95

NightView User’s Guide

watchpoint

7-96

got o location-spec

This variant of the pat chpoi nt command specifies alocation to branch to
when the program reaches the point of the patchpoint. The instruction origi-
nally at the patchpoint location will not be executed.

NOTE

The keywords nane, at , eval , and got o may not be abbrevi-
ated in this command.

Thet pat ch command is avariant of the pat chpoi nt command. See*patchpoint” on
page 7-81. It works exactly like the patchpoint command, but a temporary patchpoint
will automatically disable itself after executing onetime. A temporary patchpoint may be
enabled later, in which case it will act exactly like a normal patchpoint. See “enable” on
page 7-93.

A temporary patchpoint may be useful for patching in initiaization code which should
only execute once.

Set awatchpoint.

wat chpoi nt [eventpoint-modifier] [/once] [/read] [/wite]
[name=watchpoint-name] [at] Ivalue [if conditional-expression]

wat chpoi nt [eventpoint-modifier] [/once] [/read] [/wite] /address
[name=watchpoint-name] [at] address-expression {si ze size-expression | type
expresson} [if conditional-expression]
eventpoint-modifier
Specifies the watchpoint modifier. See “Eventpoint Modifiers’ on page 7-79.
/ once
The watchpoint is enabled only until the first time it is hit.

/ read

Watchpoint processing occurs for aread (i.e., a "load") of the specified
address. Either or both of / r ead and / wr i t e may be specified.

Iwite

Watchpoint processing occurs for a write (i.e., a"store") of the specified
address. Either or both of / read and/ wr i t e may be specified. If neither is
specified, the defaultis/ wri t e.

Command-Line Interface

[addr ess
Indicates thisis the address-expression form of the command.
name=watchpoint-name

Gives aname to the watchpoint for later reference. (see “name” on page 7-79).
If watchpoint-name is already defined, then this command adds the newly cre-
ated watchpointsto thelist of eventpoints associated with the name.

Ivalue

An expression that yields an addressable item to watch. For example, Ivalue
may be avariable name or an array element.

address-expression

An expression that yields an address to watch.
si ze size-expression

The size of the item to watch, in bytes.
t ype expression

An expression whose type indicates the size of the item to watch. type is
used only in restart information.

i f conditional-expresson

Sets a condition on the watchpoint. The watchpoint is considered to be hit
only if conditional-expression evaluates to TRUE. The conditional-expression
is always evaluated in the global scope. conditional-expression is evaluated
after the process has executed the instruction causing the trap.

conditional-expression may refer to the process-local convenience variables
$i s and $was. $was isthe value of the watched item before the process has
executed the instruction causing the trap. $i s isthe value of the watched
item after the process has executed the instruction causing the trap.

NOTE

Theat ,if,name, si ze andt ype keywords may not be abbre-
viated in this command.

wat chpoi nt sets awatchpoint in each of the processes specified by the qualifier. This
causes the process to stop when it accesses the lvalue or address-expression. See “Watch-
points” on page 3-11.

You can specify commands to be executed when the watchpoint is hit. See “commands’
on page 7-90.

7-97

NightView User’s Guide

Controlling Execution

continue

7-98

This section describes commands used to control the execution of aprocess.

Most of the commands described in this section cause the processes specified in the
qualifier to resume execution and then wait for something to happen. (Thisis what you
usually want when you are debugging a single process.) Only resune resumes
execution and then returns immediately for another command.

Some of the commands continue until something special happens. For example, st ep
continues until control crosses a source line boundary. However, you should be aware
that another event, such as a signal or hitting a breakpoint, may cause the process to stop
sooner.

If the process stopped because of a signal, then it will receive that signal when the
process resumes, subject to the setting of the handl e command, see “handl€” on page
7-106. If you want the process to receive a different signal, or no signal at all, then use
thesi gnal command. See“signa” on page 7-105.

If you ask to continue execution of a process with any of the commands here, and that
process is aready executing, then you get a warning message. Any other processes
specified by the qualifier are continued.

If a process is stopped at a breakpoint or watchpoint, it is not necessary to remove the
breakpoint or watchpoint before continuing.

Continue execution and wait for something to happen.
conti nue [count]
Abbreviation: ¢

count

If the count argument is specified, the processes will not stop at the current
breakpoint or watchpoint again until they have hit it count times. This argu-
ment isignored for any processes that are not stopped at breakpoints or watch-
points.

cont i nue causes the processes specified by the quaifier to resume execution at the
point where they last stopped. Processes run concurrently. Each process will execute
until some event, such as hitting a breakpoint, causes it to stop.

If this command is entered interactively, the debugger does not prompt for any more
commands until one of the processes specified by the qualifier stops executing for some
reason. Note that only one of the specified processes has to stop for the conti nue
command to complete; it does not wait for all of the processes to stop. Note aso that a
process is considered to be stopped the moment it hits a breakpoint or watchpoint; if the
breakpoint or watchpoint has commands attached to it, they probably will not execute
before you receive a prompt for another command.

resume

Command-Line Interface

If a conti nue command in a breakpoint (or watchpoint) command stream continues
execution of the process stopped at that breakpoint or watchpoint, the command stream is
terminated; no further commands are executed from that stream. If a conti nue
command continues execution of a process that is currently executing another breakpoint
(or watchpoint) command stream, the cont i nue command does not take effect until
that command stream has completed execution. See“ Command Streams’ on page 3-30.

If acont i nue command continues execution of a process that is currently executing an
on programor on restart command stream, the cont i nue command does not
take effect until the affected process has been completely initidized by NightView and is
ready to be debugged.

conti nue issimilartor esume. See“resume” on page 7-99.
Example:
(local) ¢ 5

The processes specified by the default qualifier are resumed and will not stop again at the
current breakpoint or watchpoint until it has been hit 5 times.

Continue execution.
resune [dgid]
sigid

The processes receive the specified signa when they resume execution. sigid
isasignal name or number. You may specify a signal name with or without
the sIG prefix; the name is case-insensitive. If sigid is 0, then the processes
receive no signal when they resume execution. See “signal” on page 7-105.

If this argument is not present, then the processes are resumed with the signal
that caused them to stop, similar to cont i nue.

resune causes the processes specified by the qualifier to resume execution at the point
where they last stopped. The processes run concurrently. Each process will execute until
some event, such as hitting a breakpoint or watchpoint, causes it to stop.

If a resume command in a breakpoint (or watchpoint) command stream continues
execution of the process stopped at that breakpoint or watchpoint, the command stream is
terminated; no further commands are executed from that stream. If ar esume command
continues execution of a process that is currently executing another breakpoint (or
watchpoint) command stream, the r esunme command does not teke effect until that
command stream has completed execution. See “Command Streams” on page 3-30.

If ar esume command continues execution of a process that is currently executing an on
programor on restart command stream, the r esumme command does not take
effect until the affected process has been completely initialized by NightView and is
ready to be debugged.

The difference between r esune and cont i nue is that r esune does not wait for the

7-99

NightView User’s Guide

step

7-100

processes to stop. The debugger continues to read and process commands. See
“continue” on page 7-98.

Example:

(local) resune O
The processes specified by the default qualifier are resumed with no signal.
Example:

(local) resunme 2

The processes specified by the default qualifier are resumed with signal number 2.

Execute one ling, stepping into procedures.
step [repeat]
Abbreviation: s

repeat

The repeat argument specifies the number of linesto single step. The default
isoneline.

st ep causes the processes specified by the qudifier to continue execution until they
have crossed a source line boundary. With arepeat count, this happens repeat times.

st ep follows execution into called procedures. That is, if the current line is a procedure
call, and you st ep, then the process will execute until it is in that new procedure and
then stop. If you want to step over the procedure, use next . See “next” on page 7-101.

If ast ep command causes execution to enter or leave a called procedure, then the output
includes the equivalent of afrane 0 command to show this. See “frame’ on page
7-109.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals’ on page 3-12 for a discussion of the interactions between single-stepping and
signals.

st ep isinterpreted relative to the current frame. See “Current Frame” on page 3-25.
That is, any lower frames are automatically finished before stepping.

There are also commands to single step individual instructions. See “stepi” on page
7-102 and “nexti” on page 7-103.

When the program has just started, st ep steps to the beginning of the procedure that calls
static initializers or library-level elaboration procedures, if any. If there are none, st ep
steps to the beginning of the main procedure.

next

Command-Line Interface

Because of optimization and other considerations, a process may appear to stop multiple
times in the same line or not at all in some lines. The decorations that appear when you
list the source can help you decide which lines are executable (see “Source Line
Decorations’ on page 7-63). Also, disassembly can help you determine the flow of
control through your program (see “X” on page 7-68).

If the st ep command causes execution to enter a procedure which is uninteresting, the
st ep actslike next . See“Interesting Subprograms’ on page 3-27. See “next” on page
7-101.

If an exception propagates to the current frame or a calling frame, then the st ep com-
pletes and execution is stopped at the beginning of the exception handler.

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
the call.

Execute one ling, stepping over procedures.
next [repeat]
Abbreviation: n

repeat

The repeat argument specifies the number of linesto single step. The default
isoneline.

next causes the processes specified by the qualifier to continue execution until they
have crossed a source line boundary. With arepeat count, this happens repeat times.

next steps over called procedures. That is, if the current line is a procedure cal, and
you single step with next , then the process will execute until that new procedure has
returned. If you want to follow execution into the procedure, use st ep. See “step” on
page 7-100.

If a next command causes execution to leave a caled procedure, then the output
includes the equivaent of afrane 0 command to show this. See “frame”’ on page
7-109.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals’ on page 3-12 for a discussion of the interactions between single-stepping and
signals.

next isinterpreted relative to the current frame. See “Current Frame” on page 3-25.
That is, any lower frames are automatically finished before stepping.

7-101

NightView User’s Guide

stepi

7-102

There are also commands to single step individua instructions. See “nexti” on page
7-103 and “ stepi” on page 7-102.

When the program hasjust started, next stepsto the beginning of the main procedure.

Because of optimization and other considerations, each process may appear to stop
multiple times in the same line or not at all in some lines. The decorations that appear
when you list the source can help you decide which lines are executable (see “Source
Line Decorations” on page 7-63). Also, disassembly can help you determine the flow of
control through your program (see “x” on page 7-68).

If an exception propagates to the current frame or a calling frame, then the next com-
pletes and execution is stopped at the beginning of the exception handler.

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
the call.

Execute one instruction, stepping into procedures.
stepi [repeat]
Abbreviation: si

repeat

The repeat argument specifies the number of instructions to single step. The
default is one instruction.

st epi executes a single machine instruction in each of the processes specified by the
qualifier.

This is very similar to st ep, except that st ep executes lines and st epi executes
individua instructions. See“step” on page 7-100.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals’ on page 3-12 for a discussion of the interactions between single-stepping and
signals.

st epi isinterpreted relative to the current frame. See “Current Frame” on page 3-25.
That is, any lower frames are automatically finished before stepping.

Sometimes, when stepping by instructions, it is useful to set up adi spl ay command to
show the instruction that is just about to be executed each time the process stops. To do
that, say

(local) display/i $pc

nexti

finish

Command-Line Interface

See “display” on page 7-72.

If the st epi command causes execution to enter a procedure which is uninteresting, the
stepi actslikenexti. See“Interesting Subprograms’ on page 3-27. See “nexti” on
page 7-103.

If an exception propagates to the current frame or a calling frame, then the st epi com-
pletes and execution is stopped at the beginning of the exception handler.

Execute one instruction, stepping over procedures.
nexti [repeat]
Abbreviation: ni

repeat

The repeat argument specifies the number of instructions to single step. The
default is one instruction.

nexti executes a single machine instruction in each of the processes specified by the
qualifier.

This is very similar to next, except that next executes lines and nexti executes
individua instructions. See “next” on page 7-101.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals’ on page 3-12 for a discussion of the interactions between single-stepping and
signals.

next i isinterpreted relative to the current frame. See “Current Frame” on page 3-25.
That is, any lower frames are automatically finished before stepping.

If an exception propagates to the current frame or a calling frame, then the nexti com-
pletes and execution is stopped at the beginning of the exception handler.

Continue execution until the current function finishes.
finish

fini sh causes a process to continue execution until the current frame returns. This
happens in each process specified by the qualifier.

Note that this may cause the process to finish multiple procedures, depending on which
frame is the current frame. See “frame” on page 7-109. If the current frame isin the
context of atask, thread, or LwP chosen by the sel ect - cont ext command, execution

7-103

NightView User’s Guide

stop

jump

7-104

continues until that task, thread, or LwpP completes execution of that procedure, or until
the process stops for some other reason.

In general, the exact action of this command is dependent on the language being
debugged.

The fi ni sh command causes execution to leave a called procedure, so the output
includes the equivalent of af rame 0 command to show this.

This command completes only when all of the processes specified by the qudifier have
completed the function execution or stopped for some other reason (like receiving a
signal). The discussion in “Signals’” on page 3-12 concerning interactions between
single-stepping and signals also appliesto the f i ni sh command.

If an exception propagates past the current frame, then thef i ni sh completes and execu-
tion is stopped at the beginning of the exception handler.

Stop a process.
st op

The st op command stops each of the processes specified by the qualifier. In many cases
(such as setting breakpoints), NightView requires a process to be stopped before a
command may be applied to the process.

The st op command does not complete until al of the specified processes have been
stopped. If a specified process is already stopped, this command silently ignores that
process.

WARNING

Itis possible, though unlikely, that the process will stop of itsown
accord (say by hitting a breakpoint) while NightView is trying to
stop it. If that happens, your process may receive a spurious
SIGTRAP signal the next time you resume its execution. Thissig-
nal should be harmless; resuming your process after this signal
occurs should get everything back to normal.

Example:
(local) (addans) stop

This example stops each of the processes in the process family named 'addams'.

Continue execution at a specific location.

signal

Command-Line Interface

jump [at] location-spec
location-spec

The location-spec specifies where to continue execution. See “L ocation Speci-
fiers” on page 7-9.

j unmp causes execution to continue at the specified location. This happens for each
process specified in the qualifier.

j urp does not modify the stack frames or registers, it just modifies the program counter
and continues execution. Unless you are sure the registers have the right contents for the
new location, you are cautioned to avoid using this command.

You must be in frame 0, with no hidden frames below frame zero, to use j unp. See
“Interesting Subprograms’ on page 3-27.

Continue execution with asignal.
si gnal sigid
sigid

Specifies the name or number of the signal with which to continue. If sigidis
0, then the processes are continued without a signal. You may specify a signa
name with or without the sIG prefix; the name is case-insensitive.

si gnal resumes execution of the processes specified in the qualifier, passing them a
signal.

si gnal isuseful if a process has received a signal (causing it to stop and be recognized
by the debugger), but you don't want it to see the signal. Then, rather than using
cont i nue to continue the process, usesi gnal 0.

Or, perhaps you want the process to receive a different signal. si gnal can resume your
process with any signal.

If a signal command in a breakpoint (or watchpoint) command stream continues
execution of the process stopped at that breakpoint or watchpoint, the command stream is
terminated; no further commands are executed from that stream. If asi gnal command
continues execution of a process that is currently executing another breakpoint (or
watchpoint) command stream, the si gnal command does not teke effect until that
command stream has completed execution. See “Command Streams” on page 3-30.

If asi gnal command continues execution of a process that is currently executing an on
programor on restart command stream, the si gnal command does not take
effect until the affected process has been completely initialized by NightView and is
ready to be debugged.

For a way to have the debugger deal with signas automatically, see “handle” on page
7-106. si gnal overridesthepass setting of handl e.

7-105

NightView User’s Guide

handle

7-106

Typei nfo signal togetalist of al of the signals on your system. See “info signal”
on page 7-126.

Example:
(local) signal 2

The processes resume with signal humber 2.

Specify how to handle signals and Ada exceptions in the user process.

handl e [/signal] sigid keyword . ..

handl e / excepti on exception-name keyword . . .
handl e / excepti on unit-name keyword . . .
handl e /exception all keyword ...

handl e /unhandl ed_excepti on keyword . ..
/ si gnal
Specifies handling of asignal. Thisis the default.
sigid

Specifies the name or number of asignal to handle. Does not apply to
handl e / excepti on commands. You may specify a signal name
with or without the SIG prefix; the name is case-insensitive.

/ excepti on
Specifies handling of an Ada exception.
exception-name

Specifies the name of a particular Ada exception to be handled. This
form of handl e/ excepti on takes precedence over any previous
handl| e/ except i on command that specified al | .

unit-name

Specifies that all Ada exceptions defined in the specified unit will be
handled according to the keyword specifications. The effect isidentical
to the effect obtained by mentioning each of those exceptionsin ahan-
dl e/ excepti on command.

al |

Specifies that all Ada exceptions will be handled as specified by the
keywords. This overrides any previous handl e/ except i on com-

Command-Line Interface

mand that specifies either an exception-name or a unit-name. Doesn't
apply to signal handling specifications, nor to the handling of excep-
tions for which the user program does not have a handler (use han-
dl e/ unhandl ed_except i on for that).

/unhandl ed_exception

Specifies the handling (by NightView) of exceptions raised by the program
when the program has no handler of its own for that exception.

keyword

keyword is one of st op, nost op, pri nt, noprint, pass or
nopass. Multiple keywords may be specified.

handl e tells the debugger how to deal with signals sent to, or exceptions generated by,
the user program.

Here are the meanings of the keywords:
stop

The process stops when it gets this signal or exception. pri nt isimplied
with this keyword.

nost op

The process continues executing automatically after the signal or exception.
You may still use pri nt to tell you when the signal or exception has
occurred.

pri nt

NightView notifies you that the signal or exception has occurred. In the com-
mand-line interface, a message is printed to your terminal. In the graphical
user interface, a message is printed in the Debug Message Area. See
Chapter 9 [Graphical User Interface] on page 9-1. See “Debug Message
Aread’ on page 9-30.

nopri nt

You do not receive notification when the signal or exception occurs. nost op
isimplied with this keyword.

pass

The signal will be passed to your process the next time it executes. This key-
word is not applicable to Ada exceptions.

nopass

The signal is discarded, after stopping and printing if that's appropriate. This
keyword is not applicable to Ada exceptions.

In most cases, asigna sent to a debugged program will cause that program to be stopped
and NightView to be notified of the signal. NightView's normal action for most signalsis
to notify you of the signa and save it to be passed to the process the next time it is

7-107

NightView User’s Guide

7-108

continued. For example, the default setting for SIGQUIT would be described as:
(local) handle sigquit stop print pass

This default behavior can be altered by the handl e command. Some settings allow the
system to avoid stopping your process and notifying NightView of the signal. See
“Signals’ on page 3-12 for more information about this.

The default action for a few signas is different than the behavior described above.
Consider SIGALRM, which is not usualy an error; it is used in the normal functioning of
the program. You usually don't want to know when your program gets a SIGALRM (but
your program does) so the default setting for SIGALRM is:

(local) handl e sigalrmnostop noprint pass

This says that if NightView discovers that your process has been sent a SIGALRM, it will
automatically resume execution and pass the signal to the process without notifying you.
(NightView may not even be aware of the signa with these settings of the handl e
command. See“Signals’ on page 3-12.)

SIGINT is handled alittle differently; when the process receives a SIGINT, the process stops
and NightView notifies you, but the signal is discarded, so that the process never sees it.
The normal setting for SIGINT is:

(local) handl e sigint stop print nopass
For Ada programs the signal SIGADA isset as follows.
(local) handl e si gada nostop noprint pass
For away to deal with signals one at atime, see“signal” on page 7-105.
To find out the current settings for all the signals, see “info signa” on page 7-126.

If two conflicting keywords are specified, they are both applied, in the order they appear.
For example, if the initial setting for signal number 1is st op, pri nt, pass, and you

say:
(local) handle 1 noprint print

then the new setting isnost op, pri nt, pass, because nopri nt impliesnost op.

handl e appliesto al the processes specified in the qualifier.

The default settings for al Ada exceptions are nost op, nopri nt . If the settings are
changed to st op and pr i nt, then execution is stopped in the Ada runtime routine that
routes exceptions to the proper handler. This routine is usually uninteresting, so the cur-
rent frame is set to the code that caused the exception. See “Interesting Subprograms’ on
page 3-27. The user is informed of the name of the exception and the Ada Reference
Manual references.

To find out how one or more exceptions will be handled, you may use the i nfo
excepti on command. See“info exception” on page 7-130.

Command-Line Interface

Selecting Context

frame

Select anew stack frame or print a description of the current stack frame.
frame [frame-number]
frame *expression [at location-spec]
Abbreviation: f
frame-number

Frame number selected as the new current stack frame. Frame number zero
corresponds to the currently executing frame. Frame numbers for all the cur-
rently available stack frames may be obtained with the backt r ace com-
mand (see “backtrace” on page 7-65).

* expression

Expression which yields an address at which the stack frame should start. This
isthe value that $f p would have, not the value of $sp.

location-spec

Specifies alocation in the program to use to interpret the stack frame at the
address given by * expression. See “Location Specifiers’ on page 7-9. If you
do not supply this argument, the default is the current value of $cpc.

NOTE

Theat keyword may not be abbreviated in this command.

If no argument is given, a brief description of the current stack frame is printed. If
multiple processes are specified in the command qualifier, each of them is described
separately. For a more complete description of aframe, see “info frame” on page 7-123.

If a frame-number is given, the chosen stack frame is selected as the current frame (see
“Current Frame” on page 3-25).

The * expression form of this command is provided for those occasions in which the stack
isin an inconsistent state, or you wish to examine some memory whose contents look like
stack frames. Y ou should be very careful when using this form, observing the following
cautions.

¢ A stack frame cannot be interpreted except in the context of some program-
counter value. Therefore, you must be sure that the location-spec you give
(or the value of $cpc) is consistent with the stack frame you are examin-

ing.

7-109

NightView User’s Guide

up

down

7-110

The values of the machine registers are not altered by this form of the
f rame command. This meansthat variables that reside in registers cannot
be reliably examined.

The up, down, and backt r ace commands are executed relative to the
given frame address and program-counter value. However, the register
contents for calling frames may still be incorrect, since only the registers
saved in the stack can be restored by NightView.

Modifying a register (or a variable stored in aregister) may alter the cur-
rent value of a machine register, or it may alter the value of that register
stored on the stack. You must be very careful when doing this.

Unless you have modified $pc or other machine registers, resuming exe-
cution of the process will resume with the state the process was in before
the f r ame command was issued.

Once you have issued a f r ame command with a* expresson argument, you can restore
the previous view of the stack by issuing a f r ame command with a frame-number
argument. This restores NightView's view of the stack to what it was before you issued
the f r ame * expression command.

We recommend that, while you have the frame set using the * expression form, you
should restrict yourself to just using the up, down, backt race, and pri nt commands,
and that you print only global variables or variables stored on the stack.

Move one or more stack frames toward the caller of the current stack frame.

up [number-of-frames)

number-of-frames

Number of stack frames to advance toward the oldest calling frame. The num-
ber zero may be used to restore the current source position in the current frame
(see “Current Frame” on page 3-25). If a negative number is specified, then
frames are advanced toward the newest stack frame (see “down” on page

7-110).

If number-of-framesis not given, the number defaults to one, corresponding to the

caller of the current frame.

This command is applied to each process in the qudifier.

Move one or more stack frames toward frames called by the current stack frame.

down [number-of-frames]

select-context

Command-Line Interface

number-of-frames

Number of stack frames to advance toward the currently executing (newest)
stack frame. The number zero may be used to restore the current source posi-
tion in the current frame (see “Current Frame” on page 3-25). If a negative
number is specified, then frames are advanced toward the oldest stack frame
(see “up” on page 7-110).

If number-of-framesis not given, the number defaults to one, corresponding to the
frame called by the current frame.

This command is applied to each process in the qudifier.

Select the context of an Adatask, athread, or of a Lightweight Process (LWP).

sel ect-context default
sel ect-cont ext task=expression
sel ect-cont ext thread=expresson

sel ect-cont ext | wp=Iwpid

def aul t

This keyword selects the stack frame for the context where the process has
stopped. If the process contains multiple Lightweight Processes, the operating
system chooses one of them as the default context. See “Multithreaded Pro-
grams” on page 3-34.

t ask=expression

The t ask= keyword selects the context of an Adatask. The expresson must
either denote a task object or it must be an integer or pointer whose value is
the address of a Task Control Block (TCB).

t hr ead=expression

Thet hr ead= keyword selects the context of athread created by
thr_create(3thread). Theexpresson must bethet hread_t value
returned by t hr _cr eat e for a currently active thread.

[wp=Ilwpid

The | wp= keyword selects the context of a specific Lightweight Process
(Lwp). The lwpid isthe ID of the Lightweight Process whose context is
selected.

The sel ect - cont ext command alows you to examine the context (see “Examining
Your Program” on page 3-20) of an Ada task, a thread, or an Lwp. Using sel ect -
cont ext , you can get a backtrace (see “backtrace” on page 7-65) and examine registers
and variables in the context of the selected task, thread, or LwP.

7-11

NightView User’s Guide

When a process that contains multiple Lwps, tasks, or threads stops, the current context
becomes that of one specific task, thread, or Lwp. (For a discussion of how this choice is
made, see “Multithreaded Programs’ on page 3-34.) You can use the sel ect -
cont ext command to temporarily change the context to that of some other task, thread,
or LWP.

Once a context has been selected, all f r ane, up, down, and backt race commands
apply to that context. All expressions and references to registers aso refer to that
context, with one exception. When an Adatask is not assigned to an Lwp, the state of the
task is saved in memory, but only certain registers are saved. If you reference other
registers, their contents reflect the def aul t context.

Note that execution control is on a process basis:. if you resume execution, all Lwps are
allowed to execute. If you enter afi ni sh, st ep, next, st epi, or nexti command,
the process executes until the selected task, thread or LwP completes the stepping opera-
tion, but other tasks, threads or LwPs may execute as well.

If you request evaluation of an expression containing a function call, the process is
allowed to execute and al Lwps are alowed to run. If another Lwp hits a breakpoint, or
stops for some other reason, the function call is terminated prematurely and an error
message is issued.

To get a list of the tasks, threads and LWPs in a process, see “info threads’ on page
7-130.

Miscellaneous Commands

help

7-112

Access the online help system.
hel p [section]
section
The name of asection in thismanual (anything in the table of contents).

Y ou can read any section in this document by giving the section name (or a unique prefix
of the section name) as an argument to the hel p command.

If you type hel p without arguments, the help system displays the document section most
relevant to the last error you received. Type hel p again to see help on the previous error
you received, and so on.

Error message identifiers are section names, so you can get help for a specific error by
giving the hel p command with the error message identifier. An error message
identifier, beginning with E-, is printed with each error message. See “Errors’ on page
3-29.

In the non-graphical user interfaces, hel p prints to the terminal. In the graphica user
interface, hel p usesanother program to display the documentation in a separate window.

refresh

shell

Command-Line Interface

See “GUI Online Help” on page 9-2.

NOTE

In the non-graphical user interfaces, help is available only for
error messages.

The hel p command ignores the command qualifier.
Examples:
(local) help Summary of Conmmands

The above example displays the section of the document that contains a brief description
of each command.

(local) hel p backtrace
Display the description of the backt r ace command.
(local) hel p E-conmmand_proc003

Display help for the error with error message identifier E- command_pr oc003.

Refresh the termina screen.
refresh

Ther ef resh command clears the terminal screen and redraws it. This is helpful when
the screen becomes garbled, such as with a modem and noisy phone lines.

r ef r esh isonly useful in the simple full-screen interface. This command does nothing in
the command-line interface. See Chapter 8 [Simple Full-Screen Interface] on page 8-1.

Run an arbitrary shell command.
shel | [shell-command]

The shel | command is used to execute a single line in a subshell. This command has
nothing to do with debugging and the qualifier isignored. It is simply provided because it
is sometimes convenient to have a way to execute a shell command without having to
suspend or exit the debugger.

If you just type shel | without arguments, the debugger puts you in a shell where you
can execute arbitrary commands until you exit the shell, at which time the debugger will

7-113

NightView User’s Guide

source

delay

7-114

get control again. You cannot use this form of the shel | command inside a macro (See
“Defining and Using Macros’ on page 7-135).

The programs run by this command run on the local system only (the same one you are
running NightView on) and inherit the current working directory of the debugger (see
“cd” on page 7-56).

If you start background processes via shel |, they will continue to run normally even if
you quit out of the debugger.

The shell used is determined by looking for the SHELL environment variable, and if that is
not found, by using your login shell.

In the simple full-screen interface, NightView does not have control over the terminal
while you are executing ashel | command, so after the command has completed you are
asked to press return. This gives you a chance to view the command output before
NightView redraws the screen. See Chapter 8 [Simple Full-Screen Interface] on page
8-1.

Input commands from a sourcefile.
sour ce command-file
command-file
Thefileto read.

This command reads the designated file and treats each linein the file as though it were a
command you typed in. After reading all the commands in the file, the debugger returns
to reading commands from the keyboard again. (If source commands are nested,
ending one file returns to reading from the previous file.)

If NightView encounters any serious error, it stops reading from a sour ce file. See
“Command Streams” on page 3-30.

The qualifier on the sour ce command has no effect. The default qualifier is applied to
any commands in the source file which do not have explicit qualifiers.

Delay NightView command execution for a specified time.
del ay [milliseconds]
milliseconds

The number of milliseconds to delay command execution. If not specified,
the default is 1.

Command-Line Interface

This command delays the execution of NightView commands for at least the specified
time period, expressed in milliseconds. The actua delay may be longer than the specified
period. The command following a del ay command in the same command stream will
not execute until at least the specified time has el apsed.

The primary use of the del ay command is in command scripts, when you may want to
prevent a command from executing immediately after the preceding one. For instance,
you may wish to alow time for your program to execute for some length of time between
the execution of two NightView commands.

The qudifier on the del ay command has no effect.

Info Commands

The info commands all start with the word i nf o, which may always be abbreviated to
the single character i . The keyword following i nf o identifies one of the many topics for
which info is available. Each info command may also have additional arguments specific
to the individua command.

The info commands can be broadly divided into two basic categories:

* Status queries, returning information about the current state of the debug-
ger and the processes being debugged.

¢ Symbol table queries, returning information about program variables and
type definitions.

7-115

NightView User’s Guide

Status Information

info log

info eventpoint

7-116

The status info commands allow you to query various information about the current state
of the debugger (e.g., what breakpoints are set, how many dialogues are active, etc.).

Describe any open log files.
info | og

Describes any open log files currently in use by the debugger. The log files may be
created by set -1 0g (see “set-log” on page 7-44) or by set - show (see “set-show” on
page 7-28).

Describe current state of breakpoints, tracepoints, patchpoints, monitorpoints,
agentpoints, and watchpoints.

info eventpoint [/verbose] [name | number]
/verbose

Specify that the locations of all eventpoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the eventpoint and, where possible, the corresponding function
name, file name, and line number. The number of PC addresses printed is sub-
ject to the limit on printing addresses (see “ set-limits’ on page 7-46). The
ver bose keyword may be abbreviated.

name

An eventpoint name.
number

An eventpoint number.

This command describes eventpoints associated with the processes in the command
qualifier. An eventpoint is any of a breakpoint, tracepoint, patchpoint, monitorpoint,
agentpoint, or watchpoint. See “breakpoint” on page 7-80, “tracepoint” on page 7-84,
“patchpoint” on page 7-81, “agentpoint” on page 7-88, “monitorpoint” on page 7-85, and
“watchpoint” on page 7-96.

The information printed includes:
* Theeventpoint ID.
* The eventpoint type.

* Current state of eventpoint (enabled, disabled, temporary).

info breakpoint

Command-Line Interface

* Theeventpoint location. If / ver bose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the eventpoint was created. For watchpoints,
information is printed about the address being watched.

* The number of times program execution has crossed the eventpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count isincremented).

* The number of times the eventpoint has been hit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

* Any conditions attached to the eventpoint.
* The current ignore count.

¢ Any commands attached to the eventpoint (if it is a breakpoint, monitor-
point, or watchpoint).

This command sets the default x command dump address as well as the $_ predefined
convenience variable to the address of the last eventpoint listed. See “X” on page 7-68
and “Predefined Convenience Variables’ on page 7-6.

Describe current state of breakpoints.
info breakpoint [/verbose] [name | number]
Abbreviation: i b

/ ver bose

Specify that the locations of al breakpoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the breakpoint and, where possible, the corresponding function
name, file name, and line number. The number of PC addresses printed is sub-
ject to the limit on printing addresses (see “ set-limits” on page 7-46). The
ver bose keyword may be abbreviated.

name

An eventpoint name.
number

An eventpoint number.

This command normally describes all breakpoints associated with the processes indicated
by the command qualifier. If you specify a list of eventpoint names or numbers, only
those events are described. If any of the specified eventpoints are not breakpoints, they
are ignored. Breakpoints are created with the breakpoi nt command. See
“breakpoint” on page 7-80.

The information printed includes:

7-117

NightView User’s Guide

info tracepoint

7-118

* The breakpoint ID.
* Current state of breakpoint (enabled, disabled, temporary).

* The breakpoint location. If / ver bose was specified, then the location
will be printed in verbose format. Otherwise it will be printed in the format
in which it was specified when the breakpoint was created.

* The number of times program execution has crossed the breakpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count isincremented).

* The number of times the breakpoint has been hit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

* Any conditions attached to the breakpoint.
* The current ignore count.

¢ Any commands attached to the breakpoint.

This command sets the default x command dump address as well as the $_ predefined
convenience variable to the address of the last breakpoint listed. See “x” on page 7-68
and “Predefined Convenience Variables’ on page 7-6.

Describe current state of tracepoints.
info tracepoint [/verbose] [name | number]
/verbose

Specify that the locations of all tracepoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the tracepoint and, where possible, the corresponding function
name, file name, and line number. The number of PC addresses printed is sub-
ject to the limit on printing addresses (see “ set-limits” on page 7-46). The
ver bose keyword may be abbreviated.

name
An eventpoint name.
number
An eventpoint number.

This command describes tracepoints in the processes indicated by the qualifier. Normally
all tracepoints are described, but if an argument is given, only those named are described.
Any eventpoints specified in the argument list which are not tracepoints are ignored.
Tracepoints are created with the t racepoi nt command. See “tracepoint” on page
7-84.

The information printed includes:

info patchpoint

Command-Line Interface

The tracepoint ID.
Current state of tracepoint (enabled, disabled, temporary).

The tracepoint location. If / ver bose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the tracepoint was created.

The tracepoint event ID.

The number of times program execution has crossed the tracepoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count isincremented).

The number of times the tracepoint has been hit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

Any conditions attached to tracepoint.
The current ignore count.

The expression being recorded at the tracepoint.

This command sets the default x command dump address as well as the $_ predefined
convenience variable to the address of the last tracepoint listed. See “x” on page 7-68
and “Predefined Convenience Variables’ on page 7-6.

Describe current state of patchpoints.

i nfo patchpoint [/verbose] [name | number]

/ ver bose

Specify that the locations of all patchpoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the patchpoint and, where possible, the corresponding function
name, file name, and line number. The number of PC addresses printed is sub-
ject to the limit on printing addresses (see “ set-limits’ on page 7-46). The
ver bose keyword may be abbreviated.

name
An eventpoint name.
number

An eventpoint number.

This command describes patchpoints in the processesindicated by the qualifier. Normally
all patchpoints are described, but if an argument is given, only those named are
described. Any eventpoints specified in the argument list which are not patchpoints are
ignored. Patchpoints are created using the pat chpoi nt command. See “patchpoint”
on page 7-81.

7-119

NightView User’s Guide

The information printed includes:

* The patchpoint ID.
* Current state of patchpoint (enabled, disabled, temporary).

* The patchpoint location. If / ver bose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the patchpoint was created.

* The number of times program execution has crossed the patchpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count isincremented).

¢ The number of times the patchpoint has been hit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

¢ Any conditions attached to patchpoint.
* The current ignore count.

* The expression patched in at that point, or a description of where the pro-
gram will branch.

This command sets the default x command dump address as well as the $_ predefined
convenience variable to the address of the last patchpoint listed. See “X” on page 7-68
and “Predefined Convenience Variables’ on page 7-6.

info monitorpoint

Describe current state of monitorpoints.
info nmonitorpoint [/verbose] [name | number]
/ verbose

Specify that the locations of all monitorpoints displayed will be in verbose
format. Verbose location format includes the program counter address (or
addresses) of the monitorpoint and, where possible, the corresponding func-
tion name, file name, and line number. The number of pC addresses printed is
subject to the limit on printing addresses (see “set-limits” on page 7-46). The
ver bose keyword may be abbreviated.

name
An eventpoint name.
number
An eventpoint number.

This command describes monitorpoints in the processes indicated by the qudlifier.
Normally all monitorpoints are described, but if an argument is given, only those named
are described. Any eventpoints specified in the argument list which are not monitorpoints
are ignored. Monitorpoints are created with the noni t or poi nt command. See
“monitorpoint” on page 7-85.

7-120

info agentpoint

Command-Line Interface

The information printed includes:

The monitorpoint ID.
Current state of monitorpoint (enabled, disabled, temporary).

The monitorpoint location. If / ver bose was specified, then the location
will be printed in verbose format. Otherwiseit will be printed in the format
in which it was specified when the monitorpoint was created.

The number of times program execution has crossed the monitorpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count isincremented).

The number of times the monitorpoint has been hit since the program
started execution (this count is incremented only if the condition and
ignore count are satisfied).

Any conditions attached to monitorpoint.
The current ignore count.

The commands attached to the monitorpoint.

This command sets the default x command dump address as well as the $_ predefined
convenience variable to the address of the last monitorpoint listed. See“X” on page 7-68
and “Predefined Convenience Variables’ on page 7-6.

Describe current state of agentpoints.

info agentpoint [/verbose] [name | number]

/ ver bose

Specify that the locations of all agentpoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the agentpoint and, where possible, the corresponding function
name, file name, and line number. The number of PC addresses printed is sub-
ject to the limit on printing addresses (see “ set-limits” on page 7-46). The
ver bose keyword may be abbreviated.

name
An eventpoint name.
number

An eventpoint number.

This command describes agentpoints in the processesindicated by the qualifier. Normally
all agentpoints are described, but if an argument is given, only those named are
described. Any eventpoints specified in the argument list which are not agentpoints are
ignored. Agentpoints are created with the agent poi nt command. See “agentpoint” on
page 7-88.

7-121

NightView User’s Guide

info watchpoint

7-122

The information printed includes:
* Theagentpoint ID.
* Current state of agentpoint (enabled, disabled, temporary).

* Theagentpoint location. If / ver bose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the agentpoint was created.

* The number of times program execution has crossed the agentpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count isincremented).

* The number of times the agentpoint has been hit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

¢ Any conditions attached to agentpoint.

* The current ignore count.

This command sets the default x command dump address as well as the $_ predefined
convenience variable to the address of the last agentpoint listed. See “X” on page 7-68
and “Predefined Convenience Variables’ on page 7-6.

Describe current state of watchpoints.
i nfo wat chpoint [/verbose] [name | number]
/verbose

The ver bose keyword is accepted for compatibility with other watchpoints,
but isignored. The ver bose keyword may be abbreviated.

name

An eventpoint name.
number

An eventpoint number.

This command describes watchpoints in the processes indicated by the qualifier. Nor-
mally all watchpoints are described, but if an argument is given, only those named are
described. Any eventpoints specified in the argument list which are not watchpoints are
ignored. Watchpoints are created with thewat chpoi nt command. See“watchpoint” on
page 7-96.

The information printed includes:

* Thewatchpoint ID.

* Current state of the watchpoint (enabled, disabled, temporary).

info frame

Command-Line Interface

* The address being watched.

* The number of times the process accessed the address being watched since
the program started execution. This count isincremented even if theignore
count or condition was not satisfied. This number is displayed as
#cr ossi ngs (for consistency with other eventpoint types).

* The number of times the watchpoint has been hit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

* Any conditions attached to the watchpoint.
* The current ignore count.

¢ Any commands attached to the watchpoint.

Describe a stack frame.
info frane [/v] [*expression [at location-spec] |
/v
If this option is supplied, NightView prints detailed, machine-specific, infor-
mation about the requested stack frame. You are seldom likely to be inter-

ested in this information; it is provided primarily for detecting problems with
the generated debugging information.

* expression

The address of a stack frame. Thisisthe valuethat $f p would have, not $sp.
location-spec

Specifies a location in the program to use to interpret the stack frame at the

address given by * expression. See “Location Specifiers’ on page 7-9. If you
do not supply this argument, the default is the current value of $cpc.

NOTE

Theat keyword may not be abbreviated in this command.

This command describes all available information about the current stack frame for a
process (see “Current Frame” on page 3-25). See also “frame” on page 7-1009.

If multiple processes are specified in the command qualifier, each of them is described
separately. An error message is printed if any of the processes are running.

If the optional * expression is given, then the frame at that address is described (but the
current frame is not changed). If you supply the location-spec argument, the frame is
interpreted as a frame for the routine at the resulting address. If you omit this argument,
the current value of $cpc isused in decoding the frame.

7-123

NightView User’s Guide

If * expresson does not evaluate to a valid frame address, or the frame at that address
does not correspond to the given program location, the information printed will probably
be nonsense.

The information printed about a frame includes:

* The address of the frame.

* The addresses of the adjacent frames (if any).

* Thecurrent frame size.

* The saved return address and its location on the stack (or in aregister).
* Any saved registers and their locations on the stack.

* Which registersare currently in use as stack and/or frame pointers and their
relation to the current frame.

* The name of the subroutine associated with the frame along with the source
line and file name (if known).

info directories

Print the search path used to locate source files.
info directories

Print the search path used to locate source files. If multiple processes are given in the
qualifier, print the list of directories for each process. See “directory” on page 7-60, for
the command used to set the search path.

info convenience

Describe convenience variables.
i nfo conveni ence

This command describes al the convenience variables that have been defined.
Convenience variables may be global or process local (see “set-local” on page 7-50). This
command first describes the global variables, then (for each process specified by the
command qualifier) describes the process local variables. The name, data type, and value
of each variableislisted.

The convenience variables that correspond to the process registers are not described by
this command (see “info registers” on page 7-125).
info display
Describe expressions that are automatically displayed.
info display

This command describes the set of expressions that are automatically displayed each time

7-124

info history

info limits

info registers

Command-Line Interface

aprogram stops (see “display” on page 7-72).

Print value history information.
info history [number]
number

Specifies an item in the value history list (each value has a unique sequence
number). The default value isthe most recent history list entry.

This command prints ten history-list values centered around the specified entry. It aso
prints information about how many history items currently exist. See “set-history” on
page 7-46.

Print information about limits on expression and location output.
info limts

The command prints the limits on array elements and character-string elements printed by
expression output commands, and the limits on program locations printed by other i nf o
commands. See “set-limits” on page 7-46.

The qudifier isignored by this command.

Print information about registers.
info registers [regexp]

regexp

A regular expression matching register names. An anchored match isimplied.
See “Regular Expressions” on page 7-12.

If the regexp argument is not given, this command prints al the normally accessible
registers that are of general interest to most programmers (such as accumulators, program
counter, stack pointer, etc.). If you give aregular expression argument, any register with a
name matching that regular expression is printed. To print all the registers, you must
specify the regular expression . * as an argument (this includes al the obscure control
registers and any other registers not normally of interest to a programmer). See
“Predefined Convenience Variables” on page 7-6.

The regular expression case sensitivity depends on the current search mode (see “ set-
search” on page 7-54).

Registers are printed relative to the current frame (see “Current Frame” on page 3-25).

7-125

NightView User’s Guide

info signal

info process

7-126

This means that any register saving is logically unwound as you change frames (the
register contents are not actually modified). Y ou see the value the register would have if
you returned to the current frame. (If the current frame is also the most recent frame at
the end of the stack, the current machine register contents are the correct contents relative
to frame zero.)

If the current frame is not frame zero, but you want to see the current active contents of
the machine registers, you have to move to frame zero before running the i nfo
regi st ers command (see“frame” on page 7-109).

