
C/C++ Reference Manual

0890497-020

May 2000

Copyright 2000 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end–users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the
information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion, 2881 Gateway Drive Pompano Beach FL 33069. Mark the envelope“Attention: Publications Department .”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

Acknowledgment: This manual contains material contributed by Edison Design Group, Inc. Those portions are copyrighted and reproduced with
permission.

PowerMAX OS, NightView and Power MAXION are trademarks of Concurrent Computer Corporation.

POSIX is a trademark of the Institute of Electrical and Electronics Engineers, Inc.

IBM, PowerPC, PowerPC 601, PowerPC 604, and PowerPC 620 are trademarks of International Business Machines Corporation.

UNIX is a registered trademark, licensed exclusively by X/Open Company Ltd.

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- July 1996 000 PowerMAX OS 3.1

Previous Release -- January 1998 010 Release 2.0

Current Release -- May 2000 020 Release 5.1

pro-

rent

utines

cify

ons

and

are
ify

pipe
ype

).
Preface

Scope of Manual

This manual is a reference document on Concurrent C/C++, two general-purpose
gramming languages.

Information in this manual applies to the platforms described in the latest Concur
Computer Corporation product catalogs.

System manual page (man page) descriptions of programs, system calls and subro
can be found online.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must spe
appear initalic type. Special terms may also appear initalic.

list bold User input appears inlist bold type and must be entered
exactly as shown. Names of directories, files, commands, opti
and man page references also appear inlist bold type.

list Operating system and program output such as prompts
messages and listings of files and programs appears inlist type.

[] Brackets enclose command options and arguments that
optional. You do not type the brackets if you choose to spec
such option or arguments.

{} Braces enclose mutually exclusive choices separated by the
(|) character, where one choice must be selected. You do not t
the braces with the choice.

... An ellipsis follows an item that can be repeated.

::= This symbol means “is defined as” in Backus-Naur Form (BNF
i

C/C++ Reference Manual
Referenced Publications

The following Concurrent publications are referenced in this document:

0890459 Compilation Systems Volume 1 (Tools)

0890460 Compilation Systems Volume 2 (Concepts)
ii

1-1
1-2

1-4
1-5
1-5
1-6

1-7
1-7

1-10
1-12
1-13
1-16
1-26
1-34

2-1
2-3

3-1
3-1
3-2
3-3
3-4
3-4
3-4

3-4
3-5
3-6
3-6

3-11
3-11

3-11
3-12
3-13

3-13
3-14
Contents

Chapter 1 Compilation

Overview .
Compilation Phases .
Compiler Invocation .
Program Development Environment .
Multiple Release Support .
Command Line Options. .

Controlling Compilation Process .
Preprocessing .
C++ Specific Features .
Error Messages .
Other .

Language Dialect .
Optimization .
Linking .

Chapter 2 Overview of Concurrent C/C++ Program
Development Environment

C/C++ Utilities .
C/C++ Core Utilities .

Chapter 3 Using Concurrent C/C++
Program Development Environment

Hello World - An Example .
Creating an environment .
Introducing units. .
Defining a partition. .
Building a partition .
Success!!! .
Let’s look around... .

Listing the contents of your environment .
Viewing the source for a particular unit .
Looking at the Environment Search Path .
What are my options? .

Hello Galaxy - The Example Continues... .
Setting up another environment .
Modifying an existing unit .
Building a unit with references outside the local environment
Adding an environment to the Environment Search Path.
Making contact!!! .
Who resides here now?. .
iii

C/C++ Reference Manual

4-1
4-1

4-2
4-2
4-2

4-3
4-3
4-3

4-3

4-4
4-4
4-4
4-5
4-5
4-5
4
4-6
4-6
4-6
4-6

4-8
4-10

4-10
-10
4-10
4-12
4-13
4-14
4-14
4-15

4-15
4-15
4-16
4-17

5-1

5-1
5

5-5
5-6

5-
5-
Chapter 4 Concurrent C/C++ Program
Development Environment Concepts

Overview .
Environments .

Local Environments .
Foreign Environments. .

Environment Search Path. .
Naturalization .
Fetching .

Freezing Environments .
Environment-wide Compile Options .

Units . 4-4
Unit Identification .
Nationalities .

Local Units. .
Foreign Units .

Artificial Units .
Unit Compile Options. .

Partitions .-6
Types of Partitions .

Executable Partitions .
Archives .
Shared Objects .

Link Options .
Compilation and Program Generation .

Compilation .
Automatic Compilation Utility . 4
Compile Options .
Compilation States. .
Consistency .
Programming Hints and Caveats .

Linking Executable Programs. .
Debugging .

Real-Time Debugging. .
Debug Information and cprs .

Source Control Integration. .
Makefile Integration .

Chapter 5 Concurrent C/C++ Utilities

Overview .
Utilities. 5-1

Common Options .
c.analyze. .-3

Link-Time Optimizations with c.analyze .
Profiling with c.analyze .

c.build. 5-8
c.cat . 5-10
c.chmod .11
c.compile .12
c.edit . 5-14
c.error . 5-15
c.expel .5-19
iv

Contents

5-2

5-33
5-35

5-
5
5-41

5-41
5-42

5-42
5-42
5-43
5-43
5-43
5

5-46

5
5

5-
5

5-59

6-1
6-1
6-2
6-4
6-5

6-6
6-8
6-9
6-14
6-14
6-16
6-19
-24
c.fetch. 5-20
c.freeze. .5-21
c.help . 5-22
c.install. 5-23
c.instantiation. .5
c.intro . 5-27
c.invalid .5-28
c.link . 5-29
c.ls . 5-30

Formatting the listing .
Sorting .

c.lssrc . 5-36
c.man .5-37
c.mkenv .39
c.options. .-40

Option Sets .
Listing options .
Setting options .
Modifying options .
Clearing options .
Deleting options .
Keeping temporary options .
Setting options on foreign units .

c.partition .-44
Link Options. .

c.path . 5-48
c.prelink .-49
c.release .-50
c.report .5-52
c.rmenv .54
c.rmsrc .-55
c.script . 5-56
c.touch .5-58
Link Options .

Chapter 6 C++ and C Dialects

Overview .
C++ Dialect Accepted .

New Language Features Accepted .
New Language Features Not Accepted .
Anachronisms Accepted. .
Extensions Accepted in Normal C++ Mode. .
Extensions Accepted in Cfront 2.1 Compatibility Mode
Extensions Accepted in Cfront 2.1 and 3.0 Compatibility Mode.

C Dialect Accepted .
C9X Extensions .
ANSI C Extensions. .
K&R/pcc Mode .
Extensions Accepted in SVR4 Compatibility Mode . 6
v

C/C++ Reference Manual

7-1
7-1

7-3
7-4
7-7
7-8

7-9
7-10

7-10
7-

7-12
7-13

7-14
7-15
-16
7-18
7-19
7-19

7-19
7-22
7-23
7-23

7-24
7-25
7-26
7-27
7-28

7-
7-28

8-1
8-1

8-2
8-2

8-3
8-4
8-4
8-4
8-5
8-6
8-6

8-7
8-7

8-10
8-13
8-14

8-14
8-15
8-15

8-15
Chapter 7 Special Features of C++

Overview .
Namespace Support .
Template Instantiation .

Automatic Instantiation. .
Instantiation Modes. .
Instantiation #pragma Directives .
Implicit Inclusion .
Automatic Instantiation in the Program Development Environment

Predefined Macros .
Pragmas .12

Edison Defined Pragmas. .
Concurrent Defined Pragmas .

Source Listing Controls .
Optimization Directives. .
Data Alignment Control Directives . 7
Miscellaneous Directives. .
Template Instantiation Pragmas. .

Precompiled Headers .
Automatic Precompiled Header Processing .
Manual Precompiled Header Processing .
Other Ways for Users to Control Precompiled Headers
Performance Issues .

Intrinsic Functions .
Environment Variables .
Diagnostic Messages .
Termination Messages .
Response to Signals .
Exit Status .28
Finding Include Files .

Chapter 8 Compilation Modes

Overview .
Compilation Modes .

ANSI C Mode .
Normal C++ Mode .
Strictly-Conforming Mode .
cfront 2.1 Compatibility Mode. .
cfront 3.0 Compatibility Mode. .

Transition Mode. .
Old Mode .

Mode Features .
Common Features .
Differentiating Features .

Preprocessing. .
Type-Promotion Rules .
Binary Operator Expressions. .
Escape Characters .
Redeclaration of Typedefs .
Scope of Parameters .