If the command qualifier names multiple processes, the registers from each process are
printed separately. If any of the processes are running, an error is printed.

Since this command operates only on register names, the dollar sign ($) normally used to
refer to registersis optional for this command.

Some registers are defined by the architecture to be composed of various fields. i nfo
regi sters expands those fields symbolicaly. If a field is a single bit, NightView
prints an abbreviation for that field only if the value of thefield is 1. See the architecture
manual for descriptions of the fields and alist of the abbreviations for each register.

Print information about signals.
info signal [signal ...]
signal
A signal number or signal name.

This command describes how signals will be handled by the process receiving them. If
the command qualifier specifies multiple processes, then the signal information is listed
separately for each process. The information printed includes:

* Thesignal name.
* Thesignal number.

* The way the debugger will handle this signal. (see “handle’ on page
7-106).

If no signals are specified, then information for all signalsis printed.

Describe processes being debugged.
info process

This command lists information about all the processes specified in the command
qualifier (qualify with (al 1) tolist all of them). The information includes:

* TheprocessID (PID).

info memory

info dialogue

Command-Line Interface

¢ The controlling dialogue for the process.

* The arguments passed to the program on startup (ar gv array).

* The current process state (running, stopped).

* When the process state is stopped, list where and why it stopped.
* Thecurrent language setting. See “ set-language” on page 7-44.

* The disposition of child processes; that is, under what circumstances a
child process will be debugged. See “set-children” on page 7-41.

Print information about the virtual address space.
info menory [/verbose]
/ ver bose
Indicates that extrainformation should be printed.

This command prints information about the virtual address space for each process speci-
fied in the command qualifier. For each region of memory, this command prints the fol-
lowing information:

* The beginning address and ending address of the region.
* Thesize, in bytes, of the region.

* |f theregion isthe first region associated with a shared library, the name of
thelibrary is printed.

* Whether the region is readable, writable, executable, shared, or locked in
physical memory.

* Whether the region is being used as the process' stack or memory heap.

* If the region was attached by NightView, what the region is for and how
much space is left in the region. See Appendix E [Implementation Over-
view] on page E-1. If the/ ver bose option is specified, NightView prints
information about the individual blocks allocated in the region.

The list also includes any regions reserved by the user with the nr eser ve command.
See “mreserve” on page 7-43.

Print information about active dial ogues.
info di al ogue

This command lists information about all the dialogues specified in the command
qualifier (qualify with (al 1) tolist all of them). The information includes:

7-127

NightView User’s Guide

info family

info name

7-128

* The machine running the dialogue.

* The sizes that will be used for patch areas created in the future. See “set-
patch-area-size” on page 7-50.

* Thelist of debug and nodebug patterns for this dialogue. See “debug”
on page 7-20.

* The processes being debugged under control of the dial ogue.
* The user running the dialogue.
* The status of any dialogue output (see “ set-show” on page 7-28).

* Thelist of object filename translations for this dialogue. See “translate-
object-file” on page 7-21.

Print information about an existing process family.
info fam |y [regexp]
regexp

A regular expression matching family names. An anchored match isimplied.
See “Regular Expressions”’ on page 7-12.

For each family name that matches regexp this command lists each process that is a
member of that family (see “family” on page 7-40). If regexp is omitted, then the contents
of all processfamilies are printed.

The regular expression case sensitivity depends on the current search mode (see “ set-
search” on page 7-54).

Print information about an existing eventpoint-name.
i nfo name [regexp]
regexp

A regular expression matching eventpoint-names. An anchored match is
implied. See “Regular Expressions” on page 7-12.

For each eventpoint-name that matches regexp, this command lists each eventpoint that is
a member of that eventpoint-name (see “name’ on page 7-79). If regexp is omitted, then
the contents of all eventpoint-names are printed.

The regular expression case sensitivity depends on the current search mode (see “ set-
search” on page 7-54).

Each eventpoint isidentified by a dialogue-name, a process-id (PID), and an eventpoint-id
that is unique for that process.

info on dialogue

info on program

info on restart

Command-Line Interface

Printon di al ogue commands.
info on dial ogue [name]
name
The name of a prospective dialogue.

If no arguments are given, then all existing on di al ogue commands are printed. If a
dialogue name is given, then only theon di al ogue commands that would be executed
if a dialogue named name were to be created are printed. See*“on dialogue” on page 7-24

Printon pr ogr amcommands.
info on program [program|
program
The path name of a prospective executable file.

If no arguments are given, theni nfo on programprints al existing on program
commands for each dialogue specified by the qualifier. If a program path is given, then
info on programprintsthe on programcommands that would be executed if
program were run in each dialogue specified by the qualifier. See “on program” on page
7-36.

Printon restart commands.
info on restart [output=outhame | append=outname] [program]
out put =outname
Write the information to outname.
append=outname
Append the information to outname.
program
The path name of a prospective executable file.

If no program is given, theninfo on restart prints al existing on restart
commands for each dialogue specified by the qualifier. If a program path is given, then
info on restart printsthe on restart commands that would be executed if
program were run in each dialogue specified by the qualifier. See “on restart” on page
7-38.

7-129

NightView User’s Guide

info exception

info threads

7-130

If no outname is specified, then the output isto the terminal or to the GUI message area.

info on restart may be used to preserve restart information in a file for usein a
later debug session. See “source’ on page 7-114. See “Restarting a Program” on page
3-14. For an example, see “checkpoint” on page 7-39.

Print information about Ada exception handling.

i nfo exception exception-name...
i nfo exception unit-name

info exception
Abbreviation: excepti on
exception-name
Specifies the name of a particular Ada exception.
unit-name
Specifies al Ada exceptions defined in the specified unit.

This command describes the current exception handling settings for the processes
specified by the qualifier. See “handle” on page 7-106. With no arguments, the current
default handling of exceptions is displayed aong with the handling of any specific
exceptions to which the default is not applicable. If an argument is given, the handling of
those specific exceptionsisdisplayed. Thei nf o excepti on command will list:

* The exception name, or the keyword al | denoting the default.

* The exception handling settings.

Describe lightweight processes, Adatasks and C threads.
info threads

This command describes the lightweight processes (LWPs), Ada tasks and C threads for
the processes specified by the quaifier. Theidentifierslisted for each thread type may be
used withthe sel ect - cont ext command to switch to that thread. See“ select-context”
on page 7-111.

In the graphical user interface, you can also get thread information from the Display
menu. See“Debug Display Menu” on page 9-29.

Command-Line Interface

Symbol Table Information

info args

info locals

info variables

The info commands in this section are used to lookup and report on information recorded
in the debug tables of program files. This includes the names and declarations of
variables, the address of generated code for source lines, etc.

Print description of current routine arguments.
info args

This command prints a description of each argument of the subroutine associated with the
current frame (see “ Current Frame” on page 3-25).

Print information about local variables.
info locals [regexp]
regexp

A regular expression matched against local variable names. An anchored
match isimplied. See “Regular Expressions’ on page 7-12.

Print a description of every local variable visible in the current context. If the regexp
argument is given, print only the variables with names matching the regular expression.

The regular expression case sensitivity depends on the current search mode (see “ set-
search” on page 7-54).

The term local variables is defined to include all variables with any sort of restricted
scope. External variables visible throughout the program are never listed by this
command.

The information listed for each variable includes:
* The name of the variable.
* Thetype of the variable.
* The current value of the variable.
* Thelocation of the variable.

* The scope of the variable (directly visible, inherited from an outer block,
etc.).

Print global variable information.

7-131

NightView User’s Guide

info address

info sources

info functions

7-132

info variabl es [regexp]
regexp

A regular expression matched against global variable names. An anchored
match isimplied. See“Regular Expressions’ on page 7-12.

This command prints information about global variables. When the regexp argument is
given, it prints only variable names matching the regular expression.

The regular expression case sensitivity depends on the current search mode (see “ set-
search” on page 7-54).

Determine the location of avariable.
i nfo address identifier
identifier
The name of the variable to be described.

Print out information about where the given variable (visible in the current context) is
located. If the variable is in aregister, it prints the register name. If it is on the stack, it
prints the stack frame offset. If it isin static memory, it prints the absolute location.

To determine the absolute address of a particular instance of a stack variable you must
use the pri nt command to evauate an expression which returns the address (for the C
language, this would be something like pri nt &narre, see“print” on page 7-66).

List names of source files.
i nfo sources [pattern]
pattern

Wildcard pattern to match against source file names. See “Wildcard Patterns”
on page 7-14.

This command lists the names of the source files recorded in the debug tables. If a
wildcard pattern is given, it lists only file names matching the wildcard pattern.

If multiple processes are specified in the command qualifier, the source files for each
process are listed separately.

List names of functions, subroutines, or Ada unit names.

info functions [regexp]

Command-Line Interface

regexp

A regular expression to match against function names. An anchored match is
implied. See “Regular Expressions’ on page 7-12.

This command lists the names of functions, subroutines, or Ada unit names recorded in
the debug tables. If aregular expression is given, it lists only nhames matching the regular
expression.

The regular expression case sensitivity depends on the current search mode (see “ set-
search” on page 7-54).

info types
Print type definition information.
info types [regexp]
regexp
A regular expression to match against type names. An anchored match is
implied. See“Regular Expressions’ on page 7-12.
This command prints information about type definitions. When the regexp argument is
given, it prints only type names matching the regular expression; otherwise, it prints all
the types defined in the program.
The regular expression case sensitivity depends on the current search mode (see “ set-
search” on page 7-54).
info whatis

Describe the result type of an expression visible in the current context.
info whatis expression
Abbreviation: whati s

expression

An expression for which the data type is to be determined. See “Expression
Evaluation” on page 3-20.

Describe the result type of the expression. The expression is not normally evaluated, but
operations which require run time type determination may require portions of the expres-
sion to be evaluated. If the expression includes the Ada’ sel f attribute or the C++
dynam c_cast <> function, their operands must be evaluated in order to determine the
actual type of the result.

info representation

Describe the storage representation of an expression.

7-133

NightView User’s Guide

info declaration

info files

info line

7-134

info representation expression
Abbreviation: representation
expression

An expression for which the data type is to be determined. See “Expression
Evaluation” on page 3-20.

Describe the storage representation of the result type of the expression. The expression is
not evaluated.

Print the declaration of variables or types.
info decl arati on regexp
Abbreviation: ptype

regexp

A regular expression to match against type names and variable names. An
anchored match isimplied. See “Regular Expressions’ on page 7-12.

The regexp parameter may specify type or variable names visible in the current context.
This command prints the complete declaration of all matching names.

The regular expression case sensitivity depends on the current search mode (see “ set-
search” on page 7-54).

Print the names of the executable, symbol table and core files.
info files

For each process specified in the command quaifier, print the names of the executable
file, symbol table file, and core file associated with the process (the executable and
symbol table files are usually the same).

Describe location of a source line.
info line [at] location-spec
location-spec
Query the source line number associated with this location.

Describe the location of the source line implied by the location-spec argument (see
“Location Specifiers’ on page 7-9). The information printed includes:

Command-Line Interface

* The address of the location-spec.

* The ranges of addresses occupied by the generated code for the line. The
number of address ranges printed is subject to the current limit on
addresses (see “ set-limits” on page 7-46).

* The sourcefile and line number.

¢ The function containing the line.

This command sets the default x command dump address as well as the $_ predefined
convenience variable to the address of the first instruction in the line. See “x” on page
7-68 and “ Predefined Convenience Variables’ on page 7-6.

Defining and Using Macros

define

NightView provides a macro facility so you can augment the NightView commands with
your own features. Macros can either be used as part of another command, or as a hew
command.

A macro is a named set of text, possibly with arguments, that can be substituted later in
any NightView command. The arguments alow macros to expand to different text in
different circumstances. Macros are useful in extending the command set available in
NightView; they can also serve as shortcuts for frequently used constructs in commands
Or expressions.

Define aNightView macro.

def i ne macro-namg (arg-name [, arg-name] ...)] [tex]
defi ne macro-name [(arg-name [, arg-namg] ...)] as
macro-name

Thisis the name of the macro. Macro names follow the usual rules for identi-
fiers in most languages: they must begin with an alphabetic character, fol-
lowed by zero or more alphanumeric characters or underscore. Thereis no
limit to the length of a macro name.

A macro name can be the same as a NightView command name, but this may
render the command unusable. See “Referencing Macros’ on page 7-138 for
more information.

arg-name

A formal argument name. These names follow the same rules as macro-name.

7-135

NightView User’s Guide

7-136

text

The text to be substituted when the macro isinvoked. In thisform, the substi-
tuted text will not contain any newline characters, so the text becomes part of
whatever command the macro invocation appearsin.

NOTE

There must not be any blanks separating the macro-name from the
left parenthesis that introduces the forma arguments.

In the second form of the def i ne command, the text of the macro begins on the line
following the def i ne command and extends until a line containing only the words end
def i ne is encountered. Except for the newline character immediately following the as
keyword and the newline immediately preceding the end defi ne command, the
newline characters within the body of the macro will be retained in the substituted text.
Thus, each line of text in the macro body must normally be a complete NightView
command.

Comments appearing in the body of the macro become part of the body. Thus, they
appear in the text that is substituted for a reference to the macro. You should avoid
having a comment as the last line of a macro, because it may cause any text following the
macro invocation to be ignored.

In the command-line and simple full-screen interfaces, the prompt changes to > while
you are entering the second form of the def i ne command. (See“Command Syntax” on

page 7-1.)

The def i ne command associates a body of text with the given macro-name. When the
macro is invoked (see “Referencing Macros” on page 7-138), the macro name and its
actual arguments are replaced by the associated text. The text of the macro, called the
macro body, may contain references to other macros (in particular, they will want to
reference their formal arguments). A macro may not reference itself, either directly or
indirectly; that is, macros cannot be recursive.

Within the body of a macro, each arg-name becomes a macro without arguments that
expands to its corresponding actual argument. “Referencing Macros’ on page 7-138
describes the syntax of macro invocations and actua arguments.

A macro body should not contain another def i ne command.
The def i ne command ignores any qualifier supplied for it.

If the given macro-name was previously defined as a macro, the new definition replaces
the old one. If you omit the text in a one-line definition, or the end defi ne command
appears on the line immediately following the defi ne..as command, any prior
definition of macro-name is removed.

Examples:

(local) define printhex(str,x) printf "The value of % is Ox%\n",
@Gtr, &

The above example defines a macro that prints a descriptive string and the value of an

Command-Line Interface

arbitrary variable, using the pri nt f command.

(local) define advance(p) as

> set @ = @->next
> print *@
> end define

The preceding example defines a macro that advances a pointer to the next item in a
linked list, then prints the item. Note that this macro requires the language context to be
C or C++, but the type of the argument pointer can be a pointer to any structure that
contains an appropriately-typed field named "next".

(local) define short (VERY_LONG NAME(| NDEX*2, | NDEX- 1) * SOVE_CONSTANT)

This example simply defines a shorthand for along Fortran expression. Note that it does
not have any arguments; the parentheses surround the substituted text to make sure that
precedence of operators is preserved when the macro is invoked.

7-137

NightView User’s Guide

Referencing Macros

7-138

Macros are usually referenced by preceding the macro name with the @ character, and
following the macro name with a parenthesized list of arguments, if the macro was
defined with arguments. If you wish, you may enclose the macro name inside of *{’ and
'}’ (but any argument list must appear outside of the braces). The number of arguments
you supply must be the same as the number of formal arguments (i.e., the arg-names)
specified in the def i ne command; otherwise, NightView issues an error. Arguments
are matched with each formal argument name by position.

A reference to a macro without any arguments consists solely of the @ character
followed (without intervening blanks) by the macro name. A reference to a macro with
one or more arguments consists of the @ character, the macro name, and a list of actua
arguments. The actual arguments begin with a left parenthesis and end with a matching
right parenthesis. If more than one argument is given, a comma must separate them. If
an actua argument contains a left parenthesis, then the argument extends until a matching
right parenthesis is encountered, irrespective of any other characters, including commas,
in the intervening text. Note that an unmatched right parenthesis appearing in an actual
argument prematurely ends the list of actual arguments; this may cause an error, or it may
produce unexpected results.

An actual argument may contain an invocation of another macro; that invocation is
expanded immediately when the actual argument is read during the processing of the
enclosing macro invocation. This can lead to some surprising results, because NightView
expands these actual arguments without regard to the context in which they will
ultimately appear.

For example:

(local) define abc xyz

(local) define printit(x) print "The value is %\n", @
(local) print "The value is %\n", "@bc"

(local) @rintit("@bc")

The pri nt command will print "The value is @abc", because macros are not hormally
expanded within string literals. However, the @r i nt i t command will print "The value
is xyz", because NightView expands the macro @bc when it is processing the
invocation of macro @r i ntit. At that time, it does not know that the double quotes
imply astring literal.

String literals as actual arguments can cause other problems aswell. For example:

(local) # Illegal reference:

(local) @vymac("This has a | eft-parenthesis(")
(local) # Ckay:

(local) @vynac("This has two parentheses()")

The first invocation of nymac is invalid because the actua argument contains an
unmatched left parenthesis. Since NightView attempts to balance parentheses without
regard to any other text (including quotes), the right parenthesis matches the left
parenthesis in the argument, leaving the argument list without a closing right parenthesis.

If a macro invocation appears where a command keyword is expected, then you can leave
off the @ prefix character (but the macro name may not be enclosed between '{’ and '}’).

Command-Line Interface

This alows macros to be used conveniently as command shortcuts. However, if the
macro requires arguments, these must still be placed within parentheses after the macro
name.

Macros take precedence over commands when the macro name appears in place of a
command keyword. This means that if you name a macro the same as a built-in
NightView command, you may not be able to reference the built-in command anymore.
However, you cannot abbreviate the macro name in an invocation, so you may be able to
use an abbreviation for the built-in command. If you name a macro the same as a built-in
command abbreviation, you won't be able to use that particular abbreviation for the built-
in command later, but you can still use the full form, or a different abbreviation. If you
accidentally name a macro the same as a built-in command, you can remove the
definition by entering

(local) # Note, no text given in definition.
(I ocal) define macro-name

You may want to refer to the Summary of Commands (see Appendix B [Summary of
Commands] on page B-1) for a complete list of the NightView commands, so you can
avoid these kinds of conflicts.

Macro references can generally appear anywhere within a NightView command, but you
should be aware of the following rules:

* NightView never expands macros that appear within command comments.

* NightView usually does not expand macros that appear within string liter-
als. However, if the literal appears as an actual argument in another macro
invocation, macros within the string literal may be expanded.

* Macros are not expanded in the format-string argument to the pri nt f
command. See“printf” on page 7-75.

* Macros appearing in an echo command are expanded. See “echo” on
page 7-71.

* Macros appearing in a! (see“!” on page 7-27), r un (see “run” on page
7-30), or shel | (see“shell” on page 7-113) command are not expanded.

* A macro referenced within a language expression must expand to text that
makes sense as part of that expression.

* A macro can be used to form part of a syntactic item, or token, in a Night-
View command. For example, you could form a variable name in an
expression from the results of two macro invocations. However, you can-
not use this technique to construct the name of a macro to be invoked.

Examples:

(local) define short (VERY_LONG NAME(| NDEX*2, | NDEX- 1) * SOVE_CONSTANT)
(local) set $x=i + @short*10

The above example uses a macro in an expression.
(local) define printhex(str,x) printf "The value of % is Ox%\n",
@tr, @&

(local) printhex("ptrl", ptril)
(local) printhex("ptrl->next", (ptrl=ptrl->next, ptrl))

7-139

NightView User’s Guide

info macros

7-140

This example invokes the macro ’printhex’ twice. The second invocation demonstrates
how an expression containing a comma can be included as a formal argument.

The following C fragment defines some data types for use in the next example:

struct list_element {
struct list_element * next ;
struct data * the data ;

|
extern struct |ist_el enent * hd ;
Example NightView commands:

(local) define printdata(p) as

> printf "The data is:\n"
> print *(@)->the_data
> end define

(local) define next(p) as

> set @ = (@) - >next

> end define

Print a description of one or more NightView macros.
i nfo macros [regexp|

regexp

A regular expression matching macro names. An anchored match isimplied.
See “Regular Expressions” on page 7-12.

If the regexp argument is not given, thei nf o macr os command prints a description of
every macro you have defined. If you give a regexp argument, a description of every
macro whose hame matches the regular expression is printed.

The regular expression case sensitivity depends on the current search mode (see “ set-
search” on page 7-54).

The description of each macro includes:
* The name of the macro.

¢ Theformal argument names, if any, of the macro.

* The macro body text, exactly asit will appear when substituted, except that
the last line of the macro will be followed by a newline.

Simple Full-Screen Interface

8
Simple Full-Screen Interface

NightView is designed to be able to debug multiple processes asynchronously. That
means your processes may be running and producing output or hitting breakpoints, all at
the sametime. You might be entering NightView commands at the same time as well.

Thiscan bealittle confusing. 1t would be especialy confusing if NightView wereto write
to your terminal at the same time you are trying to enter acommand For this reason,
NightView doesn't usually show you output or event notifications while it is reading your
commands (It will do that if you want it to, though. See*“set-show” on page 7-28.)

This means that NightView may have output or event notifications to show you, but it will
not show them to you because it is waiting for you to type a command. You can press car-
riage return afew times to see output you are expecting, but that can be annoying

A full-screen interface gives NightView away to show you output and event notifications
as soon as they are available without interfering with your typing

The simple full-screen interface has the same basic functionality as the command-line
interface. All the commands are the same. |In fact, the simple full-screen interface looks
alot like the command-line interface. The main differenceis that NightView has control
over the entire screen, so it can print output to you while you are "at a prompt".

Using the Simple Full-Screen Interface

To use the simple full-screen interface, you should have your TERM environment variable
set to the type of your terminal. If you are using a full-screen editor, such asvi (1) , you
probably have already taken care of this.

Invoke NightView with the - si npl escr een option:
nvi ew -si npl escreen

NightView clears the screen before it writes its welcome message. Then the prompt is
written to the bottom line and you can type a command.

NightView does not have control over the terminal while you are executing ashel | com-
mand, so after the command has completed you are asked to pressreturn Thisgivesyou a
chance to view the command output before NightView redraws the screen. See“shell” on
page 7-113.

The simple full-screen interface creates a special window when you use monitorpoints.
See “Monitor Window - Simple Full-Screen” on page 8-2 for more information about this
window.

8-1

NightView User’s Guide

Editing Commands in the Simple Full-Screen Interface

You can use special key sequences to edit your commands. The key sequences are based
on the line editing modes of ksh(1) . NightView implementstheemacs, gmacs and vi
modes of ksh. In particular, you can use the various key sequences to retrieve previously
entered commands.

Theinitial editor mode is set from your VI SUAL or EDI TOR environment variables. If
NightView cannot determine the mode from those variables, then the default mode is
emacs. You can explicitly set the editor mode with the set - edi t or command. See
“set-editor” on page 7-55.

Monitor Window - Simple Full-Screen

8-2

The Monitor Window is created when you use monitorpoints while running NightView
with the simple full-screen interface. See “Monitor Window” on page 3-28.

In the simple full-screen interface, the Monitor Window appears at the top of the screen
and takes up as many lines as it needs for the number of items displayed, plus one status
line, while leaving at least ten lines for other debugger operations at the bottom of the
screen.

Only the items that fit in the space available at the top of the screen are displayed. Any
further items are left in the same state they would bein following anntont r ol nodi s-
pl ay command (See “mcontrol” on page 7-87)

The stale data indicators used in the simple full-screen Monitor Window are simple char-
acters used to indicate each state. A space () isused to indicate updated values. A period
(.) is used for monitorpoints that have not been executed. An exclamation point (!) is
used for monitorpoints which have executed but not taken a sample. For more informa-
tion about stale dataindicators, see “Monitor Window” on page 3-28.

A status line at the bottom of the simple full-screen Monitor Window divides it from the
remainder of the screen. The status line indicates the state of the Monitor Window (hel d
or r unni ng) and shows the current delay time in milliseconds between updates of the
window.

Graphical User Interface

9
Graphical User Interface

This chapter describes the graphical user interface (Gui) for NightView. The Gul
provides more flexibility and functionality than either the command-line interface or the
simple full-screen interface.

The graphical user interface for NightView is based on OSF/Motif™. NightView runsin
the environment of the X Window System™ Version 11, Release 6 (or later).

This chapter assumes that you have a basic understanding of window system concepts
such as selecting objects by clicking with the mouse. For more information, see the OSF/
Motif User's Guide.

It is assumed that your X server has athree-button mouse. By default, mouse button 1 is
the leftmost button, button 2 the middle button, and button 3 the rightmost button. Y ou
can reassign the functions associated with mouse buttons by using xnodmap(1) . If you
do not have a three-button mouse, see your system administrator or read sections on input
and navigation in the OSF/Motif Style Guide. Use mouse button 1 when you are told to
click, drag, press, and select.

This chapter refers to using a mouse, and refers to clicking on objects to select them or to
activate them, but you may aso use keyboard selection and activation. See “Keys’ on
page 9-11.

Y ou can customize the NightView GUI. See Appendix D [GUI Customization] on page
D-1.

Sample debug sessions showing how to use the NightView graphical user interface are
available. See Chapter 2 [A Quick Start - GUI] on page 2-1. See Chapter 5 [Tutorial -
GUI] on page 5-1.

NightView GUI Concepts

This section explains concepts that you need to understand so that you can use the
NightView graphical user interface to its fullest advantage.

GUI Overview

The Graphical User Interface contains these major types of windows.
¢ Dialogue Window
¢ Debug Window

9-1

NightView User’s Guide

GUI Online Help

9-2

* Monitor Window - GUI
¢ Data Window

* Globa Window

* Help Window

Each of these magjor windows has supporting dialog boxes which are described with the
corresponding major window. See “Dialogues and Dialog Boxes’ on page 9-10.

A Diaogue Window is used to control a NightView dialogue and for input and output
with the dialogue shell. See“Dialogue Window” on page 9-16.

A Debug Window is used to debug and manipulate one or more processes. See “Debug
Window” on page 9-21.

The GUI Monitor Window displays monitorpoints. See “Monitorpoints” on page 3-10.

A Data Window provides a convenient way to browse the datain a program. See “Data
Window” on page 9-51.

The Global Window is used to control the debugger in general. See “Global Window” on
page 9-61.

The Help Window is used only when you ask for help. See “Help Window” on page
9-63.

Typicdly, while debugging a process, you have the Debug and Dialogue Windows
available, but most of the actual debugging is done with the Debug Window. You may
iconify any windows you don't need at the moment.

Each of the NightView windows has a unique icon image that relates to the window's
function. The Debug Window icon displays the identifying NightView image, and each
of the other windows includes this image as part of itsicon. If you are displaying the
icon images (it is possible to display only the icon labels), you can quickly see which
iconified windows belong to the NightView application.

The graphica user interface provides severa ways of providing help on particular topics.

¢ Context-sensitive help is available in all major NightView windows. See
“Context-Sensitive Help” on page 9-3.

¢ Each of the major windows hasaHelp Menu. See“Help Menu” on page
9-3.

* Pressing the F1 function key displays help for the part of the window that
has the current focus.

¢ Some of the windows have help buttons that pop up help for the particular
window.

Graphical User Interface

* You can use the hel p command from the command-line interface. See
“help” on page 7-112.

Help information is displayed in a Help Window. NightView uses a separate program to
display the Help Window. Once a Help Window is displayed, you can move around in
the help system in a variety of ways. You can keep the Help Window on your screen, or
dismissit. You can aso iconify it, and it redisplays itself the next time you ask for help.
See “Help Window” on page 9-63.

Context-Sensitive Help

Help Menu

Context-sensitive help is available through the Help menu found in each major
NightView window. See “Help Menu” on page 9-3. In addition, the <Help> key
(usually this is the F1 function key) displays help information for the currently selected
window component.

Generally, help is not provided on individual graphical items, such as individual buttons.
Instead, you are given help for the region you have selected. For example, if you select
help on the Detach button in the Dialogue Window, the Help Window displays
information about the process summary area. See “Process Summary” on page 9-19.

To get context-sensitive help using the Help menu, select the On Context menu item.
The pointer changes to a question mark with an arrow. Place the point of the arrow over
the graphical region for which you want help and click mouse button 1. The Help
Window is displayed with information about that region. The pointer changes back to its
original shape.

To get context-sensitive help using the F1 (Help) key, select a window component that
you have a question about. Press the F1 (Help) key. A Help Window is displayed with
information about that region.

Mnemonic: H

Each major window in NightView hasaHelp menu. The Help menu in each window has
the same menu items.

On Context
Mnemonic: C

Thisitem provides help about a particular graphical region of awindow. See*“Con-
text-Sensitive Help” on page 9-3.

On Last Error
Mnemonic: E

If NightView just displayed an error message, you can get help on that error by
selecting this menu item.

9-3

NightView User’s Guide

9-4

Selecting thisitem is similar to using the hel p command with no argument. See
“help” on page 7-112.

On Help
Mnemonic: H

This item gives help about how to use NightView's help system. See “GUI Online
Help” on page 9-2.

On Window

Mnemonic: W

Thisitem gives help about the window where you selected the Help menu.
On Commands

Mnemonic: M

Thisitem gives a summary of NightView commands.
On Keys

Mnemonic: K

Thisitem gives help about using special keysin NightView. See “Keys’ on page
9-11.

Index

Mnemonic: |

Thisitem shows an index that lists all the help topics available for NightView.
Table of Contents

Mnemonic: N

Thisitem shows a table of contents that lists all the help topics available for Night-
View.

A Quick Start
Mnemonic: Q

This item takes you to the beginning of the GUI quick start chapter. See Chapter 2
[A Quick Start - GUI] on page 2-1.

Tutorial
Mnemonic: T

This item takes you to the beginning of the GUI tutorial chapter. See Chapter 5
[Tutoria - GUI] on page 5-1.

On Version

Help Buttons

Help Command

Graphical User Interface

Mnemonic: V

Thisitem pops up an information dialog box that describes which version of Night-
View you are running.

Dialog boxes include a Help button in the lower right corner. You can click on this
button to receive help on the dialog box. See “Diaogues and Dialog Boxes” on page
9-10.

You can type the hel p command, followed by the topic you want help on, into the
command entry area of a major NightView window to obtain online help. See “help” on
page 7-112. A Help Window is displayed that contains information about the requested
topic. See“Help Window” on page 9-63.

If a Help Window does not exist, NightView displays one for you. Otherwise, the text of
the existing Help Window changes to show you the information that you requested.

If NightView cannot find the information you requested, a warning dialog box and aHelp
Window are displayed. See “Warning Dialog Box” on page 9-15. You must
acknowledge the warning before you can interact with any of the other NightView
windows. Click onthe Dismiss button.

GUI Components

Text Input Areas

This section describes GUI components that you need to understand to use the graphical
user interface.

Text input areas receive text from the keyboard. The most important examples of text
input areas are the single line input areas in the major windows, which are used to enter
NightView commands. See“Debug Command Area’ on page 9-37.

The command areas use a combo box to provide access to the command history. See
“Combo Boxes” on page 9-6.

Text input areas have many special keys that can be used to position the text cursor and
to edit the text. A description of all the special keys is beyond the scope of this chapter.
However, this section describes some of the most important keys as they apply to
NightView's command areas. For more information on keys, see the OSF/Motif User's
Guide.

Text input areas can take input only when they have the keyboard focus. See “Keyboard
Focus’ on page 9-10.

9-5

NightView User’s Guide

Combo Boxes

Spin Boxes

Message Areas

9-6

For color devices, NightView uses a different color for areas of a window that you can
type into. You can configure this color. Refer to the NightView color application
defaultsfile. See Appendix D [GUI Customization] on page D-1.

left and right arrows

move the cursor by one character to the left or right, respectively
Home

moves the cursor to the beginning of the line of text
End

moves the cursor to the end of the line of text
Return

completes the text entry
Backspace

deletes the character before the text cursor
Delete

del etes the character following the text cursor

Combo boxes combine a text input area and a drop-down list (see “ Text Input Areas’ on
page 9-5). You can see the list by clicking on the downward-pointing arrow next to the
text input area. You may then select any item in the list. The selected item replaces the
text in the text input area. You may then edit that text and enter it if desired.

You can also use the keyboard to manipulate the combo box. Use the up arrow or down
arrow to replace the text with the next item in the list without displaying the list. Display
the list by holding down CTRL and pressing the up arrow or the down arrow. When the
list isdisplayed you can move within the list with up arrow and down arrow. Hide the list
by pressing Esc.

NightView uses combo boxes to provide access to the command history and to select
some settings for the Data Window. See “GUI Command History” on page 9-12. See
“Data Window” on page 9-51.

Spin boxes let you enter a number either by typing into the text area, by clicking on the
arrow buttons, or by pressing the arrow keys.

The Global, Diadlogue and Debug windows each have an output area that displays

Graphical User Interface

messages pertaining to that element along with the output of commands and actions
performed in that window. These message areas are scrolling text areas, and each is
headed by the word "Messages:" above the scrolling text. See “Global Output Area’ on
page 9-62. See“Dialogue Message Ared” on page 9-18. See “Debug Message Area’ on
page 9-30.

Above each scrolling text area, to the right of the "Messages:" label, is an area used to
provide feedback to the user when NightView is busy performing a task that might
prevent or delay other user interaction. This area will display one of two forms of
feedback:

¢ Anoutput-only text field displaying a message. The message indicates the
task that NightView is performing. The background color of thisfield indi-
cates that it is an output-only field. See “NightStar Color Resources’ on
page D-4.

* A progress bar displaying both a message and a visua indication of
progress. The message again indicates the task that NightView is perform-
ing, and the progress bar gives an approximate indication of how much of
the task is done and how much is left to do. The colors used for progress
indication are user customizable; see “NightStar Color Resources’” on
page D-4.

Some tasks involve an amount of work that is difficult to quantify from the begin-
ning. Inthose cases, a number may be included in the feedback message that indi-
cates the current estimate of the amount of work to be done. This number may
change as the task progresses, and consequently the progress bar may "back up"
rather than progress smoothly. Thisis normal behavior.

Some examples of tasks that you may see feedback for are:
Initializing process name

This message appears when NightView is preparing a new process, executing file
name, for debugging.

Initial scan of object file name

This message appears when NightView is scanning the debug information of file
name prior to debugging a program for the first time. The named file may be the
name of either an executable program or a shared library.

Translating n type definitionsin name

If you are debugging a program that was built from many different source files com-
piled separately, your program may contain debug information for the same user-
defined type many times. NightView must resolve these many definitions before it
can manipulate items of that type. Because NightView attempts to minimize over-
head by reading and interpreting debug information only when required, this process
may beincurred at any time during your debug session.

This type resolution process is typically only incurred in C and C++ programs,
although it may also be required for some Ada programs that use shared libraries.
You may be able to eliminate or considerably reduce the amount of time NightView
takes to resolve these type definitions by running the cpr s(1) program on your
executablefile.

9-7

NightView User’s Guide

Note that, once NightView has resolved the definition of a particular data type, it
does not need to resolve that type again for that executable, regardless of how many
times you debug that program during your NightView session. As long as you do
not exit NightView and do not modify the executablefile, NightView will be able to
retain the information it has acquired from debug information and thus reduce your
debugging time. See “Restarting a Program” on page 3-14.

File Selection Dialog Box

9-8

A file selection dialog box alows you to browse through directories and choose a file
from a list. Or, you can type in a file name. You can change directories and view
subdirectories and their files. Typically, the file selection dialog box lists files in the
current directory. In some cases, NightView may instruct the file selection dialog box to
list certain filesin a specific directory.

There are two possible versions of the file selection dialog box; this section describes the
default version used by NightView. You can use the other version if you comment out
the following resourcesin/ usr/ i b/ X11/ app- def aul t s/ Nvi ew.

*XnFi | eSel ect i onBox. pat hMbde
*XnFi | eSel ectionBox.fileFilterStyle

Also, see the OSF/Motif Style Guide.

The file selection dialog box consists of a Directory text input area for the directory
name, a Filter mask, a list of subdirectories, alist of files, a Selection text input area
for the filename, and buttons that allow you to take actions related to the file selection
dialog box. See“Text Input Areas’ on page 9-5.

See “List Selection Policies” on page 9-9.
Directory.

This area shows the name of the directory whose files and subdirectories appear in
thelists.

Thisisatext input area. You can change the directory name; click on the Filter but-
ton and the file selection dialog box updates the Directories and Files lists.

File Filter.

By editing the Filter string and clicking on the Filter button, you can change the
filesthat are displayed in the Files lists.

Thisisatextinput area. See“Text Input Areas” on page 9-5.
DirectoriesList.

Thislist shows the subdirectory names that are located in the directory indicated by
the Directory string.

To choose a directory from the list, click on its name in the list and click on the Fil-
ter button. Double-clicking on a directory entry changesthe Filter directory to that
directory. Thelist of subdirectories and the list of files are also changed.

Graphical User Interface

FilesList.

This list shows the file names that are located in the directory indicated by the
Directory string.

To select afilefrom thelist, you can click onitsnamein thelist and click on the OK
button. You can aso double-click on afilein the list to select that file.

File Selection.

This area shows the currently selected file name in the Files list, or you can typein
afile name.

Thisisatextinput area. See“Text Input Areas” on page 9-5.
Action Area Buttons.

If you are satisfied with the file name selection, click on the OK button. NightView
uses the file you chose; how the file is used depends on the application context.

Clicking on Filter changesthe Directories and Files list contents to reflect the
contents of the Directory and Filter fields.

Clicking on Cancel cancelsthe current action and closes this dialog box.

You can get help for this dialog box by clicking on Help.

List Selection Policies

A list alows you to select one or more items. The selected items are highlighted. Once
selected, you can cause some action to be taken on the items; usualy, this action is
invoked by pressing a button near the list.

With some lists in NightView, you can change the default selection policy. The resource
that controls the list selection policy is sel ecti onPol i cy. Refer to the NightView
application defaults file to determine which windows have list selection policies that are
configurable. See Appendix D [GUI Customization] on page D-1.

Lists may have different selection policies, depending on what type of selection is most
appropriate in agiven application context. For example, alist may allow only one item at
atime to be selected, or it may alow you to select multiple discontiguous items. Unless
otherwise indicated, browse is the default list selection policy.

In the case where it is appropriate to select only one item at atime, there are two possible
selection policies: browse and single.

The browse selection policy allows you to select, at most, one item. Oneitem is always
selected, athough the list may initially display with no selected item. You can click on
an item to select it, or you can hold down mouse button 1 and drag the pointer through
the list of items, scrolling the list. Asyou browse through the list with the mouse pointer,
the selected item changes.

The single selection policy allows you to click on an item to select it. Click on a selected
item to deselect it. At most, oneitem is selected. There may be no item selected.

9-9

NightView User’s Guide

In some cases, a list alows multiple list items to be selected. For these lists, there are
two possible selection policies: multiple and extended.

The multiple selection policy alows you to click on one or more items to select items.
Clicking on a selected item deselectsit. You can select dl items by using Ctrl+ /. You
can deselect dl items by using Ctrl+\.

The extended selection policy alows you to select multiple discontiguous ranges of
items. Use mouse button 1 to drag the pointer and select a range of items. Once you
have selected one or more items, press the Ctrl key while using the mouse pointer to add
more items to the set of currently selected items. You can click on any item to deselect
all other itemsin the selection set; that item will be selected. To deselect items, use Ctrl
while clicking on a selected item or while dragging the pointer through a range of
selected items.

You can aso use keyboard methods to select and deselect al items in a list with an
extended selection policy. You select al items by using Ctrl+ /. While in normal mode
(notice that the location cursor is a solid box), you can deselect all list items, except the
item indicated with the location cursor, by using Ctrl+\. To deselect al itemsin thelist,
you must change to add mode (notice that the location cursor is a dashed box), and use
Ctrl+\. The standard key binding for toggling between norma mode and add mode is
Shift+F8.

For more information on list selection policies, virtua keys, and common key bindings
see the OS-/Motif Style Guide. For information on using lists, see the OSF/Motif User's
Guide.

Dialogues and Dialog Boxes

Keyboard Focus

9-10

NightView has a concept caled a dialogue, which is a way of communicating with an
ordinary command shell. See “Dialogues’ on page 3-4. Note that thiskind of dialogueis
spelled with a"ue" at the end.

The graphical user interface uses another term: dialog box. This is not related to the
NightView concept of a dialogue. Dialog box refers to a particular type of window that
may appear during your session. A dialog box usually appears only briefly and typically
allows you to specify a particular item, such as afile name.

These two concepts are distinct and unrelated, even though they sound alike.

The GUI uses the concept of keyboard focus. Keyboard input is accepted only in afield
when that field has the keyboard focus. When a field of a window has the keyboard
focus, the window is aso considered to have the keyboard focus, for the purposes of
using mnemonics and accelerators. See “Keys’ on page 9-11. The field that has the
keyboard focus is highlighted.

How you set the keyboard focus depends on the focus policy. If the focus policy is
pointer, then the keyboard focus is in whatever field the pointer isin. If the focus policy
is explicit, then you must take some action to move the keyboard focus to a field. You
can do this by clicking on the field or by using certain keys. See“Keys’ on page 9-11.

Keys

Graphical User Interface

The default keyboard focus policy for NightView is explicit. The resource used to
control this is keyboardFocusPol i cy. Information about how to change this
resource can be found in the NightView application defaultsfile. See Appendix D [GUI
Customization] on page D-1.

For more information on how to manipulate the keyboard focus, see the OSF/Motif
User's Guide.

NightView uses certain key combinations as shortcuts for displaying menus and selecting
menu items. These key combinations are called accelerators and mnemonics. Each
window has its own set of accelerators and mnemonics that are active only while the
keyboard focus is in that window. However, the keyboard focus does not have to be in
any particular field of the window to use accelerators and mnemonics. See “Keyboard
Focus’ on page 9-10.

Menus can be displayed with mnemonics.

Menus can be displayed from the keyboard by typing Alt+mnemonic. Each of the
main windows has a menu bar near the top of the window. The different menus are
labeled. For example, the Debug Window has aProcess menu. If you look at the
Process menu, you can see that the P is underlined. P is the mnemonic for the
Process menu. That means that, in addition to displaying the Process menu by
clicking on it with mouse button 1, you can also display it with Alt+ p (hold down
Alt and press p).

If you decide you don't want to select any of the menu items, you can make the
menu go away by typing Esc or by clicking somewhere else.

Menu items can be selected with mnemonics.

Once amenu is displayed, you can select amenu item by typing only the mnemonic
for that item. The mnemonics for the menu items are underlined, just as the mne-
monics for the menus are underlined. To select amenu item by using its mnemonic,
just pressthe key.

Menu functions can be invoked with accelerators.

Some commonly used menu items have accelerator keys. The functions associated
with these menu items can be invoked directly, without displaying the menu, by
pressing the accelerator keys. The accelerator keys for a particular menu item are
listed next to the item in the menu.

The accelerator keys are often a combination of a control key plus a letter, such as
Ctrl+ O. Totype Ctrl+ O, hold down the control key and press O

In addition to mnemonics and accelerators, there are a so special keys used for navigation
within and among windows and fields. These keys include Tab, Shift+Tab, Home,
End, Page Up, Page Down and the arrow keys. The documentation of these keysis
beyond the scope of this chapter. For more information about keys, see the OSF/Motif
User's Guide.

There are many special keys used to edit text input areas. See “Text Input Areas’ on

o1

NightView User’s Guide

Sashes

Toggle Buttons

page 9-5.

Some of the windows are divided into panes and have sashes. A sash is a little box near
the right end of the line that separates the panes.

A sash may be used to change the sizes of two adjoining panes, relative to each other.
You can do this by dragging the sash with mouse button 1. Asyou increase the size of
one pane, the adjoining pane's size is decreased proportionally. The size of the window
does not change, only the sizes of the adjoining panes within the window are affected.

For more information about Paned Windows, see the OSF/Motif User's Guide.