Header File Features .
Function Prototypes .
vi

Contents

8-16
8-16
8-18

8-18

9-1
9-1
9-1
9-2
9-2
9-2
9-3

A-1
A-1
A-1
A-1
A-2

A-2
A-2

A-2
A-2
A-4

A-4
A-4

A-4
A-4

A-4
A-4
A-5
A-5
A-5
A-5
A-5
A-5

A-5
A-6

A-6
A-6
A-6
A-6
A-6

A-6
A-7
A-7
A-7

A-7
A-8
A-8
Name-Space Restrictions .
Library Enhancements .

Locale-Support Enhancements .
Anachronism Mode .

Chapter 9 Runtime Libraries

Overview .
Runtime Library. .

General .
Language Support Library .
Linking .
Template Instantiation .

Cfront Libraries .

Appendix A ANSI C++ Implementation

Overview .
Lexical Conventions (Chapter 2) .

Phases of Translation (2.1) .
Character Literals (2.9.2) .
String Literals (2.9.4) .

Basic Concepts (Chapter 3) .
Types (3.9) .
Main Function (3.6.1). .
Fundamental Types (3.9.1) .

Standard Conversions (Chapter 4) .
Integral Conversions (4.7) .

Expressions (Chapter 5). .
Reinterpret Cast (5.2) .
Sizeof (5.3.3) .
Multiplicative Operators (5.6) .
Additive Operators (5.7). .
Shift Operators (5.8). .
Relational Operators (5.9) .

Declarations (Chapter 7) .
The asm declaration (7.4) .
Linkage Specifications (7.5). .

Declarators (Chapter 8) .
Default Arguments (8.3.6) .

Classes (Chapter 9) .
Class Members (9.2). .
Bit-fields (9.7). .

Special Member Functions (Chapter 12). .
Temporary Objects (12.2). .

Preprocessing Directives (Chapter 16) .
Conditional Inclusion (16.1). .
Source File Inclusion (16.2) .
Predefined Macro Names (16.8). .

Headers (Chapter 17). .
Freestanding Implementations (17.3.1.3). .

Library Introduction (Chapter 17) .
Reentrancy (17.3.4.5) .
vii

C/C++ Reference Manual

A-8
A-8
A-8
A-8
A-8
A-8

A-9
A-9
A-9
A-9

A-9
A-9

B-1
B

B-3

B-4
B-4
B-5
B-6

1-3
5-7

8-16
B-2
B-2
B-3
B-3
B-4

B-5
B-5
B-5
B-6

-1
-9

4-12
7-14
7-16
8-1
8-2
8-8
8-11
8-12
Language Support Library .
Class bad_alloc (18.4.2.1). .
Class bad_cast (18.5.2) .
Class bad_typeid (18.5.3) .
Class bad_exception (18.6.2.1). .
Class exception (18.6.1) .

Input/Output Library (Chapter 27). .
Types (27.4.1) .
basic_ios iostate flags functions (27.4.4.3) .
Standard Manipulators (27.6.3) .

Compatibility (Appendix C) .
Predefined Names (16.8). .

Appendix B Architecture Dependencies

Overview .
Bit-Field .-1
Byte . B-2
Half-Word .
Word. .B-3
Double Word .

Shift Operations .
Floating-Point. .
C/C++ Data Types .

Illustrations

Figure 1-1. Compiling and Linking C++ Programs .
Figure 4-1. Profiling a Program .
Figure 7-1. Name-Space Restriction .
Figure B-1. Bit-Field Example .
Figure B-2. Address and MSB of a Byte .
Figure B-3. Address and MSB of a Half-Word .
Figure B-4. Address and MSB of a Word .
Figure B-5. Address and MSB of a Double Word .
Figure B-6. Left/Right Shift of Unsigned Integer .
Figure B-7. Left/Right Shift of Signed Integer .
Figure B-8. Single-Precision Floating-Point Format .
Figure B-9. Double-Precision Floating-Point Format .

Tables

Table 2-1. Concurrent C/C++ Utilities . 2
Table 3-1. Effective options forhello unit. 3
Table 3-2. Effective options forhello unit (after-keeptemp) 3-10
Table 4-1. Effective options based on hierarchical relationship
Table 7-1. Implementation Defined Directives Used with #pragma.
Table 7-1. Alignments by Data Type .
Table 8-1. C++ Compilation ModesC++ Compilation Modes
Table 8-2. C_Compilation Modes Compilation Modes .
Table 8-1. Trigraph Mapping .
Table 8-1. Constants and Type Lists .
Table 8-2. Constant Representations .
viii

Contents

9-2
A-3
A-3

3-2

3-2
3-3
3-4
3-4
3-5

3-6
3-6

3-7
3-7

3-10

3-11
3-12

3-13
4
3-14
5-16
5-16

5-17
5-50
5-51
Table 9-1. Choice of Runtime Library .
Table A-1. Floating-Point Types. .
Table A-2. Integer Types .

Screens

Screen 3-1. Creating an environment .
Screen 3-2. Source filehello.c containinghello unit 3-2
Screen 3-3. Introducing unit from a source file .
Screen 3-4. Defining a partition .
Screen 3-5. Building a partition .
Screen 3-6. Executing the program .
Screen 3-7. Listing the units in an environment .
Screen 3-8. Listing the units in an environment (-l option) 3-5
Screen 3-9. Viewing the source for a particular unit .
Screen 3-10. Viewing your Environment Search Path .
Screen 3-11. Listing the environment-wide compile options
Screen 3-12. Setting the environment-wide compile options
Screen 3-13. Listing the environment-wide compile options (after-set) 3-7
Screen 3-14. Setting the permanent unit options forhello unit 3-8
Screen 3-15. Setting the temporary unit options forhello unit. 3-8
Screen 3-16. Modifying the temporary unit options forhello unit 3-8
Screen 3-17. Listing the temporary options forhello unit 3-8
Screen 3-18. Listing the effective options forhello unit. 3-9
Screen 3-19. Deleting from the temporary options set forhello unit 3-9
Screen 3-20. Propagating the temporary options to the permanent set
Screen 3-21. Listing the effective options forhello unit (after-keeptemp) . . . 3-10
Screen 3-22. Source filealien.c containingalien unit 3-11
Screen 3-23. Setting up another environment. .
Screen 3-24. Editing a unit .
Screen 3-25. Reference thealien unit within thehello unit 3-12
Screen 3-26. Building the partition with reference toalien unit. 3-13
Screen 3-27. Adding to and Viewing the updated Environment Search Path.
Screen 3-28. Executing the newhello - contact is made! 3-1
Screen 3-29. Listing the units .
Screen 5-1. File badtry.c .
Screen 5-2. File badtry.errors .
Screen 5-3. c.error -l Output Listing. .
Screen 5-4. c.release output .
Screen 5-5. c.release -q output .
ix

C/C++ Reference Manual
x

1-1
1-2

1-4
1-5
1-5
1-6

1-7
1-7

1-10
1-12
1-13
1-16
1-26
1-34
1
Compilation

Overview .
Compilation Phases .
Compiler Invocation .
Program Development Environment .
Multiple Release Support .
Command Line Options. .

Controlling Compilation Process .
Preprocessing .
C++ Specific Features .
Error Messages .
Other .

Language Dialect .
Optimization .
Linking .

PowerMAX OS Real-Time Guide

neral
date

mmer.
ss to

e of
shift

any
ulted
1
Chapter 1Compilation

1
1
1

Overview 1

C and C++ are programming languages suitable for systems programming and ge
applications. C is a relatively low–level language in that it was designed to accommo
the actual architecture of digital computers.

Many of the advantages of assembly language are available to the C and C++ progra
These include indirect addressing, address arithmetic, bit manipulation, and acce
low–level I/O routines and system services.

A wide variety of operators are also included in the language to take advantag
computer instruction sets, such as shift operators that convert directly into shift right/
left instructions.

C++ is an extension of the C language, although C++ is not strictly a superset of C. M
of the extensions support object-oriented programming. The evolution of C++ has res
the development of national and international standards for the language.

The Concurrent C/C++ compiler can be invoked asec or ec++ , or through the program
development environment tools. Concurrent C/C++ consists of:

• An implementation of the language specified by the ANSI C++ standard.
For more information on ANSI C++, refer to the following:

- The C++ Programming Language, Third Editionby B. Stroustrup
(Addison-Wesley Publishing Company, Reading, Mass.).

- The Annotated C++ Reference Manual(ARM) by M. Ellis and B.
Stroustrup (Addison-Wesley Publishing Company, Reading, Mass.).

- International Standard for Information Systems--Programming Lan-
guage C++, Document No. X3J16/95-0185 by the American
National Standards Institute.