A toggle button is a graphical element that can be toggled on or off. There are two types
of toggle buttons: check buttons and radio buttons. More than one check button can be
selected in a group of check buttons, whereas only one radio button can be selected in a
group of radio buttons.

The graphical item used for a check button to indicate the on state is either a check mark
graphic in a square box (the default), or a filled square check box. The graphical item
used for a radio button to indicate the on state is either a filled circle (the default), or a
filled diamond. The off state isindicated with an empty box, circle or diamond.

You can configure the selection color of the toggle button by defining the
sel ect Col or resource. Refer to the NightView color application defaults file. See
Appendix D [GUI Customization] on page D-1.

GUI Command History

NightView keeps a history of the commands you enter. See “Command History” on page
3-32. In the graphical user interface you can access the command history through the
combo box in the command area of each major window.

The combo box in each window shows the entire history from all the windows. See
“Combo Boxes” on page 9-6.

Understanding the Debug Window

9-12

This section explains the concepts you need to understand so that you can debug and
manipulate processes in a NightView Debug Window.

Graphical User Interface

Debug Window Behavior

NightView automatically creates one Principal Debug Window. This Debug Window
contains all processes that appear in a NightView session. Y ou can debug processes using
only this window, or you can create additional Debug Windows and define which
processes appear in them.

Any single process may be represented in one or more Debug Windows at atime. While
all Debug Windows share common behavior traits, the behavior of the Principal Debug
Window varies slightly from Debug Windows that you create.

Common Debug Window Behavior.

NightView allows you to control one or more processes in one or more Debug Win-
dows. You can choose to manipulate one process at atime, or to manipulate all the
processes in the window as a group. To accomplish this, the Debug Window allows
you to switch between single and group process modes. See “ Single Process Mode’
on page 9-14. See “Group Process Mode” on page 9-14.

If the window isin single process mode, commands and actions apply to the cur-
rently displayed process. If the window isin group process mode, commands and
actions apply to each of the processes in the group arealist. See “Debug Group
Area’ on page 9-37.

New processes aways appear in the same windows as their parent.

If a process exits, it is removed from the group list of all Debug Windows where it
appeared.

You can choose to close a Debug Window at any time during the NightView session.
Closing a Debug Window has no effect on the processes that are represented in that
window.

Principal Debug Window.
The Principal Debug Window can be empty.

Thiswindow remains available throughout the NightView session; it is not automat-
ically closed. If you choose to close it, the Principal Debug Window can be re-
opened by using the NightView menu found in the Debug, Dialogue, and Global
Windows.

User-Created Debug Windows.

You can create other Debug Windows and define which processes initially appear in
each window. See “Debug Group Selection Dialog Box” on page 9-38.

In contrast to the Principal Debug Window, a Debug Window that you create is
never empty; NightView automatically closes the window when the last processin
the window exits.

You can tell NightView to automatically display each process in its own Debug Window
by setting the oneW ndowPer Pr ocess resource to Tr ue (the default is Fal se). See
Appendix D [GUI Customization] on page D-1. When this resourceis Tr ue:

9-13

NightView User’s Guide

* NightView displays a separate Debug Window for each process. Any
Debug Windows created this way are considered to be user-created Debug
Windows.

* NightView sets the window'stitle to the process's qualifier.
* The Principal Debug Window is not automatically displayed.

* You might also want to consider setting the di spl ayGr oupToggl e-
But t on. set resource to Fal se. See “Debug View Menu” on page
9-27.

Single Process Mode

By default, the Debug Window is in single process mode. This means that any
commands that you issue apply only to the currently displayed process. This includes
commands that are typed into the command area or commands that are issued using
graphical methods. If there is more than one process in the window, you can change the
currently displayed process by selecting a process from the debug group area list and
clicking on the Switch To button. See “Debug Group Area” on page 9-37. Initially, the
process that occurs first in the group area list is the currently displayed process in the
source display area. See “Debug Source Display” on page 9-33.

When the Debug Window is in single process mode, some of the command buttons may
be disabled to indicate that their useis not appropriate at this time. For example, when the
selected process is stopped, the Stop button is disabled. Any messages generated by
commands are displayed in the debug message area. See “Debug Message Ared” on
page 9-30.

Y ou can determine when the Debug Window is in single process mode by looking at the
debug qualifier area. See “Debug Qualifier Area’ on page 9-37. When the window isin
single process mode, you see the Qualifier: label and the process's qualifier displayed
here. Otherwise, you see the phrase [Group Mode]. See “Group Process Mode” on
page 9-14.

The View menu contains radio buttons that also indicate which of the two modes is
currently set, and allows you to change your view of the window between single and
group process mode. See “Debug View Menu” on page 9-27. See “Toggle Buttons’ on
page 9-12.

There are keyboard accelerators associated with these menu items which allow you to
switch between modes without displaying the menu. See“Keys” on page 9-11.

Group Process Mode

9-14

If you want to issue commands that apply to more than one process, you can do this by
changing to group process mode. This means that any commands that you issue apply to
each of the processes listed in the group area. This includes commands that are typed
into the debug command area or commands issued using graphical methods.

When the Debug Window is in group mode, all of the command buttons are enabled and
any messages generated by any of the processes in the group are displayed in the debug

message area.

Graphical User Interface

Y ou can determine when the Debug Window is in group process mode by looking at the
debug qualifier area. See “Debug Qualifier Area” on page 9-37. When the window isin
group process mode, you do not see the Qualifier: label, and instead of a specific
qualifier you see the phrase [Group Mode]. To see the value of the qualifier, use the
View menu item Show Qualifier.... See“Debug View Menu” on page 9-27.

The View menu contains radio buttons that also indicate which of the two modes is
currently set, and allows you to change your view of the window between single and
group process mode. See “Debug View Menu” on page 9-27. See “Toggle Buttons’ on
page 9-12.

There are keyboard accelerators associated with these menu items which allow you to
switch between modes without displaying the menu. See“Keys” on page 9-11.

Confirm Exit Dialog Box

If you try to close a window and NightView determines that this is the last visible
window on your screen, NightView assumes you want to exit the debugger. NightView
displays adialog box allowing you to confirm this assumption.

Message.

The dialog box that pops up contains text that indicates that thisis the last open win-
dow and asksyou if you want to exit the debugger.

Action Area Buttons.
Selecting the OK button tells the debugger to go ahead and exit the debugger.

Selecting the Cancel button tells the debugger to cancel the request to exit the
debugger.

If you wish to get help, select the Help button.

Y ou must select either the OK button or the Cancel button before you can continue.

Warning and Error Dialog Boxes

If an error occurs, or if you have instructed NightView to take an action that may result in
the loss of data, NightView displays warning or error windows to aert you to the error or
the unsafe action. Often, you need to acknowledge the warning or error before you can
continue by clicking on one of the buttons. A default choice is indicated by a highlighted
box around one of the buttons.

Warning Dialog Box

Certain actions performed by the debugger are considered unsafe. They cause a warning
dialog box to pop up and ask you for verification to perform the unsafe action.

Warning Message.

9-15

NightView User’s Guide

The warning dialog box that pops up contains text that specifies the unsafe action
that is to be performed.

Action Area Buttons.

Selecting the OK button tells the debugger to go ahead and perform the unsafe
action.

Selecting the Cancel button tells the debugger to cancel the request to per-
form the unsafe action.

If you wish to get help, pressthe F1 (Help) key. Or, you can select the Can-
cel button and then either get help on the last diagnostic or error message that
was displayed or on the section that was referenced by the last diagnostic mes-
sage or error message. See “Help Menu” on page 9-3.

Y ou must select either the OK button or the Cancel button before you can use any other
NightView windows.

Error Dialog Box

If you make an error while using NightView, an error dialog box may pop up to inform
you of the mistake.

Error Message.

The error dialog box that pops up contains a message about the error condition.
Action Area Buttons.

Click on OK to acknowledge the error and dismiss the error dialog box.

If you wish to get help, pressthe F1 (Help) key.

Y ou must acknowledge the error by selecting the OK button before you can use any other
NightView windows.

Dialogue Window

The Dialogue Window lets you communicate with and control a NightView dialogue.
See “Dialogues” on page 3-4.

Any programs that you run in the dialogue I/O area can be debugged and manipulated by
NightView. See“Didogue /O Area’ on page 9-18.

Dialogue Menu Bar

The dialogue menu bar lets you perform global NightView actions, control the dialogue
and access online help.

9-16

Graphical User Interface

Dialogue NightView Menu

Dialogue Menu

Mnemonic: N

The NightView menu is used to control NightView windows and perform global
NightView actions. The NightView menu appears in the Data, Debug, Diaogue and
Global windows and has the same menu items in each window.

See “Debug NightView Menu” on page 9-21, for a description of the individua
NightView menuitems.

Mnemonic: D
The Dialogue menu lets you attach to a process or terminate the dial ogue.
Attach...

Mnemonic: A

Selecting this item pops up a dialog box you can use to view the processes on the
system and attach to one of them. See “Attach Dialog Box” on page 9-20.

Logout
Mnemonic: L

Selecting this item terminates the dialogue and closes the Dial ogue Window. Thisis
similar to using the | ogout command. See “logout” on page 7-23.

Depending on the safety level (see“ set-safety” on page 7-49) and whether there are
any active processes, NightView may display a warning dialog box when you use
the Logout menu item. See “Warning Dialog Box” on page 9-15.

Dialogue Help Menu

Mnemonic: H

This menu provides ways of getting context-sensitive help, help on the current window,
help on the last error NightView encountered, as well as several other categories of help.
NightView help information is displayed in a Help Window. See “Help Window” on
page 9-63.

The Help menu isdescribed in another section. See “Help Menu” on page 9-3.

A general discussion of NightView's online help is also available. See “GUI Online
Help” on page 9-2.

9-17

NightView User’s Guide

Dialogue ldentification Area

This area shows the name of the particular dialogue that this window is associated with.

Thereisalso alabel showing the name of the system the dia ogue is running on.

Dialogue Message Area

This area displays messages related to this dialogue. The displayed information includes
process exit messages, error messages and output from commands that are processed by
this Dialogue Window.

Thisisascrolling area. Y ou can use the scroll bar to ook at older or newer messages.

Y ou can change the height of this area by moving the sash up or down. See*“Sashes’ on
page 9-12.

Dialogue I/O Area

This area allows you to interact with the dialogue shell and with your programs. See
“Dialogues’ on page 3-4. You can run your program here, just as you would normally
run it, providing any arguments that it needs. Shell and program output is displayed here.
Y ou can aso enter input to the shell and to your programs. This window acts something
like alittle terminal. If your shell lets you do command-line editing, then you can do that
in thiswindow, too.

Thisisascrolling area. Y ou can use the scroll bar to ook at older or newer output.

Y ou can change the height of this area by moving the sash up or down. See“Sashes’ on
page 9-12.

Dialogue Interrupt Button

Clicking on this button interrupts whatever the debugger is doing. Thisis similar to using
the shell interrupt character in the command-line interface. See “Interrupting the
Debugger” on page 3-30.

Dialogue Qualifier Area

9-18

The didogue qualifier area is a label to remind you that commands entered in the
dialogue command area are implicitly qualified by the dialogue associated with this
Dialogue Window. The label shows the name of the dialogue.

Unlike the default qualifier in the global qualifier areain the Global Window, you cannot
change this qualifier.

Graphical User Interface

Dialogue Command Area

The dialogue command area in the Dialogue Window is used to enter NightView
commands. Like the debug command area in the Debug Window and the global
command area in the Global Window, al the command-line interface commands, except
for shel | , can be entered in the dialogue command area.

Input to this area is similar to using the command-line interface. For example, you can
enter an explicit quaifier followed by a command. If you do not specify a qualifier, the
command isimplicitly qualified by the dialogue associated with this Dialogue Window.

The dialogue command area is a combo box. See “Combo Boxes’ on page 9-6.

Process Summary

The process summary provides a list of all the processes that exist in the dialogue. The
list is followed by buttons that provide related process actions. Select one or more
processes, then press one of the buttons. The button action that you choose applies to all
selected processes.

The buttons allow you to detach and terminate processes.

To detach from a process, first select one or more processes in the summary window.
The selected processes are highlighted. Then click on Detach. The selected processes
are detached from the dialogue. This is similar to using the det ach command. See
“detach” on page 7-32.

The Kill button may be used to terminate one or more processes. Thisis similar to using
theki I I command. See“kill” on page 7-33.

The default list selection policy is extended, which means you can select discontiguous
ranges of items. This list selection policy is configurable. (The only other selection
policy that is appropriate is multiple.) See “List Selection Policies’ on page 9-9. See
Appendix D [GUI Customization] on page D-1.

Y ou can change the height of this area by moving the sash up or down. See“Sashes’ on
page 9-12.

Dialogue Window Dialog Boxes

This section describes dialog boxes that may appear while you are using the Dialogue
Window.

Program Arguments Dialog Box

This dialog box pops up if you invoke NightView with a program name as a command-
line argument (see Chapter 6 [Invoking NightView] on page 6-1). It allows you to
specify the arguments that your program expects. The message in the dialog box tells

9-19

NightView User’s Guide

Attach Dialog Box

9-20

you the name of the program and what to do.

Y ou cannot interact with other NightView windows, except the Help Window, until you
select either OK or Cancel in this dialog box.

Enter Program Arguments.

Enter the arguments, if any, in thetext input area. Pressing Return activatesthe OK
button.

See “Text Input Areas” on page 9-5.
Choose an Action Button.
If you are satisfied with the arguments you entered, click on OK.

If you decide you do not want to debug this program, click on Cancel. You can
till debug the program later, by entering the appropriate shell command in the dia-
logue 1/O area. See“Dialoguel/O Ared’ on page 9-18).

You can get help for this dialog box by clicking on Help.

The dialog box will disappear, and you should see a shell command for your program,
with the arguments you specified in this dialog box, appear in the dialogue 1/0 area. The
program is started, causing a Debug Window to appear for it; at that point, you can debug
the program. See “Debug Window” on page 9-21.

Thisdialog box pops up when you select the Attach... item in theDialogue menu of the
Dialogue Window. See“Diaogue Menu” on page 9-17. Thisdialog box letsyou view the
processes on the system and select one or more to attach to.

Select which processes you want to see with the filter fields, then click on Filter. Select
the processes you want to attach to by clicking on them, then click on Attach.

The filter has three text input areas. See “Text Input Areas’ on page 9-5. The text input
areas each take a regular expression. When you click on the Filter button, the Pro-
cesses listisfilled in with the processes that match all three regular expressions. one for
the process identifier (PID), one for the User and one for the Program name. See “Reg-
ular Expressions” on page 7-12. Each regular expression must match the entire corre-
sponding string (that is, each one uses an anchored match). Theinitial value of the PID and
Program regular expressionsis". *", which match all processes. The initial value of the
User regular expression is the name of the user logged in to the dial ogue.

The Processes list indents the program names to show the parent/child relationship.
Each process appears below its parent process and indented relative to the parent process.

The Processes list uses the multiple selection policy. See “List Selection Policies’ on
page 9-9.

The Attach button closes the dialog box and attaches to the selected processes.

Click on Cancel to dismiss the dialog box without attaching to any processes. Click on
Help to get help for this dialog box.

Graphical User Interface
Debug Window

The Debug Window provides the primary means of debugging and manipulating one or
more processes.

By default, the window is in single process mode, which means you can debug and
manipulate the currently displayed process or switch to any other process represented in
this Debug Window. See “Single Process Mode” on page 9-14. See “Debug Group Ared”
on page 9-37. If you want to debug and manipulate al the processes represented in this
window at the same time, you can change to group process mode. See “Group Process
Mode” on page 9-14. See “Debug View Menu” on page 9-27.

You can create Debug Windows and define the group of processes that appear in them.
See “Debug NightView Menu” on page 9-21.

The behavior of a Debug Window differs slightly depending on whether it is the Principal
Debug Window (created automatically by NightView) or a Debug Window created by
you. See“Debug Window Behavior” on page 9-13.

Debug Menu Bar

From the debug menu bar you can perform globa NightView actions, perform actions on
one or more processes, choose source to display or edit, manipulate eventpoints, change
the way you view the window, select items to display, and obtain online help.

Debug NightView Menu

Mnemonic: N

The NightView menu is used to control NightView windows and perform global
NightView actions. The NightView menu appears in the Data, Debug, Diaogue and
Global windows and has the same menu items in each window.

Create Debug Window...
Mnemonic: D

Selecting this menu item allows you to create a new Debug Window. See “Debug
Window” on page 9-21.

A diaog box is displayed that allows you to select one or more qualifier specifiersto
define the new window. You can also provide a name for the new Debug Window.
See “Qualifier Specifiers’ on page 7-10.

See “Debug Group Selection Dialog Box” on page 9-38.
Open Principal Debug Window

Mnemonic: P

9-21

NightView User’s Guide

Selecting this menu item opens the Principal Debug Window. See “Debug Window
Behavior” on page 9-13.

This menu item is disabled (dimmed) if the Principal Debug Window is already
open.

Open Global Window

Mnemonic: G
Selecting this menu item opens the Global Window.

This menu item is disabled (dimmed) if the Global Window is already open. See
“Global Window” on page 9-61.

Start Remote Dialogue...

Mnemonic: R

Selecting this menu item alows you to create a remote dial ogue on atarget system
of your choice. A didog box is displayed that allows you to choose parameters for
the remote dialogue. See “Remote Login Dialog Box” on page 9-47.

Close Window

Mnemonic: C
Selecting this menu item closes this window and any related dialog box windows.

If thisis a Debug Window, closing the window has no effect on the processes in the
window. If thisis a Dialogue Window, closing the window has the same effect as
logging out of the dialogue. See “Dialogue Menu” on page 9-17.

Exit (Quit NightView)

Debug Process Menu

Mnemonic: X
Accderator: Ctrl+ Q

Selecting this menu item causes NightView to exit. This has the same effect as the
qui t command. See*“quit” on page 7-17.

Depending on the safety level (see“ set-safety” on page 7-49) and whether there are
any active processes, NightView may display a warning dialog box when you use
the Exit menu item. See“Warning Dialog Box” on page 9-15.

Mnemonic: P

Thismenu is used to perform actions on processes.

If the window is in single process mode, the menu item you select will affect only the
currently displayed process. See “Single Process Mode” on page 9-14. If the window is
in group process mode, then the menu item you select will act on each of the processesin
the group arealist. See“ Group Process Mode” on page 9-14.

9-22

Graphical User Interface

Detach
Mnemonic: D

Selecting this item causes NightView to detach from the currently displayed process
(if in single process mode) or from each process listed in the group arealist (if in
group process mode). See “Single Process Mode” on page 9-14. See “ Group Pro-
cessMode” on page 9-14. See “Debug Group Ared” on page 9-37.

Thisissimilar to using the det ach command. See “detach” on page 7-32.

Depending on the safety level (see “set-safety” on page 7-49), NightView may dis-
play awarning dialog box when you use the Detach menu item. See “Warning
Dialog Box” on page 9-15.

Kill
Mnemonic: K

Selecting thisitem causes NightView to terminate the currently displayed process (if
in single process mode) or each process listed in the group area list (if in group pro-
cessmode). See“Single ProcessMode” on page 9-14. See*“ Group Process Mode”
on page 9-14. See “Debug Group Ared’ on page 9-37.

Thisissimilar tousingtheki | | command. See“kill” on page 7-33.

Depending on the safety level (see “set-safety” on page 7-49), NightView may dis-
play awarning dialog box when you use the Kill menu item. See“Warning Dialog
Box” on page 9-15.

Debug Source Menu

Mnemonic: S

This menu provides ways of changing the program code displayed in this window's source
display area and editing source files that are listed. See “Debug Source Display” on page
9-33.

Because the source display area shows only one process's program code at a time, the
itemsin this menu act independently of whether the window is in single or group process
mode. See “Single Process Mode” on page 9-14. See “Group Process Mode’ on page
9-14.

List Function/Unit...
Mnemonic: F

Selecting this menu item pops up a diaog box that allows you to list the program
code of afunction or Ada unit in the debug source display. See “Debug Source Dis-
play” on page 9-33.

Thisdialog box istitled Select a Function/Unit, and displays the process's qual -
ifier specifier. See“Qualifier Specifiers’ on page 7-10. It allows you to optionally
enter aregular expression that is used to search for function names that NightView
knows about. (An anchored match is not implied.) See “Regular Expressions” on

9-23

NightView User’s Guide

9-24

page 7-12. For example, enter set $ to search for function names ending with 'set'.
A list of functionsis displayed, and one function can be selected for display in the
debug source display. For Adaand C++, the regular expression is only applied to the
final component of a name.

The regular expression case sensitivity depends on the current search mode (see
“set-search” on page 7-54).

The Select a Function/Unit dialog box is one variation of the debug source
selection dialog box, which is also used by the List Source File... menu item.
See “Debug Source Selection Dialog Box” on page 9-39.

List Source File...

Mnemonic: S

Selecting this menu item pops up adialog box that allows you to list a sourcefilein
the debug source display. See “Debug Source Display” on page 9-33.

This dialog box istitled Select a Source File, and displays the process's quali-
fier specifier. See “Quadlifier Specifiers’ on page 7-10. It alows you to optionally
enter awildcard pattern which is used to search for source file names that Night-
View knows about. See “Wildcard Patterns’ on page 7-14. For example, enter
nmod*. ¢ to search for source file namesthat start with 'mod' followed by any num-
ber of characters and ending with '.c'. A list of source files is displayed, and one
source file can be selected for display in the debug source display.

The Select a Source File dialog box is one variation of the debug source selec-
tion dialog box, which is also used by the List Function/Unit... menuitem. See
“Debug Source Selection Dialog Box” on page 9-39.

List Any File...

Edit

Mnemonic: A

Selecting this menu item pops up a file selection dialog box that allows you to
choose any file you wish and list it in the debug source display. See “Debug Source
Display” on page 9-33.

Thisdialog box istitled Select a File. See“Debug File Selection Dialog Box” on
page 9-40.

Mnemonic: E

Selecting thisitem lets you edit the source file that is currently displayed in the
debug source display. See“Debug Source Display” on page 9-33.

There are some rules for determining how the editor isinvoked. Theresource edi -

t or isexpected to be a string, editorstring, that describes how to invoke the editor.
The string may contain variable specifiers, which are composed of a %followed by
another character. The variable specifiers are replaced by an appropriate value to
create the editor string. The variable specifier characters are:

%

Graphical User Interface

Replaced by % That is, to get a % use %86

s
Replaced by the name of the source file.
Replaced by the line number of the current position.

p
Replaced by the offset, in characters, of the current position from the begin-
ning of thefile.

c

Replaced by the column of the current position.
A %followed by any other character isignored.
Anexampleedi t or resourceis:
nvi ew*editor: emacsclient +% %

If theedi t or resource is not defined, then the name of the editor is taken from the
EDITOR environment variable. If thereis no EDITOR variable, then vi isused. In
these cases the editor is invoked with the name of the current source file as the sole
argument.

If your editor can communicate with the X Window System display directly, then
you should set the resource edi t or Tal ksXtot r ue. Then the editor isinvoked
as editorstring. Otherwise, the editor isrun via/ usr/ bi n/ X11/ xt erm - e edi-
torstring.

Note that once you have edited the source file, NightView displays the new contents,
but the debugging information still refers to the old contents. For this reason, the
source decorations may no longer match. Also, you might get confusing results
from using the special keysin the debug source display or from entering commands
based on the new contents.

Debug Eventpoint Menu

Mnemonic: E

This menu provides ways to set and change eventpoints, and see a summary of
eventpoints. See “Eventpoints’ on page 3-8.

Before selecting one of the menu items, position the text insertion cursor on the line of
interest in the debug source display. See “Debug Source Display” on page 9-33.
NightView uses this line to determine the location specifier for you. See “Location
Specifiers’ on page 7-9.

Once you select a menu item, NightView displays the eventpoint dialog box for the
selected item.

9-25

NightView User’s Guide

9-26

Set Breakpoint...

Mnemonic: B
Accelerator: Ctrl+ B

Selecting this menu item pops up a breakpoint dialog box that allows you to set a
new breakpoint at a given location and apply eventpoint attributes to it. See
“Manipulating Eventpoints’ on page 7-77. See“breakpoint” on page 7-80.

For information on using the breakpoint dialog box, see “Debug Eventpoint Dialog
Boxes’ on page 9-40.

Like the Breakpoint button, this menu item allows you to set a breakpoint. But
using the breakpoint dialog box provides you with more control and flexibility.
Using the Breakpoint button, you can only set a simple breakpoint. See “Debug
Command Buttons’ on page 9-34.

Set Monitorpoint...

Mnemonic: M
Accelerator: Ctrl+ M

Selecting this menu item pops up a monitorpoint dialog box that allows you to set a
new monitorpoint at a given location and apply eventpoint attributes to it. See
“Manipulating Eventpoints’ on page 7-77. See“monitorpoint” on page 7-85.

For information on using the monitorpoint dialog box, see “Debug Eventpoint Dia-
log Boxes” on page 9-40.

Set Patchpoint...

Mnemonic: P
Accelerator: Ctrl+ P

Selecting this menu item pops up a patchpoint dialog box that allows you to set a
new patchpoint at a given location and apply eventpoint attributes to it. See
“Manipulating Eventpoints’ on page 7-77. See“patchpoint” on page 7-81.

For information on using the patchpoint dialog box, see “Debug Eventpoint Dialog
Boxes’ on page 9-40.

Set Tracepoint...

Mnemonic: T
Accelerator: Ctrl+ T

Selecting this menu item pops up a tracepoint dialog box that allows you to set a
new tracepoint at a given location and apply eventpoint attributesto it. See “Manip-
ulating Eventpoints’ on page 7-77. See “tracepoint” on page 7-84.

For information on using the tracepoint dialog box, see “Debug Eventpoint Dialog
Boxes’ on page 9-40.

Graphical User Interface

Set Agentpoint...
Mnemonic: A
Accelerator: Ctrl+ A

Selecting this menu item pops up an agentpoint dialog box that allows you to set a
new agentpoint at a given location and apply eventpoint attributes to it. See
“Manipulating Eventpoints’ on page 7-77. See*agentpoint” on page 7-88.

For information on using the agentpoint dialog box, see “Debug Eventpoint Dialog
Boxes’ on page 9-40.

Set Watchpoint...
Mnemonic: W
Accelerator: Ctrl+W

Selecting this menu item pops up a watchpoint dialog box that allows you to set a
new watchpoint at a given location and apply eventpoint attributes to it. See
“Manipulating Eventpoints’ on page 7-77. See“watchpoint” on page 7-96.

For more information on using the watchpoint dialog box, see “ Debug Eventpoint
Dialog Boxes” on page 9-40.

Summarize/Change...
Mnemonic: U
Accelerator: Ctrl+ U
Selecting this menu item pops up an eventpoint dialog box that allows you to see a
summary of eventpoints and make changes to existing eventpoints. See “Manipu-

lating Eventpoints’ on page 7-77.

For information on using the eventpoint summary dialog box, see “Debug Event-
point Summarize/Change Dialog Box” on page 9-44.

Debug View Menu

Mnemonic: V
This menu allows you to change the way you view the contents of the Debug Window.
Display Group Area

Mnemonic: D

Accelerator: Ctrl+ D

This menu item displays a check button which is either set or unset, depending on
whether the debug group areais displayed or hidden from view. See “Debug Group
Area’ on page 9-37. See “Toggle Buttons’ on page 9-12.

9-27

NightView User’s Guide

9-28

The default initial setting is set: the debug group area is displayed. You can change
this setting at any time by selecting this menu item.

You can change the initial setting by setting the resource di spl ayGr oupTog-
gl eButt on. set. The default value of thisresource is Tr ue. See Appendix D
[GUI Customization] on page D-1.

Single Process Mode

Mnemonic: S
Accelerator: Ctrl+ S

Selecting this menu item causes the appearance of the window to change and causes
NightView commands to operate on a single process, rather than on all the processes
which may be represented in this window's group area. See “Single Process Mode”
on page 9-14. See “Debug Group Area’ on page 9-37. Single process mode is the
default setting.

When the Debug Window is in single process mode, afilled radio button is shown
next to the menu item to indicate that this option is selected. See “Toggle Buttons”
on page 9-12.

The other member of this set of optionsisthe Group Process Mode menu item.
See “ Group Process Mode” on page 9-14.

The behavior of the Debug Window when in single or group process mode is
described in another section. See “Debug Window Behavior” on page 9-13.

Group Process Mode

Mnemonic: G
Accelerator: Ctrl+ G

Sel ecting this menu item causes the appearance of the window to change and causes
NightView commands to operate on all the processes represented in the group area,
rather than on a single process. See “Group Process Mode” on page 9-14. See
“Debug Group Area’ on page 9-37.

When the Debug Window is in group process mode, afilled radio button is shown
next to the menu item to indicate that this option is selected. See “Toggle Buttons”
on page 9-12.

The other member of this set of optionsisthe Single Process Mode menu item.
See “ Single Process Mode” on page 9-14.

The behavior of the Debug Window when in single or group process mode is
described in another section. See “Debug Window Behavior” on page 9-13.

Show Qualifier...

Mnemonic: L

Accdlerator: Ctrl+ L

Graphical User Interface

Use this menu item to see the value of the qualifier for this window. See“Qualifier
Specifiers” on page 7-10. The qualifier is displayed in an information dialog box
entitled Window Qualifier. Select OK to dismissthe dialog box.

The Window Qualifier dialog box is not dynamically updated when the qualifier
changes. You must redisplay this dialog box each time you want to see the current
value of the qualifier.

Debug Display Menu

Mnemonic: D

Use this menu to select a data item to place in a Data Window. The Display menu
appears in the Data Window and the Debug Window, with the same menu items in both
windows.

Each menu button pops up a dialog box that lets you choose which Data Window to add
the data item to and which processes the data item is associated with. For
Expression..., the dialog box also has afield for entering the expression. See “Data
Window” on page 9-51.

The menu items are:
Expression...
Mnemonic: E

The dialog box allows you to enter an expression. A dataitem for that expression is
placed in the Data Window. See “Data Window Add Expression” on page 9-57.

Local Variables...
Mnemonic: L

A local-variables data item is placed in the Data Window. See “Data Window Add
Local Variables’ on page 9-58.

Registers...
Mnemonic: R

A registers dataitemis placed in the Data Window. See“Data Window Add Regis-
ters’ on page 9-58.

Stack...
Mnemonic: S

A stack dataitem is placed in the Data Window. See “Data Window Add Stack” on
page 9-58.

Threads...

Mnemonic: T

9-29

NightView User’s Guide

A threads data item is placed in the Data Window. See “Data Window Add
Threads’ on page 9-58.

Debug Help Menu

Mnemonic: H

This menu provides ways of getting context-sensitive help, help on the current window,
help on the last error NightView encountered, as well as several other categories of help.
NightView help information is displayed in a Help Window. See “Help Window” on
page 9-63.

The Help menu isdescribed in another section. See “Help Menu” on page 9-3.

A general discussion of NightView's online help is also available. See “GUI Online
Help” on page 9-2.

Debug Message Area

This area displays messages related to the processes represented by this window. The
displayed information includes process status messages, error messages and output from
commands that are processed by this Debug Window.

If the window is in single process mode, NightView displays output from only the
currently selected process plus messages from any commands that are executed in this
window while that process is selected. See “Single Process Mode” on page 9-14.If the
window isin group process mode, then NightView displays output from all the processes
in the group, plus messages from any commands that are executed in this window. See
“Group Process Mode” on page 9-14.

Thisisascrolling area. Y ou can use the scroll bar to ook at older or newer messages.

Y ou can change the height of this area by moving the sash up or down. See*“Sashes’ on
page 9-12.

Debug Identification Area
This area shows the name of the executable program that the currently displayed process
is running.

There is aso a label showing the qualifier specifier for this process. See “Quadlifier
Specifiers” on page 7-10.

Debug Source Lock Button

The Debug Window contains a source lock button. The source lock button looks like a
little padlock.

9-30

Graphical User Interface

You can lock the source display by clicking on the source lock button. The padliock
changes from being unlocked to locked, and the button is highlighted with the selection
color. This indicates that the source display is locked. Click on the button again to
unlock.

A locked source display does not change which file is displayed unless you explicitly
changeit. These actions explicitly change the source display:

* |ssuingal i st command in the command area of the window.
¢ Using the Source menu.

* |ssuing an up, down or f r ame command in the command area of the win-
dow.

These events can cause an unlocked source display to change:

* The currently displayed process stops.

* The source file for the currently displayed process changes because of an
action in another window.

Debug Source File Name

This area shows the name of the source file displayed in the debug source display. See
“Debug Source Display” on page 9-33. If there is no source file displayed, then this field
shows No Source File. If NightView cannot find the source file, this field shows
Cannot find: filename.

Debug Status Area
This area shows the status of the currently displayed process. Here are the values that
thisfield may have:
About to exit

The process hit the exit breakpoint. See “Exited and Terminated Processes’ on page
3-16.

Calling function
The processis executing to evaluate afunction call.
Exited

The process has exited. See “Exited and Terminated Processes’ on page 3-16. This
status does not normally appear, because the process is removed from the Debug Window
when the process exits.

Finish frame

The process is executing until a designated instance of a subprogram returns to its caller.

9-31

NightView User’s Guide

9-32

See “finish” on page 7-103.
New process

This process has just been created by af or k() call in the parent process. The processis
stopped. See “Multiple Processes” on page 3-2.

Running

The processis currently executing.

Stepping

The process is executing because of a stepping command. See “step” on page 7-100.
Stopped after finish

The process has completed af i ni sh command. See*“finish” on page 7-103.
Stopped after step

The process has finished a stepping command. See “step” on page 7-100.

Stopped at breakpoint number

The process hit breakpoint number number. See “Breakpoints’ on page 3-10.
Stopped at watchpoint number

The process stopped because of watchpoint number. See “Watchpoints® on page 3-11.
Stopped for watchpoint error

The process stopped because of an error during watchpoint processing. An error message
in the debug message area in the Debug Window should explain the problem. See
“Watchpoints” on page 3-11. See “Debug Message Ared” on page 9-30.

Stopped by attach

The process has just been attached by the debugger. See “Attaching” on page 3-3.
Stopped by user

The process stopped because of ast op command. See “stop” on page 7-104.
Stopped for exception-name

The process stopped because of the Ada exception named exception-name. See
“Exception Handling” on page 3-34.

Stopped for exec

The process has just exec () 'ed a new program image. See “Programs and Processes’
on page 3-2.

Stopped with signal

The process stopped with signal signal. See “Signals” on page 3-12.

Graphical User Interface

Terminated with signal

The process terminated with signal signal. See “Exited and Terminated Processes’ on
page 3-16. This status appears only for corefiles. See “Core Files’ on page 3-4.

Debug Source Display

The debug source display area lists the program code corresponding to the currently-
selected frame in the currently-selected process. See “Current Frame” on page 3-25. See
“Debug Group Area’ on page 9-37. See “list” on page 7-58, for information on how the
current source file is determined.

The text in this area includes the program listing along with line numbers and source
decorations. See “Source Line Decorations’ on page 7-63.

The text in this area changes if you use the debug source menu to list other functions or
files.

Y ou can change the height of this area by moving the sash up or down. See“Sashes’ on
page 9-12.

There are severa specia keys that may be used within this area. The function of most
keys is independent of the position of the text cursor in this area. Some keys, like b and
h, do depend on the position of the text cursor so that NightView can determine the
source line of interest.

The text cursor (an "l-beam" cursor) can be moved to different locations within this area
by using the arrow keys or by pointing to a source line and clicking mouse button 1.

S
Thiskey is similar to using the st ep command with no argument. See “step” on
page 7-100.

S
Thiskey issimilar to using the st epi command with no argument. See “stepi” on
page 7-102.

n
This key is similar to using the next command with no argument. See “next” on
page 7-101.

N

Thiskey issimilar to using the next i command with no argument. See “nexti” on
page 7-103.

Thiskey issimilar to using ther esune command with no argument. See “resume”
on page 7-99.

9-33

NightView User’s Guide

h
Run the process until it reaches the line the source window cursor ison. Thiskey is
identical to the Run to Here button. See “Debug Command Buttons” on page
9-34. It combines the actions of br eakpoi nt , enabl e/ del et e, andr esune.

f
Thiskey is similar to using thef i ni sh command. See“finish” on page 7-103.

u
This key is similar to using the up command with no argument. See “up” on page
7-110.

d
Thiskey is similar to using the down command with no argument. See “down” on
page 7-110.
Thiskey issimilar to using thef r ame 0 command. See“frame” on page 7-109.

>
This key is similar to using the f r ame command with no arguments. See “frame’
on page 7-109.

e
Thiskey is similar to selecting the Edit item in the Source menu. See “Debug
Source Menu” on page 9-23.

p
This key performs the same action as the Print button in the debug command but-
tonsarea. See“Debug Command Buttons” on page 9-34).

b

This key performs the same action as the Breakpoint button (see “Debug Com-
mand Buttons’ on page 9-34).

Debug Command Buttons

9-34

The debug command buttons let you control one or more processes by clicking with
mouse button 1. See “Understanding the Debug Window” on page 9-12. Some buttons
may be disabled (dimmed) under certain circumstances.

If the Debug Window is in single process mode, button-activated commands apply only
to the currently displayed process. See “Single Process Mode” on page 9-14. If the Debug
Window is in group process mode, button-activated commands apply to each of the
processes represented in the debug group area list. See “Group Process Mode” on page

Graphical User Interface

9-14.
Resume

Clicking on this button is similar to using the r esume command with no argument.
See “resume”’ on page 7-99.

Step

Clicking on this button is similar to using the st ep command with no argument.
See “step” on page 7-100.

Stepi

Clicking on this button is similar to using the st epi command with no argument.
See “stepi” on page 7-102.

Next

Clicking on this button is similar to using the next command with no argument.
See“next” on page 7-101.

Nexti

Clicking on this button is similar to using the next i command with no argument.
See “nexti” on page 7-103.

Finish
Clicking on this button is similar to using the f i ni sh command. See “finish” on
page 7-103.

Stop

Clicking on this button is similar to using the st op command. See “stop” on page
7-104.

Print

Clicking on this button is similar to using the pri nt command. See “print” on
page 7-66. You must have selected an expression in the debug source display area
before pressing this button. See “Debug Source Display” on page 9-33. When you
press the button, the value of the selected expression is printed using the default for-
mat for the type of the expression.

Data Display

Clicking on this button is similar to using the Expression... button in the Display
menu. See “Debug Display Menu” on page 9-29. You must have selected an
expression in the debug source display area before pressing this button. See “Debug
Source Display” on page 9-33. When you press the button, the selected expression
is added to the default Data Window. See “Data Window” on page 9-51.

Breakpoint

Clicking on this button is similar to using the br eakpoi nt command with aline
number for the location specifier. See “breakpoint” on page 7-80. You must have

9-35

NightView User’s Guide

9-36

moved the text cursor in the debug source display areato the source line where you
want to set the breakpoint. See “Debug Source Display” on page 9-33. NightView
uses this source line as the location specifier for the breakpoint. See “Location
Specifiers’ on page 7-9. When you press this button, a breakpoint is set. You seethe
source line decoration change and a message is displayed in the debug message area.
See “Debug Message Area” on page 9-30. You can also set a breakpoint using the
breakpoint dialog box, which provides you with more control and flexibility than the
Breakpoint button. See“Debug Eventpoint Menu” on page 9-25.

Run to Here

Run the process until it reaches the line the source window cursor ison. Thisallows
you to usethe Run to Here button to quickly skip past chunks of code without sin-
gle stepping through each line.

Clicking on this button combines the actions of three commands: First, it sets a
br eakpoi nt at the source window line where the text cursor is located. See
“Debug Source Display” on page 9-33. Next, it runs enabl e/ del et e on that
breakpoint (which will cause it to be deleted when it is hit). Findly, it r esunmesthe
process. See “breakpoint” on page 7-80. See “enable” on page 7-93. See “resume”
on page 7-99.

When you press the button, you will see the source line decoration for the break-
point appear and the message area will print a message about the new breakpoint.
When the process finally stops at that breakpoint, the breakpoint will be deleted, and
the decoration will disappear. See“Debug Message Area’ on page 9-30.

Clear

Up

Clicking on this button is similar to using the cl ear command with a line number
for the location specifier. See“clear” on page 7-89. You must have moved the text
cursor in the debug source display areato the source line where you want to clear
eventpoints. See “Debug Source Display” on page 9-33. NightView uses this
source line as the location specifier. See“Location Specifiers’ on page 7-9. When
you press this button, any eventpoints that are set at the first instruction of this line
areremoved. (If you have eventpoints set at instructions within the line, they will
not be cleared.) You see the source line decoration change and a message is dis-
played in the Debug message area. See “Debug Message Area” on page 9-30.

Clicking on this button advances one stack frame toward the oldest calling frame.
Thisaction issimilar to using the up command with no argument. See “up” on page
7-110.

Down

Clicking on this button advances one stack frame toward the currently executing
(newest) stack frame. This action is similar to using the down command with no
argument. See “down” on page 7-110.

Graphical User Interface

Debug Interrupt Button

Debug Qualifier

Clicking on this button interrupts whatever the debugger is doing. Thisis similar to using
the shell interrupt character in the command-line interface. See “Interrupting the
Debugger” on page 3-30.

Area

In single process mode, the debug qualifier area is a label that reminds you that
commands entered in the debug command area are implicitly qualified by the currently
displayed process in this Debug Window. See Debug Command Area” on page 9-37. See
“Single Process Mode” on page 9-14. The label shows the process's qualifier specifier.
See “Qualifier Specifiers’ on page 7-10.

In group process mode, any commands that you enter are implicitly qualified by the
qualifier associated with this Debug Window. See “Group Process Mode” on page 9-14.
The qualifier label is replaced by an indicator that you arein Group Mode. To seethe
value of the qualifier, use the View menu item Show Qualifier.... See“Debug View
Menu” on page 9-27.

Debug Command Area

The debug command area in the Debug Window is used to enter NightView commands.
Like the dialogue command area in the Dialogue Window and the global command area
in the Global Window, all the command-line interface commands, except for shel | , can
be entered in the debug command area.

Input to this area is similar to using the command-line interface. For example, you can
enter an explicit qualifier followed by a command. If you do not specify a qualifier, the
command is implicitly qualified by the currently displayed process (if you are in single
process mode), or by the group of processes represented in this Debug Window (if you
are in group process mode). See “Single Process Mode” on page 9-14. See “Group
Process Mode” on page 9-14.

The debug command areais a combo box. See“Combo Boxes” on page 9-6.

Debug Group Area

The debug group area provides a list of all the processes that are represented in this
Debug Window. Scroll bars appear if the list requires more space than the group area
currently provides. The list is followed by the Switch To button, which alows you to
switch the currently displayed process to a process that you have selected in the list. The
list selection policy is browse, which means you can select only one list item at a time.
See “List Selection Policies” on page 9-9.

Each item, or row, in the list contains the following information about one process. the
qualifier specifier of each process, the executable file name, and an abbreviated status

9-37

NightView User’s Guide

indicator. See“Qualifier Specifiers” on page 7-10. If the status information for a process
changes, it isupdated in the list.

To change the currently displayed process, select alist item, then press the Switch To
button. Or, you can double-click on a list item to both select the item and switch to it.
The program code for the currently selected process is represented in the source display
area, and the identification area, status area and source file name area contain information
about the currently selected process. See “Debug Source Display” on page 9-33. See
“Debug Identification Area’ on page 9-30. See “Debug Source File Name” on page
9-31.

The highlighted item in the group area list normally represents the currently displayed
process in the source display area. This is true unless you select a different list item
(process) and fail to switch toit.

You can cycle through the stopped processes in the group area list by using the button
panel, labeled Switch To Stopped Process, located to the right of the list. If you
click on Auto, NightView determines which process in the list is currently stopped and
has been stopped the longest, highlights it in the list, and automatically switches the
currently displayed process (in the source display area) to this process. (Thisissimilar to
the auto qualifier specifier. See “Qualifier Specifiers’ on page 7-10.) The "up arrow"
and "down arrow" buttons cause NightView to automaticaly select, and switch to, the
next stopped process that is located up in the list, or down in the list, relative to the
currently selected list item. Continuing to click on a directiona arrow in this button
panel after the top or bottom list item has been reached causes NightView to "wrap
around" its search in thelist for the next stopped process.

Y ou can use the View menu item Display Group Area to display this area or to hide
it from view. See“Debug View Menu” on page 9-27.

The size of the Debug Window does not change to accommodate the presence of the
group area; rather, the source display area expands or shrinks depending on whether it
needs to make room for the group area.

The group area can be resized within the Debug Window by adjusting the sash that
separates it from the pane containing the source display. See “Sashes’ on page 9-12.

Debug Dialog Boxes

This section describes dialog boxes that may appear while you are using the Debug
Window. See “Diaoguesand Dialog Boxes” on page 9-10.

Debug Group Selection Dialog Box

9-38

This dialog box pops up when you use the NightView menu to create a new Debug
Window. See “Debug NightView Menu” on page 9-21. You can select qualifier
specifiers and provide a name for the new window. See “Qualifier Specifiers’ on page
7-10.

Select qualifier specifiers.

Graphical User Interface

Select one or more items to define the new Debug Window. If you choose a quali-
fier-specifier such as a dialogue name, the existing processes in that dial ogue appear
in the new Debug Window; future processes that start up in that dialogue do not nec-
essarily appear in the new Debug Window unless their parent process is already
there. See“Debug Window Behavior” on page 9-13.

The default list selection policy is extended, which means you can select discontigu-
ous ranges of items. See “List Selection Policies’ on page 9-9. This list selection
policy isconfigurable. See Appendix D [GUI Customization] on page D-1.

Debug Window name.

By default, NightView usesthe first selected item in the list for the window's name.
Or, you can type in a name for the new Debug Window. Pressing Return activates
the OK button.

This name appears in the window manager'stitle bar and as the window's icon label.
Thisisatextinput area. See“Text Input Areas” on page 9-5.
Choose an action button.

When you are satisfied with your choices, click on OK. The dialog box is dismissed
and a new Debug Window is created that contains the items you sel ected.

Clicking on Cancel cancelsthe action and closes this dialog box.

You can get help for this dialog box by clicking on Help.

Debug Source Selection Dialog Box

This diaog box pops up when you ask to list afunction or Ada unit, or ask to list a source
file from the Debug Window's Source menu. See “Debug Source Menu” on page 9-23.
It allows you to change the program code that is listed in the Debug Window by selecting
a function, Ada unit name or source file name from a list. You can interact with other
NightView windows while this dialog box is displayed.

This dialog box is titled Select a Function/Unit or Select a Source File,
depending on which menu item you selected, and displays the qualifier of the currently
displayed process.

Enter search criteria.

Enter the regular expression (if you are searching for functions) or wildcard pattern
(if you are searching for source files) you want to search for, then either press
Return or click on Search. (For aregular expression, an anchored match is not
implied.) See “Regular Expressions’ on page 7-12. See “Wildcard Patterns’ on
page 7-14.

If you do not want to enter aregular expression or wildcard pattern, you can simply
press Return or click on Search and all functions or files are displayed.

9-39

NightView User’s Guide

For Adaand C++, the regular expression isonly applied to the final component of a
name.

The next time you use this dialog box, thistext is redisplayed.
Select alist item.

If NightView finds any functions or source files, their names are displayed in the list
area. Scroll bars appear if the list requires more space than the dialog box currently
provides. If no functions or files are found, a message is displayed in the debug
message area. See “Debug Message Area’ on page 9-30. The list uses the browse
selection policy, which means that only one item can be selected at atime. See“List
Selection Policies’ on page 9-9.

Select anitemin the list. If you double-click on an item in the list, the OK button is
activated.

Choose an action button.

Click on OK to list that function, Ada unit name or source file in the source display
area. See“Debug Source Display” on page 9-33. This button is disabled (dimmed)
if thelist isempty.

You can cancel the listing of the selected function or source file by clicking on
Cancel.

You can get help for this dialog box by clicking on Help.

Debug File Selection Dialog Box

This dialog box pops up when you select List Any File... from the Debug Window's
Source menu. Italowsyouto list afile of your choice in the Debug Window.

Thisisafile selection dialog box. See“File Selection Dialog Box” on page 9-8.
Select afile name.

Select the file you want to list. If you double-click on afile name in the Files list,
the OK button is activated.

Choose an action button.
If you are satisfied with the file you selected, click on OK.
Clicking on Cancel cancels the action and closes this dialog box.

You can get help for this dialog box by clicking on Help.

Debug Eventpoint Dialog Boxes

NightView provides a dialog box for each type of eventpoint. See “Eventpoints’ on page
3-8. These dialog boxes pop up when you use the Debug Window's Eventpoint menu to
set or change an eventpoint. See “Debug Eventpoint Menu” on page 9-25. You decide
how you want the eventpoint set or changed, then select the OK button and NightView

9-40

Graphical User Interface

will set or modify it for you.

All types of eventpoints share common traits;, some eventpoints have additional optional
or required information.

The eventpoint dialog boxes generaly present the common eventpoint information first,
followed by any data that is specific to a given eventpoint. The watchpoint dialog box
first presents information specific to watchpoints, followed by the common eventpoint
information.

For inserted eventpoints, NightView provides default settings for new eventpoints,
including a default location specifier. See “Location Specifiers’ on page 7-9. In
addition, you can enter other information to define the eventpoint. Required data that
must be provided by you before NightView can set the eventpoint is visualy emphasized.

Depending on whether you are setting a new eventpoint, or changing an existing
eventpoint, NightView allows or disalows access to certain fields in the eventpoint
dialog boxes.

Define the eventpoint.
Description (display only)

Thetitle bar of each eventpoint dialog box indicates which kind of eventpoint
the dialog box deals with and whether the dialog box allows you to set a new
eventpont or to change an existing eventpoint.

Location

Thisfield is displayed only for inserted eventpoint dialog boxes, not for
watchpoint dial og boxes.

When the dialog box appears, the Location field contains a location speci-
fier.

When setting a new eventpoint, NightView determines this value from the
location of the text insertion cursor in the debug source display area. See
“Debug Source Display” on page 9-33. You can edit this text input area. See
“Text Input Areas’ on page 9-5.

When changing an existing eventpoint, NightView displays the location spec-
ifier associated with this eventpoint. You cannot change this location.

Watchpoint options (watchpoint dialog box only)

These controls et you indicate whether you want to specify an L-value (e.g., a
variable name) or an explicit program address and size. You can also control
whether you want the watchpoint to be for memory reads, memory writes, or
both.

When changing an existing watchpoint, these controls cannot be changed.
Watchpoint target (watchpoint dialog box only)
This text input area lets you enter an L-value or an explicit program address,

depending on the setting of the controls in the watchpoint options area. See
“Text Input Areas’ on page 9-5.

9-41

NightView User’s Guide

9-42

When changing an existing watchpoint, this field cannot be changed.

Watchpoint size (watchpoint dialog box only)

Thistext input area lets you enter the size of the watchpoint target if you have
selected Watch address and size in the watchpoint options area. See
“Text Input Areas’ on page 9-5. The size is an expression whose value is the
number of bytes to watch. If you have not selected Watch address and
size, then this areais not enabled.

When changing an existing watchpoint, this field cannot be changed.

Eventpoint Number (display only)

Thislabeled field is dimmed if NightView has not yet assigned a unique num-
ber to the eventpoint. See “Eventpoints” on page 3-8.

When changing an existing eventpoint, NightView displays the eventpoint
number.

Enable Options

When setting a new eventpoint, you can choose from several enable options.
By default, the eventpoint is created enabled. Thisis similar to using the
enabl e or di sabl e commands. See“enable” on page 7-93. See*“disable’
on page 7-92.

When changing an existing eventpoint, NightView displays the eventpoint's
enabled state. You can select a different enable option by clicking on one of

the choices. These options are dimmed if NightView cannot determine this
state.

Enable

This is the default choice when setting a new eventpoint. The event-
point is enabled.

Enable, disable after next hit
You can have the eventpoint be disabled automatically after the next hit.

For breakpoints, this is similar to using thet br eak command, or the
enabl e/ once command. See“tbreak” on page 7-94.

For patchpoints, thisis similar to using the t pat ch command, or the
enabl e/ once command. See “tpatch” on page 7-95.

For other eventpoint types, thisis similar to using the enabl e/ once
command.

Enable, delete after next hit

Valid for breakpoints and watchpoints only. You can have the event-
point be deleted automatically after the next hit. Thisissimilar to using
theenabl e/ del et e command.

Disable

Graphical User Interface

You can disable the eventpoint.
Condition

You can attach a condition to this eventpoint, or change an existing condition,
by editing thistext input field. Thisissimilar to usingthecondi ti on com-
mand. See“condition” on page 7-90.

If you delete an existing condition, the eventpoint becomes unconditional .
Ignore Count

You can attach an ignore count to this eventpoint, or change an existing ignore
count, by entering a number in this text input area. Thisis similar to using the
i gnor e command. See“ignore” on page 7-94.

The default ignore count is zero and is represented by a blank field.
Name

When setting a new eventpoint, you can assign anameto it by entering text in
this text input area. The name must consist only of alphanumeric characters
and underscores and must begin with an alphabetic character. The name may
be of arbitrary length. Thisis similar to using the name command. See
“name” on page 7-79.

You cannot change an existing eventpoint's name using the dialog box. Use
the nanme command to change eventpoint names.

Commands

Valid for breakpoints, monitorpoints, and watchpoints only; required to set
monitorpoints. You can attach commands to this eventpoint, or change exist-
ing commands, by entering one command per line in this multi-line text input
area. Thisis similar to using the commands command. See “commands’ on
page 7-90.

Evaluate Expression - Go To Location

Valid for patchpoints only; you are required to enter either an expression or a
location specifier to set a patchpoint. Select one of the two choices by click-
ing on it. The radio button appears filled for your selection, and the label for
the text input area changes to either Evaluate or Go to. See “Toggle But-
tons” on page 9-12. Enter the expression or location specifier in the text input
area.

Insert an expression at this location
This field represents the eval argument of one variant of the pat ch-
poi nt command. See “patchpoint” on page 7-81. Thisis the default
choice.

Branch to a different location

This field represents the goto argument of one variant of the pat ch-
poi nt command.

9-43

NightView User’s Guide

Once set, this field cannot be changed.
Event ID

Valid for tracepoints only; required to set atracepoint. Thisfield represents
the event-id argument of thet r acepoi nt command. You must enter a trace-
event number or symbolic name. See “tracepoint” on page 7-84.

Once set, this field cannot be changed.
Value

Valid for tracepoints only. This field represents the val ue= argument of the
t racepoi nt command. You can enter an expression whose value should be
logged with the trace event.

Once set, this field cannot be changed.
Choose an action button.
Click on OK to set or change the eventpoint. The dialog box is dismissed.

Click on Delete to delete an existing eventpoint. The dialog box is dismissed. This
button is disabled (dimmed) if thisisanew eventpoint.

Clicking on Cancel cancelsthe action and closes this dialog box.

You can get help for this dialog box by clicking on Help. The dialog box isnot dis-
missed.

If you are setting a new eventpoint or deleting an existing one, you see the source line
decoration change. NightView displays a message in the Debug message area to tell you
if the eventpoint was set.

If you make an error while entering data, NightView may display an error dialog box and
allow you to re-enter the data. See “Error Dialog Box” on page 9-16. Other warnings or
errors associated with setting or changing this eventpoint are displayed in the debug
message error. See “Debug Message Area’ on page 9-30.

You can use thei nfo event poi nt command to check the eventpoint settings. See
“info eventpoint” on page 7-116.

Debug Eventpoint Summarize/Change Dialog Box

9-44

This diaog box pops up when you use the Debug Window's Eventpoint menu to select
the Summarize/Change... item. See “Debug Eventpoint Menu” on page 9-25. If the
Debug Window is in single process mode, it shows you a summary of existing
eventpoints for the process. If the Debug Window is in group process mode, the
Qualifier changes to [Group Mode] and the list of eventpoints includes al the
processes in the qualifier. This dialog box also provides several ways for you to change
eventpoints. See “Single Process Mode” on page 9-14. See “Group Process Mode” on
page 9-14.

See “Eventpoints’ on page 3-8.

Graphical User Interface

Specify eventpoints to appear in the list.

NightView displays alist of eventpoints according to the selections you make in this
section of the dialog box.

By default, NightView displays all eventpoints that occur for the qualifier. If thereis
only one eventpoint, NightView selectsit for you in the list.

Pressing Return while the focus is in one of the text input areas causes the default
Update List button to be activated. See “Text Input Areas’ on page 9-5.

Choose eventpoints.

You can choose any combination of eventpoint types to display in the list by
clicking on the check button (or its label) for each eventpoint type you are
interested in. See “Toggle Buttons’ on page 9-12. Two buttons are also avail-
able to help you check all of the eventpoint types (Check All) or clear al of
the checked eventpoint types (Clear All).

Choose location.

By default, the location field is blank. NightView shows you all eventpoints
for the qualifier regardless of their locations (taking into consideration your
other list specifications).

If you want to see alist of eventpoints found at a given location, type aloca-
tion specifier into thisfield. See “Location Specifiers’ on page 7-9. Watch-
points are not associated with a location, so no watchpoints will match if you
enter alocation specifier.

If you want NightView to fill in the location field with alocation specifier that
corresponds to the location of the text insertion cursor in the source display
area, press the Update button next to the location field. See “ Debug Source
Display” on page 9-33.

Thelocation field is atext input area.
Choose eventpoint name.

If you want to see alist of eventpoints that have a certain name, enter the
namein thisfield.

If the namefield is blank, NightView shows you all eventpointsin the process
regardless of any name (taking into consideration your other list specifica-
tions).

The namefield isatext input area.
Qudlifier.

The qualifier is displayed to remind you that this list of eventpoints appliesto
the process or processes represented by this qualifier. See “Qualifier Specifi-
ers’ on page 7-10.

Update the list.

9-45

NightView User’s Guide

9-46

The Update List button updates the list of eventpoints and the qualifier that
representsthem. Press this button whenever you want to see the current list of
eventpoints and their status for the Debug Window's current qualifier.

The list of eventpointsis automatically updated when you change an event-
point by using thisdialog box. Thelist isnot updated if you create new event-
points or type in commands to change eventpoint characteristics; use the
Update List button if you are unsure of the current state of eventpoints.

Select eventpoints from the list to change.

The eventpoint list displays eventpoint ID numbers, tells you what type of event-
point it is, its enabled state, process and address. Scroll bars appear for the list, if
necessary. Messages related to the list are displayed below the list.

If NightView cannot determine a piece of eventpoint information, that part of the list
will be empty. For example, this situation may occur if the process is running when
NightView tries to determine the enabled state of an eventpoint.

If thereis only oneitem in the list, NightView selects it for you. Otherwise, you
must select the items in the list you are interested in and then choose an action area
button to perform the requested action on each selected eventpoint.

The default list selection policy is Extended, which means you can select discon-
tiguous ranges of items. Thislist selection policy isconfigurable. See Appendix D
[GUI Customization] on page D-1. See“List Selection Policies’ on page 9-9.

Choose an action button.

The buttons in the action area allow you to make changes to selected eventpoints,
dismiss the dialog box, and request help.

Some buttons may be disabled (dimmed) under certain circumstances. For example,
if the list isempty, it does not make sense to use some of the buttons.

The eventpoint summary dialog box is dismissed only if you choosethe Close but-
ton.

Change...

Click on Change... to see additional information about an eventpoint and to
change eventpoint characteristics. An eventpoint dialog box is displayed for
each eventpoint you selected in the list. See “Debug Eventpoint Dialog
Boxes’ on page 9-40.

Enable

Click on Enable to enable the selected eventpoints. Thisis similar to using
the enabl e command. See*“enable” on page 7-93.

Disable

Click on Disable to disable the selected eventpoints. Thisissimilar to using
the di sabl e command. See*“disable” on page 7-92.

Delete

Graphical User Interface

Click on Delete to delete selected eventpoints.
Depending on your safety level, NightView may display awarning dialog box
to make sure you want to delete the eventpoints. See “set-safety” on page

7-49. Once deleted, you cannot refer to these eventpoints again. Thisis simi-
lar to using the del et e command. See “delete” on page 7-91.

If you think you may want to "turn off" an eventpoint temporarily, then use it
again later, you should disable the eventpoint and enable it when you are
ready to useit.

Close

Clicking on Close cancels any action and closes this dialog box. This button
is never disabled (dimmed).

Help

You can get help for this dialog box by clicking on Help. This button is never
disabled (dimmed).

Warnings or errors associated with using this dialog box or changing eventpoints are
displayed in dialog boxes or in the debug message area. See “Warning and Error Dialog
Boxes’ on page 9-15.. See “Debug Message Ared” on page 9-30.

You can usethei nf o event poi nt command to check eventpoint settings. See “info
eventpoint” on page 7-116.

Remote Login Dialog Box

This didlog box pops up when you use the NightView menu's Start Remote
Dialogue... item. See“Debug NightView Menu” on page 9-21. This dialog box allows
you to specify the parameters for creating a remote NightView session. See “Remote
Dialogues” on page 3-6. Some of these parameters are required, but most are optional.

The parameters specified in this dialog apply to the NightView processes that execute on
the remote system. These processes include a NightView target program, a dialogue
shell, and (unless you specify otherwise using the run(1) shell command) al the
processes started by that dial ogue shell.

Remote host information
Remote host

Thisis the name or address of the remote system on which you want aremote
dialogue. Thisfieldis required information.

Login name

This specifies the user nameto useto log into the remote system. Thisfieldis
required, but it defaults to the user running NightView.

Password

9-47

NightView User’s Guide

9-48

This specifies the password for the user name specified in the Login name
field. For security, the password you type is not echoed in the window;
instead, an asterisk (*) replaces each character. You may leave this field
empty if the specified user name does not have a password on the designated
remote system.

Name for new Dialogue

Thisfield specifies the name to give to the dialogue. See “Qualifier Specifi-
ers’ on page 7-10. If you leavethis field empty, the name of the dialogue will
default to be the same asthe Remote host field. If the remote system name
is not avalid dialogue name, an error dialog will appear. See “Warning and
Error Dialog Boxes” on page 9-15. A common reason for the remote system
to be an invalid dial ogue name is that the remote system name contains period
(.) characters (e.g., it includes domain names), or it isan |P address instead of
aname.

Scheduling information

Priority

This field specifies the priority you want applied to the NightView processes
running on the remote system. You will usually want to leave this empty, to
select the default value. However, if your application contains continuously-
running processes that run at real-time priorities, you may need to set the pri-
ority of NightView or it will not get sufficient CPU time to perform its debug-
ging chores. We suggest that you set thisonly if the target system has little or
no spare CPU resources and you notice a lack of responsiveness in Night-
View.

Valid values for the priority depend on the scheduling class you select. See the
run(1) command for valid values.

Note that you may need special privileges on the remote system to be able to
specify apriority explicitly.

Nice Value

Thisis an aternative way to adjust the priority of the remote NightView pro-
cesses. |f you specify both priority and nice value, the priority takes prece-
dence. Nice values only apply to the Time Sharing scheduling class.

Scheduling Class

This option menu selects the scheduling policy for the remote NightView pro-
cesses. You will usually want to leave this at its default selection. However, if
you need greater control over how much CPU resources the remote Night-
View processes get, you may need to select a different scheduling class and
priority.

Time Quantum

Thisfield is enabled only if you select the Round Robin scheduling class.
Seetherun(1) command man page for more information about time gquan-
tum. You may use the units option menu to the right of thisfield to specify the
time units to apply to the quantum value.

Graphical User Interface

CPU and memory binding information
Binding Type

This option menu selects the kind of CPU binding to apply to the remote
NightView processes. You may wish to use this if you want to isolate the
NightView processes to a particular CPU or set of CPUs.

If you select the Bias option, the CPU toggle buttons will be enabled and
allow you to select any set of CPUs. If you select Exclusive, the CPU toggle
buttons are enabled but you are restricted to selecting exactly one CPU. If you
select any other choicein the Binding Type menu, the CPU toggle buttons
are disabled.

CPU

These toggle buttons allow you to select the CPUs on which the remote Night-
View processes can execute. They are enabled only for the Bias or Exclu-
sive hinding type options. When these toggle buttons are enabled, the OK
button is disabled until you select at least one CPU.

NUMA

These option menus allow you to select the memory binding parameters for
the remote NightView processes. You may need to use these to keep Night-
View from interfering with your application's use of certain memory pools.
Seetherun(1) command and themenor y(7) man pages for more infor-
mation about NUMA policies.

The Default option menu selects the overall memory binding policy. This
policy appliesto all pages unless overridden by one of the other more-specific
NUMA option menus. The Text option menu selects the NUMA policy to
apply to text (code) pages, the Private option menu selectsthe NUMA policy
to apply to private data pages, and so forth for the Shared and UBlock
option menus.

All of these menus contain the Global, Soft Local, and Hard Local
options. The Global option specifies that the designated pages should be
placed in global memory. The Soft Local option specifies that the desig-
nated pages be placed in local memory if space is available, otherwise they
should be placed in global memory. The Hard Local option specifies that
the designated pages must be placed in loca memory.

For the Default option menu, selecting System Default specifies that the
NUMA policy will be inherited by the parent process that starts the remote
dialogue processes. For the Text, Private, Shared, and UBlock menus,
choosing Default specifies that whatever policy was selected by the Default
option menu applies to that class of memory pages.

For example, if you select Default/Soft Local, Text/Default, Private/
Hard Local, Shared/Global, and UBlock/Default, then text and ublock
pages will be placed in local memory if possible (soft local policy, specified
by the Default/Soft Local selection), while private data will be forced to
local memory and shared data will be forced to global memory.

9-49

NightView User’s Guide

Action Buttons
OK

The OK button is enabled if you have specified al the required information.
Required information is the remote host name and login name and, if you
selected a binding type of Bias or Exclusive, at least one CPU must be
selected.

When you press the OK button, the remote dialogue is created and the remote
login dialog is dismissed. If the remote dialogue cannot be created, either an
error dialog box will appear or the remote login dialog disappears and a mes-
sage is displayed in the message area. See “Warning and Error Dialog
Boxes’ on page 9-15. See “Debug Message Area”’ on page 9-30.

Cancel

Pressing the Cancel button dismisses the dialog box without creating a
remote dialogue.

Help

Pressing the Help button brings up the online help with information about the
remote login dialog.

Monitor Window - GUI

9-50

The Monitor Window is created when you use monitorpoints while running NightView
with the graphical user interface. See “Monitor Window” on page 3-28.

In the GUI, the Monitor Window uses a scrolling area to display monitored values, so
thereis essentially no limit to the number of items you can have in the active display. To
remain compatible with the simple full-screen interface, it uses the same item layout
algorithm and assumes a column width for the window to determine how many items to
put on one line. See “Monitor Window - Simple Full-Screen” on page 8-2. The default
value for this column width is 80, but you can set the nonit or W ndowCol umms
resource to any other appropriate value (a common alternative might be 132). See
Appendix D [GUI Customization] on page D-1. Dynamically resizing the window to be
wider does not cause NightView to put moreitems on oneline.

The stale data indicators in the graphical display take the form of icons. A blank icon
indicates updated values, a triangular warning symbol indicates not executed values, and
a triangular warning symbol containing an exclamation point indicates executed but not
sampled values. For more information about stale data indicators, see “Monitor
Window” on page 3-28.

A label at the top of the window indicates the current held or running status and shows
the current delay time in milliseconds between samples. A legend shows a brief
description of the stale dataicons.

Graphical User Interface

Data Window

A Data Window displays various information about your process. Each Data Window has
aname. You specify the name of a Data Window when you place an item in the window.
If no window of that name exists, then one is created with that name. Thereisno limit on
the number of Data Windows.

Items are placed into a Data Window by using the Display menu in the Debug Window
or the Data Window, or by using the Data Display button in the Debug Window, or by
invoking the dat a- di spl ay command. See*“Debug Display Menu” on page 9-29. See
“Debug Command Buttons® on page 9-34. See “data-display” on page 7-72.

The Data Window is made up of amenu bar and a display area.

The following sections describe the parts of the Data Window.

Data Menu Bar

From the data menu bar you can perform global NightView actions, change the options for
the window, and obtain online help.

Data NightView Menu

Mnemonic: N

The NightView menu is used to control NightView windows and perform global Night-
View actions. The NightView menu appears in the Data, Debug, Dialogue and Global
windows and has the same menu items in each window.

See “Debug NightView Menu” on page 9-21 for a description of the individual Night-
View menu items.

Data Options Menu

Mnemonic: O
Scroll Region Size...
Mnemonic: S

Clicking on this button pops up a dialog box that lets you set the default scroll
region size for items in this window. See “Data Window Default Scroll Lines’ on
page 9-59.

Label Columns...

Mnemonic: L

9-51

NightView User’s Guide

Clicking on this button pops up adialog box that lets you set the default width of the
label columns for each item in the window. See “Data Window Default Label Col-
umns’ on page 9-59.

Hide Inactive Menu Buttons

Data Display Menu

Mnemonic: H

This check button lets you set your preference for menus that are popped up within
the Data Window. If the button is not checked, then all the menus have the same
items, including items that are not applicable for the particular dataitem. Non-
applicable menu items are disabled (dimmed). If the button is checked, non-
applicable menu items are not shown. See “Toggle Buttons” on page 9-12. The
initial value of this check button comes from the
dwMenuH del nactiveEntri es resource. See“NightView Resources’ on page
D-5.

Mnemonic: D

Use this menu to select a data item to place in a Data Window. The Display menu
appears in the Data Window and the Debug Window, with the same menu items in both
windows.

The Display menu is described in another section. See “Debug Display Menu” on page

9-29.

Data Help Menu

Mnemonic: H

This menu provides ways of getting context-sensitive help, help on the current window,
help on the last error NightView encountered, as well as severa other categories of help.
NightView help information is displayed in aHelp Window. See “Help Window” on page

9-63.

The Help menu is described in another section. See “Help Menu” on page 9-3.

A general discussion of NightView'sonline help isalso available. See*GUI Online Help”
on page 9-2.

Data Display Area

The data display area shows dataitems. A scroll bar appears to the left of the dataitems.

9-52

Data Iltems

Expression Data Iltem

Graphical User Interface

Each data item shows one piece of data from your process. A dataitem has a small action
button on the left, alabel, and avalue field. The format of the value field depends on the
kind of data item.

If the action button is shown with a +, then any sub-items the data item has are collapsed
(not currently displayed). You can expand the sub-items by clicking on the action button
with mouse button 1.

If the action button is shown with a -, then any sub-items the data item has expanded (dis-
played). You can collapse the sub-items by clicking on the action button with mouse but-
ton 1.

If the action button is blank, then the data item has no sub-items.

Regardless of whether the action button hasa+, a-, or is blank, you can click on the
action button with mouse button 3 to pop up a menu for the data item. See “Data ltem
Popup Menu” on page 9-54.

If sub-items are displayed, they are shown with a scroll bar if the number of sub-itemsis
more than will fit in the scroll region, or if theitemisan array. If thereisascroll bar, there
isasmall horizontal button at the bottom of the scroll bar. You can drag this button to
change the size of the scroll region. Sometimes you may not be able to drag the button
because of constraints on the other data items in the window or because of the size of the
window. You can also change the size of the scroll region with the dataitem popup menu.
You can change the size of scroll regionsin this window with the data options menu. See
“Data Options Menu” on page 9-51.

An expression dataitem displays the value of an expression, such as avariable.
The expression is re-evaluated whenever the process stops.

The expression is re-evaluated in the context that was current at the time the data item was
created, or in the context that is current at the time of the re-evaluation, depending on the
setting when you created the dataitem. See “Data Window Add Expression” on page
9-57.

If the value isa C struct or Adarecord, then the sub-items are the members of the struct or
record.

If the value is an array, the sub-items are the elements of the array. A limited number of
elementsis shown.

If the value is a pointer, the sub-item is the result of indirecting through the pointer.

If the value is an array, or is being treated as an array, the scroll bar for the sub-items
always indicates that there are more items on either end, because NightView lets you ref-
erence elements beyond the ends of the array.

9-53

NightView User’s Guide

Local Variables Data Item

Registers Data ltem

Stack Data Item

Threads Data Item

A local variables data item has sub-items for al the local variables visible in the current
scope, including subprogram arguments. For C++ member functions, t hi s is also
included in the local variables.

This dataitem is updated whenever the process stops or you change the current context,
e.g., by clicking on Up or Down in the Debug Window. See “Debug Command Buttons’
on page 9-34.

A registers dataitem has sub-itemsfor all of the registers.

This dataitem is updated whenever the process stops or you change the current context,
e.g., by clicking on Up or Down in the Debug Window. See “Debug Command Buttons’
on page 9-34.

A stack data item has sub-items for each frame on the stack.
Expanding a frame shows the local variablesin that frame.

For the current frame, => is displayed as part of the frame label. See “Current Frame” on
page 3-25.

A threads data item has sub-items to describe Adatasks, C threads and lightweight pro-
cesses (LWPs). The sub-items of each of those itemsis alist of threads of that type.
Expanding athread shows the stack for that thread.

The currently selected thread shows <= in the value field.

Data Item Popup Menu

9-54

This menu pops up when you click on a dataitem action button with mouse button 3. The
menu lets you operate on the dataitem or its sub-items.

Some menu items are not applicable for some dataitems. These "inactive" items are dis-
abled (dimmed) or hidden, depending on the setting of the Hide Inactive Menu But-
tons check button in the data options menu. See*“Data Options Menu” on page 9-51.

Collapse
Expand

Either Collapse or Expand isshown depending on whether the sub-items are cur-
rently expanded. Clicking on this button is the same as clicking on the data item
action button with mouse button 1.

Treat Pointer as Array

Graphical User Interface

This check button may be set to consider the pointer to point to an array of elements,
so that the sub-items are the elements of the array. See “Toggle Buttons” on page
9-12.

Expand Tree...

Expand all the sub-items of this data item and their sub-items, etc. Clicking on this
button pops up a dialog box to ask you how many levels of sub-items to expand.
See “Data Window Expand Tree” on page 9-59.

Collapse Tree
All the sub-items of this dataitem and their sub-items, etc., are collapsed.
Copy...

Make a copy of this dataitem. The copy may be in the same window or in another
Data Window. This can aso be used to make a new top-level dataitem which isa
copy of asub-item. See“Data Window Copy Expression” on page 9-58.

Re-evaluate
The dataitem isre-evaluated. The new valueis displayed in the value field.
Describe...

Pop up a dialog box with information about this data item. See “Data Window
Value Query” on page 9-61. See“Data Window Text Query” on page 9-61.

Show Subscript...

Thisbutton is meaningful only for arrays. If the dataitem isapointer, it istreated as
an array. You are prompted for a subscript. When you click on OK, the range of
sub-items displayed is increased to include the subscript and the display is scrolled
to make that sub-item visible. See “Data Window Subscript Array” on page 9-61.
See “Data Window Subscript Enum Array” on page 9-61.

Select Frame

This button is meaningful only for alocal variables data item (including sub-items
of stack or threads data items). The frame becomesthe current frame. See “ Current
Frame” on page 3-25.

Format
This button pops up a sub-menu to allow you to control the format of the dataitem.
Value Format

This button pops up a sub-menu to allow you to control how the data item is
printed in the value field. This applies to the data item and al its sub-items
which are set to Default format.

Default

9-55

NightView User’s Guide

The value is displayed according to the format set in the parent item. If
there is no parent item, or the parent item is set to Default format, then
thisitem is displayed according to itstype. See “print” on page 7-66.

Address + Offset (/a)

Character (/c)

Decimal (/d)

Float (/f)

Octal (/0)

String (/s)

Unsigned Decimal (/u)

Hex (/h)

The value is displayed in the selected format. See “print” on page 7-66.

Resize Label...

This button pops up a dialog box to set the number of columns in the label
field. See“DataWindow Label Columns’ on page 9-59.

Resize Scroll Area...

This button pops up a dialog box to set the number of lines in the scroll area
for sub-items of this data item. See “Data Window Default Scroll Lines” on
page 9-59.

Move

This button pops up a sub-menu with choices of where to move the data item.
To Top

Move this data item to be the first item in thiswindow.
Up One

Move this data item before the preceding item.
To Bottom

Move this data item to be the last item in this window.
Down One

Move this data item after the following item.
To other Data Window...

This button pops up a dialog box that lets you select another Data Window to
receive thisitem. See “Data Window Move Expression” on page 9-60. See
“Data Window Move Local Variables” on page 9-60. See “Data Window
Move Registers” on page 9-60. See “Data Window Move Stack” on page
9-60. See“DataWindow Move Threads’ on page 9-60.

Edit...

9-56

Graphical User Interface

This button pops up a dialog box that lets you modify the expression in this data
item. See“Data Window Edit Expression” on page 9-59.

Delete

The data item is removed from the Data Window.

Data Window Dialog Boxes

Data Window Item Dialog Box

This section describes common information for several of the Data Window dialog boxes.
These dialog boxes al contain controlsto set the data window name and the qualifier, plus
OK, Cancel and Help buttons.

Data Window Name

Enter the name of the Data Window to receive the data item, or select a name from
the list by clicking on the arrow. Thiscontrol is acombo box. See“Combo Boxes”
on page 9-6.

If no Data Window exists with this name, oneis created. The default name is"Data
Window".

Qualifier

OK

Enter a qualifer (e.g., a process id) to associate with this dataitem. Thisisatext
input area. See“Text Input Areas’ on page 9-5. The qualifier identifiesaprocessin
which to evaluate the dataitem. See“Qualifiers’ on page 3-4. If multiple processes
are specified, multiple data items are created.

If this dialog box was popped up from the Debug Window, then the qualifier
defaults to the current qualifier for that window. If this dialog box was popped up
from a particular data item, the qualifier defaults to the process associated with that
dataitem. Otherwise, the quaifier defaultsto "all".

Click on this button to perform the operation and dismiss the window.

Cancel

Help

Click on this button to dismiss the window without performing any operation.

Click on this button to get help about the specific dia og box.

Data Window Add Expression

Enter an expression and click on OK to add the expression to the Data Window.

9-57

NightView User’s Guide

Radio buttons let you select the context for later re-evaluation.

When the expression is re-evauated, it can be evaluated in the current context at the time
of the re-evaluation ("Always evaluate in context where process stops"), or it
can be evaluated with the context saved when the expression data item is created
("Always evaluate in context saved with expression."). See “Toggle Buttons’
on page 9-12.

Thisis a Data Window Item Dialog Box. See“Data Window Item Dialog Box” on page
9-57.

Data Window Add Local Variables

Click on OK to add alocal variables dataitem to the Data Window.

Thisis a Data Window Item Dialog Box. See“Data Window Item Dialog Box” on page
9-57.

Data Window Add Registers

Click on OK to add aregisters data item to the Data Window.

Thisis a Data Window Item Dialog Box. See“Data Window Item Dialog Box” on page
9-57.

Data Window Add Stack

Click on OK to add a stack dataitem to the Data Window.

Thisisa Data Window Item Dialog Box. See“Data Window Item Dialog Box” on page
9-57.

Data Window Add Threads

Click on OK to add a threads data item to the Data Window.

Thisisa Data Window Item Dialog Box. See“Data Window Item Dialog Box” on page
9-57.

Data Window Copy Expression

9-58

Click on OK to add a copy of the expression to the Data Window.

The controls are the same as in the Data Window Add Expression dialog box. See “Data
Window Add Expression” on page 9-57.

Graphical User Interface

Data Window Default Label Columns

Use the spin box to enter the column width for labels in this Data Window. See “Spin
Boxes’ on page 9-6.

The initial value for the width is controlled by the X resource
dwLabel Def aul t Col ums. See*“NightView Resources’ on page D-5.

Click on the check button if you want to change the width for all the existing labelsin this
Data Window. Otherwise, only future data item labels have the new width. See “Toggle
Buttons” on page 9-12.

Click on OK to complete the operation.

Data Window Default Scroll Lines

Use the spin box to enter the number of linesin scroll regions in this Data Window. See
“Spin Boxes’ on page 9-6.

The initial value for the number of lines is controlled by the X resource
dwScr ol | Regi onDef aul t Li nes. See“NightView Resources’ on page D-5.

Click on the check button if you want to change the number of linesin al the existing data
items in this window. Otherwise, only future data items have the new scroll region size.
See “Toggle Buttons® on page 9-12.

Click on OK to complete the operation.

Data Window Edit Expression

Change the expression as desired.

The controls are the same as the Data Window Add Expression dialog box, except that
you cannot modify the quaifier. See“Data Window Add Expression” on page 9-57.

Click on OK to complete the operation.

Data Window Expand Tree

Use the spin box to enter how many levels of sub-items you want expanded. See “Spin
Boxes’” on page 9-6.

Click on OK to complete the operation.
Data Window Label Columns

Use the spin box to enter the width of the label for this data item. See “Spin Boxes’ on
page 9-6. The box labeled Sample: shows how alabel of the selected size looks.

9-59

NightView User’s Guide

Check buttons allow you to make the same change to all sibling dataitems (all data items
with the same parent as this one), or to make the same change to all children (all sub-
items), or both. See “Toggle Buttons” on page 9-12.

Click on OK to complete the operation.

Data Window Move Expression

Change any information about the expression and press OK to move the expression data
item to another window.

The contrals are the same as for the Data Window Add Expression dialog box. See “Data
Window Add Expression” on page 9-57.
Data Window Move Local Variables

Select a Data Window and click OK to move the local variables dataitem to another win-
dow.

Thisis a Data Window Item Dialog Box. See “Data Window Item Dialog Box” on page
9-57.
Data Window Move Registers

Select a Data Window and click OK to move the registers data item to another window.

Thisis a Data Window Item Dialog Box. See “Data Window Item Dialog Box” on page
9-57.
Data Window Move Stack

Select a Data Window and click OK to move the stack data item to another window.

Thisisa Data Window Item Dialog Box. See “Data Window Item Dialog Box” on page
9-57.
Data Window Move Threads

Select a Data window and click OK to move the threads data item to another window.

Thisisa Data Window Item Dialog Box. See “Data Window Item Dialog Box” on page
9-57.

Data Window Scroll Lines

Use the spin box to enter the desired number of lines in the scrolling area for this data
item. See*“Spin Boxes’ on page 9-6.

9-60

Graphical User Interface

Click on OK to complete the operation.

Data Window Subscript Array

Use the spin box to enter the subscript of the array element you want to see. See “Spin
Boxes’ on page 9-6.

Click on OK to show the array element.

Data Window Subscript Enum Array

Use the spin box to enter the subscript of the array element you want to see. See “Spin
Boxes’ on page 9-6. Thisisthe' pos value.

Or you can use the combo box to select the array subscript by name. See “Combo Boxes’
on page 9-6.

Click on OK to show the array element.

Data Window Text Query

This diaog box shows information about the data item.

Click on OK to dismiss the window.

Data Window Value Query

This diaog box shows information about the expression.

Click on OK to dismiss the window.

Global Window

The Global Window provides global interaction and gives you control over dialogues.
There is only one instance of a Globa Window for an invocation of NightView.

The Global Window is normally hidden and appears only when you ask to see it or when
no Dialogue Windows exist. Y ou can display the Global Window by choosing the Open
Global Window menu item found in the NightView menu of both the Debug and
Dialogue Windows. See “Debug NightView Menu” on page 9-21. See “Diadogue
NightView Menu” on page 9-17.

The following sections describe the parts of the Global Window.

9-61

NightView User’s Guide

Global Menu Bar

The menu bar in the Global Window allows you to perform global NightView actions
and access the online hel p system.

Global NightView Menu

Global Help Menu

Mnemonic: N

The NightView menu is used to control NightView windows and perform global
NightView actions. The NightView menu appears in the Data, Debug, Diaogue and
Global windows and has the same menu items in each window.

See “Debug NightView Menu” on page 9-21, for a description of the individua
NightView menuitems.

Mnemonic: H

This menu provides ways of getting context-sensitive help, help on the current window,
help on the last error NightView encountered, as well as several other categories of help.
NightView help information is displayed in a Help Window. See “Help Window” on
page 9-63.

The Help menu isdescribed in another section. See “Help Menu” on page 9-3.

A general discussion of NightView's online help is also available. See “GUI Online
Help” on page 9-2.

Global Output Area

The output area in the Global Window is similar to the output from the command-line
interface. It shows a combination of the output and messages displayed in the Debug
Window and the Dialogue Window as well as the output and error messages from
commands that are processed by this Global Window.

In contrast, the message area in the Dialogue Window shows only messages and program
output associated with that dialogue, and the message area in the Debug Window shows
only messages associated with processes represented in that window. See “Dialogue
Message Area”’ on page 9-18, and “Debug Message Area” on page 9-30.

Thisisascrolling area. Y ou can use the scroll bar to ook at older or newer messages.

Global Interrupt Button

9-62

Clicking on this button interrupts whatever the debugger is doing. Thisis similar to using

Graphical User Interface

the shell interrupt character in the command-line interface. See “Interrupting the
Debugger” on page 3-30.

Global Qualifier Area

The qualifier areain the Global Window shows the current default qualifier for the global
interactive command stream, which you can access through the global command area (see
“Globa Command Area”’ on page 9-63). You can set the default quaifier using the
set-qual i fi er command. See“set-qualifier” on page 7-46.

Global Command Area

Help Window

The global command area in the Global Window is used to enter NightView commands.
Like the debug command area in the Debug Window and the dialogue command area in
the Dialogue Window, all the command-line interface commands, except for shel | , can
be entered in the global command area.

Input to this area is similar to using the command-line interface. For example, you can
enter an explicit qualifier followed by acommand.

Commands entered in this area are implicitly qualified by the default qudifier. You can
change the default qualifier by using the set -qual i fi er command. See “Globa
Qualifier Area” on page 9-63.

The globa command areais acombo box. See “Combo Boxes’ on page 9-6.

NightView displays online help in the Help Window. The Help Window allows you to
display any section of the NightView User's Guide and provides different methods to
allow you to navigate from one section to another.

NightView uses HyperHelp™ to display help. To learn about HyperHelp, click on the
Help menu of the Help Window and select Help On HyperHelp.

For ageneral discussion of NightView's online help, see “GUI Online Help” on page 9-2.

9-63

NightView User’s Guide

9-64

System Resour ce Requirements

A
System Resource Requirements

This appendix describes system resources used by NightView. System administrators
may want to modify the "System Tuning Parameters' so that their users can use
NightView effectively. See System Administration Volume 1.

This discussion refers to the local system and the remote system. The local system is the
system where NightView is invoked. The remote system is the system where the
application program is running. In many cases, these are the same system, but they are
distinguished here so that specia purpose applications can be dealt with appropriately.
Many system administrators will simply want to make all their systems be able to be both
local and remote systems.

System components

If you are using the remote dial ogue feature (see “ Remote Dia ogues’ on page 3-6),
you must have networking installed on both the local and remote systems. You must
also havet el net d running on the remote system, or you must arrange for i net d
to runit. Seethe man pages for these facilities for more information.

shared memory regions

NightView uses avariety of shared memory regions on both the local and the remote
system. Each shared memory region contributes to the total number of regions and
the total number of shared memory clicks on the system. Most of the shared mem-
ory regions also contribute to the number of shared memory identifiers on the sys-
tem as long as the debugger is running.

Therefore, in order to use NightView, both the local and remote systems must be
configured with shared memory enabled. The maximum number of shared memory
identifiers and the maximum number of shared memory clicks system wide may
need to be increased.

IPC
Make sure the ipc moduleis configured (/ et c/ conf/ sdevi ce. d/ i pc).
SHMWNI

Check the "maximum number of shared memory identifiers" system tunable
using thei dt une(1M utility.

The following information about the particular memory regions used by NightView
is supplied only to aid in fine-tuning of the memory parameters.

Regions on the local system:
Communications among processes which make up the debugger.