• Partial support of thecfront dialect of C++. (Thecfront dialect and
technology were developed by AT&T’s UNIX Software Operation, then
transferred to Unix System Laboratories, Inc., and finally sold to Novell,
Inc.)

• A full implementation of the language specified by the ANSI C standard.
For more information on ANSI C, refer toC: A Reference Manual, Second
Edition by S. Harbison and G. Steele (Prentice–Hall, Inc., Englewood
Cliffs, N.J.) andProgramming Languages--C, ISO/IEC 9899:1990 by the
International Organization for Standardization. (The ANSI/ISO standard
for C was formerly ANSI document X3.159-1989.)
1-1

C/C++ Reference Manual

nsed
hnol-

ncur-
 C.

and
level
im-

ELF

r

ppear
• A full implementation of the language described inThe C Programming
Languageby B. Kernighan and D. Ritchie (Prentice–Hall, Inc., Englewood
Cliffs, N.J.)

• Extensions documented in Chapter 7 (“Special Features of C++”)and
architecture–dependencies documented in Appendix B (“Architecture
Dependencies”) . Refer to the on-line manual pages for descriptions of
system calls and library routines. Refer to theec(1) andec++(1) man
pages for an overview of the Concurrent C/C++ compiler and its options.

• A program development environment (PDE) very similar to the one pro-
vided with MaxADA and supported by the NightBench tool. This consists
of a number of tools for building large projects and controlling template
instantiation, compilation options, library management, etc.

The Concurrent C/C++ compiler consists of front end technology developed and lice
by Edison Design Group, Inc., and back end (code generation and optimization) tec
ogy developed and owned by Concurrent Computer Corporation.

This manual presents the features, specifics of implementation, and usage of the Co
rent C/C++ compiler. See the preceding sources for general information on C++ and

The Concurrent C/C++ programming environment allows high-level program coding
source-level testing of code. The C and C++ languages are implemented for high-
programming, and they contain many control and structuring facilities that greatly s
plify the task of algorithm construction. Each tool (e.g.,ec , ec++ , as , ld) can preserve
all the information necessary for meaningful symbolic testing at the source level. The
object file format is supported. (For more information, seeec++(1) . See “Executable
and Linking Format (ELF)” in theCompilation Systems Volume 2(Concepts) manual.)
The environment provides utility packages (e.g.,adb , dump) that aid in testing and
debugging.NightView TM1, Concurrent’s source-level, multi-lingual, multi-processo
debugger, is also available.

Compilation Phases 1

The Concurrent C/C++ compiler,ec/ec++(1) , is based on Concurrent’s Common
Code Generator. The steps involved in creating an executable from C/C++ source a
in the following list and in Figure 1-1

1. Create a file containing C/C++ source code. This is typically done in a text
editor likevi(1) or emacs(1) .

2. Invoke the Concurrent C++ compiler,ec++(1) , or the Concurrent C com-
piler, ec(1) , with appropriate options and arguments. See theec++(1)
ec(1) man pages, “Command Line Options” on page 1-6 and “Environ-
ment Variables” on page 7-25 for information on options, arguments, and
environment variables available. See Chapter 8 (“Compilation Modes”) for
information on options that control compilation modes. Some of the possi-
ble arguments include: C or C++ source files (generally end with.c , .C ,
or .cpp), assembly language source files (must end with.s), object files

1. NightView is a trademark of Concurrent Computer Corporation.
1-2

Compilation
(must end with.o), and libraries. Unless you provide options to cut the
process short,cc++ performs all of the following steps.

Figure 1-1. Compiling and Linking C++ Programs

Code Generator

Instruction
Scheduler

Pseudo Assembly Language Code

Assembler

Prelinker

Link Editor

Post-Link
Optimizer

Assembly Language Code

Object Files

D
ire

ct
iv

e
s

To
 R

e
co

m
p

ile
 T

o
 D

o
 I
n

st
a

n
tia

tio
n

Program

Executable

Executable

Processors invoked by ec and ec++

C/C++
Source
Code
1-3

C/C++ Reference Manual

as
r

A. ec++ andec call a translator (/usr/ccs/lib/release/ release
/lib/cxc++) to convert the C/C++ source code into pseudo-
assembly language. For information on target systems, see “Pre-
defined Macros” on page 7-10 andcc++(1) .

B. After producing the pseudo-assembly language code, the compiler
calls the instruction scheduler (/usr/ccs/lib/release/ release
/lib/reorder) to perform the final pass of code generation, to
schedule instructions, and to translate the pseudo-assembly language
code into assembly language.