One shared memory region per invocation of NightView.

A-l

NightView User’s Guide

Regions on the remote system:
Debug agent

One shared memory region for each process using a debug agent. See
“Debug Agent” on page 3-17. The shared memory identifier for this
region exists as long as the process is running.

Monitorpoints

One shared memory region per invocation of NightView on each remote
system that is using monitorpoints. See “Monitorpoints’ on page 3-10.

processes

Each invocation of NightView uses at least one process on the local system. The
remote system uses two processes per dialogue, not including the processes being
debugged.

The maximum number of processes on the system (NPROC tunable) and the maxi-
mum number of processes per user (MAXUP tunable) may need to be increased for
the local and remote systems.

ptys
NightView uses one pty per dialogue on the remote system.

For the graphical user interface, X server memory may also be a concern. See
Appendix D [GUI Customization] on page D-1.

A-2

Summary of Commands

B
Summary of Commands

This section gives a summary of all the commands in NightView. The table is organized
alphabetically by command. The abbreviations for the commands are included with the
corresponding commands, rather than alphabetically.

Also, remember that you can abbreviate commands by using a unique prefix.
!

Passinput to adialogue. See“!” on page 7-27 for more information.
agent poi nt

Insert acall to a debug agent at a given location. See “agentpoint” on page 7-88 for
more information.

apply on di al ogue

Executeon di al ogue commandsfor existing dialogues. See “apply on dialogue”
on page 7-25 for moreinformation.

apply on program

Execute on pr ogr amcommands for existing processes. See “apply on program”
on page 7-38 for moreinformation.

attach

Attach the debugger to a process that is aready running. See “attach” on page 7-32
for more information.

backtrace
bt

Print an ordered list of the currently active stack frames. See “backtrace’ on page
7-65 for more information.

br eakpoi nt
b

Set abreakpoint. See “breakpoint” on page 7-80 for more information.

cd
Set the debugger’s default working directory. See“cd” on page 7-56 for more infor-
mation.

checkpoi nt

Take arestart checkpoint now. See “checkpoint” on page 7-39 for more informa-
tion.

B-1

NightView User’s Guide

B-2

cl ear

Clear al eventpoints at a given location. See “clear” on page 7-89 for more infor-
mation.

commands

Attach commands to a breakpoint or monitorpoint. See “commands’ on page 7-90
for more information.

condi tion

Attach a condition to an eventpoint. See “condition” on page 7-90 for more infor-

mation.

conti nue

c
Continue execution and wait for something to happen. See “continue” on page 7-98
for more information.

core-file
Create a pseudo-process for debugging an aborted program’s core image file. See
“core-file” on page 7-34 for more information.

dat a- di spl ay
Control itemsin a Data Window. See “data-display” on page 7-72 for more infor-
mation.

debug
Specify names for programs you wish to debug. See “debug” on page 7-20 for more
information.

define
Definea NightView macro. See “define” on page 7-135 for more information.

del ay
Delay NightView command execution for a specified time. See “delay” on page
7-114 for more information.

del ete

d
Delete an eventpoint. See “delete” on page 7-91 for more information.

det ach
Stop debugging alist of processes. See “detach” on page 7-32 for more informa-
tion.

directory

Set the directory search path. See “directory” on page 7-60 for more information.

Summary of Commands

di sabl e
Disable an eventpoint. See “disable” on page 7-92 for more information.
di spl ay

Add to the list of expressions to be printed each time the process stops. See “dis-
play” on page 7-72 for more information.

down

Move one or more stack frames toward frames called by the current stack frame.
See “down” on page 7-110 for more information.

echo
Print arbitrary text. See“echo” on page 7-71 for more information.
enabl e

Enable an eventpoint for a specified duration. See “enable” on page 7-93 for more
information.

exec-file

Specify the location of the executable file corresponding to a process. See “exec-
file” on page 7-35 for more information.

famly

Give a name to a family of one or more processes. See “family” on page 7-40 for
more information.

finish

Continue execution until the current function finishes. See “finish” on page 7-103
for more information.

f orwar d- sear ch

fo
Search forward through the current source file for a specified regular expression.
See “forward-search” on page 7-61 for more information.

frane

f
Select a new stack frame or print a description of the current stack frame. See
“frame” on page 7-109 for more information.

handl e
Specify how to handle signals and Ada exceptionsin the user process. See “handl€”
on page 7-106 for more information.

hel p

Access the online help system. See“help” on page 7-112 for more information.

B-3

NightView User’s Guide

B-4

i gnore

Attach an ignore-count to an eventpoint. See “ignore” on page 7-94 for more infor-
mation.

i nfo address

Determine the location of avariable. See “info address” on page 7-132 for more
information.

i nfo agent poi nt

Describe current state of agentpoints. See “info agentpoint” on page 7-121 for more
information.

info args

Print description of current routine arguments. See “info args’ on page 7-131 for
more information.

i nfo breakpoi nt
i b

Describe current state of breakpoints. See“info breakpoint” on page 7-117 for more
information.

i nfo conveni ence

Describe convenience variables. See “info convenience” on page 7-124 for more
information.

i nfo declaration
ptype

Print the declaration of variables or types. See “info declaration” on page 7-134 for
more information.

info di al ogue

Print information about active dialogues. See “info dialogue” on page 7-127 for
more information.

info directories

Print the search path used to locate source files. See “info directories” on page
7-124 for more information.

info display

Describe expressions that are automatically displayed. See “info display” on page
7-124 for more information.

i nfo event poi nt

Describe current state of breakpoints, tracepoints, patchpoints, monitorpoints,
agentpoints, and watchpoints. See “info eventpoint” on page 7-116 for more infor-
mation.

Summary of Commands

nfo exception

exception

Print information about Ada exception handling. See “info exception” on page
7-130 for more information.

nfo fanmly

Print information about an existing process family. See “info family” on page 7-128
for more information.

nfo files

Print the names of the executable, symbol table and core files. See “info files’ on
page 7-134 for more information.

nfo frane
Describe a stack frame. See “info framée’ on page 7-123 for more information.
nfo functions

List names of functions, subroutines, or Ada unit names. See “info functions” on
page 7-132 for more information.

nfo history

Print value history information. See*“info history” on page 7-125 for more informa-
tion.

nfolimts

Print information about limits on expression and location output. See “info limits”
on page 7-125 for more information.

nfo |line

Describe location of a source line. See “info line” on page 7-134 for more informa-
tion.

nfo | ocals

Print information about local variables. See “info locals” on page 7-131 for more
information.

nfo | og
Describe any open log files. See“infolog” on page 7-116 for more information.
nfo macros

Print a description of one or more NightView macros. See “info macros’ on page
7-140 for more information.

nfo menory

Print information about the virtual address space. See “info memory” on page 7-127
for more information.

B-5

NightView User’s Guide

B-6

nf o nonitor point

Describe current state of monitorpoints. See “info monitorpoint” on page 7-120 for
more information.

nf o nane

Print information about an existing eventpoint-name. See “info name” on page
7-128 for more information.

nfo on dial ogue

Print on di al ogue commands. See “info on dialogue” on page 7-129 for more
information.

nfo on program

Print on pr ogr amcommands. See “info on program” on page 7-129 for more
information.

nfo on restart

Printon restart commands. See“info on restart” on page 7-129 for more infor-
mation.

nfo pat chpoi nt

Describe current state of patchpoints. See “info patchpoint” on page 7-119 for more
information.

nfo process

Describe processes being debugged. See “info process’ on page 7-126 for more
information.

nfo registers

Print information about registers. See “info registers” on page 7-125 for more infor-
mation.

info representation
representation

Describe the storage representation of an expression. See “info representation” on
page 7-133 for more information.

info signal

Print information about signals. See“info signal” on page 7-126 for more informa-
tion.

info sources
List names of source files. See“info sources’ on page 7-132 for more information.

i nfo threads

Summary of Commands

Describe lightweight processes, Ada tasks and C threads. See “info threads” on
page 7-130 for more information.

info tracepoint

Describe current state of tracepoints. See “info tracepoint” on page 7-118 for more
information.

info types

Print type definition information. See“info types” on page 7-133 for more informa-
tion.

i nfo vari abl es

Print global variable information. See “info variables” on page 7-131 for more
information.

i nfo wat chpoi nt

Describe current state of watchpoints. See “info watchpoint” on page 7-122 for
more information.

info whatis
whati s

Describe the result type of an expression visible in the current context. See “info
whatis” on page 7-133 for more information.

i nt erest

Control which subprograms are interesting. See “interest” on page 7-51 for more

information.
junp
Continue execution at a specific location. See “jump” on page 7-104 for more infor-
mation.
kill
Terminate alist of processes. See“kill” on page 7-33 for more information.
l'ist
I
List asourcefile. See“list” on page 7-58 for more information.
| oad
Dynamically load an object file, possibly replacing existing routines. See “load” on
page 7-75 for more information.
l ogin
Login to anew dialogue shell. See“login” on page 7-18 for more information.
| ogout

B-7

NightView User’s Guide

B-8

Terminate adialogue. See*“logout” on page 7-23 for more information.

ncont rol
hol d
rel ease

Control the monitor display window. See “mcontrol” on page 7-87 for more infor-
mation.

noni t or poi nt

Monitor the values of one or more expressions at a given location. See “monitor-
point” on page 7-85 for more information.

nreserve

Reserve aregion of memory in aprocess. See “mreserve’ on page 7-43 for more
information.

nane

Give aname to a group of eventpoints. See “name”’ on page 7-79 for more informa-
tion.

next
n

Execute one line, stepping over procedures. See “next” on page 7-101 for more
information.

next i
ni

Execute one instruction, stepping over procedures. See “nexti” on page 7-103 for
more information.

nodebug

Specify namesfor programsyou do not wish to debug. See “nodebug” on page 7-20
for more information.

notify

Ask about pending event notifications. See*“notify” on page 7-31 for more informa-
tion.

on di al ogue

Specify debugger commands to be executed when a dialogue is created. See “on
dialogue”’ on page 7-24 for more information.

on program

Specify debugger commands to be executed when a program isexeced. See “on
program” on page 7-36 for more information.

on restart

Summary of Commands

Specify debugger commands to be executed when a program is restarted. See “on
restart” on page 7-38 for more information.

out put

Print the value of alanguage expression with minimal output. See “output” on page
7-71 for more information.

pat chpoi nt
Install a small patch to aroutine. See “patchpoint” on page 7-81 for more informa-
tion.
print
p
Print the value of a language expression. See “print” on page 7-66 for more infor-
mation.
printf
Print the values of language expressions using aformat string. See “printf” on page
7-75 for more information.
pwd
Print NightView’s current working directory. See “pwd”’ on page 7-56 for more
information.
qui t
q
Stop everything. Exit the debugger. See“quit” on page 7-17 for more information.
redi spl ay
Enable adisplay item. See“redisplay” on page 7-74 for more information.
refresh
Refresh the terminal screen. See “refresh” on page 7-113 for more information.
resume

Continue execution. See“resume” on page 7-99 for more information.
rever se-search

Search backwards through the current source file for a specified regular expression.
See “reverse-search” on page 7-61 for more information.

run

Run a program in a dialogue and wait for NightView to start debugging it. See
“run” on page 7-30 for more information.

sel ect - cont ext

B-9

NightView User’s Guide

B-10

set

set -

set -

set -

set -

set -

Select the context of an Adatask, athread, or of a Lightweight Process (LWP). See
“select-context” on page 7-111 for more information.

Evaluate a language expression without printing its value. See “set” on page 7-67
for more information.

auto-frame

Control the positioning of the stack when a process stops. See “set-auto-frame” on
page 7-54 for more information.

children

Control whether children should be debugged. See “ set-children” on page 7-41 for
more information.

edi t or

Set the mode for editing commands in the simple full-screen interface. See “set-edi-
tor” on page 7-55 for more information.

exit

Control whether a process stops before exiting. See “set-exit” on page 7-42 for
more information.

hi story

Specify the number of itemsto be kept in the value history list. See“ set-history” on
page 7-46 for more information.

set - | anguage

Establish a default language context for variables and expressions. See “set-lan-
guage’ on page 7-44 for more information.

set-limts

Specify limits on the number of array elements, string characters, or program
addresses printed when examining program data. See “set-limits’ on page 7-46 for
more information.

set -1 ocal

Define process local convenience variables. See “set-loca” on page 7-50 for more
information.

set-1o0g

set -

Log sessionto file. See“set-log” on page 7-44 for more information.
notify

Control how you are notified of events. See “set-notify” on page 7-30 for more
information.

Summary of Commands

set-over| oad

Control how NightView treats overloaded operators and routines in expressions.
See “set-overload” on page 7-54 for more information.

set - patch- area-si ze

Control the size of patch areas created in your process. See “set-patch-area-size” on
page 7-50 for more information.

set - pronpt

Set the string used to prompt for command input. See “set-prompt” on page 7-47
for more information.

set-qualifier

Specify the default list of processes or dialogues that will be affected by subsequent
commands which accept quaifiers. See*set-qualifier” on page 7-46 for more infor-
mation.

set-restart

Control whether restart information is applied. See “set-restart” on page 7-49 for
more information.

set-safety

Control debugger response to dangerous commands. See “set-safety” on page 7-49
for more information.

set-sear ch

Control case sensitivity of regular expressions in NightView. See “set-search” on
page 7-54 for more information.

set - show

Control where dialogue output goes. See “set-show” on page 7-28 for more infor-
mation.

set-tern nator

Set the string used to recognize end of dialogue input mode. See* set-terminator” on
page 7-48 for more information.

set-trace

Establish tracing parameters. See “set-trace” on page 7-83 for more information.
shel |

Run an arbitrary shell command. See “shell” on page 7-113 for more information.
show

Control dialogue output. See*“show” on page 7-29 for more information.

B-11

NightView User’s Guide

B-12

si gnal
Continue execution with asignal. See “signal” on page 7-105 for more information.
source

Input commands from a source file. See “source” on page 7-114 for more informa-

tion.

step

S
Execute one line, stepping into procedures. See “step” on page 7-100 for more
information.

st epi

Si
Execute one instruction, stepping into procedures. See “stepi” on page 7-102 for
more information.

st op
Stop aprocess. See “stop” on page 7-104 for more information.

symbol -file
Establish the file containing symbolic information for a program. See“symbol-file”
on page 7-33 for moreinformation.

t br eak
Set atemporary breakpoint. See “tbreak” on page 7-94 for more information.

t patch
Set a patchpoint that will execute only once. See “tpatch” on page 7-95 for more
information.

t racepoi nt

Set atracepoint. See “tracepoint” on page 7-84 for more information.

transl at e-object-file

xI
Translate object filenames for aremote dialogue. See “translate-object-file” on
page 7-21 for more information.

undi spl ay
Disable an item from the display expression list. See “undisplay” on page 7-74 for
more information.

up

Move one or more stack frames toward the caller of the current stack frame. See
“up” on page 7-110 for more information.

Summary of Commands

vect or - set
Set the value of avector. See “vector-set” on page 7-76 for more information.
wat chpoi nt

Set awatchpoint. See “watchpoint” on page 7-96 for more information.

Print the contents of memory beginning at a given address. See “X” on page 7-68
for more information.

B-13

NightView User’s Guide

B-14

Quick Reference Guide

C
Quick Reference Guide

Invoking NightView

nview [-attach pid] [-editor program] [-help] [-ktalk]
[-nogui] [-noktal k] [-nolocal] [-nx] [-pronpt string]
[-saf ety safemode] [-sinpl escreen] [-version]

[- Xoption ...] [-x command-file] [-xeditor]

[program-name [corefile-name] |

Controlling the Debugger

Quitting NightView

qui t

Abbreviation: q

Managing Dialogues

login [/conditional] [/popup] [name=dialoguename] [user =login
name] [others ...] machine

debug pattern . ..
nodebug pattern . ..

transl at e-object-file [from [to]]

Abbreviation: x|

| ogout
on di al ogue [regexp|

on di al ogue regexp command

C-1

NightView User’s Guide

on di al ogue regexp do

apply on di al ogue

Dialogue Input and Output

I' [inputline]

set-show [silent | notify=mode | conti nuous=mode]
[I og[=filename]] [buf f er =number]

show [number | all | none] [| shell-command]

Managing Processes

run inputline

set-notify [silent | continuous=mode]
notify

attach pid

det ach

Kill

synbol -fil e program-name

core-fil e corefilename [exec-fi | e=program-name]
exec-fil e program-name

on program [pattern]

on program pattern command

on program pattern do

apply on program

on restart [pattern]

on restart pattern command

on restart pattern do

checkpoi nt

C-2

Setting Modes

Quick Reference Guide

fam |y family-name [[-] qualifier-spec]
set-children { all [resune] | exec | none }
set-exit [stop | nostop]

nr eserve start=address {| engt h=bytes | end=address}

set -1 og keyword filename

set-1language {ada | auto | ¢ | c++ | fortran}
set-qualifier [qualifier-spec ...]

set-hi story count

set-limts {array=number | string=number | addresses=number}
set - pronpt gtring

set-term nator string

set-safety [forbid | verify | unsafe]

set-restart [always | never | verify]

set-| ocal identifier ...

set - patch-area-si ze {dat a=data-size | event poi nt =eventpoint-size |
noni t or =monitor-size | t ext =text-size}

interest [level] [[at] [location-spec]]

interest inline[=levd]

interest justlines[=leve]

i nt erest nodebug] =level]

i nterest threshol d[=leve]

set-auto-franme args. ..

set-overload [operator={on | off}] [routine={on | off}]
set-search [sensitive | insensitive]

set-edit or mode

C-3

NightView User’s Guide

Debugger Environment Control

cd dirname

pwd

Source Files

Viewing Source Files

i st where-spec

i st where-specl, where-spec2
i st ,where-spec

l'i st where-spec,

list +

list -

list =

l'ist

Abbreviation: |

directory [dirname ...]

Searching

forward-search [regexp]

Abbreviation: f o

rever se- sear ch [regexp]

Examining and Modifying

backt race [number-of-frames]

Quick Reference Guide

Abbreviation: bt

print [/ print-format-letter] expression

Abbreviation: p

set expression

X [/ repeat-count] [size-letter] [x-format-letter]] [addr-expression]
out put [/ print-format-letter] expression

echo text

dat a- di spl ay [/w ndow="windowname"] {/Kki nd=value | expression}
di spl ay [[/ print-format-letter] expression]

di spl ay /[repeat-count] [size-letter] [x-format-letter] addr-expression
undi spl ay itemrnumber . ..

redi spl ay itemnumber . ..

printf format-string[, expression ...]

| oad object

vector-set I|-value = component, component...

vect or-set I|-value = repeat-count, component

Manipulating Eventpoints

narme [/add] name [[-] eventpoint-spec]

br eakpoi nt [eventpoint-modifier] [name=breakpoint-name] [[at]
location-gpec] [i f conditional-expression]

Abbreviation: b
pat chpoi nt [eventpoint-modifier] [name=patchpoint-name] [[at]
location-spec] eval expression

pat chpoi nt [eventpoint-modifier] [name=patchpoint-name] [[at]
location-spec] got o location-spec

set-trace [event nap=event-map-file]

C-5

NightView User’s Guide

C-6

tracepoi nt [eventpoint-modifier] event-id [nanme=tracepoint-name] [[at]
location-spec] [val ue=logged-expression] [if conditional-expression]

nmoni t or poi nt [eventpoint-modifier] [name=monitorpoint-name] [[at]
location-spec]

ncontrol {display | nodisplay} [monitorpoint-spec . . .]
ncontrol del ay milliseconds

ncontrol {off | on | stale | nostale | hold | rel ease}
Abbreviation: hol d

Abbreviation: r el ease

agent poi nt [eventpoint-modifier] [nane=agentpoint-name] [[at]
location-spec]

clear [[at] location-spec]

comands eventpoint-spec

condi ti on eventpoint-spec [conditional-expression]

del et e [eventpoint-spec . . .]

Abbreviation: d

di sabl e [eventpoint-spec . . .]
enabl e [/once|/del ete] eventpoint-spec . . .
i gnor e eventpoint-spec count

t break [name=breakpoint-name] [[at] location-spec] [i f
conditional-expression]

t pat ch [name=patchpoint-name] [[at] location-spec] eval expression
t pat ch [name=patchpoint-name] [[at] location-spec] got o location-spec

wat chpoi nt [eventpoint-modifier] [/once] [/read] [/wite]
[name=watchpoint-name] [at] Ivalue [if conditional-expression]

wat chpoi nt [eventpoint-modifier] [/once] [/read] [/wite] /address
[name=watchpoint-name] [at] address-expresson {si ze size-expression | type
expresson} [if conditional-expression]

Quick Reference Guide
Controlling Execution

conti nue [count]

Abbreviation: ¢

resune [dgid]
step [repeat]

Abbreviation: s

next [repeat]

Abbreviation: n

stepi [repeaf]

Abbreviation: si

nexti [repeat]

Abbreviation: ni

finish

st op

jump [at] location-spec

si gnal sigid

handl e [/signal] sigid keyword . ..

handl e / excepti on exception-name keyword . . .
handl e / exception unit-name keyword . . .
handl e / exception all keyword ...

handl e /unhandl ed_excepti on keyword . . .

Selecting Context

frame [frame-number]

C-7

NightView User’s Guide

frame *expression [at location-spec]

Abbreviation: f

up [number-of-frames)

down [number-of-frames]

sel ect-context default

sel ect-cont ext task=expression
sel ect-cont ext thread=expresson

sel ect -cont ext | wp=Iwpid

Miscellaneous Commands

hel p [section]
refresh

shel | [shell-command]
sour ce command-file

del ay [milliseconds]

Info Commands

Status Information

info | og
info eventpoint [/verbose] [name | number]

info breakpoint [/verbose] [name | number]

Abbreviation:i b

info tracepoint [/verbose] [name | number]

info patchpoint [/verbose] [name | number]

C-8

Quick Reference Guide

info nmonitorpoint [/verbose] [name | number]
info agentpoint [/verbose] [name | number]
info wat chpoint [/verbose] [name | number]
info frane [/v] [*expression [at location-spec]]
info directories

i nfo conveni ence

info display

info history [number]

infolimts

info registers [regexp|

info signal [signa ...]

info process

info menory [/verbose]

i nfo di al ogue

info fam |y [regexp]

i nfo nanme [regexp]

info on dial ogue [name]

info on program [program]|

info on restart [output=outname append=outname] [program]
i nfo exception exception-name. . .

i nfo exception unit-name

info exception

i nfo threads

Symbol Table Information

info args

C-9

NightView User’s Guide

info locals [regexp]
info variabl es [regexp]
i nfo address identifier

i nfo sources [pattern]
info functions [regexp]
info types [regexp]
info whatis expression

Abbreviation: what i s

info representation expression

Abbreviation: r epr esent at i on

info decl arati on regexp

Abbreviation: pt ype

info files

info line [at] location-spec

Defining and Using Macros

def i ne macro-namg (arg-name [, arg-name] ...)] [tex]
defi ne macro-name [(arg-name [, arg-namg] ...)] as

i nfo macros [regexp|

C-10

GUI Customization

D
GUI Customization

This appendix contains information that you need if you want to customize the graphical
user interface.

NightView's behavior may be modified by specifying resources. Resources can be
specified in many ways. A complete discussion of this topic is beyond the scope of this
text. For more information on setting X11 client resources, refer to the X Window System
User's Guide or to the X man page X(1) .

NightView's default resources are specified in the file /usr/lib/ X111/ app-
def aul t s/ Nvi ew. Default color resources are specified in the file / usr /11 b/ X11/
app-def aul t s/ Nvi ew col or ; default monochrome resources are specified in the
file/usr/1i b/ X11/ app- def aul t s/ Nvi ew- mono. See “Color Selection” on page
D-6. You can look in these files for examples of ways to customize NightView's
appearance and behavior.

One way to specify resources is to copy the default resource files to your home directory
and change your versions of NightView's resource files. That is the method used in this
appendix.

Application Resources

In addition to the standard resources associated with an X11 or Motif program,
NightView defines special application resources you can use to customize NightView's
appearance and behavior. See Appendix D [GUI Customization] on page D-1. These
resources affect the entire NightView graphical user interface; they are "globa" to the
application.

There are two categories of application resources used by NightView. One set of
application resources applies to all products that are part of the NightStar™ tool set. In
addition to these, NightView hasits own application resources.

NightStar Resources

NightView is part of the NightStar tool set. To provide a consistent appearance among
these tools and to provide an easy way for you to change the default appearance, specia
application resources exist that define fonts and colors. They alow you to change one
resource (instead of many) to affect the font or color for a set of window components that
have similar characteristics. These resources are applied only to certain window
components; many of NightView's window components are unaffected by the NightStar
resources.

D-1

NightView User’s Guide

For example, some textual display areas show only program output and some areas
accept input only from you. Different colors are used for these areas to distinguish them.
If you want to change the color for input fields, for example, you need to change only one
resource in NightView's color resource file. See “NightStar Color Resources’ on page
D-4. The next time you run NightView, the color of all the input fields has the new
setting.

Changing thei nput Backgr ound lineinyour Nvi ew- col or fileto:
*i nput Backgr ound: Yel | ow

causes the background color for all input areas to be yellow. (This assumes that you are
using a color display and that the useN ght St ar Col ors resource is True. See
“Using NightStar Resources’ on page D-2.)

Resource values are specified in the application resource files. See Appendix D [GUI
Customization] on page D-1.

Using NightStar Resources

D-2

The following resources are provided so you can control NightView's appearance as it
applies to the NightStar resources. In most cases, however, the default values for the
following resources should be used.

useN ght Star Font s

By default, this resource is Tr ue. It controls whether the NightStar fonts are used
by NightView.

useN ght St ar Col ors

By default, thisresource is Tr ue. It controls whether the NightStar colors are used
by NightView.

These resources are specified in the /usr/lib/ X11/ app-defaul ts/ Nview
resource file.

If you set one of these resources to Fal se, NightView does not use the corresponding
NightStar resource. Instead, only standard X11 resources are used (such as
*background, *f or egr ound, *f ont Li st , as defined in the resource files), and you
are responsible for explicitly specifying fonts and colors for NightView's window
components.

For example, if you set useN ght St ar Font s to Fal se, al of NightView's textual
display would use the font defined for the standard f ont Li st resource. See “Font
Selection” on page D-6. The NightStar default font is a proportional-width font. Some
of NightView's textual displays require a fixed-width font for proper text alignment, so
this default proportional font is inappropriate for these areas. Y ou would need to specify
a fixed-width font, individualy, for some of NightView's display areas. Adding the
following lines to your resource file would tell NightView to use the 6x13 fixed-width
font for the text in the Dialogue Window's process summary list, and the Debug

GUI Customization

Window's source display area. See “Widget Hierarchy” on page D-8.

*processSumar yHeadi ngsLabel *f ont Li st : 6x13
*processSumar yLi st *font Li st : 6x13
*sour ceText *f ont Li st : 6x13

If useN ght St ar Font s is set to Tr ue, NightView takes care of setting the fonts for
you based on font resource values in the resource file.

NightStar Font Resources

This section describes the specia font resources available for NightStar tools. In addition
to these resources, NightStar tools specify an overall default font that is used for most of
the textual display. See “Font Selection” on page D-6. NightStar tools use proportional-
width fonts except in areas that depend on text alignment; in these instances a fixed-
width font is important for readability. If you decide to change fonts, make sure that you
choose another fixed-width font for the font resources that have fixed in their names.

NightStar font resources include:
bol dFont Li st
Used for text that is emphasized to attract your attention.
smal | Font Li st
Used for areas that require a smaller font.
NightView does not currently use thisfont.
i nf oFont Li st
Used for areas that display informational messages, warnings, efrors.
NightView does not currently use thisfont. The default font is used for these areas.
fi xedFont Li st
Used for areas that depend on text alignment.

NightView areas that use this font include headings for lists, lists and the display
areain the Monitor Window.

smal | Fi xedFont Li st
Used for areas that depend on text alignment but require a smaller font.

NightView areas that use this font include message areas in the Dialogue, Debug
and Globa Windows; dialogue 1/0 area; and Debug source display area.

The /usr/1ib/ X11/ app- def aul t s/ Nvi ew resource file specifies the font values
for NightView.

D-3

NightView User’s Guide

NightStar Color Resources

D-4

This section describes the specia color resources available for NightStar tools. In
addition to these resources, NightStar tools specify an overall default color that is used
for most of the window areas. See “Color Selection” on page D-6. NightStar tools use
the same color scheme to indicate that they are part of the same tool set and to provide
cues about the usage of different areas in the windows. Each NightStar tool uses a
unique color for its menu bars.

The following NightStar color application resources are defined:

out put Backgr ound
out put For egr ound

Used for the background and foreground colorsin output-only areas.

NightView areas that use these color resources include message areas in the Dia-
logue, Debug and Global Windows; lists, Debug source display area; display area
in the Monitor Window; and text input areas that are used for displaying informa-
tion, such as the eventpoint dialog boxes when used for changing an existing event-
point's attributes.

i nput Backgr ound
i nput For egr ound

Used for the background and foreground colorsin areas that accept user input.

NightView areas that use these color resources include text entry areas such as the
command areas in the Dialogue, Debug and Globa Windows; the dialogue 1/0 area;
and other text input areas in dialog boxes.

di sti nct Backgr ound
di sti nct For egr ound

Used for the background and foreground colorsin areas that require user input.

NightView areas that use these color resources include fields in the eventpoint dia-
log boxes that require you to enter data before the eventpoint can be successfully set.

f eedbackBackgr ound
f eedbackFor egr ound

Used for the background and foreground colors of the user feedback area (see “Mes-
sage Areas’ on page 9-6) for feedback that does not provide progress information.
These colors default to the same values as out put Backgr ound and out put -
For egr ound, respectively.

f eedbackNot DoneBackgr ound
f eedbackNot DoneFor egr ound

Used for the background and foreground colors of the user feedback area for that
portion representing work to be done, in those cases where progress information is
provided.

f eedbackDoneBackgr ound

GUI Customization

f eedbackDoneFor egr ound

Used for the background and foreground colors of the user feedback area for that
portion representing the amount of work completed, in those cases where progress
information is provided.

We recommend that the f eedbackDoneFor egr ound and f eedbackNot -
DoneFor egr ound colors always be the same.

The /usr/1ib/X11/ app-defaul ts/ Nvi ew col or resource file specifies the
color values for NightView.

NightView Resources

In addition to NightStar resources, NightView has application resources that you can set.
See “NightStar Resources’ on page D-1. These resources are not shared by other
NightStar tools.

The following NightView resources are available.
edi tor

This resource alows you to define the editor that isinvoked by the Source->Edit
menu item. If the edi t or resource is not defined (default), then the name of the
editor is taken from the environment variable EDITOR. If there is no EDITOR vari-
able, then vi isused. The editor isinvoked with the name of the current source file
as the sole argument. See “Debug Source Menu” on page 9-23.

edi t or Tal ksX

Setting thisresource to Tr ue indicates that your editor can communicate with the X
Window System directly. The default value for this resourceis Fal se. Seethe
description of the Source->Edit menu item for further information. See “Debug
Source Menu” on page 9-23.

noni t or W ndowCol umms

This resource controls the column width in the Monitor Window. The default value
for thisresource is 80. See “Monitor Window - GUI” on page 9-50.

| ockBut t onSel ect Col or

This resource controls the selected color of the debug source lock button. See
“Debug Source Lock Button” on page 9-30. The default value for this resourceis
#f £ 0000 (red) and itissetinthe/usr/1i b/ X11/ app-def aul t s/ Nvi ew
col or file

useKoal aTal k

Set this resource to Fal se if you do not want NightView to communicate with
other tools. See “Using NightView with Other Tools” on page 3-35. The default
value of thisresourceis Tr ue.

dwScr ol | Regi onDef aul t Li nes

D-5

NightView User’s Guide

This resource controls the default number of lines in each scroll region in the Data
Window. See“DataWindow” on page 9-51. The default value for this resource is
20.

dwiLabel Def aul t Col utms

This resource controls the default number of columns in labels in the Data Window.
See “Data Window” on page 9-51. The default value for thisresourceis20.

dwMenuH del nacti veEntries

This resource determines the appearance of the popup menu in the Data Window.
See “Data Item Popup Menu” on page 9-54. If thevalueisTr ue, then menu entries
not applicable to thisitem are not displayed (i.e., they are hidden). Otherwise, non-
applicable menu entries are displayed, but are disabled (dimmed). The default value
for thisresourceis Tr ue.

Resource values are specified in the application resource files. See Appendix D [GUI
Customization] on page D-1.

Font Selection

NightView defines a default font to use for most of the textual display in the windows.
This proportional-width font is specified in the / usr/ i b/ X11/ app- def aul t s/
Nvi ew resource file as the value of the standard Motif f ont Li st resource. Thisfontis
used by window components that do not have a font specified for them.

A few of the window components use fonts specified by NightStar font resources. These
fonts are specified in the same resource file as the default font. See “NightStar Font
Resources’ on page D-3.

You can change the fonts used by NightView, and you can control whether or not you
use the NightStar fonts. See “Using NightStar Resources’ on page D-2. You can, for
example, change the default font by setting the resource f ont Li st. Changing the
f ont Li st lineinyour Nvi ewfile to:

*fontList: 9x15
causes NightView to use the 9x15 font for most of the textual display.

Fonts can take up a lot of memory in your X server. If you are running low on server
memory, you might want to set up your resources so that you use fewer fonts.

Color Selection

D-6

NightView defines a default color to use for most of the window areas. This color is
specified inthe/ usr/ 1i b/ X11/ app- def aul t s/ Nvi ew col or resource file as the
value of the standard X11 background resource. This color is used by window

GUI Customization

components that do not have a color specified for them.

A few of the window components use colors specified by NightStar color resources.
These colors are specified in the same resource file as the default color. See “NightStar
Color Resources’ on page D-4.

Y ou can change the colors used by NightView, and you can control whether or not you
use the NightStar colors. See “Using NightStar Resources’ on page D-2.

NightView determines whether you are using a monochrome or color display and
automatically loads the appropriate NightView monochrome or color application defaults
file. This means that you do not have to specify an X11 cust om zati on resource
explicitly. If you do specify this resource (using either - col or or - mono for the value),
NightView dtill loads the appropriate application defaults file and uses its resource
values.

Monochrome Display

The file /[usr/lib/X11/app-defaults/ Nview nmono has examples of
monochrome resource specifications that were chosen to help distinguish certain fields
using standard X Window System bitmaps.

If you want NightView to have white text on a black background, you can add these
resourcesto your Nvi ew- nono or Nvi ewfile.

*background: black *foreground: white

Color Display

The file /usr/1ib/ X11/ app- def aul t s/ Nvi ew col or has examples of color
resource specifications. These resources include the default color and NightStar colors.
See “NightStar Color Resources” on page D-4. The colors in this file were chosen to
help distinguish certain fields and to emphasi ze areas that accept user input.

If you want to make changes to the colors, change your copy of the Nvi ew- col or file.

Window Geometry

If you want to specify window geometries for the individual NightView windows, then
you need to refer to the TopLevel Shell widget for each window. See “Widget Hierarchy”
on page D-8. For example,

*gl obal W ndowsShel | *geonetry: +0+0
*di al ogueW ndowShel | *geonetry: -0+0
*DebugW ndowShel | *geonetry: +0-0

would put the Global Window in the upper left corner, the Dialogue Window in the upper

D-7

NightView User’s Guide

right corner, and the Debug Window in the lower left corner.

Widget Hierarchy

D-8

Information about the widget hierarchy for the graphical user interface is useful for
modifying the behavior of NightView through the use of standard X11 or Motif
resources. You can get this information by using edi t r es(1) . See the man page for
information about edi t r es.

The widget hierarchy specific to the Monitor Window requires additiona explanation not
covered by the functionality of editres(1). The items displayed in the Monitor
Window (in the graphical user interface) are composed of three label gadgets, one each
for the identifier, stale data indicator and value. These labels inherit attributes from their
parent (the monitorBulletinBoard). The names of the gadgets are "label”, "status' and
"value".

The icons for the various stale data indicators may be changed by changing the resources
updat edSt at usPi xmap, not Execut edSt at usPi xmap and
not Sanpl edSt at usPi xnap.

I mplementation Overview

E
Implementation Overview

This section gives avery high-level description of how the debugger isimplemented.

The user invokes nvi ew. nvi ewisa script that runs either snvi ewor xnvi ew.
snvi ew implements the command-line and simple full-screen interfaces. xnvi ew
implements the graphical user interface. (Users are discouraged from invoking snvi ew
or xnvi ewdirectly.) The user interface programs deal with all aspects of the user inter-
face and with managing the symbolic debugging information from executable files. See
Chapter 6 [Invoking NightView] on page 6-1.

NightView runs Ni ght Vi ew. p for each dialogue. If the dialogue is on the local
machine, then NightView communicates with Ni ght Vi ew. p via a shared memory
region. Thereis one such shared memory region per invocation of NightView. See“Dia-
logues” on page 3-4. For remote dialogues, NightView establishes a socket connection
with Ni ght Vi ew. p.

Ni ght Vi ew. p isresponsible for controlling the user processes by some combination of
the/ pr oc file system and the debug agent. See “Debugger Mechanisms’ on page 3-17.

If the debug agent is used, it communicates with Ni ght Vi ew. p via a shared memory
region. There is one of these shared memory regions for each process using a debug
agent. See“Debug Agent” on page 3-17.

Monitorpoints communicate with Ni ght Vi ew. p via a shared memory region created in
your process. There is one shared memory region for each dialogue using monitorpoints.
See “Monitorpoints’ on page 3-10. The shared memory region is placed in your process
somewhere in the range 0xa0000000 to 0xb000000O, if thereis space available in that
range. Otherwise, it is placed anywhere NightView can find space.

Each diaogue runs a shell and controlsit using / pr oc. Thisis not to get control of the
shell, but so that the debugger is notified of the shell's children, which are the processes
to be debugged. The shell runs at a pseudo-terminal controlled by the debugger, so that
the debugger can capture the program 1/0.

Watchpoints are implemented by setting the hardware dabr. Other eventpoints are
implemented by replacing the instruction at the target address by a branch to a patch area
The patch area contains instructions to implement the particular eventpoint, emulate the
replaced instruction, and return to the target address.

Space for a patch areais acquired by using mmap or by creating a shared memory region
in the process's address space. The debugger usually creates one data patch area, one text
patch area, and one or two eventpoint patch areas. The user can adjust the sizes of the
patch areas. See “set-patch-area-size” on page 7-50. Each region is only created in the
process if necessary.

Eventpoint patch areas must be within 2** 25 bytes of the eventpoint target address. Due
to the small amount of memory covered, a complex method is used to determine where
the eventpoint patch areas are placed, in order to cover as much of the code space as
possible without overlapping the user code. The statically-linked portion of the program

E-1

NightView User’s Guide

E-2

usually begins at 0x10000000, so an eventpoint patch area is placed at (0x12000000-
(eventpoint patch area size)), if possible. If that address space is already occupied,
NightView attempts to place the region somewhere within the range 0x10000000 -
0x12000000.

For the dynamically-linked portion of the program, eventpoint patch areas may be placed
at (Oxb0000000-(eventpoint patch area size)) and at (0xb4000000-(2* (eventpoint patch
area size))). Other eventpoint patch areas may be created for some programs. The data
patch area is placed somewhere in the range 0xa0000000 to 0xb000000O, if space is
available; otherwiseit is placed anywhere NightView can find room. The text patch area
is placed in a manner similar to the data patch area.

Y ou can see where NightView has placed patch areas with thei nf o menory command
(see “info memory” on page 7-127).

The user process is sometimes forced to execute code on behalf of the debugger. Thisis
how function calls work in evaluated expressions, and it is also used to do some of the
housekeeping chores, e.g., creating memory regions.

Performance Notes

F
Performance Notes

Debug Agent Performance

The performance of the debug agent (see “Debug Agent” on page 3-17) is affected by the
operations it is asked to perform, and by whether NightView is able to tell whether the
memory locations accessed by such operations are valid or not. Reading from or writing
to memory locations that NightView aready knows are valid addresses takes much less
time than if the locations are not known to NightView. (Some examples of locations not
known to NightView are addresses in the heap and stack and addresses in shared-memory
regions your program attaches to.)

Writing to memory that contains executable instructions is more expensive than other
forms of reads or writes. You should be aware that NightView must modify the
executable instructions when it creates or deletes an eventpoint. See “Eventpoints’ on

page 3-8.

The effect of debug-agent calls on the performance of the debugged program has been
measured on a NightHawk® 4800 system running CX/UX 7.1. All pages of the debugged
program were locked in memory, and the program was isolated to a cpu from which all
interrupts were excluded; the program was also running at the highest possible priority.
Various statistics from this measurement, separated according to the types of operation
performed, are set forth below. Times are approximate and may vary under different
circumstances.

Calls to the agent when there is nothing to do:
Maximum
278 microseconds per call
Minimum
35 microseconds per call
Average
38 microseconds per call

Calls to agent when it performs only reads and writes of data (maximum of 160 bytes per
operation):

Maximum
1194 microseconds per call

Calls to agent when it performs a mix of operations, including writes to executable

F-1

NightView User’s Guide

instructions:
Maximum

1816 microseconds per call

F-2

Tutorial Files

G
Tutorial Files

The following sections show source listings for the files used in the tutorials. These files
al reside under the/ usr /i b/ Ni ght Vi ew/ Tut ori al directory.

C Files
msg.h
1 #include <stdio. h>
2 #include <sys/types. h>
3 #include <signal.h>
main.c

1 #include "msg. h"

2

3 /* This programspawns a child process and sends

4 * signals fromthe parent to the child.

5 *

6 */

7

8 mai n()

9

10 int total _sig;

11 pid_t pid;

12 char *tracefile = "nmsg file";

13 extern void parent_routine();

14 extern void child_routine();

15 extern void signal _handler();

16

17 signal (SI GUSR1, signal_handler);

18 printf("How many signals should the parent send
the child?2\n");

19 scanf("9%l", &total_sig);

20 pid = fork();

21

22 if(pid=0)

23 {

24 /[* 1t’s the child */

25 child_ routine(total _sig);

G-1

NightView User’s Guide

26 }
27
28 el se
29 {
30 /* 1t's the parent */
31 parent _routine(pid, total_sig);
32 }
33
34 exit(0);
35 1}
parent.c

1 #include "msg. h"

2

3 /* BEvery tine the parent sends the child a signal
4 * the parent wites a nessage.

5 */

6

7 void parent_routine(child pid, total _sig)
8 pid_t child_pid;

9 i nt total _sig;

10 |

11 int isec = 2;

12 int sig_ct;

13

14 for(sigct =1; sig ct <=total_sig; ++sig_ct)
15 {

16 printf("%l. Parent sleeping for %l

seconds\n", sig_ct, isec);

17 sl eep(isec);

18 kill(child_pid, SIGUSRL);

19 }

20 }

child.c

1 #include "msg. h"

2

3 /* Bvery time the child receives a signal from
4 * the parent, the child wites a message.
5 */

6

7 int sig ct_child = 0;

8

9 void child_routine(total _sig)

10 int total _sig;

G-2

Fortran Files

msg.i

main.f

11
12
13
14
15
16
17
18
19

Tutorial Files

extern void signal _handler();
signal (SIGUSR1, signal_handler);

while(sig ct child < total_sig)
{
pause();
printf("Child got ordinal signal #%\n",

sig ct_child);

20
21
22
23
24
25
26
27
28
29
30
31
32

A WN PR

O©oO~NOOLhAWNPE

}
}

/* Count how many signals have been received */

voi d signal _handl er(si g_num

int sig_num

{
signal (SI GUSR1, signal_handler);
++sig_ct_child;

}
C Constants for main.f, parent.f, and child.f
i nteger S| GUSR1L
paraneter (Sl GUSRL=30)
C This program spawns a child process and sends
C signals fromthe parent to the child.
c

program nain

common /nmeg_comm total _sig
integer total _sig

integer pid

integer fork

character *8 tracefile
external parent_routine
external child_routine

G-3

NightView User’s Guide

13
14 tracefile = "msg_file"
15 wite(6,*) "How many signals should the
parent send the child?"
16 read(5,*) total_sig
17 pid = fork()
18
19 if(pid.eq. 0) then
20 C It’s the child
21 call child_routine()
22 el se
23 C It’'s the parent
24 call parent_routine(pid)
25 end if
26
27 call exit
28 end
parent.f
1 C Every tine the parent sends the child a signal,
2 C the parent wites a nessage.
3
4 subroutine parent _routine(child _pid)
5 common /meg_comm total _sig
6 i nteger child_pid
7 i nt eger total _sig
8 i nteger i sec
9 i nteger ireturn
10 i nt eger sig ct
11 i nteger ki ll
12 i ncl ude “msg.i"
13 dat a i sec/ 2/
14
15 do 10 sig ct =1, total _sig
16 wite(6,*) sigct, ". Parent sleeping
for", isec, "seconds"
17 call sleep(isec)
18 ireturn = kill(child_pid, SIGUSRL)
19 10 conti nue
20
21 return
22 end
child.f
1 C Every time the child receives a signal from

G-4

Ada Files

main.a

_1)

sig ct_child
23
24
25
26
27
28
29
30 C
31
32
33
34
35
36
37
38
39

A WN PR

Tutorial Files

the parent, the child wites a message

subroutine child_routine()

common /meg_comm total _sig
common /sig_comm sig ct _child
i nt eger total _sig

i nt eger sig ct_child

i nt eger ireturn

i nteger csigna

cexternal pause

i nteger pause

ext er nal si gnal _handl er

i nt eger si gnal _handl er

i ncl ude “msg.i"

ireturn = csignal (SI GUSR1L, signal_handler, -1

while(sig_ct_child .It. total_sig)
ireturn = pause()
ireturn = csignal (SIGUSRL, signal _handler,

wite(6,*) "Child got ordinal signal #",
end while

return
end

Count how many signals have been received

i nteger function signal_handl er()
comon /sig_comm sig ct_child
integer sig ct _child

dat a sig ct_child /0/

sig ct_child =sig ct_child + 1
return
end

-- This program spawns a child process and sends
-- signals fromthe parent to the child

with child routine

G-5

NightView User’s Guide

18

par ent

19
20
21
22
23
24
25
26
27
28
29
30
31

parent.a

OO0k WNPRE

posi x_1003_1.pid_t;total _sig :

7
8
9
10
11
12
13
14
15

Parent sl eeping for

16
17

G-6

wi th parent_routine;
with text _io;

with posix_1003_1;
procedure nain is

pi d : posix_1003_1.pid_t;
total _sig : integer;
tracefile : constant string := "nmsg file";
buf f er : string (1..80) ;
| ast : natural ;
begi n

text _io.put_line("How many signals should the

send the child?");

text _io.get_line (buffer, last) ;
total _sig := integer’value(buffer(1l. .last)) ;
pid := posix_1003_1. fork;

if (pid=0) then

-- It’s the child

child_routine(total _sig);
el se

-- It’s the parent

parent _routine(pid, total_sig);
end if;

end nai n;

-- Every time the parent sends the child a signal
-- the parent wites a message.

with posix_1003_1;

with text _io;

procedure parent_routine(child pid :
nteger) is

i sec . integer := 2;

sig_ct : integer := 1,

st at . integer;
begi n

while sig ct <= total _sig | oop
text_io.put_line(integer’'inmage(sig_ct) & ".
& integer’inage(isec) & " seconds");
del ay duration(isec);

child.a

Tutorial Files

18 stat := posix_1003_1.kill(child_pid,
posi x_1003_1. SI GUSR1L);

19 sig ct :=sig_ct + 1;

20 end | oop;

21

22 end parent_routine;

-- the parent, the child wites a message.
package child_signal _handler is
sig ct_child . integer;

procedure signal _handl er;

O©oO~NOOUThAWNPE

10 end chil d_signal _handl er;

12 package body chil d_signal _handler is

14 procedure signal _handler is

15 begi n

16 sig ct_child :=sig_ct_child + 1;
17 end signal _handl er;

18

19 end chil d_signal _handl er;

20

21 with system

22 with posix_1003_1;

23 with text _io;

24 with child_signal handler;

25

26 procedure child routine(total _sig : integer)
27 --

28 act : posix_1003_1.sigaction_t;

29 stuff : integer;

30 --

31 begi n

32 --

33 act.sa handler :=

chil d_si gnal _handl er. si gnal _handl er’ addr ess;
34 stuff :=
posi x_1003_1. si genptyset (act.sa_nask’ addr ess) ;

35 act.sa flags := 0;
36 child_signal _handler.sig ct _child := 0;
37 stuff :=

-- Every time the child receives a signal from

is

posi x_1003_1. si gaction(posi x_1003_1. SI GQUSRL, act’ address);

38 while child_signal _handler.sig ct _child <
total _sig | oop

G-7

NightView User’s Guide

39 stuff :=
posi x_1003_1. si gsuspend(act . sa_nask’ addr ess) ;

40 text_io.put_line("Child got ordinal signal #"
&

41
i nteger’ i mage(child_signal _handler.sig_ct_child));

42 end | oop;

43 --

44 end child routine;

45

G-8

This section describes how to report bugs in NightView.

Reporting Bugs

H

Reporting Bugs

It is important to report

problems, otherwise we might never know about them. You can report a problem by
calling the Concurrent Software Support Center. For more information, see the section
Direct Software Support in the release notes for the current release.

It is also important to report a problem in a way that helps us understand and reproduce
the problem.

Hereisalist of things you should tell usin a problem report.

What version of NightView are you using? You can get this by running
nvi ew -v or by activating On Version inthe Help menu in the Gul.

What type of machine are you running on, and what is the version of the
operating system? Use the command unane - a to get thisinformation.

Are you using the Gul, the simple-screen interface, or the command line
interface? Sometimes thisis not obvious from the description of the prob-
lem.

Try to be very explicit about what you see happen when the problem
occurs. Do you get any error messages? Exactly what incorrect behavior
do you see? How will we know when we have reproduced the problem?

Try to isolate the problem to a small test program and a small series of
actions in the debugger. Thisis not always possible, but to the extent that
you can isolate the problem, that will help us reproduce and fix it.

Be explicit about exactly how to reproduce the problem. Try not to leave
out any facts, even if you think you know the cause of the problem.

H-1

NightView User’s Guide

H-2

accelerator

Ada task

agentpoint

anchored match

application

application resource

attaching

breakpoint

Glossary

This glossary definesterms used in NightView. Termsin italicsare defined here.

A special key used to select amenu item quickly in the graphical user interface. See aso
mnemonic. See“Keys’ on page 9-11.

Ada tasks are entities whose executions proceed in parallel. Different tasks proceed inde-
pendently, except at points where they synchronize.

A call to the debug agent (see “Debug Agent” on page 3-17) inserted by NightView at
your direction. You can set an agentpoint with the agent poi nt command. See“agent-
point” on page 7-88. Agentpoints may be conditional.

The entire string must match the regular expression. Put another way, a”* isimplied at the
beginning of the regular expression, and a$ isimplied at the end of the regular expression.
See “Regular Expressions” on page 7-12.

A group of related processes. The processes may be running the same program or differ-
ent programs.

Application resources are application-specific resources defined for an X11 or Motif
application. They allow you to customize the appearance or behavior of the application.
Application resources affect the entire application. See “Application Resources’ on page
D-1.

Attaching to a process means that the debugger will have control over it. Thisis how you
debug processes that aready exist. See “attach” on page 7-32.

A breakpoint is a place in your program where execution will stop. You can set a break-
point with the br eakpoi nt command. See “Breakpoints” on page 3-10. Breakpoints

Glossary-1

NightView User’s Guide

may be conditional, see conditional breakpoint. Breakpoints may have debugger com-
mands associated with them, see breakpoint commands.

breakpoint commands

A set of debugger commands to be executed when a breakpoint is hit. See breakpoint.

checkpoint

A checkpoint saves information about the eventpoints, signal disposition, and other infor-
mation, for a program. This information is used when a program is restarted. See
“Restarting a Program” on page 3-14.

child process

When a process forks, a new process is created that looks just like the old process. The
new process is called a child process and the old process is called the parent process. A
process may have many child processes, but only one parent process. You can control
whether the child process is debugged with the set - chi | dr en command. See “set-
children” on page 7-41.

command history

NightView keeps a history of all the commands you enter. You can retrieve commands,
edit them, and re-enter them. See “Command History” on page 3-32.

command-line interface

A command-line interface deals with only one line at atime. This kind of interface can be
used from aterminal or from other programs that expect simple behavior, such as a shell
running in emacs. Contrast this with afull-screen interface and a graphical user interface.
See Chapter 7 [Command-Line Interface] on page 7-1.

command stream

A command stream is a set of commands executed sequentially by NightView. The com-
mands attached to a breakpoint form a command stream, as do the commands you type as
input to NightView. Execution of commands in one command stream may be interleaved
with the execution of commands from another command stream. See “Command
Streams’ on page 3-30.

conditional breakpoint

A breakpoint may have alanguage expression associated with it. The breakpoint is " hit”
only if the expression evaluates to TRUE when the breakpoint is encountered. See break-
point.

context

Context refers to the information the debugger uses to determine how to evaluate an
expression. The main components of the context are the program counter, which deter-
mines the scope, and the stack. Context determines the language (i.e., Ada, C, C++ or
Fortran) as well as the type and location of variables in the program. NightView allows

Glossary-2

convenience variables

core file

crossing count

current frame

Glossary

you to specify the context to be used in interpreting an expression. See “Context” on page
3-24.

A convenience variable is a variable maintained by the debugger to hold the value of an
expression. The type of a convenience variable is determined by the type of the expres-
sion assigned to it. See “ Convenience Variables” on page 3-31.

A corefile is a snapshot of a process's memory created by the operating system when the
process is aborted. You can examine this process state using NightView. See “Core
Files’ on page 3-4.

A crossing count is the number of times program execution has crossed an eventpoint
since the program has started execution. This count is updated even if the ignore count or
condition was not satisfied. The crossing count is not updated if the eventpoint is dis-
abled.

The current frame is one of the frames on the stack of a stopped process. It is often the
same as the currently executing frame, but other frames can be selected using the up,
down, and f r ame commands. The current frame is used to determine the context for
evaluating an expression. See “Current Frame” on page 3-25.

currently executing frame

Data Window

debugger

debug agent

The currently executing frame is the stack frame associated with the most recently called
routine in a stopped process. Contrast thiswith current frame.

In the graphical user interface, a Data Window allows you to view dataitemsin your pro-
cess. See“DataWindow” on page 9-51.

A debugger is atool to help you debug programs. A debugger lets you control the execu-
tion of your program and look at your program’s memory.

A debug agent is a module supplied with NightView that enables debugging while your
process isrunning. The debug agent communicates with NightView through shared mem-
ory. See“Debug Agent” on page 3-17.

Glossary-3

NightView User’s Guide

debug session

Debug Window

default color

default font

detaching

dialogue

Dialogue Window

disassembly

display item

Glossary-4

A debug session is one invocation of NightView; it lasts until you exit from the debugger.
See Chapter 6 [Invoking NightView] on page 6-1. See “Quitting NightView” on page
7-17.

In the graphical user interface, a Debug Window allows you to manipulate and debug one
or more processes. See also process. See“ Debug Window” on page 9-21.

The default color is specified by the X11 backgr ound resource and applies only to the
graphical user interface. See “Color Selection” on page D-6.

The default font is specified by the Motif f ont Li st resource and applies only to the
graphical user interface. See “Font Selection” on page D-6.

Detaching from a process means that the debugger no longer has control over that process
and any future children that are created by that process. The debugger still has control
over previously created children. See “detach” on page 7-32.

NightView provides dialogues as a means of starting processes, via a shell, and communi-
cating with those processes. See “Dialogues’ on page 3-4. See also remote dialogue.

In the graphical user interface, a Dialogue Window provides you with a way to interact
with aNightView dialogue. See also dialogue. See “ Dialogue Window” on page 9-16.

A symbolic representation of the raw machine language that makes up your program. To
disassemble part of your program, use the x command with thei format. See“x” on page
7-68.

A display item is an expression or memory |location whose value or contents are to be
printed out whenever the associated process stops. NightView assigns a unique number to
each display item in each process. See “display” on page 7-72 and “info display” on page
7-124.

DWARF

ELF

event-map file

eventpoint

eventpoint modifier

exception

family

focus

Glossary

DWARF is the standard format for symbolic debugging information used with ELF files.
See ELF.

Executable and Linking Format. Thisis a standard for the format and contents of an exe-
cutable file. It also determines the form and content of information about your program
available to the debugger.

An event-map file lets you associate or map symboalic trace-event tags and numeric trace-
event IDs. Thisfile appears on the nt r ace invocation line when performing NightTrace
tracing. Seetrace.

An eventpoint is a generic hame given to the various kinds of modifications NightView
can insert at a particular location of a process. The different kinds of eventpoints are:
breakpoint, monitor point, tracepoint, patchpoint, agentpoint, and watchpoint. See
“Eventpoints’ on page 3-8.

An eventpoint modifier modifies the meaning of an eventpoint command. The only
eventpoint modifiersare/ del et e and/ di sabl ed. The modifier / del et e isvalid
only for breakpoints and watchpoints, and tells NightView to delete the eventpoint after
the next timeit ishit. The modifier / di sabl ed tells NightView to create the eventpoint,
but leave it disabled initially. See“Eventpoint Modifiers’ on page 7-79.

An Adaexception isan error or other exceptiona situation that arises during program exe-
cution. Normal program execution is abandoned, and special actions are executed. Exe-
cuting these actions is called handling the exception. An exception can also be caused by a
rai se statement. When an exception arises, control can be transferred to a user written han-
dler at the end of ablock statement, body of a subprogram, package or task unit. If a han-
dler is not present in the frame of context in which the exception arises, execution of this
sequence of statements is abandoned. The exception will be propagated to the innermost
enclosing frame of context if possible. See“handle” on page 7-106. See “info exception”
on page 7-130.

A group of related processes. See “family” on page 7-40.

See keyboard focus.

Glossary-5

NightView User’s Guide

fork

frame

full-screen interface

Global Window

Create a new process. The debugger informs you when your process forks. See child pro-
cess.

See stack frame.

A full-screen interface uses the capabilities of aterminal to control the display of informa-
tion on the entire screen, rather than just writing to the terminal oneline at atime. Contrast
thiswith a command-line interface and agraphical user interface. See Chapter 8 [Simple
Full-Screen Interface] on page 8-1.

In the graphical user interface, the Global Window shows all of NightView’s output mes-
sages and allows you to control the debugger if al other windows are closed. See* Global
Window” on page 9-61.

graphical user interface

group process mode

GUI

Help Window

hit a breakpoint

Glossary-6

A graphical user interface may be used on a graphics display. Thiskind of display allows
much more flexibility and functionality than atext display. Contrast thiswith acommand-
line interface and a full-screen interface. See Chapter 9 [Graphical User Interface] on

page 9-1.

In the graphical user interface, a Debug Window can operatein group process mode. This
means that you can issue commands that apply to all the processes in the Debug Window.
See also Debug Window. See “Group Process Mode” on page 9-14.

A graphical user interface.

In the graphical user interface, the Help Window displays NightView’s online help infor-
mation. You can choose to look at any part of the NightView User’s Guide. See also
online help system. See“Help Window” on page 9-63.

A breakpoint is hit when execution reaches the breakpoint location and the ignore count
and conditions, if any, are satisfied. Thus, hitting a breakpoint stops the process. See
“Breakpoints” on page 3-10.

hit an eventpoint

ignore count

initialization file

inline subprogram

inline interest level

inserted eventpoint

interest level

Glossary

An inserted eventpoint is hit when execution reaches the eventpoint location and the
ignore count and conditions, if any, are satisfied. A watchpoint is hit when the specified
addresses are referenced, and the ignore count and conditions are satisfied. Thus, hitting
an eventpoint causes that eventpoint to perform its specified action; e.g., a breakpoint
stops the process, a monitorpoint evaluates its expressions and saves their values, a trace-
point logs a trace event, and so on. See eventpoint, breakpoint, monitorpoint, tracepoint,
agentpoint, and watchpoint.

An ignore count causes NightView to skip an eventpoint the next count times that execu-
tion reaches the eventpoint. You usethei gnor e command to attach an ignore count to
an eventpoint. See“ignore’ on page 7-94.

An initidization file is afile containing NightView commands that are executed before
NightView reads commands from standard input. NightView has a default initialization
file, and you can specify others on the NightView invocation line. See “Initialization
Files’ on page 3-33.

A subprogram that is expanded directly into the calling program. See “Inline Subpro-
grams” on page 3-26.

Thelevel that determinesif any inline subprograms are interesting. You may set an inter-
est level for individua inline subprograms to override this level. See “Inline Subpro-
grams” on page 3-26. You can change or query this level with thei nt er est command.
See “interest” on page 7-51.

An eventpoint that is associated with alocation in your program. Inserted eventpoints are
implemented by inserting code into your process. See “Eventpoints’ on page 3-8.

Each subprogram has an associated interest level. NightView compares the interest level
to the interest level threshold to determine if the subprogram is interesting. NightView
generally avoids showing you uninteresting subprograms. See “Interesting Subprograms’
on page 3-27. You can change or query the interest level with thei nt er est command.
See “interest” on page 7-51.

interest level threshold

Each process has an interest level threshold. If the interest level of a subprogram is less
than the interest level threshold, the subprogram is considered to be uninteresting. See
“Interesting Subprograms’ on page 3-27.

Glossary-7

NightView User’s Guide

keyboard focus

macro

mnemonic

monitorpoint

NightTrace

NightView

online help system

overloading

patch

Glossary-8

The keyboard focus determines which field receives keyboard input in the graphical user
interface. See“Keyboard Focus’ on page 9-10.

A macro is a named set of text, possibly with arguments, that can be substituted in a
NightView command by referencing the name. Thisisameans of extending the facilities
provided by NightView. See*“Defining and Using Macros’ on page 7-135.

A mnemonic is away of selecting a menu or a menu item quickly in the graphical user
interface. See also accelerator. See“Keys’ on page 9-11.

A monitorpoint is alocation in a debugged process where one or more expressions are
evaluated and the values saved. The saved values are displayed periodically by Night-
View. Monitorpoints thus provide a means of viewing program data while the program is
executing. See “Monitorpoints’ on page 3-10 and “monitorpoint” on page 7-85.

An interactive debugging and performance anaysistool that |ets you examine trace events
logged by user applications and the kernel. See trace. See the NightTrace Manual for
details.

A pretty good debugger.

All of the NightView User’s Guideis available to you, online, through NightView’s online
help system. In the graphical user interface, help information is displayed in the Help
Window. See also Help Window. See “help” on page 7-112. See “GUI Online Help” on

page 9-2.

Overloading means that more than one entity with the same name is visible at some point
in the program. See “Overloading” on page 3-23.

A patch is an expression (or a branch) inserted into a debugged process to alter its behav-
ior (usually to fix abug). See patchpoint. See “Patchpoints’ on page 3-10.

patch area

patchpoint

pattern

Glossary

NightView creates regions, known as patch areas, in your process. This is where Night-
View puts code and data that is inserted into your process. See Appendix E [Implementa-
tion Overview] on page E-1. See* set-patch-area-size” on page 7-50.

A patchpoint isalocation in a debugged process where apatch isinserted. See patch. See
“Patchpoints” on page 3-10.

A patternis used in the debug and nodebug commands to control which programs will
be debugged in a particular dialogue. Patterns are similar to shell wildcard patterns. See
“debug” on page 7-20.

Principal Debug Window

PID

procedure

process

process state

program

In the graphical user interface, thisisthe only Debug Window you see unless you decide
to create additional Debug Windows. It contains all processes that appear in a NightView
session. The Principal Debug Window remains available throughout the NightView ses-
sion. See also user-created Debug Window. See “Debug Window Behavior” on page 9-13.

A process identifier. Thisisan integer from 1 to 30000 which uniquely identifies a pro-
cess on a particular system. In some situations, NightView may create false pIDs, outside
the normal range, to identify false processes, e.g., corefiles.

See routine.

The execution of a program. Many processes may be executing the same program. See
“Programs and Processes’ on page 3-2.

A process state describes whether the process is actively executing and what you can do
with the process using NightView. The two most common process states are running and
stopped. See“Process States’ on page 3-16.

A file containing instructions and data. A program is usually created with thel d(1) pro-
gram. An executing program represents a process. See “Programs and Processes’ on

page 3-2.

Glossary-9

NightView User’s Guide

program counter

qualifier

registers

remote dialogue

restarted

routine

scope

shell

signal

Glossary-10

The program counter is a register that locates the instruction that is to be executed next.
See “Program Counter” on page 3-24.

A qualifier specifiesthe set of processes or dialogues that a command affects. See “Qual-
ifiers” on page 3-4.

Registers are special storage locations in the cpu for holding frequently accessed data. In
NightView, you can access most of these registers using specially-named convenience
variables. See “Predefined Convenience Variables’ on page 7-6.

A remote dialogue is a dialogue started on a system other than the one on which Night-
View was invoked. See“Remote Dialogues” on page 3-6.

When a program is run again in the same debug session, it is considered to be restarted.
Information from the most recent checkpoint is applied to the process. See “Restarting a
Program” on page 3-14.

Routine is a generic term denoting a function or subroutine in a program. Different lan-
guages use different terms for this concept; other similar terms are subprogram and proce-
dure.

A scopeisasection of your program where a particular set of variables can be referenced.
Scope forms a part of the context. See“ Scope” on page 3-25.

The shell is the program the system normally executes when you log in. There are severa
varieties of shell: Bourne shell, C shell, and Korn shell are some examples. In NightView,
each dialogue you create executes an instance of your login shell.

A signal is a notification of some event to your process. This event may be external to
your process, or it may be the result of an erroneous action by the process itself. Night-
View allows you to control how signals are delivered to your process. See “Signals’ on
page 3-12.

single process mode

stack

stack frame

stale data indicator

symbol file

thread

trace

trace-event ID

trace-event tag

Glossary

In the graphical user interface, the Debug Window can operate in single process mode.
This means that you can issue commands that apply only to the currently displayed pro-
cess in the Debug Window. See also Debug Window. See “ Single Process Mode” on page
9-14.

An area of memory used to hold local variables and return information for each active rou-
tine. The stack consists of a sequence of stack frames. Calling a routine pushes a new
frame onto the stack; returning from the routine removes that frame from the stack. See
“Stack” on page 3-25.

A stack frame is a contiguous set of locations in the process’ stack that corresponds to the
execution of an active routine. The stack frame holds the local automatic variables of the
routine, and it also holds information needed to return to the calling routine. See “ Stack”
on page 3-25.

A stale dataindicator is a character or icon displayed with a monitored value to indicate
the validity and reliability of that value. See monitor point.

An executable file containing symbolic debug information. Normally, the symbol file is
the same as the program’s executable file, but it may be different if, for example, you are
debugging a stripped program. See “symbol-file” on page 7-33.

Each instance of execution of a program contains one or more threads of execution. Some
programs have a single thread. Ada programs, through the use of tasking, have multiple
parallel threads. See “Multithreaded Programs’ on page 3-34.

The collection of data produced by executing tracepoints in a process is called a trace.
See NightTrace.

An integer that identifies a NightTrace trace event. User trace event IDs are in the range 0
through 4095, inclusive. See event-map file and trace-event tag.

A symbolic name that identifies a NightTrace trace event. It is mapped to a numeric trace-
event ID in an event-map file.

Glossary-11

NightView User’s Guide

tracepoint

A tracepoint isacall to one of thent r ace(3X) library routines for recording the time
when execution reached the tracepoint. You can insert atracepoint in your source, or you
can use NightView to insert them after starting your process. See “Tracepoints’ on page
3-11.

user-created Debug Window

value history

watchpoint

Glossary-12

In the graphical user interface, a user-created Debug Window initially contains processes
that are defined by you. This type of Debug Window can not be empty. When the last
process in the window exits, this type of Debug Window is automatically closed by Night-
View. See also Principal Debug Window. See“Debug Window Behavior” on page 9-13.

The value history isalist of values you have printed in your NightView session. You can
view thislist, and you can reference the values in other expressions. See “Value History”
on page 3-32.

A watchpoint stops the process when the process reads or writes a variable in memory.
See “Watchpoints’ on page 3-11.

- (fam |y or nane argument) 7-40, 7-79
- (I'i st argument) 7-58, 7-59

Symbols

I 1-3,3-5,4-11, 7-27, 7-30, 7-48, 7-139

lexit 7-23

(comment) 7-2

$ 7-4,7-50, 7-67

$ prompt 1-3, 2-3, 4-4,5-4

$$ 7-4

$_ 76

$ 76

$cpc 3-24, 3-25, 7-7, 7-52, 7-64, 7-109, 7-123

$fp 7-7,7-109, 7-123

$is 7-7

$pc 319, 3-24, 3-25, 7-7, 7-70, 7-110

$sp 7-7

$was 7-7

& 3-22,4-7,5-7,7-10, 7-30, 7-132

'body 7-9

‘specification 7-9

(local) prompt 1-3,4-4

* (source line decoration) 7-64

+ (I'i st argument) 7-58, 7-59

. 7-12

- . (input terminator) 7-27, 7-48

. Ni ght Vi ew c file 3-33, 7-23, 7-24, 7-26

.profilefile 3-7

/ di sabl ed eventpoint modifier 7-79, Glossary-5

/et c/ conf/sdevice.d/ipcfile A-1

/ proc 3-3,3-6, 3-17, 3-19, 3-37, E-1

[Tutorial 4-3

/fusr/lib/N ghtView Tutorial 5-3

[usr/lib/ N ght Vi ew release/ Ready ToDebug
1-3,2-3,3-7,4-4,5-4

[usr/ucb/rsh 3-3

< (source line decoration) 7-64

=(li st argument) 7-58

= (source line decoration) 7-63

=key 9-34

> prompt 7-2, 7-86, 7-90, 7-136

> (source line decoration) 7-63

Index

@ (macro invocation) 7-138
@ (source line decoration) 7-64
\ 7-71

\n 7-71

| (showargument) 7-29

" pos 9-61

A

A (source line decoration) 7-63
Abbreviations
b (br eakpoi nt) 7-80
bt (backtrace) 7-65
¢ (conti nue) 7-98
command 7-1, 7-139
d (del et e) 7-91
exception (info exception) 7-130
f (frane) 7-109
fo(f orward-search) 7-61
hol d (ncontrol hol d) 7-87
i b(nfo breakpoint) 7-117
I (Iist) 7-58
n (next) 7-101
ni (nexti) 7-103
p (print) 7-66
ptype (i nfo decl aration) 7-134
g(quit) 7-17
rel ease (ncontrol rel ease) 7-87
representation(info representation)
7-134
s (st ep) 7-100
si (stepi) 7-102
what i s (i nfo whatis) 7-133
x| (transl ate-object-file) 7-21
Abnormal termination 7-34
Abort 3-29
Accelerator 9-10, 9-11, 9-14, 9-15, Glossary-1
Ctrl+A 9-27
Ctrl+B 9-26
Ctrl+D 9-27
Ctrl+G 9-28
Ctrl+L 9-28
Ctrl+M 9-26

Index-1

NightView User’s Guide

Ctrl+P 9-26
Ctrl+Q 9-22
Ctrl+S 9-28
Ctrl+T 9-26
Ctrl+U 9-27
Ctrl+wW 9-27
Access vector 3-36
Accessing files 3-1
Actual argument
macro 7-136, 7-138, 7-139
Ada 1-5, 3-21, 3-24, 3-33, 4-3, 4-10, 4-15, 4-17, 4-18,
4-19, 4-20, 4-21, 4-23, 4-24, 4-27, 4-30, 5-3,
5-10, 5-11, 5-13, 5-14, 5-17, 5-18, 5-20, 5-21,
5-24, 5-25, 5-26, 5-32, 7-44, 7-82, 7-95, 9-24,
9-40, Glossary-2
Ada elaboration 3-34
Adaexception 3-22, 7-106, 7-107, 7-130, Glossary-5
Ada exception handling 3-34, 7-106, 7-108, 7-130
Adaexpressions 3-21
Ada packages 3-33
Adatask 3-34, 7-103, 7-111, 9-54, Glossary-1,
Glossary-11
Adaunit 7-9, 7-59, 7-106, 7-130, 7-132
Add mode 9-10
Address
printing 7-132
Addresses limits 7-125
printing 7-46
addr-expression 7-70, 7-72
Agentpoint 3-8, 3-11, 3-18, 3-20, 7-32, 7-63, 7-77, 7-88,
Glossary-1, Glossary-5
changing 9-41
clearing 7-89
condition on 3-15, 7-91, 7-117, 7-122, 9-43
deleting 7-91, 9-44, 9-46
disabling 7-92, 9-42, 9-46
displaying 7-116, 7-121
enabling 7-93, 9-42, 9-46
hitting 7-122, 9-42
ignoring 3-15, 7-94, 7-117, 7-122, 9-43, Glossary-7
named 3-15, 7-79, 7-88, 9-43
saving 3-15
setting 7-76, 7-88, 9-41
state 7-122, 9-42
temporary 9-42
agent poi nt 3-11, 3-18, 3-20, 7-88, 7-121
Agentpoint crossing count Glossary-3
Agentpoint Dialog Box 9-27, 9-40
Aggregateitem 7-67, 7-125
Alt key 9-11
Anchored match 7-13, 7-61, 7-125, 7-128, 7-131, 7-132,
7-133, 7-134, 7-140, 9-20, 9-24, 9-39,
Glossary-1
Application 3-2, Glossary-1

Index-2

Application resources D-1, D-5, Glossary-1
apply on di al ogue 7-24,7-25
apply on program 7-38
Argument
actua 7-136
command 7-1
macro 7-136, 7-138
printing 7-127, 7-131
Array 7-67, 7-125, 9-53
printing 7-46
Array slices 3-22
Assignment 3-21, 7-82
attach 3-3,3-36, 6-1, 7-32, 7-42
Attach button 9-20
-attach option 6-1
Attaching 3-3, 3-36, 3-37, 6-1, 7-32, 9-17, 9-20, 9-32,
Glossary-1
Attaching commands to adialogue 7-24
Attaching commands to a program 7-36, 7-39

b (br eakpoi nt) 1-4, 2-5, 4-9, 7-80
B (source line decoration) 7-63
b key 9-34
Background process 7-114
backgr ound resource D-4, D-7
Backspace key 9-6
backtrace 1-5,2-6, 3-25, 4-18, 5-18, 7-5, 7-65,
7-109, 7-110, 7-111, 7-112
Blank line 7-15, 7-59
Body
macro 3-31, 7-136, 7-140
bol dFont Li st resource D-3
Branch instruction 7-82, 7-95
Breakpoint 3-8, 3-10, 3-16, 3-36, 4-15, 5-14, 7-63, 7-64,
7-77, 7-83, 7-99, 7-105, 9-32, 9-34, 9-35,
Glossary-1, Glossary-5
changing 9-41
clearing 7-89
commandson 3-15, 3-30, 3-32, 4-24, 5-26, 7-90,
7-117, 7-118, 9-43, Glossary-2
conditionon 3-15, 4-23, 5-24, 7-81, 7-91, 7-117,
7-118, 9-43, Glossary-2
deleting 4-22, 5-23, 7-32, 7-91, 9-44, 9-46
disabling 4-28, 5-30, 7-92, 9-42, 9-46
displaying 4-28, 5-31, 7-116, 7-117
enabling 7-93, 9-42, 9-46
hitting 3-16, 7-31, 7-73, 7-98, 7-118, 9-42,
Glossary-6
ignoring 3-15, 4-23,5-25, 7-81, 7-94, 7-117, 7-118,
9-43, Glossary-7

named 3-15, 7-79, 7-80, 7-94, 9-43

saving 3-15

setting 1-4, 2-5, 4-9, 4-23, 5-9, 5-24, 5-25, 7-76,
7-80, 7-94, 9-34, 9-35, 9-41

state 7-118, 9-42

temporary 7-94, 9-42

breakpoi nt 1-4, 2-5, 3-2, 3-4, 4-9, 4-23, 4-24, 7-80,

7-95, 7-117, 9-34, 9-35, 9-36
Breakpoint button 5-9, 9-34, 9-35
Breakpoint crossing count Glossary-3
Breakpoint Dialog Box 5-24, 5-25, 5-26, 9-26, 9-35,
9-40
Browse selection policy 9-9, 9-37, 9-40
bt 1-5,2-6
bt (backtrace) 7-65
Buffered output 3-31
Building aprogram 1-2, 2-2, 4-2, 5-3
Busy feedback 9-7, D-4
Busy indication 9-7, D-4
Button
Attach 9-20
Breakpoint 5-9,9-34, 9-35
Cancel 2-3,5-33, 9-9, 9-15, 9-16, 9-20, 9-39,
9-40, 9-44, 9-57
Change... 5-26, 9-46
check 9-12, 9-27, 9-45
Check All 9-45
Clear 9-36
Clear All 9-45
Close 5-8,5-24,5-27,5-31, 9-47
Data Display 9-35
dataitem action 9-53
Delete 5-23,9-44, 9-46
Detach 9-19
dimmed 5-22, 9-34, 9-40, 9-44, 9-46, 9-47
Disable 5-30
disabled 5-22, 9-14, 9-34, 9-40, 9-44, 9-46, 9-47
Dismiss 9-5
Down 9-36
Filter 9-8, 9-9, 9-20
Finish 9-35
Help 9-5,9-9, 9-15, 9-16, 9-20, 9-39, 9-40, 9-44,
9-47, 9-57
Interrupt 9-18, 9-37, 9-62
Kill 7-33,9-19
Next 5-11, 9-35
Nexti 9-35
OK 2-3, 2-7,5-16, 5-23, 5-24, 5-25, 5-27, 5-30,
5-35, 9-9, 9-15, 9-16, 9-20, 9-39, 9-40,
9-44, 9-57, 9-58, 9-59, 9-60, 9-61
Print 2-6, 5-15, 5-20, 9-34, 9-35
radio 9-12, 9-14, 9-15, 9-28, 9-43, 9-58
Resume 2-6,5-10, 5-12, 5-22, 5-28, 5-33, 9-35
Run to Here 9-34, 9-36

Index

Search 5-16, 9-39

source lock 9-30

Step 5-17,9-35

Stepi 9-35

Stop 9-14,9-35

Switch To 5-7,5-13,9-14

toggle 9-12, 9-14, 9-15, 9-27, 9-28, 9-43, 9-45
Up 9-36

Update 9-45

Update List 9-46

C

¢ (conti nue) 1-5, 7-98

Clanguage 1-5, 3-22, 3-24, 3-33, 3-36, 7-44, 7-48, 7-66,
7-67, 7-71, 7-75, 7-82, 7-95, 7-132, 7-137,
Glossary-2

Cstring 3-36, 7-67

Cthread 9-54

C++ 1-5, 3-22, 3-24, 3-33, 3-36, 7-44, 7-66, 7-82, 7-95,
7-137, 9-24, 9-40, Glossary-2

Calling macros 7-138

Cancel button 2-3, 5-33, 9-9, 9-15, 9-16, 9-20, 9-39,
9-40, 9-44, 9-57

Cautions 3-29

cc option

-g 1-2,2-2,4-2,5-3

cd 7-56

Change... button 5-26, 9-46

Changing a breakpoint 9-41

Changing a monitorpoint 9-41

Changing a patchpoint 9-41

Changing atracepoint 9-41

Changing awatchpoint 9-41

Changing an agentpoint 9-41

Changing an eventpoint 9-41

Changing eventpoints 5-26, 5-30, 9-40, 9-44, D-4

Character string 7-67, 7-125

printing 7-46

Check All button 9-45

Check button 9-12, 9-27, 9-45

Checkpoint 3-14, 3-15, 7-36, 7-39, Glossary-2,
Glossary-10

checkpoi nt 3-15, 7-39

Child process 3-2, 3-3, 4-1, 4-7, 4-14, 4-15, 5-1, 5-8,
5-13,5-14, 7-21, 7-32, 7-42, Glossary-2

cl ear 7-77,7-89, 7-91, 9-36

Clear All button 9-45

Clear button 9-36

Clearing agentpoints 7-89

Clearing breakpoints 7-89

Clearing eventpoints 7-89, 9-36

Index-3

NightView User’s Guide

Clearing monitorpoints 7-89
Clearing patchpoints 7-89
Clearing terminal 7-113
Clearing tracepoints 7-89
Clicking
double 5-15, 5-20, 9-8, 9-40
Clicking on objects 5-2, 5-5, 5-8, 5-15, 5-23, 5-24, 5-25,
5-26, 5-29, 5-30, 5-32, 5-34, 9-1
Close button 5-8, 5-24, 5-27, 5-31, 9-47
Color
default D-4, D-6, D-7, Glossary-4
Color display 9-6, D-7
Color resources D-4, D-7
Combo boxes 9-5, 9-19, 9-37, 9-63
Command abbreviations 7-1, 7-139
b (br eakpoi nt) 7-80
bt (backtrace) 7-65
¢ (conti nue) 7-98
d (del ete) 7-91
exception (i nfo exception) 7-130
f (frane) 7-109
fo (f orward- search) 7-61
hol d (ncontrol hol d) 7-87
i b(info breakpoint) 7-117
I (Iist) 7-58
n (next) 7-101
ni (nexti) 7-103
p (print) 7-66
ptype (i nfo decl aration) 7-134
g (quit) 7-17
rel ease (ncontrol rel ease) 7-87
representation(info representation)
7-134
s (step) 7-100
si (stepi) 7-102
whati s (i nfo whatis) 7-133
x| (transl ate-object-file) 7-21
Command arguments 7-1
Command case 7-1
Command execution
delaying 7-115
Command file 7-114
Command history 3-32, 9-5
Command input 7-114, 7-115
Command prompt 4-4, 4-12
Command qualifier 3-4,4-22,5-4,7-1, 7-10, 7-46, 9-18,
9-37, Glossary-10
Command repetition 4-14, 7-2, 7-15, 7-59
Command replacement 7-139
Command stream 3-30, 3-31, 3-32, 7-99, 7-105, 7-114,
7-115, Glossary-2
event-driven 3-30
Command summary 5-5, 9-4, B-1
Command syntax 7-1

Index-4

Command-line interface 1-5, 1-1, 3-28, 4-1, 4-3, 5-1,

5-4,7-2, 7-86, 7-90, 7-107, 7-136, 8-1, 9-1,
9-19, 9-37, 9-62, 9-63, Glossary-2

Command-line user interface 7-112
Commands

I 7-27

agent poi nt 7-88

apply on di al ogue 7-25
apply on program 7-38
attach 6-1,7-32
backtrace 7-65
breakpoi nt 7-80

cd 7-56

checkpoi nt 7-39

cl ear 7-89

commands 7-90

condi tion 7-90

conti nue 7-98
core-file 7-34

dat a- di spl ay 3-15,7-72
debug 7-20

define 7-135

del ay 7-114

del ete 7-91

detach 7-32

directory 7-60

di sabl e 7-92

di splay 7-72

down 7-110

echo 7-71

enabl e 7-93

exec-file 7-35

famly 7-40

finish 7-103

f orwar d- sear ch 7-61
frame 7-109

handl e 7-106

hel p 7-112

gnore 7-94

nfo address 7-132
nfo agent point 7-121
nfo args 7-131

nfo breakpoint 7-117
nfo conveni ence 7-124
nfo decl arati on 7-134
nfo di al ogue 7-127
nfo directories 7-124
nfo display 7-124
nfo eventpoint 7-116
nfo exception 7-130
nfo famly 7-128

nfo files 7-134

nfo frame 7-123

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
info functions 7-132

nfo history 7-125
nfo limts 7-125
nfo line 7-134
nfo locals 7-131
nfo | og 7-116

nfo macros 7-140
nfo menory 7-127

nf o nane 7-128

nfo on program 7-129
nfo on restart 7-129
nf o pat chpoi nt 7-119
nfo process 7-126

nfo registers 7-125

nfo signal 7-126
nfo sources 7-132
nfo tracepoint 7-118
nfo types 7-133

nfo variabl es 7-131
nf o wat chpoi nt 7-122
nfo whatis 7-133

nt erest 7-51

jump 7-104

kill 7-33

list 7-58

| oad 7-75

| ogi n 7-18

| ogout 7-23

ncontrol 7-87

noni t or poi nt 7-85
nreserve 7-43

nane 7-79

next 7-101

nexti 7-103

nodebug 7-20

notify 7-31

on di al ogue 7-24

on program 7-36

on restart 7-38

out put 7-71

pat chpoi nt 7-81
print 7-66,7-75

pwd 7-56

quit 7-17

redi splay 7-74
refresh 7-113

resune 7-99

rever se-search 7-61
run 7-30

sel ect-cont ext 7-111
set 7-67
set-auto-franme 7-54

nf o nonitorpoint 7-120

nfo on di al ogue 7-129

nfo representation 7-133

Index

set-children 7-41
set-editor 7-55
set-exit 7-42
set- history 7-46
set -l anguage 7-44
set-limts 7-46
set-local 7-50
set-log 7-44
set-notify 7-30
set - overl oad 7-54
set - pat ch-area-size 7-50
set - pronpt 7-47
set-qualifier 7-46
set-restart 7-49
set-safety 7-49
set-search 7-54
set - show 7-28
set-term nator 7-48
set-trace 7-83
shel | 7-113
show 7-29
si gnal 7-105
source 7-114
step 7-100
stepi 7-102
stop 7-104
synbol -file 7-33
t break 7-94
t patch 7-95
tracepoi nt 7-84
transl ate-object-file 7-21
undi spl ay 7-74
up 7-110
vector-set 7-76
wat chpoi nt 7-96
X 7-68
commands 3-10, 4-24, 7-77, 7-90
Commands attached to adiaogue 7-24
Commands attached to a program 7-36, 7-39
Commands on breakpoint 3-15, 5-26, 7-80, 7-81, 7-90,
9-43, Glossary-2
Commands on eventpoint 9-43
Commands on monitorpoint 3-15, 7-85, 7-90, 9-43
Commands on watchpoint 3-15
Comments 7-2, 7-136
Compilation
by debugger 3-8, 3-32
Compiling 1-2, 2-2, 3-10, 3-33, 4-2, 5-3
Condition
agentpoint 3-15, 7-117, 7-122, 9-43
breakpoint 3-15, 5-24, 7-117, 7-118, 9-43,
Glossary-2
eventpoint 3-8, 3-15, 7-91, 7-94, 7-117, 9-43
monitorpoint 3-15, 7-117, 7-121, 9-43

Index-5

NightView User’s Guide

patchpoint 3-15, 7-117, 7-120, 9-43
tracepoint 3-15, 7-117, 7-119, 9-43
watchpoint 3-15, 7-117, 7-123, 9-43
condi ti on 7-77,7-83, 7-88, 7-90
Condition removal 7-91, 9-43
conditional-expression 3-22, 7-80, 7-84, 7-91, 7-94, 7-96
Configuration
kernel A-1
Confirm Exit Dialog Box 9-15
Context 3-18, 3-24, 3-33, 3-34, 7-5, 7-44, 7-59, 7-103,
7-127, 7-132, 7-133, 7-134, Glossary-2,
Glossary-5
Context-sensitive help 9-3
conti nue 1-5, 3-4, 3-13, 4-10, 4-15, 4-31, 7-98, 7-99,
7-105
Continuing execution 1-5, 2-6, 3-34, 4-10, 4-15, 4-21,
4-31, 5-10, 5-14, 5-22, 5-33, 7-98, 7-99, 7-103,
7-104, 7-105, 7-112, 9-34
Convenience variable 3-31, 7-4, 7-6, 7-67, Glossary-3
global 3-31, 7-50, 7-124
predefined 3-26, 7-5, 7-6, 7-117, 7-118, 7-119,
7-120, 7-121, 7-122, 7-125, 7-135
processlocal 3-31, 7-6, 7-50, 7-124
Corefile 3-3, 3-4, 3-17, 6-3, 7-34, 7-134, 9-33,
Glossary-3
core-file 7-34,7-56
cprs 9-8
CPU bias 7-19
CPU hang 3-37
Crossreference
help 5-5
Crossing count Glossary-3
Ctrl key 9-6,9-11
Ctrl+/ key 9-10
Ctrl+\ key 9-10
Current frame 3-25, 7-100, 7-101, 7-102, 7-103, 9-36
Current source file 7-59, 7-61, 7-62
Current stack frame 3-24, 3-25, 4-19, 4-20, 4-31, 5-19,
5-21, 5-33, 7-63, 7-80, 7-82, 7-84, 7-86, 7-88,
7-89, 7-95, 7-103, 7-109, 7-110, 7-111, 7-123,
7-125, Glossary-3
Current working directory 7-56, 9-8
Currently displayed process 5-7
cust om zati on resource D-7