C. The compiler then calls the assembler,as(1) , providing the.s files
and the output files fromreorder . The assembler creates object
files ending in.o . (When object files are created, basenames are
retained. For example, if there is a C++ source file named
solver.c , the name of its object file counterpart issolver.o . If
there is an assembly language source file nameddynamo.s , the
name of its object file counterpart isdynamo.o .)

D. Because automatic instantiation of C++ template entities is not
performed in the previous steps, the compiler calls a prelinker
(/usr/ccs/lib/release/ release/lib/c++prelink) to
examine object files, looking for information about entities that could
be instantiated. See “Template Instantiation” on page 7-3 for a dis-
cussion of the procedure used. Note that this procedure may cause
files to be recompiled and may generate additional files (.ti , .ii)
to support automatic instantiation., and steps B through D are
repeated until there are no more entitites to be instantiated. Auto-
instantiation is enabled only if the--auto_instantiation
option is used or the compilation is being done under control of the
Program Development Environment tools.

E. The compiler next calls the link editor,ld(1) . The link editor uses
two models of linking, static or dynamic. It collects and merges
object files and libraries into binary executable load modules.

F. The compiler next calls the post-link optimizer,analyze(1) . By
default, the executable is nameda.out . For more information about
analyze , see “Performance Analysis”, and for more information
aboutld , see “Link Editor and Linking”, both in theCompilation
Systems Volume 1 (Tools) manual.

Compiler Invocation 1

The ec andec++ compilers accepts many command-line options, also referred to
flags. See theec(1) andec++(1) man page and Chapter 8 (“Compilation Modes”) fo
more information. A compiler invocation looks like this:

$ ec++ [options] arguments
$ ec [options] arguments
1-4

Compilation

ted

trict

ent
ains
viron-

ases
3.1

ess

as

.1
In the following example,part1.c andpart2.c are C++ source files,part3.s is an
assembly language source file, andpart4.o is an object file. By default, the compilation
and linking is in C++ mode, and the compiler automatically performs the steps lis
above and creates a binary executable nameda.out .

$ ec++ part1.c part2.c part3.s part4.o

In the following example, the same files are automatically compiled and linked in s
mode (--strict option) and the executable is namedflight_sim (-o option).

$ ec++ --strict -oflight_sim part1.c part2.c part3.s \
art4.o

Program Development Environment 1

Also provided with the Concurrent C/C++ compiler is a high level Program Developm
Environment (PDE), a set of tools for maintaining complex projects. The PDE maint
a database of all source files, libraries, and executables associated with a defined en
ment. This database approach has several advantages:

• Concentration of information makes it possible to make queries using tools
in the PDE about what options a given object file is built with, what include
files were pulled in, etc.

• Template instantiation can deal with libraries better and doesn’t clutter up
directories with template and instantiation info files.

• NightBench provides a graphical user interface that sits on top of the PDE,
providing the user with an intuitive graphical way of building complex
projects.

• A database provides a means for implementing program development tools
such as interprocedural analysis and class browsers in future releases of the
compilers.

Multiple Release Support 1

Beginning with release 5.1, the C and C++ compilers support having multiple rele
installed at the same time. Additionally, the Concurrent C 4.3 and Concurrent C++
compilers can also be installed with C/C++ 5.1.

The follow-on release of both C 4.3 and C++ 3.1 is the C/C++ 5.1 compiler. To acc
release 5.1 and later, as well as the PDE tools, the user must add/usr/ccs/bin to his
PATH env i ronment var iab le . The C++ compi le r i s then accessed
/usr/ccs/bin/ec++ and the C compiler is accessed as/usr/ccs/bin/ec and
/usr/ccs/bin/ec++ --c .

By default, the commands formerly used to invoke C 4.3 (/usr/ccs/bin/cc and
/usr/ccs/bin/hc) and the commands formerly used to invoke C++ 3
1-5

C/C++ Reference Manual

o
page

se.
lls the
cific

ting to

bers
e that

See

(e.g.,
-

y be
ts of

key-
y

-
e

e

(/usr/bin/cc++ and/usr/bin/c++) will now invoke C/C++ 5.1. However, the
system administrator can use thec.install -p option to configure these commands t
invoke the pre-5.1 releases by default. Refer to the release notes and “c.install” on
5-23 for details.