D

d (del ete) 7-91

d key 9-34

Data definitions
globa 7-76
static 7-76

Index-6

Data Display button 9-35

Data Display menu 9-52

DataHelp menu 9-52

Dataitem 9-53

Data item action button 9-53

Data NightView menu 9-51

Data Options menu 9-51

Datatype

printing 7-133

DataWindow 3-15, 7-72, 9-2, 9-29, 9-35, 9-51

dat a- di spl ay 3-15,7-72

debug 3-2, 3-5, 7-14, 7-20, 7-21, 7-128

Debug agent 3-6, 3-11, 3-17, 3-37, 7-88, A-2, F-1,
Glossary-1, Glossary-3

Debug command area 2-4, 2-6, 5-8, 5-9, 5-18, 5-19,
5-21,5-27,9-14, 9-37, 9-63, D-4

Debug command button area 5-17

Debug Display menu 9-29

Debug Eventpoint Dialog Boxes 9-40

Debug Eventpoint menu 5-23, 5-24, 5-25, 5-26, 5-29,
5-30, 5-32, 9-25, 9-40, 9-44

Debug Eventpoint Summarize/Change Dialog Box
5-23, 5-26, 5-30, 5-32, 9-27

Debug File Selection Dialog Box 9-40

Debug group area 5-7,5-11, 5-12, 5-13, 5-14, 5-17,
5-22,5-28, 5-34, 9-13, 9-14, 9-27, 9-28, 9-34,
9-37

Debug Group Selection Dialog Box 9-38

Debug Help menu 9-30

Debug identification area 2-3, 5-6, 5-13, 9-30

Debug information 4-3, 5-3, 7-33, 9-7

Debug Interrupt button 9-37

Debug menu bar 9-21

Debug message area 2-3, 2-6, 5-7, 5-8, 5-9, 5-10, 5-11,
5-12, 5-13, 5-14, 5-15, 5-17, 5-18, 5-20, 5-21,
5-25, 5-27, 5-28, 5-30, 5-31, 5-34, 9-14, 9-30,
9-40, 9-62, D-3, D-4

Debug NightView menu 2-7, 5-34, 9-21, 9-38

Debug qualifier area 5-7, 5-14, 9-14, 9-15, 9-37

Debug session Glossary-4

Debug source display 2-3, 2-5, 2-6, 5-7, 5-10, 5-11,
5-14, 5-15, 5-16, 5-17, 5-20, 5-21, 5-24, 5-25,
5-26, 5-30, 9-23, 9-24, 9-25, 9-31, 9-33, 9-35,
9-40, 9-41, 9-45, D-3, D-4

Debug sourcefile name 2-3, 5-7, 5-13, 5-20, 5-21, 5-34,
9-31

Debug source lock button 9-30

Debug Source menu 5-15, 9-23, 9-33, 9-34, 9-39, D-5

Debug Source Selection Dialog Box 9-24, 9-39

Debug statusarea 2-3, 5-7,5-11, 5-12, 5-14, 5-17, 5-22,
5-28,5-34,9-31

Debug status message 9-30

Debug table 7-131, 7-132

Debug View menu 5-17, 5-19, 5-31, 5-33, 9-14, 9-15,

9-27
Debug Window 2-3, 5-6, 5-9, 5-10, 5-11, 5-12, 5-14,
5-15, 5-17, 5-22, 5-23, 5-24, 5-28, 5-29, 9-1,
9-6, 9-11, 9-13, 9-14, 9-15, 9-17, 9-20, 9-21,
9-27, 9-28, 9-29, 9-30, 9-31, 9-34, 9-37, 9-38,
9-39, 9-40, 9-61, 9-62, 9-63, Glossary-4
Principal 5-6
user-created Glossary-12
Debugger 3-1, Glossary-3
gdb 1-1,1-4
NightView 1-5, 3-1
symbolic 3-1
Debugging
multiple processes 3-2
real-time 3-5
single process 3-2
Declaration
printing 7-134
Default color D-4, D-6, D-7, Glossary-4
Default font D-2, D-3, D-6, Glossary-4
define 7-135, 7-138
Defining amacro 7-136
del ay 7-114
del et e 4-22,7-77,7-89, 7-91
Delete button 5-23, 9-44, 9-46
Delete key 9-6
Deleting agentpoints 7-91, 9-44, 9-46
Deleting breakpoints 4-22, 5-23, 7-91, 9-44, 9-46
Deleting eventpoints 7-91, 9-44, 9-46
Deleting monitorpoints 7-91, 9-44, 9-46
Deleting patchpoints 7-91, 9-44, 9-46
Deleting tracepoints 7-91, 9-44, 9-46
Deleting watchpoints 7-91, 9-44, 9-46
Deselecting objects 9-9, 9-10
det ach 7-21, 7-23, 7-32, 9-19, 9-23
Detach button 9-19
Detaching 3-2, 3-16, 7-17, 7-23, 7-32, 7-85, 9-19, 9-23,
Glossary-4
Dialog Box 2-3, 2-7, 9-10, 9-19
Agentpoint 9-27, 9-40
Breakpoint 5-24, 5-25, 5-26, 9-26, 9-35, 9-40
Confirm Exit 9-15
Data Window Add Expression 9-29
Data Window Add Local Variables 9-29
Data Window Add Registers 9-29
Data Window Add Stack 9-29
Data Window Add Threads 9-29
Data Window Default Label Columns 9-59
Data Window Default Scroll Lines 9-59
Debug Eventpoint Summarize/Change 5-23, 5-26,
5-30, 5-32, 9-27
Debug File Selection 9-40
Debug Group Selection 9-38
Debug Source Selection 9-24, 9-39

Index

Error 9-15, 9-16
Eventpoint 9-40
File Selection 9-8, 9-24
Monitorpoint 9-26, 9-40
Patchpoint 5-29, 9-26, 9-40
Program Arguments 9-19
Select aFunction/Unit 5-16, 9-24, 9-39
Select a Source File 9-24, 9-39
Tracepoint 9-26, 9-40
Warning 5-23, 5-35, 9-5, 9-15, 9-17, 9-22, 9-23
Watchpoint 9-27, 9-40
Dialog Boxes
Debug Eventpoint 9-40
Diaogue 3-4, 3-5, 3-6, 3-17, 3-19, 4-4, 5-4, 5-7, 5-11,
5-12,5-14, 7-11, 7-18, 7-19, 7-32, 7-128, 9-10,
9-22,9-47, A-1, A-2, E-1, Glossary-4
commandson 7-24
local 3-5,7-1
local - withon di al ogue 7-24, 7-26
printing 7-127
remote 3-5, 3-6, 7-19, 9-22, 9-47, A-1
starting 7-18
terminating 7-23
diaogue
local 6-1
Diaogue command area 5-5, 9-18, 9-19, 9-37, D-4
Dialogue Dialogue menu 9-17
Dialogue Help menu 9-17
Diaogue |/O 9-2
Diaoguel/O area 2-2, 2-3, 2-6, 3-5, 5-4, 5-6, 5-11, 5-12,
5-28, 5-33, 9-18, 9-20, D-3, D-4
Dialogue identification area 9-18
Diaogueinput 7-27, 7-30, 7-48
Dialogue Interrupt button 9-18
Dialogue menu 9-17
Dialogue 9-17
Dialogue menu bar 9-16
Dialogue message area 5-5, 9-18, 9-62, D-3, D-4
Dialogue name 7-20
Dialogue NightView menu 2-7, 9-17
Diaogue output 3-5, 7-27, 7-29
Diaogue prompt 6-2
Diaogue qualifier area 5-4, 9-18
Diaogue shell 1-2, 2-2, 3-4, 3-5, 3-17, 5-6, 9-2, 9-18,
E-1
login 7-18
logout 7-23
Dialogue Window 2-3, 5-4, 5-7, 5-11, 5-12, 5-14, 9-1,
9-6, 9-13, 9-16, 9-17, 9-18, 9-19, 9-21, 9-22,
9-37, 9-61, 9-62, Glossary-4
Dimmed button 5-22, 9-34, 9-40, 9-44, 9-46, 9-47
Dimmed label 9-42
Dimmed menu item 9-22
Directory

Index-7

NightView User’s Guide

current 7-56, 9-8
di rectory 3-15, 7-56, 7-59, 7-60
Directory searching 3-15, 7-59, 7-60, 7-124
di sabl e 4-28, 7-77, 7-92
Disable button 5-30
Disabled button 5-22, 9-34, 9-40, 9-44, 9-46, 9-47
Disabled menu item 9-22
Disabling a breakpoint 4-23, 4-28, 5-25, 5-30, 7-92,

7-94, 9-42, 9-46

Disabling a monitorpoint 7-94, 9-42, 9-46
Disabling a patchpoint 7-94, 9-42, 9-46
Disabling atracepoint 7-94, 9-42, 9-46
Disabling awatchpoint 7-94, 9-42, 9-46
Disabling an agentpoint 7-94, 9-42, 9-46
Disabling an eventpoint 7-92, 7-94, 9-42, 9-46
Disassembly 7-69, 7-101, 7-102, Glossary-4
Dismiss button 9-5
Display 9-29

color 9-6, D-7

monochrome D-7
di spl ay 3-15, 4-25, 5-27, 7-6, 7-72, 7-74, 7-102,

7-124

Display Adaexception handling 7-130
Display addresses limits 7-46, 7-125
Display agentpoint 7-116, 7-121
Display arguments 7-127, 7-131
Display array 7-46
Display breakpoint 4-28, 5-31, 7-116, 7-117
Display checkpoint information 7-129
Display convenience variables 7-124
Display declaration 7-134
Display dialogue information 7-127
Display di spl ay variables 7-124
DISPLAY environment variable 6-3
Display eventpoint 4-28, 5-31, 7-116, 7-128
Display expression 7-124, 7-133, 9-29
Display expression limits 7-125
Display family information 7-128
Display file names 7-134
Display function names 7-132
Display global variable 7-131
Display item Glossary-4
Display line number 7-134
Display local variables 7-131, 9-29, 9-54
Display log file information 7-116
Display macro 7-140
Display menu 9-29, 9-52

Debug 9-29
Display monitorpoint 7-116, 7-120
Display on pr ogr amcommands 7-129
Display on restart commands 7-129
Display patchpoint 4-28, 5-31, 7-116, 7-119
Display processinformation 7-126
Display registers 9-54

Index-8

Display search path 7-124
Display sourcefile 4-8, 4-10, 7-58
Display source file names 7-132
Display stack frame
al 4-18, 5-18, 7-65, 7-72, 9-29
one 7-123
Display string limits 7-46
Display thread information 9-29
Display tracepoint 7-116, 7-118
Display type 7-134
Display type information 7-133
Display value history 7-125
Display variable 1-5, 2-6, 3-15, 4-16, 4-20, 4-25, 5-15,
5-20, 5-27, 7-66, 7-134
Display variable address 7-132
Display watchpoint 7-116, 7-122
di spl ayG oupToggl eBut t on resource 9-13
di spl ayG oupToggl eButt on. set resource 9-28
di sti nct Backgr ound resource D-4
di sti nct For eground resource D-4
Documentation
online 1-1, 1-4, 2-1, 2-4, 4-5, 5-4, 7-112, 9-2,
Glossary-6, Glossary-8
Doubleclicking 5-15, 5-20, 9-8, 9-40
down 4-20, 5-21, 7-110, 7-112, 9-34, 9-36
Down button 9-36
DWARF 3-33, 7-44, Glossary-5
dwLabel Def aul t Col umms resource 9-59, D-6
dwvenuHi del nacti veEntri es resource D-6
dwScr ol | Regi onDef aul t Li nes resource 9-59,
D-5
Dynamic linker 3-38
Dynamically loaded library 3-4, 3-19, 3-38, 7-22, 7-127

e key 9-34
echo 7-16, 7-71, 7-139
Editor

enmacs 7-55, 8-2

gmacs 7-55, 8-2

vi 7-55,8-2,9-25
EDITOR environment variable 8-2, 9-25, D-5
edi t or resource 9-24, D-5
edi t or Tal ksXresource 9-25, D-5
editres D-8
Elaboration 3-34
ELF 3-33, 7-60, Glossary-5
emacs editor 7-55, 8-2
enabl e 7-77,7-79, 7-92, 7-93, 9-34, 9-36
Enabling a breakpoint 7-93, 9-42, 9-46
Enabling a monitorpoint 7-93, 9-42, 9-46

Enabling apatchpoint 7-93, 9-42, 9-46
Enabling atracepoint 7-93, 9-42, 9-46
Enabling awatchpoint 7-93, 9-42, 9-46
Enabling an agentpoint 7-93, 9-42, 9-46
Enabling an eventpoint 7-93, 9-42, 9-46
end defi ne 7-136
End key 9-6,9-11
end on di al ogue 7-24
end on program 7-36
end on restart 7-39
Entry point 7-76
Environment variable
DISPLAY 6-3
EDITOR 8-2, 9-25, D-5
NI GHTVI EW ENV 3-4, 3-5, 3-7
PATH 3-8
POWERWORKS ELMHOST 6-3
SHELL 7-114
TERM 8-1
VISUAL 8-2
Error
abort 3-29
caution 3-29
warning 3-29
Error Didlog Box 9-15, 9-16
Error message 7-123, 9-6, 9-18, 9-30, 9-62
Errors 1-4, 2-4, 3-29, 3-34, 4-5, 5-5, 9-3, 9-15, 9-16,
Glossary-5
Esc key 9-6,9-11
Evaluation of expressions 3-18, 7-67, 7-72
Event notification 7-30, 7-32
Event-driven command streams 3-30
Event-map file 7-83, 7-84, Glossary-5
Eventpoint 3-8, 3-14, 3-15, 3-16, 3-37, 7-12, 7-76, 7-77,
7-83, 7-92, 7-118, 7-119, 7-121, 9-25, 9-40,
9-44, Glossary-5
changing 9-41
clearing 7-89, 9-36
commandson 9-43
condition on 3-8, 3-15, 3-32, 7-91, 7-94, 7-117,
9-43
deleting 7-91, 9-44, 9-46
disabling 7-92, 9-42, 9-46
displaying 4-28, 5-31, 7-116
enabling 7-93, 9-42, 9-46
hitting 7-117, 9-42, Glossary-7
ignoring 3-9, 3-15, 7-94, 7-117, 9-43
inserted 3-8, 3-9, 3-11, 3-12, 3-17, 3-19, 3-32, 7-6,
Glossary-7
named 3-15, 9-43
naming 7-12, 7-79
printing 7-128
removing 7-89
saving 3-15

Index

setting 3-3, 9-41
state 7-116, 9-42
Eventpoint crossing count Glossary-3
Eventpoint Dialog Boxes 9-40, D-4
Eventpoint ID 9-42
Eventpoint menu 9-25, 9-40, 9-44
Debug 9-25, 9-40, 9-44
Eventpoint modifier 7-79, Glossary-5
[del ete 7-79
/ di sabl ed 7-79, Glossary-5
Eventpoint number 3-8, 9-42
Eventpoint state 9-44
Eventpoint summary 5-23, 5-26, 5-30, 5-32, 9-25, 9-27,
9-40, 9-44
Eventpoints
changing 5-26, 5-30, 9-40, 9-41, 9-44, D-4
Event-triggered commands 7-24, 7-37
Exception 7-101, 7-102, 7-103, 7-104
Ada 3-22, 7-106, 7-107, 7-130, Glossary-5
exception (info exception) 7-130
Exception handling 3-34, 7-106, 7-108, 7-130
saving 3-15
exec 3-15,4-7,5-8, 7-32, 7-36, 7-39, 7-42, 9-32
exec-file 3-8,3-38, 7-22, 7-34, 7-35, 7-36, 7-56
Executable
stripped 7-22, 7-33
Executable and linking format Glossary-5
Executable file 3-1, 7-33, 7-34, 7-35, 7-131, 7-134
Execution
continuing 1-5, 2-6, 3-34, 4-10, 4-15, 4-21, 4-31,
5-10, 5-14, 5-22, 5-33, 7-98, 7-99, 7-103,
7-104, 7-105, 7-112, 9-34
restarting 3-14, 3-15, 7-36, 7-39, 7-42, Glossary-2,
Glossary-10
resuming 1-5, 2-6, 4-10, 4-15, 4-21, 4-31, 5-10,
5-14, 5-22, 5-33, 7-98, 9-35
starting 1-2, 2-2, 3-14
stopping 1-4, 2-5, 3-34, 3-37, 4-9, 4-23, 5-9, 5-24,
5-25, 7-80, 7-96
Exit messages 5-35, 9-18
Exiting 1-6, 2-7, 3-15, 4-32, 5-34, 7-17, 7-42
Explicit focus policy 9-10
Expression 3-24, 7-45
Ada 3-21
conditiona 3-22, 4-23, 5-24, 7-81, 7-84, 7-85
displaying 7-72, 7-124, 9-29, 9-35
evaluation 3-18, 3-20, 7-67, 7-72
floating-point 3-20
insertion 7-81, 7-95
language 7-73, 7-74, 7-75, 7-82
logging 7-84,9-44
memory address 7-73
patchpoint 7-84, 9-43
printing 1-5, 4-16, 4-20, 4-25, 5-15, 5-20, 5-27,

Index-9

NightView User’s Guide

7-66, 7-73, 7-120, 7-133, 9-35
regular 5-16, 7-12, 7-24, 7-54, 7-61, 7-125, 7-128,
7-131, 7-132, 7-133, 7-134, 7-140, 9-24,
9-39
regular examples 7-14
syntax 7-4
Expression Evaluation 3-24
Expression limits 7-125
Expressions
monitoring 7-86
Extended selection policy 9-10, 9-19, 9-38, 9-46
Externa data definitions 7-76
Externa variable 7-110
printing 7-131

f (frane) 7-109
f key 9-34
F1 key 9-2,9-3,9-16
fact program 1-1,2-1
Family 3-2, 3-16, 4-12, 4-14, 4-22, 7-11, 7-18, 7-40,
7-46, 7-79, 7-104, 7-128, Glossary-5
printing 7-128
fam |y 4-12, 4-14, 7-34, 7-36, 7-40
FBS 3-18, 3-36
fbswait 3-18, 3-36
Feedback 9-7, D-4
f eedbackBackgr ound resource D-4
f eedbackDoneBackgr ound resource D-4
f eedbackDoneFor egr ound resource D-4
f eedbackFor egr ound resource D-4
f eedbackNot DoneBackgr ound resource D-4
f eedbackNot DoneFor egr ound resource D-4
File
. Ni ght Vi ew ¢ 3-33,7-23, 7-24, 7-26
.profile 37
[etc/conf/sdevice.d/ipc A-1
commands 7-114
core 3-3, 3-4, 3-17, 6-3, 7-34, 7-134, 9-33,
Glossary-3
event-map 7-83, 7-84, Glossary-5
executable 3-1, 7-33, 7-34, 7-35, 7-131, 7-134
filter 9-8
initidization 6-2, 6-3, 7-114, Glossary-7
library 3-1
log 7-44, 7-116
Nvi ew D-1, D-7
Nvi ew- col or D-1,D-7
Nvi ew- mono D-1, D-7
object 3-1, 3-10, 7-75
ReadyToDebug 1-3, 2-3, 3-7, 4-4, 5-4

Index-10

source 3-1, 4-8, 4-10, 5-1, 5-7, 5-10, 5-11, 5-14,
5-15, 5-16, 5-17, 5-20, 5-21, 5-24, 5-25,
5-30, 7-58, 7-59, 7-60, 7-114, 7-124,
7-132, 7-135, 9-23, 9-24, 9-33
symbol 7-33, 7-35
trace event-map 7-83, 7-84, Glossary-5
File access 3-1
File name
printing 7-134
File Selection Dialog Box 9-8, 9-24
Filter
file 9-8
PID 9-20
Program 9-20
User 9-20
Filter button 9-8, 9-9, 9-20
finish 4-31,7-103, 7-112, 9-32, 9-34, 9-35
Finish button 9-35
fi xedFont Li st resource D-3
Floating-point expressions 3-20
fo (f orward-search) 7-61
Focus
keyboard 9-2, 9-5, 9-10, Glossary-5, Glossary-8
Focus policy
explicit 9-10
pointer 9-10
Font
default D-2, D-3, D-6, Glossary-4
font Li st resource D-6
Fonts D-3, D-6
f or bi d safety level 6-2, 7-17, 7-23, 7-33, 7-40, 7-49,
7-92
f or egr ound resource D-4, D-7
Forking 3-2, 3-3, 4-7, 4-14, 5-8, 5-13, 7-32, 9-32,
Glossary-6
Formal argument
macro 7-135, 7-138
Fortran 1-5, 3-8, 3-23, 3-24, 3-33, 4-1, 4-3, 4-15, 4-17,
4-18, 4-19, 4-20, 4-21, 4-23, 4-24, 4-27, 4-29,
5-1, 5-3, 5-10, 5-13, 5-17, 5-18, 5-20, 5-21,
5-24, 5-25, 5-26, 5-32, 7-44, 7-66, 7-67, 7-82,
7-95, 7-137, Glossary-2
f orwar d- sear ch 7-13, 7-59, 7-61
Frame
displaying 7-123
stack 3-24, 3-25, 4-19, 4-20, 4-31, 5-19, 5-21, 5-33,
7-5, 7-59, 7-63, 7-75, 7-80, 7-82, 7-84,
7-86, 7-88, 7-89, 7-95, 7-103, 7-109,
7-110, 7-111, 7-123, 7-125, 7-132,
Glossary-3, Glossary-6, Glossary-11
stack - printing 4-18, 5-18, 7-65, 9-54
frame 3-25, 7-100, 7-103, 7-109, 7-112, 9-34
Frame pointer 7-7, 7-109, 7-123
Frame zero 7-7, 7-52, 7-63, 7-105, 7-109, 7-110, 7-111,

7-125
Frames
hidden 7-7, 7-52, 7-63, 7-105
Frequency-Based Scheduler 3-18, 3-36

Full-screen interface 1-5, 1-1, 3-28, 6-2, 7-2, 7-86, 7-90,

7-113, 7-114, 7-136, 8-1, 8-2, 9-1, Glossary-6
Full-screen user interface 7-112
Function 4-11, 4-16, 5-11, 5-16, 7-100, 7-101, 7-102,
7-103, 7-124
static - location of 7-9
Function arguments
printing 7-131
Function name
list 7-132

G

- g option 1-2, 2-2, 4-2, 5-3

gdb 1-1,1-4

Geometry

window D-7

geonet ry resource D-7

GID 3-36

Global command area 9-19, 9-37, 9-63, D-4

Global data definitions 7-76

Global Help menu 9-62

Global Interrupt button 9-62

Global menu bar 9-62

Global message area D-3, D-4

Global NightView menu 9-62

Global output area 9-62

Global qualifier area 9-63

Global variable 3-18, 7-110

printing 7-131

Global Window 9-2, 9-6, 9-13, 9-17, 9-18, 9-19, 9-21,
9-22, 9-37, 9-61, 9-62, 9-63, Glossary-6

gnacs editor 7-55, 8-2

Graphical user interface 1-5, 2-1, 3-28, 3-31, 6-1, 6-3,
7-1, 7-33, 7-107, 7-112, 9-1, 9-50, A-2, D-1,
Glossary-6

Group ID 3-36

Group process mode 5-16, 5-31, 9-13, 9-14, 9-21, 9-22,

9-23, 9-28, 9-30, 9-34, 9-37, 9-44, Glossary-6
GUI 2-1, 3-28, 3-31, 6-1, 6-3, 7-1, 7-33, 7-107, 9-1,
9-50, A-2, D-1, Glossary-6
Guide
command summary B-1

Index

h key 9-34
handl e 3-13, 3-15, 3-34, 4-7, 5-9, 7-98, 7-105, 7-106,
7-126
Help
context-sensitive 9-3
cross reference 5-5
hel p 1-1, 1-4, 3-29, 4-5, 7-112, 9-3, 9-4, 9-5,
Glossary-6, Glossary-8
Help button 9-5, 9-9, 9-15, 9-16, 9-20, 9-39, 9-40, 9-44,
9-47, 9-57
Help menu 2-1, 2-4,5-4, 5-5, 5-8, 9-2, 9-3, 9-17, 9-30,
9-52, 9-62
Data 9-52
Debug 9-30
Dialogue 9-17
Global 9-62
Help system
movement 9-3, 9-63
Help Window 2-1, 2-4, 2-5, 5-5, 5-8, 9-2, 9-3, 9-5, 9-17,
9-20, 9-30, 9-62, 9-63, D-3, D-4, Glossary-6
Help window
exiting 2-4, 2-5
Hidden frames 7-7, 7-52, 7-63, 7-105
Highlighting 9-9, 9-10, 9-15, 9-19, 9-38
History
command 3-32, 9-5
value 3-32, 4-16, 5-15, 7-4, 7-46, 7-67, 7-71, 7-125,
Glossary-12
Hit abreakpoint 9-42
Hit a monitorpoint 9-42
Hit a patchpoint 9-42
Hit atracepoint 9-42
Hit awatchpoint 9-42
Hit an agentpoint 9-42
Hit an eventpoint 9-42
hol d (ntontrol hol d) 7-87
Hollerith data 7-66
Home key 9-6,9-11

i b(nfo breakpoint) 7-117
/0 35
Iconifying windows 9-2, 9-3
ID
group 3-36
process 3-3, 3-5, 3-16, 4-7, 5-7, 5-13, 7-11, 9-20,
Glossary-9
trace-event 7-83, 7-84, 9-44, Glossary-11

Index-11

NightView User’s Guide

user 3-36

i dt une utility A-1

i gnor e 4-23,7-77, 7-83, 7-88, 7-94, Glossary-7

Ignore count Glossary-7

Ignoring agentpoints 3-15, 7-94, 7-117, 7-122, 9-43,
Glossary-7

Ignoring breakpoints 3-15, 4-23, 5-25, 7-81, 7-94, 7-98,
7-117, 7-118, 9-43, Glossary-7

Ignoring eventpoints 3-9, 3-15, 7-94, 7-117, 9-43

Ignoring monitorpoints 3-15, 7-94, 7-121, 9-43,
Glossary-7

Ignoring patchpoints 3-15, 7-83, 7-88, 7-94, 7-117,
7-120, 9-43, Glossary-7

Ignoring tracepoints 3-15, 7-85, 7-94, 7-117, 7-119,
9-43, Glossary-7

Ignoring watchpoints 3-15, 7-94, 7-117, 7-123, 9-43,
Glossary-7

inetd A-1

i nfo address 7-132

i nfo agent poi nt 7-116, 7-121

info args 7-131

i nfo breakpoi nt 7-116, 7-117

i nfo conveni ence 7-124

info declaration 7-134

i nfo di al ogue 7-20,7-21, 7-51, 7-127

info directories 7-60,7-124

info display 7-73,7-74,7-75, 7-124

i nfo event poi nt 4-28, 7-92, 7-116

info exception 7-108, 7-130

info fam |y 7-128

info files 7-134

info frame 7-6, 7-123

info functions 3-34, 7-132

info history 7-125

info limts 7-47,7-125

info line 7-59,7-134

info locals 7-131

info | og 7-116

i nfo macros 7-140

info menory 7-51, 7-127

i nfo nonitorpoint 7-116, 7-120

i nfo name 7-128

i nfo on dial ogue 7-25, 7-129

i nfo on program 7-37, 7-129

info on restart 3-15, 7-39, 7-52, 7-129

i nfo pat chpoi nt 7-116, 7-119

info process 7-126

info registers 3-26, 7-7, 7-124, 7-125

info representation 7-133

i nfo signal 7-105, 7-126

i nfo sources 7-132

info tracepoint 7-116, 7-118

info types 7-133

info variables 7-131

Index-12

i nfo wat chpoi nt 7-122
info whatis 7-133
i nf oFont Li st resource D-3
Initial scan of object file 9-7
Initidization file 6-2, 6-3, 7-114, Glossary-7
Initiaize tracing 7-83
Initializing process 9-7
Inline interest level 7-52
Inline subprograms 3-26
Input
didogue 7-27, 7-30, 7-48
program 1-3, 2-3, 3-5, 4-11, 5-12, 7-27, 7-48
shell 9-18
Input area 5-24, 5-25, 5-26, 5-29, 9-5, 9-20
editing 9-5, 9-11
text 9-39
Input command 7-114
Input terminator 7-27, 7-48
i nput Backgr ound resource D-4
i nput For egr ound resource D-4
Inserted eventpoints 3-8, 3-9, 3-11, 3-12, 3-17, 3-19,
3-32, 7-6, Glossary-7
Instruction
branch 7-82, 7-95
i nterest 3-27,7-51, 7-54, Glossary-7
Interest level
inline 7-52
justlines 3-15, 3-27, 7-52
nodebug 3-15, 3-27, 7-52
subprogram 3-15, 3-27, 7-51, Glossary-7
Interest level threshold 3-15, 3-27, 7-52, Glossary-7
Interesting subprograms 3-15, 3-25, 3-27, 4-14, 5-13,
7-7,7-52, 7-101, 7-103, Glossary-7
Interface
command-line 1-5,1-1, 3-28,4-1,4-3, 5-1, 5-4, 7-2,
7-86, 7-90, 7-107, 7-136, 8-1, 9-1, 9-19,
9-37, 9-62, 9-63, Glossary-2
full-screen 1-5, 1-1, 3-28, 6-2, 7-2, 7-86, 7-90,
7-113, 7-114, 7-136, 8-1, 8-2, 9-1,
Glossary-6
graphical user 1-5, 2-1, 3-28, 3-31, 6-1, 6-3, 7-1,
7-33,7-107, 9-1, 9-50, A-2, D-1,
Glossary-6
Interrupt
user-level 3-35, 3-37
Interrupt button 9-18, 9-37, 9-62
Interrupting the debugger 3-28, 3-30, 7-87, 9-18, 9-37,
9-62
Interrupts 3-37
Invoking the debugger 1-2, 2-2, 3-33, 4-3, 5-4, 6-1
IPC configuration A-1
IPL register 3-37

Job control 3-16
junmp 7-104
Justlinesinterest level 3-15, 3-27, 7-52

Kernel configuration A-1
Key
= 9-34
> 9-34
Alt 9-11
b 9-34
Backspace 9-6
Ctrl 9-6,9-11
Ctrl+/ 9-10
Ctrl+\ 9-10
d 9-34
Delete 9-6
e 9-34
End 9-6,9-11
Esc 9-6,9-11
f 9-34
F1 9-2,9-3,9-16
h 9-34
Home 9-6, 9-11
N 9-33
n 9-33
p 9-34
Page Down 9-11
Page Up 9-11
r 9-33
Return 4-4, 4-8, 4-12, 4-26, 5-5, 5-6, 5-8, 5-9,
5-12, 5-18, 5-19, 5-21, 5-24, 5-25, 5-26,
5-27,5-29, 7-15, 7-16, 7-59, 8-1, 9-6, 9-20,
9-39, 9-45
S 9-33
s 9-33
Shift+F8 9-10
Shift+Tab 9-11
Space 4-4,4-12
Tab 9-11
u 9-34
virtual 9-10
Keyboard activation 9-1
Keyboard focus 9-2, 9-5, 9-10, Glossary-8
Keyboard selection 9-1
keyboar dFocusPol i cy resource 9-11
kill 3-12
kill 7-33,9-19, 9-23

Index

Kill button 7-33, 9-19
Killing processes 3-15, 7-17, 7-33, 9-19, 9-23

I (Iist) 1-4,7-58
Label
dimmed 9-42
Language 7-84, 7-104
machine 3-1, 3-33
Language expression 7-73, 7-74, 7-75, 7-82
Language support 1-5, 3-20, 3-25, 4-1, 5-1, 7-44, 7-127
Library
dynamically loaded 3-4, 3-19, 3-38, 7-22, 7-127
shared 3-4, 3-19, 3-38, 7-22, 7-127
Library file 3-1
Lightweight Process 3-34, 3-37, 7-103, 7-111
Lightweight process 9-54
Limits
addresses 7-125
expression 7-125
Line decorations 2-5, 2-6, 4-8, 4-10, 4-11, 4-14, 4-17,
5-7,5-10, 5-11, 5-13, 5-14, 5-18, 5-20, 5-22,
5-25, 5-30, 7-59, 7-63, 7-101, 7-102, 9-25,
9-33, 9-35, 9-36
Line number
printing 7-134
Linking 1-2, 2-2, 4-2, 5-3, 7-85
dynamic Glossary-5
list 1-4,3-33,4-8, 4-10, 7-15, 7-56, 7-58, 7-60, 7-61
List function names 7-132
List mode 9-33
List selection policy
Browse 9-9
Extended 9-10, 9-19, 9-46
Multiple 9-10, 9-19
Single 9-9
List sourcefile 4-8, 4-10, 7-58
List source file names 7-132
| oad 3-10, 7-22, 7-75
local dialogue 1-3, 2-3, 3-5, 4-4, 6-1, 7-1, 7-37
withon di al ogue 7-24, 7-26
Local system 3-6, A-1
Local variable 3-18, 7-5, 7-72, 9-29, 9-54
printing 7-131
L ocation
in executable program 7-9
printing 7-46, 7-132
L ocation specifier 7-9, 9-25, 9-35, 9-36, 9-41, 9-43,
9-45
L ocation Specifiers 3-24
Log

Index-13

NightView User’s Guide

dialogue 7-29
Logfile 7-44, 7-116
Logging
session 7-44
| ogi n 3-7,7-18
Logout 7-23
| ogout 7-23,9-17
LWP 3-34, 3-37, 7-103, 7-111, 9-54

M

M (source line decoration) 7-63
Machine language 3-1, 3-33
Macro 3-16, 3-31, 7-15, 7-27, 7-135, Glossary-8
actual arguments 7-138
argument 7-135, 7-138
definition 7-136
example 7-15
formal arguments 7-135, 7-138
printing 7-140
recursion 7-136
referencing 7-138
replacing 7-136
restart_begi n_hook 3-16, 7-36
restart _end_hook 3-16
string 7-138
Macro body 3-31, 7-136, 7-140
Macro expansion 7-24, 7-37
Manual
online 1-1, 1-4, 2-1, 2-4, 4-5, 5-4, 7-112, 9-2,
Glossary-6, Glossary-8
Manual section 4-5, 5-4, 7-112
MAXUP configuration parameter A-2
ntontrol 3-28,7-87, 8-2
Memory 7-109
globa 7-19
loca 7-19
output 7-70, 7-73
shared 3-17, 7-50, A-1, E-1, Glossary-3
static 7-132
X server A-2,D-6
menory 9-49
Memory address expression 7-73
Memory layout 7-127
Memory mapped I/O 3-37
Menu
DataDisplay 9-52
DataHelp 9-52
DataNightView 9-51
DataOptions 9-51
Debug Display 9-29

Debug Eventpoint 5-23, 5-24, 5-25, 5-26, 5-29,

Index-14

5-30, 5-32, 9-25, 9-40, 9-44

Debug Help 9-30

Debug NightView 2-7,5-34, 9-21, 9-38

Debug Source 5-15, 9-23, 9-33, 9-34, 9-39, D-5

Debug View 5-17,5-19, 5-31, 5-33, 9-14, 9-15,
9-27

Dialogue 9-17

Diaogue Dialogue 9-17

Dialogue Help 9-17

Dialogue NightView 2-7,9-17

Display 9-29

Eventpoint 9-25, 9-40, 9-44

Global Help 9-62

Global NightView 9-62

Help 2-1, 2-4,5-4, 5-5, 5-8, 9-2, 9-3, 9-17, 9-30,
9-62

NightView 9-17, 9-21, 9-38, 9-62

Source 9-23,9-33, 9-34, 9-39

View 9-14, 9-15, 9-27

Menu bar 5-5, 9-11

Data 9-51
Debug 9-21
Diaogue 9-16
Globa 9-62

Menu item

dimmed 9-22
disabled 9-22

Message

error 7-123, 9-6, 9-18, 9-30, 9-62
exit 5-35, 9-18

output 9-6, 9-62

process status 9-30

mrap E-1
Mnemonic 9-10, 9-11, Glossary-8

A 9-17,9-24,9-27

B 9-26

C 9-3,9-22

D 9-17,9-21, 9-23, 9-27, 9-29, 9-52
E 2-4,9-3, 9-24, 9-25, 9-29

F 9-23

G 9-22,9-28

H 2-1, 2-4,9-3, 9-4, 9-17, 9-30, 9-52, 9-62
| 9-4

K 9-4,9-23

L 9-17,9-28, 9-29, 9-51

M 9-4, 9-26

m 2-4

menu 9-11

menu item 9-11

N 2-7,9-4,9-17, 9-21, 9-51, 9-62

n 2-1

O 951

P 9-11, 9-21, 9-22, 9-26

Q 94,922

R 9-22,9-29
S 9-23, 9-24, 9-28, 9-29, 9-51
T 9-4,9-26, 9-29
U 9-27
V 9-4,9-27
W 9-4,9-27
X 2-7,9-22
Mode
add 9-10
group process 5-16, 5-31, 9-13, 9-14, 9-21, 9-22,
9-23, 9-28, 9-30, 9-34, 9-37, 9-44,
Glossary-6
list 9-33
norma 9-10
single process 9-13, 9-14, 9-15, 9-21, 9-22, 9-23,
9-28, 9-30, 9-34, 9-37, 9-44, Glossary-11
Monitor refresh rate 7-88
Monitor Window 3-28, 7-87, 8-2, 9-2, 9-50
GUI 9-2, 9-50, D-4, D-5, D-8
simple full-screen 8-2
Monitoring expressions 7-86
Monitorpoint 3-8, 3-10, 3-11, 3-17, 3-22, 3-28, 3-37,
7-32, 7-50, 7-63, 7-77, 7-86, 7-87, A-2,
Glossary-5, Glossary-8
changing 9-41
clearing 7-89
commandson 3-15, 7-90, 7-117, 7-121, 9-43
condition on 3-15, 7-91, 7-117, 7-121, 9-43
deleting 7-91, 9-44, 9-46
disabling 7-92, 9-42, 9-46
displaying 7-116, 7-120
enabling 7-93, 9-42, 9-46
hitting 7-121, 9-42
ignoring 3-15, 7-94, 7-117, 7-121, 9-43, Glossary-7
named 3-15, 7-79, 7-86, 9-43
saving 3-15
setting 7-76, 7-85, 9-41
state 7-121, 9-42
temporary 9-42
nmoni t or poi nt 3-10, 3-28, 7-85, 7-120, Glossary-8
Monitorpoint crossing count Glossary-3
Monitorpoint Dialog Box 9-26, 9-40
nmoni t or W ndowCol umms resource 9-50, D-5
Monochrome display D-7
Motif 9-1
Mouse 9-1
Mousebutton 1 2-1, 5-2, 5-15, 5-20, 9-1, 9-3, 9-9, 9-10,
9-11, 9-12, 9-33, 9-34, 9-53
Mouse button 3 9-53
nreserve 7-43
nsg program 4-3, 4-7, 4-10, 4-21, 5-3, 5-8, 5-10, 5-22
Multiple processes 1-5, 3-2, 3-4, 7-109, 7-123, 7-124,
7-126, 7-132, 8-1
Multiple selection policy 9-10, 9-19, 9-20

Index

n (next) 7-101
N key 9-33
n key 9-33
name 7-77,7-79, 7-82, 7-95
Named agentpoint 3-15, 7-88, 9-43
Named breakpoint 3-15, 7-79, 7-80, 7-94, 9-43
Named eventpoint 3-15, 7-12, 7-79, 9-43
Named monitorpoint 3-15, 7-86, 9-43
Named patchpoint 3-15, 7-82, 7-95, 9-43
Named process 4-12, 4-14
Named tracepoint 3-15, 7-84, 9-43
Named watchpoint 3-15, 7-97
networking A-1
Newline 7-15, 7-59
next 4-11, 7-100, 7-101, 7-103, 7-112, 9-33, 9-35
Next button 5-11, 9-35
nexti 7-100, 7-102, 7-103, 7-112, 9-33, 9-35
Nexti button 9-35
NFS 3-2
ni (nexti) 7-103
nicevaue 7-19
NightSim 3-36
NightStar tool set D-1
NightTrace Glossary-8
Ni ght Trace 3-6, 3-11, 7-84, 7-85
NightView 1-5, 3-1, Glossary-8
NightView menu 9-17, 9-21, 9-38, 9-51, 9-62
Debug 9-21, 9-38
Dialogue 9-17
Global 9-62
NightView version 1-2, 4-4, 6-2, 9-4, H-1
NI GHTVI EW_ENV environment variable 3-4, 3-5, 3-7
nodebug 3-2, 3-5, 7-14, 7-17, 7-20, 7-21, 7-23, 7-25
Nodebug interest level 3-15, 3-27, 7-52
- nogui option 1-2,4-3, 6-1
Normal mode 9-10
Notification of events 7-28, 7-30, 7-32, 7-107, 8-1
notify 7-31
NPROC configuration parameter A-2
ntrace 3-11,7-83
ntraceud 3-36, 7-85
nview
invoking 6-1
nvi ew
exiting 1-6, 2-7, 4-32,5-34, 7-17
invoking 1-2, 2-2, 3-33, 4-3, 5-4
nvi ew 1-2, 2-2, 8-1
Nvi ewfile D-1, D-7
nvi ewoption
-hel p 4-3,5-4
-nogui 1-2,4-3,6-1

Index-15

NightView User’s Guide

-si npl escreen 8-1
nview options 6-1
Nvi ew col or file D-1, D-7
Nvi ew- nono file D-1, D-7

0]

Object activation 5-2, 5-23, 5-26, 5-30, 9-1

Object desdlection 9-9, 9-10

Object file 3-1, 7-75

initial scan 9-7

Object filename trandations 7-21, 7-33, 7-35, 7-75,
7-128

Object selection 5-2, 5-5, 5-8, 5-15, 5-23, 5-24, 5-25,
5-26, 5-29, 5-30, 5-32, 5-34, 9-1

OK button 2-3, 2-7, 5-16, 5-23, 5-24, 5-25, 5-27, 5-30,
5-35, 9-9, 9-15, 9-16, 9-20, 9-39, 9-40, 9-44,
9-57, 9-58, 9-59, 9-60, 9-61

on di al ogue

with local dialogue 7-24, 7-26

on di al ogue 7-23, 7-24, 7-25, 7-129

on program 3-16, 7-14, 7-35, 7-36, 7-38, 7-39, 7-129

on restart 3-14, 3-16, 7-36, 7-38, 7-129

oneW ndowPer Pr ocess resource 9-13

Onlinedocumentation 1-1, 1-4,2-1, 2-4, 4-5,5-4,7-112,
9-2, Glossary-6, Glossary-8

Online help system Glossary-8

Optimization 3-33, 7-101, 7-102

Option
-attach 6-1
-g 1-2,2-2,4-2,5-3
-hel p 4-3,5-4
-nogui 1-2,4-3,6-1

-nol ocal 6-1
-si npl escreen 8-1
-x 6-3
- Xrm 6-3
Options
nview 6-1
Options menu 9-51
Output 3-5
buffered 3-31
dialogue 3-5, 7-29
logging 3-32
memory 7-70, 7-73
messages 9-6, 9-62
program 9-18
session 7-44
shell 9-18
suppressed 8-1
text 7-71
out put 7-71

Index-16

Output addresses limits 7-46

Output array 7-46

Output string limits 7-46

Output variable 1-5, 2-6, 4-16, 4-20, 4-25, 5-15, 5-20,
5-27, 7-66

out put Backgr ound resource D-4

out put For egr ound resource D-4

Overloading 3-24, Glossary-8

p (print) 1-5, 7-66
P (source line decoration) 7-63
p key 9-34
Packages
Ada 3-33
Page Down key 9-11
Page Up key 9-11
Pane 9-12
Parent process 4-14, 4-15, 5-13, 5-14, 9-20
Patch Glossary-8
patch area Glossary-9
Patchpoint 3-8, 3-22, 3-37, 7-32, 7-63, 7-64, 7-77,
Glossary-5, Glossary-9
changing 9-41
clearing 7-89
condition on 3-15, 7-83, 7-88, 7-91, 7-117, 7-120,
9-43
deleting 7-91, 9-44, 9-46
disabling 7-92, 9-42, 9-46
displaying 4-28, 5-31, 7-116, 7-119
enabling 7-93, 9-42, 9-46
hitting 7-120, 9-42
ignoring 3-15, 7-83, 7-88, 7-94, 7-117, 7-120, 9-43,
Glossary-7
named 3-15, 7-79, 7-95, 9-43
saving 3-15
setting 4-27, 5-29, 7-76, 7-81, 7-95, 9-41
state 7-120, 9-42
temporary 7-95, 9-42
pat chpoi nt 3-10, 4-27, 7-81, 7-119
Patchpoint crossing count Glossary-3
Patchpoint Dialog Box 5-29, 9-26, 9-40
Patchpoints named 7-82
PATH environment variable 3-8
Pattern
wildcard 7-14, 7-20, 7-36, 7-39, 7-132, 9-24, 9-39
wildcard examples 7-14
Pattern matching 7-12, 7-20, 7-21, 7-55, 7-61, 7-128,
Glossary-9
Pattern matching examples 7-14
PID 3-3, 3-5, 3-16, 4-7, 5-7, 5-13, 7-11, 9-20,

Glossary-9

Pipelines 3-2, 3-4

Pointer

question mark 5-5, 9-3

Pointer focus policy 9-10

PowerMAX OS 1-5, 3-3, 3-6, 3-13, 3-18, 3-19, 3-33,
3-36, 7-108

PowerPC 1-5

PowerPC 604 7-7

PowerPC registers 7-7

POWERWORKS _ELMHOST environment variable
6-3

Predefined convenience variable 3-26, 7-5, 7-6, 7-117,
7-118, 7-119, 7-120, 7-121, 7-122, 7-125,
7-135

Principal Debug Window 5-6, 9-13, 9-21, Glossary-9

pri nt

command attached to monitorpoint 7-86

print 1-5,3-32, 4-16, 4-20, 7-45, 7-66, 7-67, 7-71,
7-73, 7-75, 7-86, 7-110, 7-132, 7-138, 9-34,
9-35

Print Ada exception handling 7-130

Print addresses limits 7-46, 7-125

Print agentpoint 7-116, 7-121

Print arguments 7-127, 7-131

Print array 7-46

Print breakpoint 4-28, 5-31, 7-116, 7-117

Print button 2-6, 5-15, 5-20, 9-34, 9-35

Print checkpoint information 7-129

Print convenience variables 7-124

Print current directory 7-56

Print declaration 7-134

Print dialogue information 7-127

Print di spl ay variables 7-124

Print eventpoint 4-28, 5-31, 7-116

Print eventpoint information 7-128

Print expression 1-5, 4-16, 4-20, 4-25, 5-15, 5-20, 5-27,
7-66, 7-73, 7-133

Print expression limits 7-125

Print family information 7-128

Print file names 7-134

Print function names 7-132

Print global variable 7-131

Print line number 7-134

Print local variables 7-131

Print log file information 7-116

Print macro 7-140

Print monitorpoint 7-120

Print on di al ogue commands 7-129

Print on pr ogr amcommands 7-129

Printon restart commands 7-129

Print patchpoint 4-28, 5-31, 7-116, 7-119

Print processinformation 7-126

Print registers 7-125

Index

Print search path 7-124
Print signal 7-126
Print source file names 7-132
Print stack frame
all 4-18, 5-18, 7-65
one 7-123
Print string limits 7-46
Print text 7-71
Print tracepoint 7-116, 7-118
Print type information 7-133, 7-134
Print value history 7-125
Print variable 7-134
Print variable address 7-132
Print watchpoint 7-116, 7-122
printf 7-136,7-139
Procedure 4-11, 4-16, 5-11, 5-16, 7-100, 7-101, 7-102,
7-103, 7-124, Glossary-9
Procedure arguments
printing 7-131
Procedure call 3-22, 7-82
Procedure name
list 7-132
Process 3-2,9-13, 9-22, A-2, E-1, Glossary-9
abnormal termination 7-34
attaching to 6-1, 7-32, 9-17, 9-20
background 7-114
child 3-2, 3-3, 4-1, 4-7, 4-14, 4-15, 5-1, 5-8, 5-13,
5-14,7-21, 7-32, 7-42, Glossary-2
currently displayed 5-7
exiting 3-15, 3-17, 7-42
initializing 9-7
killing 3-15, 7-17
multiple 3-2, 3-4, 8-1
naming 4-12, 4-14
parent 4-14, 4-15, 5-13, 5-14, 9-20
printing 7-126
pseudo 3-3, 3-17, 6-3, 7-34, 7-36
running 3-16, 3-20
single 3-2
stopped 3-16, 3-20, 3-24, 3-25
stopping 7-104
stopping debugging 7-32
terminated 3-17
terminating 3-15, 3-16
Process families 3-2
ProcessID 3-3, 3-5, 3-16, 4-7, 5-7, 5-13, 7-11, 9-20,
Glossary-9
Process mode
group 5-16, 5-31, 9-13, 9-14,9-21, 9-22, 9-23, 9-28,
9-30, 9-34, 9-37, Glossary-6
single 9-13, 9-14, 9-15, 9-21, 9-22, 9-23, 9-28,
9-30, 9-34, 9-37, Glossary-11
process mode
group 9-44

Index-17

NightView User’s Guide

single 9-37, 9-44
Process selection 9-19
Process state 3-16, 7-127, Glossary-9
Process summary 9-19
Processes
multiple 1-5, 7-109, 7-123, 7-124, 7-126, 7-132
procfs 3-17
Program 3-2, Glossary-9
commandson 7-36
compiling 1-2, 2-2, 3-33, 4-2,5-3
fact 1-1,2-1
nmsg 4-3,4-7, 4-10, 4-21, 5-3, 5-8, 5-10, 5-22
restarting 3-14, 3-15, 7-36, 7-39, 7-42, Glossary-2,
Glossary-10
running 1-2, 4-6, 5-6, 7-28, 7-30
setuid 3-3
starting 3-14
Program arguments 1-3, 2-3, 6-1, 9-20
Program Arguments Dialog Box 9-19
Program counter 3-19, 3-24, 3-25, 7-7, 7-105, 7-125,
Glossary-10
Program 1/0O E-1
Program input 1-3, 2-3, 3-5, 4-11, 5-12, 7-27, 7-48
Program location
specifying 7-9
Program name 1-1, 2-1, 3-8, 4-3, 4-7,5-3, 5-8, 6-2, 9-20,
9-30
Program output 3-5, 3-31, 3-32, 9-18
Progress bar 9-7, D-4
Progressindication 9-7, D-4
Prologue 7-10
Prompt 7-2, 7-48
$ 1-3,2-3,44,54
(local) 1-3,4-4
> 7-86, 7-90, 7-136
command 4-4, 4-12
dialogue 6-2, 7-2
shell 1-3, 2-3,4-4,5-4
ps 3-3
Pseudo process 3-3, 3-17, 6-3, 7-34, 7-36
Pseudo terminal A-2
pty A-2
ptype (i nfo decl aration) 7-134
pwd 7-56

Q

g (quit) 1-6,7-2, 7-17

Qualifier 3-4,4-15, 4-22,5-4, 7-1, 7-10, 7-46, 9-18,
9-29, 9-37, 9-38, 9-45, Glossary-10

Quick command summary B-1

quit 6-3

Index-18

quit 1-6,4-32,7-2,7-17,9-22
Quitting 1-6, 2-7, 4-32, 5-34, 7-17

R

r key 9-33
Radio button 9-12, 9-14, 9-15, 9-28, 9-43, 9-58
raise 3-34
ReadyToDebug 1-3,2-3, 3-7, 4-4,5-4
Real-time debugging 3-5
Recursion
macro 7-136
redi splay 7-74
Referencing macros 7-138
refresh 7-113
Refreshing terminal 7-113
regexp 7-12, 7-61, 7-125, 7-128, 7-131, 7-133, 7-134,
7-140
Register
IPL 3-37
Register variable 7-5
Registers 3-1, 3-19, 3-24, 3-26, 7-5, 7-7, 7-72, 7-105,
7-110, 7-124, 7-132, 9-29, 9-54, Glossary-10
display 9-54
printing 7-125
Regular expression 5-16, 7-12, 7-24, 7-54, 7-61, 7-125,
7-128, 7-131, 7-132, 7-133, 7-134, 7-140, 9-20,
9-24, 9-39
Regular expression examples 7-14
rel ease (ncontrol rel ease) 7-87
Remote dialogue 3-5, 3-6, 7-19, 9-22, 9-47, A-1,
Glossary-10
Remote system 3-6, A-1
Repeating commands 4-14, 7-2, 7-15, 7-59
Replacing commands 7-139
representation (info representation)
7-134
Rerunning aprogram 3-14, 3-15, 7-36, 7-39, 7-42
Resizing windows 9-12
Resource
background D-4, D-7
bol dFont Li st D-3
cust onmi zati on D-7
di spl ayG oupToggl eButton 9-13
di spl ayG oupToggl eButton. set 9-28
di stinct Background D-4
di stinct Foreground D-4
dwLabel Def aul t Col umms 9-59, D-6
dwMenuHi del nacti veEntri es D-6
dwScr ol | Regi onDef aul t Li nes 9-59, D-5
editor 9-24,D-5
edi t or Tal ksX 9-25, D-5

f eedbackBackgr ound D-4
f eedbackDoneBackground D-4
f eedbackDoneFor eground D-4
f eedbackFor egr ound D-4
f eedbackNot DoneBackground D-4
f eedbackNot DoneFor eground D-4
fi xedFont Li st D-3
fontList D-6
f or eground D-4, D-7
geonetry D-7
i nf oFont Li st D-3
i nput Backgr ound D-4
i nput For egr ound D-4
keyboar dFocusPol i cy 9-11
noni t or W ndowCol ums 9-50, D-5
oneW ndowPer Process 9-13
out put Background D-4
out put For egr ound D-4
sel ect Col or 9-12
sel ectionPolicy 9-9
smal | Fi xedFont Li st D-3
smal | Font Li st D-3
useN ght St ar Col ors D-2
useN ght StarFonts D-2
Resources
application D-1, D-5, Glossary-1
color D-4, D-7
system A-1
X A-2,D-1,D-6
Restart
commandson 7-39
restart_begi n_hook macro 3-16, 7-36
restart _end_hook macro 3-16
Restarting a program 3-15, 7-36, 7-42
Restarting execution 3-14, 3-15, 7-36, 7-39, 7-42,
Glossary-2, Glossary-10
resune 3-13, 3-34, 3-36, 4-21, 7-90, 7-98, 7-99, 9-33,
9-34, 9-35, 9-36
Resume button 2-6, 5-10, 5-12, 5-22, 5-28, 5-33, 9-35
Resuming execution 1-5, 2-6, 4-10, 4-15, 4-21, 4-31,
5-10, 5-14, 5-22, 5-33, 7-98, 9-35
Return key 4-4, 4-8, 4-12, 4-26, 5-5, 5-6, 5-8, 5-9,
5-12, 5-18, 5-19, 5-21, 5-24, 5-25, 5-26, 5-27,
5-29, 7-15, 7-16, 7-59, 8-1, 9-6, 9-20, 9-39,
9-45
rever se- search 7-13, 7-59, 7-61
riogin 7-19
Root user 3-36
Routine 4-11, 4-16, 5-11, 5-16, 7-100, 7-101, 7-102,
7-103, 7-124, Glossary-10
trace_open_t hread 7-85
trace_start 7-85
Routine arguments
printing 7-131

Index

Routine name
list 7-132
Routine replacement 7-76
rtcp 3-36
rtutil 3-36
run 3-7, 7-19, 9-47, 9-48, 9-49
run 1-2, 3-5, 4-6, 7-28, 7-30, 7-139
Run aprogram 1-2, 3-14, 4-6, 5-6, 7-28, 7-30
Run to Here button 9-34, 9-36

s (st ep) 7-100
S key 9-33
s key 9-33
Safety level
forbid 6-2,7-17, 7-23, 7-33, 7-40, 7-49, 7-92
unsaf e 3-30, 6-2, 7-16, 7-23, 7-32, 7-33, 7-49,
7-92
verify 6-2,7-16, 7-17, 7-23, 7-33, 7-40, 7-49,
7-92
Sash 9-12, 9-18, 9-19, 9-30, 9-33
Saving agentpoints 3-15
Saving breakpoints 3-15
Saving eventpoints 3-15
Saving exception handling 3-15
Saving monitorpoints 3-15
Saving patchpoints 3-15
Saving tracepoints 3-15
Saving watchpoints 3-15
Scheduler
frequency-based 3-18, 3-36
Scope 3-25, 3-31, 7-80, 7-84, 7-131, Glossary-10
Script
debugger 7-114, 7-115
Scroll bar 2-5, 5-5, 5-7, 9-18, 9-30, 9-37, 9-40, 9-62
Search button 9-39
Searching
function 9-24
path 7-59, 7-60, 7-124
regular expression 5-16, 7-61, 9-39
wildcard pattern 9-24, 9-39
Section
manua 4-5, 5-4, 7-112
Select a Function/Unit Dialog Box 5-16, 9-24, 9-39
Select a Source File Dialog Box 9-24, 9-39
sel ect Col or resource 9-12
sel ect - cont ext 3-34,7-103, 7-111
Selection
object 5-2, 5-5, 5-8, 5-15, 5-23, 5-24, 5-25, 5-26,
5-29, 5-30, 5-32, 5-34, 9-1
process 9-19

Index-19

NightView User’s Guide

Selection policy
Browse 9-9, 9-37, 9-40
Extended 9-10, 9-19, 9-38, 9-46
Multiple 9-10, 9-19, 9-20
Single 9-9
sel ecti onPol i cy resource 9-9
Semicolon 7-82, 7-95
Session
debug Glossary-4
Session logging 7-44
set 7-67
set-auto-frame 7-54
set-children 3-2, 3-15,4-7,5-8, 7-41
set - editor 7-55,8-2
set-exit 7-42
set-history 7-46
set -1 anguage 3-15, 7-44, 7-127
set-limts 7-46, 7-47, 7-67, 7-69, 7-116, 7-117,
7-118, 7-119, 7-120, 7-121
set -l ocal 3-31,7-50
set -1 og 7-44,7-116
set-notify 7-30
set - over| oad 3-24,7-54
set - patch-area-si ze 7-50, 7-128, E-1,
Glossary-9
set - pronpt 7-2, 7-47
set-qualifier 4-22, 7-10, 7-46, 9-63
set-restart 3-15,7-49
set-safety 7-24,7-37,7-49
set-search 7-54
set - show 3-5, 7-28, 7-29, 7-44, 7-116
set-term nator 7-48
Setting abreakpoint 1-4, 2-5, 4-9, 4-23, 5-9, 5-24, 5-25,
7-80, 7-94, 9-34, 9-35, 9-41
Setting a conditional agentpoint 7-117, 7-122, 9-43
Setting aconditional breakpoint 3-8, 5-24, 7-117, 7-118,
9-43, Glossary-2
Setting aconditional eventpoint 7-91, 7-94, 7-117, 9-43
Setting a conditional monitorpoint 7-117, 7-121, 9-43
Setting a conditional patchpoint 7-117, 7-120, 9-43
Setting a conditional tracepoint 7-117, 7-119, 9-43
Setting a conditional watchpoint 7-117, 7-123, 9-43
Setting a monitorpoint 7-85, 9-41
Setting a patchpoint 4-27, 5-29, 7-81, 7-95, 9-41
Setting atracepoint 7-85, 9-41
Setting awatchpoint 7-96, 9-41
Setting an agentpoint 7-88, 9-41
Setting an eventpoint 9-41
set-trace 7-83,7-84
Setuid programs 3-3
Shared library 3-4, 3-19, 3-38, 7-22, 7-127
Shared memory 3-17, 7-50, A-1, E-1, Glossary-3
Shell Glossary-10
dialogue 3-4, 3-5, 3-17, 3-19, 5-6, 9-18, E-1

Index-20

3-3, 3-36, 7-17, 7-56, 7-113, 7-139, 8-1, 9-19,
9-37,9-63
SHELL environment variable 7-114
Shell 11O 9-18
Shell prompt 1-3, 2-3, 4-4, 5-4
Shift+F8 key 9-10
Shift+Tab key 9-11
SHVWNI configuration parameter A-1
show 3-5, 7-28, 7-29
si (stepi) 7-102
SIGADA 7-108
SIGALRM 7-108
siginfo 3-13
SIGINT 7-108
signal 3-13, 7-90, 7-98, 7-105
Signas 3-12, 3-15, 3-37, 4-1, 4-7, 5-1, 5-9, 7-31, 7-37,
7-73, 7-98, 7-99, 7-100, 7-101, 7-102, 7-103,
7-104, 7-105, 7-107, Glossary-10
printing 7-126
SIGQUIT 7-107
SIGTRAP 3-13, 7-104
SIGUSRL1 4-1, 4-7, 4-26, 4-32, 5-1, 5-9
Simple full-screen interface 1-5, 1-1, 3-28, 6-2, 7-2,
7-86, 7-90, 7-113, 7-114, 7-136, 8-1, 8-2, 9-1,
Glossary-6
editing commands 8-2
- si npl escr een option 8-1
Single process 3-2
Single processmode 9-13, 9-14, 9-15, 9-21, 9-22, 9-23,
9-28, 9-30, 9-34, 9-37, 9-44, Glossary-11
Single selection policy 9-9
Single stepping 3-13, 3-34, 3-37, 4-11, 4-16, 5-11, 5-16,
7-100, 7-101, 7-102, 7-103, 7-104, 9-32, 9-33,
9-35
smal | Fi xedFont Li st resource D-3
smal | Font Li st resource D-3
sour ce 3-15, 3-30, 3-33, 7-15, 7-114, 7-130
Source display area 9-23, 9-40
Sourcefile 3-1, 5-1, 5-7, 5-10, 5-11, 5-14, 5-15, 5-16,
5-17, 5-20, 5-21, 5-24, 5-25, 5-30, 7-114,
7-135, 9-23, 9-24, 9-33
current 7-59, 7-61, 7-62
displaying 4-8, 4-10, 7-58
list 7-132
search path for 7-59, 7-60, 7-124
Source line decorations 2-5, 2-6, 4-8, 4-10, 4-11, 4-14,
4-17,5-7,5-10, 5-11, 5-13, 5-14, 5-18, 5-20,
5-22, 5-25, 5-30, 7-59, 7-63, 7-101, 7-102,
9-25, 9-33, 9-35, 9-36
Source listing 1-4, 2-3, 4-8, 4-10, 7-15, 7-58
Source menu 9-23, 9-33, 9-34, 9-39
Debug 9-23, 9-33, 9-34, 9-39
Space key 4-4,4-12
Spin box 9-59

shel |

Stack Glossary-11
Stack examination 1-5, 2-6, 4-18, 5-18, 7-65
Stack frame 7-5, 7-59, 7-75, 7-132, Glossary-6,
Glossary-11
current 3-24, 3-25, 4-19, 4-20, 4-31, 5-19, 5-21,
5-33, 7-63, 7-80, 7-82, 7-84, 7-86, 7-88,
7-89, 7-95, 7-103, 7-109, 7-110, 7-111,
7-123, 7-125, Glossary-3
displaying 7-72, 7-123, 9-29
printing 4-18, 5-18, 7-65
Stack pointer 7-7, 7-125
Stack variable 3-18
Staledataindicator 3-28, 8-2, 9-50, Glossary-11
Starting execution 1-2, 2-2, 3-14
Starting the debugger 1-2, 2-2, 3-33, 4-3, 5-4, 6-1
Starting tracing 7-83
State
agentpoint 7-122, 9-42
breakpoint 7-118, 9-42
eventpoint 7-116, 9-42
monitorpoint 7-121, 9-42
patchpoint 7-120, 9-42
process 3-16, 7-127, Glossary-9
tracepoint 7-119, 9-42
watchpoint 7-122, 9-42
Static data definitions 7-76
Static function
specifying location of 7-9
Static memory 7-132
Static variable 3-18, 7-5
Status information 7-115
step 3-27,3-34, 4-16, 5-16, 7-98, 7-100, 7-101, 7-102,
7-112, 9-33, 9-35
Step button 5-17,9-35
stepi 7-100, 7-102, 7-112, 9-33,9-35
Stepi button 9-35
stop 3-37, 7-104, 9-32, 9-35
Stop button 9-14, 9-35
Stopping a process 7-104, 9-35
Stopping execution 1-4, 2-5, 3-34, 3-37, 4-9, 4-23, 5-9,
5-24, 5-25, 7-80, 7-96
Stream
command Glossary-2
String
C 3-36, 7-67
character 7-67, 7-125
macro 7-138
String limits
printing 7-46
strip 7-33
Stripped executable 7-22, 7-33
stty 81
Subprogram 4-11, 4-16, 5-11, 5-16, 7-100, 7-101,
7-102, 7-103, 7-124

Index

Subprogram arguments
printing 7-131
Subprogram interest level 3-15, 3-27, 7-51, Glossary-7
Subprogram name
list 7-132
Subprograms
inline 3-26
interesting 3-15, 3-25, 3-27, 4-14, 5-13, 7-7, 7-52,
7-101, 7-103, Glossary-7
uninteresting 3-15, 3-25, 3-27, 4-14, 5-13, 7-7,
7-52,7-101, 7-103
Subroutine 4-11, 4-16, 5-11, 5-16, 7-100, 7-101, 7-102,
7-103, 7-124
Subroutine arguments
printing 7-131
Subroutine call 3-23, 7-82
Subroutine name
list 7-132
Substitution
text 7-135
Summary of commands 5-5, 9-4, B-1
Summary of eventpoints 5-23, 5-26, 5-30, 5-32, 9-25,
9-27,9-40,9-44
Superuser 3-36
Switch To button 5-7, 5-13, 9-14
Symbol file 3-15, 7-33, 7-35, Glossary-11
Symbol table 7-76, 7-115, 7-131, 7-132, 7-134
synbol -file 3-7,3-15, 7-22, 7-33, 7-34, 7-56
Symbolic debug information 7-33, 9-7
Symbolic debugger 1-5, 3-1
Symbols
undefined 7-76
Syntax
command 7-1
expression 7-4
qualifier 7-1
System
local 3-6, A-1
remote 3-6, A-1
syst em 3-2, 7-42
System crash 3-37
System resources A-1
System tuning A-1

T (source line decoration) 7-63
Tab key 9-11
Tag
trace-event 7-83, 7-84, Glossary-11
Task 3-34, 7-103, 7-111
Ada 9-54, Glossary-1, Glossary-11

Index-21

NightView User’s Guide

tbreak 7-77,7-94
tel netd A-1
Temporary agentpoint 9-42
Temporary breakpoint 7-94, 9-42
Temporary monitorpoint 9-42
Temporary patchpoint 7-95, 9-42
Temporary tracepoint 9-42
Temporary watchpoint 9-42
TERM environment variable 8-1
Terminal refresh 7-113
Terminating a process 3-15, 3-16, 7-33, 9-19, 9-23
Termination
abnormal 7-34
Terminator
input 7-27, 7-48
Text
printing 7-71
Text cursor 9-33, 9-35, 9-36
Text fonts D-3, D-6
Text input area 5-24, 5-25, 5-26, 5-29, 9-5, 9-20, 9-39,
9-41, 9-43, 9-45, D-4
editing 9-5, 9-11
Text substitution 7-135
Thread 3-34, 7-103, 7-111, 9-54, Glossary-11
Threshold
interest level 3-15, 3-27, 7-52
Toggle button 9-12, 9-14, 9-15, 9-27, 9-28, 9-43, 9-45
tool set
NightStar D-1
tpatch 7-77,7-95
Trace Glossary-11
Traceinitialization 7-83
trace_open_t hr ead routine 7-85
trace_start routine 7-85
Trace-event ID 7-83, 7-84, 9-44, Glossary-11
Trace-event map file 7-83, 7-84, Glossary-5
Trace-event tag 7-83, 7-84, Glossary-11
Tracepoint 3-8, 3-11, 3-17, 3-22, 3-37, 7-32, 7-63, 7-64,
7-77, 7-83, Glossary-5, Glossary-12
changing 9-41
clearing 7-89
condition on 3-15, 7-91, 7-117, 7-119, 9-43
deleting 7-91, 9-44, 9-46
disabling 7-92, 9-42, 9-46
displaying 7-116, 7-118
enabling 7-93, 9-42, 9-46
hitting 7-119, 9-42
ignoring 3-15, 7-85, 7-94, 7-117, 7-119, 9-43,
Glossary-7
named 3-15, 7-79, 7-84, 9-43
saving 3-15
setting 7-76, 7-85, 9-41
state 7-119, 9-42
temporary 9-42

Index-22

t racepoi nt 3-11, 3-36, 7-83, 7-84, 7-118
Tracepoint crossing count Glossary-3
Tracepoint Dialog Box 9-26, 9-40
Tracing 3-6, 3-11, 3-36, 3-37
transl ate-object-file 3-7,7-21,7-34
Trandating type definitions 9-8
Trang ations

object filename 7-21, 7-33, 7-35, 7-75, 7-128
Tuning

system A-1
Tutorial

command-line 4-1, 5-1
Type definition

printing 7-133, 7-134
Type definitions

trandating 9-8
Typeresolution 9-8

u key 9-34
UID 3-36
ulimt 35
Undefined symbols 7-76
undi spl ay 7-74
Uninteresting subprograms 3-15, 3-25, 3-27,4-14, 5-13,
7-7,7-52, 7-101, 7-103
unsaf e safety level 3-30, 6-2, 7-16, 7-23, 7-32, 7-33,
7-49, 7-92
up 3-25,4-19, 5-19, 7-5, 7-110, 7-112, 9-34, 9-36
Up button 9-36
Update button 9-45
Update List button 9-46
useNi ght St ar Col or s resource D-2
useNi ght St ar Font s resource D-2
User 7-128
User ID 3-36
User interface
command-line 1-5, 1-1, 3-28, 4-1, 4-3,5-1, 5-4, 7-2,
7-86, 7-90, 7-107, 7-112, 7-136, 8-1, 9-1,
9-37,9-62, 9-63, Glossary-2
full-screen 1-5, 1-1, 3-28, 6-2, 7-2, 7-86, 7-90,
7-112, 7-113, 7-114, 7-136, 8-1, 8-2, 9-1,
Glossary-6
graphical 1-5, 2-1, 3-28, 3-31, 6-1, 6-3, 7-1, 7-33,
7-107, 7-112, 9-1, 9-50, A-2, D-1,
Glossary-6
User-created Debug Window Glossary-12
User-level interrupt 3-35, 3-37

\%

Vaue history 3-32, 4-16, 5-15, 7-4, 7-46, 7-67, 7-71,
7-125, Glossary-12
Variable
assignment 3-21
convenience 3-31, 7-4, 7-5, 7-6, 7-50, 7-67, 7-124,
Glossary-3
declaration 3-20
global 3-18, 7-110
local 3-18, 3-24, 3-25, 3-26, 7-5, 7-72, 9-29, 9-54
predefined convenience 3-26, 7-5, 7-6, 7-117,
7-118, 7-119, 7-120, 7-121, 7-122, 7-125,
7-135
printing 7-131, 7-134
register 3-18, 7-5
static 3-18, 7-5
vector-set 7-76
veri fy safety level 6-2, 7-16, 7-17, 7-23, 7-33, 7-40,
7-49, 7-92
Version
NightView 1-2, 4-4, 6-2, 9-4, H-1
vi editor 7-55, 8-2, 9-25
View menu 9-14, 9-15, 9-27
Debug 9-14, 9-15, 9-27
Virtual address space 7-127
Virtual keys 9-10
Virtua memory 7-127
VISUAL environment variable 8-2

W

Warning Dialog Box 5-23, 5-35, 9-5, 9-15, 9-17, 9-22,
9-23
Warnings 3-29
Watchpoint
changing 9-41
commandson 3-15
condition on 3-15, 7-117, 7-123, 9-43
deleting 7-91, 9-44, 9-46
disabling 9-42, 9-46
displaying 7-116, 7-122
enabling 7-93, 9-42, 9-46
hitting 7-123, 9-42
ignoring 3-15, 7-94, 7-117, 7-123, 9-43, Glossary-7
named 3-15, 7-97
saving 3-15
setting 7-96, 9-41
state 7-122, 9-42
temporary 9-42
wat chpoi nt 7-96

Index

Watchpoint Dialog Box 9-27, 9-40
whati s (i nfo whatis) 7-133
Widget hierarchy D-8
Wildcard pattern 7-14, 7-20, 7-36, 7-39, 7-132, 9-24,
9-39
Wildcard pattern examples 7-14
wildcard pattern 7-132
Window
Data 3-15, 7-72, 9-2, 9-29, 9-35, 9-51
Debug 2-3, 5-6, 5-9, 5-10, 5-11, 5-12, 5-14, 5-15,
5-17,5-22,5-23, 5-24, 5-28, 5-29, 9-1, 9-6,
9-11, 9-13, 9-14, 9-15, 9-17, 9-20, 9-21,
9-27,9-28, 9-29, 9-30, 9-31, 9-34, 9-37,
9-38, 9-39, 9-40, 9-61, 9-62, 9-63,
Glossary-4
Dialogue 2-3, 5-4, 5-7,5-11, 5-12, 5-14, 9-1, 9-6,
9-13, 9-16, 9-17, 9-18, 9-19, 9-21, 9-22,
9-37,9-61, 9-62, Glossary-4
Globa 9-2, 9-6, 9-13, 9-17, 9-18, 9-19, 9-21, 9-22,
9-37,9-61, 9-62, 9-63, Glossary-6
Help 2-1, 2-4, 2-5, 5-5, 5-8, 9-2, 9-3, 9-5, 9-17,
9-20, 9-30, 9-62, 9-63, D-3, D-4,
Glossary-6
iconifying 9-2,9-3
Monitor 3-28, 7-87, 8-2, 9-2, 9-50, D-4, D-5, D-8
Principal Debug 5-6, 9-13, 9-21, Glossary-9
user-created Debug Glossary-12
Window geometry D-7
Window resizing 9-12

X

X 9-1
X 7-6,7-15, 7-68, 7-73, 7-117, 7-118, 7-119, 7-120,
7-121, 7-122, 7-135
- X option 6-3
X resource
background D-4, D-7
cust om zati on D-7
di spl ayG oupToggl eButton 9-13
di spl ayG oupToggl eButton. set 9-28
dwLabel Def aul t Col utms 9-59, D-6
dwMenuHi del nacti veEntri es D-6
dwScr ol | Regi onDef aul t Li nes 9-59, D-5
editor 9-24
edi t or Tal ksX 9-25
fontList D-6
f oreground D-4, D-7
geonetry D-7
keyboar dFocusPol i cy 9-11
noni t or W ndowCol ums 9-50
oneW ndowPer Process 9-13

Index-23

NightView User’s Guide

sel ect Col or 9-12
sel ectionPolicy 9-9
X resources A-2,D-1, D-6
X server memory A-2, D-6
X Window System 3-30, 9-1
x| (transl ate-object-file) 7-21
- Xr moption 6-3

Index-24

Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

<
(@]
=
<
@
=

0890395

	NightView User’s Guide
	Preface
	Contents
	Chapter 1 A Quick Start
	Chapter 2 A Quick Start - GUI
	Chapter 3 Concepts
	Chapter 4 Tutorial
	Chapter 5 Tutorial - GUI
	Chapter 6 Invoking NightView
	Chapter 7 Command-Line Interface
	Chapter 8 Simple Full-Screen Interface
	Chapter 9 Graphical User Interface
	Appendix A System Resource Requirements
	Appendix B Summary of Commands
	Appendix C Quick Reference Guide
	Appendix D GUI Customization
	Appendix E Implementation Overview
	Appendix F Performance Notes
	Appendix G Tutorial Files
	Appendix H Reporting Bugs
	Glossary
	Index

	A Quick Start
	Sample Program
	Starting Up
	Getting Help
	Setting a Breakpoint
	Finishing up

	A Quick Start - GUI
	Sample Program - GUI
	Starting Up - GUI
	Getting Help - GUI
	Setting a Breakpoint - GUI
	Finishing up - GUI

	Concepts
	Debugging
	Accessing Files
	Programs and Processes
	Multiple Processes
	Families
	Attaching
	Detaching
	Core Files
	Qualifiers

	Dialogues
	Dialogue I/O
	Real-Time Debugging
	Remote Dialogues
	ReadyToDebug

	Finding Your Program
	Controlling Your Program
	Eventpoints
	Breakpoints
	Monitorpoints
	Patchpoints
	Tracepoints
	Agentpoints
	Watchpoints

	Signals
	Restarting a Program
	Restart Mechanism
	Restart Information
	Restart Macros

	Exited and Terminated Processes

	Process States
	Debugger Mechanisms
	/proc
	Debug Agent
	Operations While the Process Is Executing
	Using /proc and the Debug Agent Together

	Examining Your Program
	Expression Evaluation
	Ada Expressions
	C Expressions
	C++ Expressions
	Fortran Expressions

	Overloading
	Program Counter
	Context
	Scope
	Stack
	Current Frame
	Registers

	Inline Subprograms
	Interesting Subprograms
	Monitor Window
	Errors
	Command Streams
	Interrupting the Debugger
	Macros
	Convenience Variables
	Logging
	Value History
	Command History
	Initialization Files
	Optimization
	Debugging Ada Programs
	Packages
	Exception Handling

	Multithreaded Programs
	Using NightView with Other Tools
	Limitations and Warnings
	Setuid Programs
	Attach Permissions
	Frequency-Based Scheduler
	NightTrace Monitor
	Memory Mapped I/O
	Blocking Interrupts
	User-Level Interrupts
	Debugging with Shared Libraries

	Tutorial
	About the Tutorial
	Creating a Program
	Starting NightView
	Getting General and Error Help
	Starting Your Program
	Debugging All Child Processes
	Handling Signals
	Listing the Source
	Setting the First Breakpoints
	Listing a Breakpoint
	Continuing Execution
	Not Entering Functions
	Entering Input
	Creating Families
	Continuing Execution Again
	Creating Families Again
	Catching up the Child Process
	Verifying Data Values
	Entering Functions
	Examining the Stack Frames
	Moving in the Stack Frames
	Verifying Data Values in Other Stack Frames
	Returning to a Stack Frame
	Resuming Execution
	Setting the Default Qualifier
	Removing a Breakpoint
	Setting Conditional Breakpoints
	Attaching an Ignore Count to a Breakpoint
	Attaching Commands to a Breakpoint
	Automatically Printing Variables
	Watching Inter-Process Communication
	Patching Your Program
	Disabling a Breakpoint
	Examining Eventpoints
	Continuing to Completion
	Leaving the Debugger

	Tutorial - GUI
	About the Tutorial - GUI
	Creating a Program - GUI
	Starting NightView - GUI
	Getting General and Error Help - GUI
	Starting Your Program - GUI
	Debugging All Child Processes - GUI
	Handling Signals - GUI
	Setting the First Breakpoints - GUI
	Continuing Execution - GUI
	Not Entering Functions - GUI
	Entering Input - GUI
	Continuing Execution Again - GUI
	Catching up the Child Process - GUI
	Verifying Data Values - GUI
	Listing the Source - GUI
	Entering Functions - GUI
	Examining the Stack Frames - GUI
	Moving in the Stack Frames - GUI
	Verifying Data Values in Other Stack Frames - GUI
	Returning to a Stack Frame - GUI
	Resuming Execution - GUI
	Removing a Breakpoint - GUI
	Setting Conditional Breakpoints - GUI
	Attaching an Ignore Count to a Breakpoint - GUI
	Attaching Commands to a Breakpoint - GUI
	Automatically Printing Variables - GUI
	Watching Inter-Process Communication - GUI
	Patching Your Program - GUI
	Disabling a Breakpoint - GUI
	Examining Eventpoints - GUI
	Continuing to Completion - GUI
	Leaving the Debugger - GUI

	Invoking NightView
	Command-Line Interface
	Command Syntax
	Selecting Overloaded Entities
	Special Expression Syntax
	Predefined Convenience Variables
	PowerPC Registers

	Location Specifiers
	Qualifier Specifiers
	Eventpoint Specifiers
	Regular Expressions
	Wildcard Patterns

	Repeating Commands
	Replying to Debugger Questions
	Controlling the Debugger
	Quitting NightView
	quit

	Managing Dialogues
	login
	debug
	nodebug
	translate-object-file
	logout
	on dialogue
	apply on dialogue

	Dialogue Input and Output
	!
	set-show
	show

	Managing Processes
	run
	set-notify
	notify
	attach
	detach
	kill
	symbol-file
	core-file
	exec-file
	on program
	apply on program
	on restart
	checkpoint
	family
	set-children
	set-exit
	mreserve

	Setting Modes
	set-log
	set-language
	set-qualifier
	set-history
	set-limits
	set-prompt
	set-terminator
	set-safety
	set-restart
	set-local
	set-patch-area-size
	interest
	set-auto-frame
	set-overload
	set-search
	set-editor

	Debugger Environment Control
	cd
	pwd

	Source Files
	Viewing Source Files
	list
	directory

	Searching
	forward-search
	reverse-search

	Source Line Decorations

	Examining and Modifying
	backtrace
	print
	set
	x
	output
	echo
	data-display
	display
	undisplay
	redisplay
	printf
	load
	vector-set

	Manipulating Eventpoints
	Eventpoint Modifiers
	name
	breakpoint
	patchpoint
	set-trace
	tracepoint
	monitorpoint
	mcontrol
	agentpoint
	clear
	commands
	condition
	delete
	disable
	enable
	ignore
	tbreak
	tpatch
	watchpoint

	Controlling Execution
	continue
	resume
	step
	next
	stepi
	nexti
	finish
	stop
	jump
	signal
	handle

	Selecting Context
	frame
	up
	down
	select-context

	Miscellaneous Commands
	help
	refresh
	shell
	source
	delay

	Info Commands
	Status Information
	info log
	info eventpoint
	info breakpoint
	info tracepoint
	info patchpoint
	info monitorpoint
	info agentpoint
	info watchpoint
	info frame
	info directories
	info convenience
	info display
	info history
	info limits
	info registers
	info signal
	info process
	info memory
	info dialogue
	info family
	info name
	info on dialogue
	info on program
	info on restart
	info exception
	info threads

	Symbol Table Information
	info args
	info locals
	info variables
	info address
	info sources
	info functions
	info types
	info whatis
	info representation
	info declaration
	info files
	info line

	Defining and Using Macros
	define
	Referencing Macros
	info macros

	Simple Full-Screen Interface
	Using the Simple Full-Screen Interface
	Editing Commands in the Simple Full-Screen Interface
	Monitor Window - Simple Full-Screen

	Graphical User Interface
	NightView GUI Concepts
	GUI Overview
	GUI Online Help
	Context-Sensitive Help
	Help Menu
	Help Buttons
	Help Command

	GUI Components
	Text Input Areas
	Combo Boxes
	Spin Boxes
	Message Areas
	File Selection Dialog Box
	List Selection Policies
	Dialogues and Dialog Boxes
	Keyboard Focus
	Keys
	Sashes
	Toggle Buttons

	GUI Command History
	Understanding the Debug Window
	Debug Window Behavior
	Single Process Mode
	Group Process Mode

	Confirm Exit Dialog Box
	Warning and Error Dialog Boxes
	Warning Dialog Box
	Error Dialog Box

	Dialogue Window
	Dialogue Menu Bar
	Dialogue NightView Menu
	Dialogue Menu
	Dialogue Help Menu

	Dialogue Identification Area
	Dialogue Message Area
	Dialogue I/O Area
	Dialogue Interrupt Button
	Dialogue Qualifier Area
	Dialogue Command Area
	Process Summary
	Dialogue Window Dialog Boxes
	Program Arguments Dialog Box
	Attach Dialog Box

	Debug Window
	Debug Menu Bar
	Debug NightView Menu
	Debug Process Menu
	Debug Source Menu
	Debug Eventpoint Menu
	Debug View Menu
	Debug Display Menu
	Debug Help Menu

	Debug Message Area
	Debug Identification Area
	Debug Source Lock Button
	Debug Source File Name
	Debug Status Area
	Debug Source Display
	Debug Command Buttons
	Debug Interrupt Button
	Debug Qualifier Area
	Debug Command Area
	Debug Group Area
	Debug Dialog Boxes
	Debug Group Selection Dialog Box
	Debug Source Selection Dialog Box
	Debug File Selection Dialog Box
	Debug Eventpoint Dialog Boxes
	Debug Eventpoint Summarize/Change Dialog Box
	Remote Login Dialog Box

	Monitor Window - GUI
	Data Window
	Data Menu Bar
	Data NightView Menu
	Data Options Menu
	Data Display Menu
	Data Help Menu

	Data Display Area
	Data Items
	Expression Data Item
	Local Variables Data Item
	Registers Data Item
	Stack Data Item
	Threads Data Item

	Data Item Popup Menu

	Data Window Dialog Boxes
	Data Window Item Dialog Box
	Data Window Add Expression
	Data Window Add Local Variables
	Data Window Add Registers
	Data Window Add Stack
	Data Window Add Threads
	Data Window Copy Expression
	Data Window Default Label Columns
	Data Window Default Scroll Lines
	Data Window Edit Expression
	Data Window Expand Tree
	Data Window Label Columns
	Data Window Move Expression
	Data Window Move Local Variables
	Data Window Move Registers
	Data Window Move Stack
	Data Window Move Threads
	Data Window Scroll Lines
	Data Window Subscript Array
	Data Window Subscript Enum Array
	Data Window Text Query
	Data Window Value Query

	Global Window
	Global Menu Bar
	Global NightView Menu
	Global Help Menu

	Global Output Area
	Global Interrupt Button
	Global Qualifier Area
	Global Command Area

	Help Window

	System Resource Requirements
	Summary of Commands
	Quick Reference Guide
	Invoking NightView
	Controlling the Debugger
	Quitting NightView
	Managing Dialogues
	Dialogue Input and Output
	Managing Processes
	Setting Modes
	Debugger Environment Control

	Source Files
	Viewing Source Files
	Searching

	Examining and Modifying
	Manipulating Eventpoints
	Controlling Execution
	Selecting Context
	Miscellaneous Commands
	Info Commands
	Status Information
	Symbol Table Information

	Defining and Using Macros

	GUI Customization
	Application Resources
	NightStar Resources
	Using NightStar Resources
	NightStar Font Resources
	NightStar Color Resources

	NightView Resources

	Font Selection
	Color Selection
	Monochrome Display
	Color Display

	Window Geometry
	Widget Hierarchy

	Implementation Overview
	Performance Notes
	Debug Agent Performance

	Tutorial Files
	C Files
	msg.h
	main.c
	parent.c
	child.c

	Fortran Files
	msg.i
	main.f
	parent.f
	child.f

	Ada Files
	main.a
	parent.a
	child.a

	Reporting Bugs
	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