The programs in/usr/ccs/bin are actually stubs that then invoke the correct relea
There is a system wide default release set by the system administrator when he insta
compiler. The user may override that in a number of ways. He may specify a spe
release on the command line with the--rel= releaseoption to the compiler (or the-rel
releaseoption to the PDE tools), or he may set the environment variablePDE_RELEASE
to the release he wants, or he may set a user specific default with thec.release com-
mand. The stub attempts selecting the release by each of these in turn before resor
the system wide release.

If the PDE is being used to maintain an environment, then the environment remem
what release was used to create it and any tool acting upon that environment will us
release unless the user overrides it with the-rel option.

Thec.release command can also be used to obtain a list of installed releases.
“c.release” on page 5-50.

Command Line Options 1

The compiler is invoked by a command of the form

ec [++] [options] ifile

to compile the single input fileifile. If - (hyphen) is specified forifile, the compiler reads
from stdin .1

Command line options may be specified using either single character option codes
-o) or keyword options (e.g.,--output). A single character option specification con
sists of a hyphen followed by one or more option characters (e.g.,-Ab). If an option
requires an argument, the argument may immediately follow the option letter, or ma
separated from the option letter by white space. A keyword option specification consis
two hyphens followed by the option keyword (e.g.,--strict). If an option requires an
argument, the argument may be separated from the keyword by white space, or the
word may be immediately followed by=option. When the second form is used there ma
not be any white space on either side of the equals sign.

A list of files may appear forifile. If a list of files is specified, options that specify a com
pilation output file (--output , --list , and--xref) may not be used, and the nam
of each source file is written tostderr as the compilation of that file begins.

When one of the preprocessing-only modes is specified (see below), the--output
option can be used to specify the preprocessing output file. If--output is not specified,
preprocessing output is written tostdout . Preprocessing output has trigraphs and lin
splices processed (and thus they do not appear in their original form).

1. This is not recommended in general, since diagnostic messages and the like will then not include a file
name or will refer to the file name “- ”.
1-6

Compilation

the
back
lan-

sing
-

sing
r-

ified

put,
nes

te

put,
iles
When compilation (rather than just preprocessing) is done, the output (if any) from
compilation is written to a file selected by the back end; see the documentation of the
end for further information. For versions of the front end that generate an intermediate
guage file, the--output option can be used to specify the IL output file.

 Theoptions are as follows:

Controlling Compilation Process 1

Preprocessing 1

--preprocess

-E Do preprocessing only. Write preprocessed text to the preproces
output file, with comments removed and with line control informa
tion.

--no_line_commands

--preprocess_to_file

-P Do preprocessing only. Write preprocessed text to the preproces
output file, with comments removed and without line control info
mation.

--comments

-C Keep comments in the preprocessed output. This should be spec
after either--preprocess or --no_line_commands ; it does
not of itself request preprocessing output.

--dependencies

Do preprocessing only. Instead of the normal preprocessing out
generate on the preprocessing output file a list of dependency li
suitable for input to the UNIX1 make program. Note that when
implicit inclusion of templates is enabled, the output may indica
false (but safe) dependencies unless--no_preproc_only is
also used.

--trace_includes

Do preprocessing only. Instead of the normal preprocessing out
generate on the preprocessing output file a list of the names of f
#include d.

--define_macroname [= def]

-D name [= def]
Define macronameasdef. If “ = def” is omitted, definenameas1.

1. UNIX is a trademark of X/Open.
1-7

C/C++ Reference Manual

l
-

ude
a

o
is

the
ini-
the

ile
of

e of
of
There are no macro names defined by default (except for__LINE__
and similar language-mandated macros).

--undefine_macroname

-U name
Remove any in i t i a l de fin i t i on o f the macroname.
--unde f ine_macro opt ions are processed a f te r a l
--define_macro options in the command line have been pro
cessed.

--include_directorydir

--sys_includedir

-I dir Add dir to the list of directories searched for#include s. See Sec-
tion “Finding Include Files” on page 7-28 for more information..

--incl_suffixes str

Specifies the list of suffixes to be used when searching for an incl
file whose name was specified without a suffix. The argument is
colon-separated list of suffixes (e.g., “h:hpp::”). If a null suffix is t
be allowed, it must be included in the suffix list. The default value
“::h:hpp”.

--preincludefilename

-i filename Include the source code of the indicated file at the beginning of
compilation. This can be used to establish standard macro def
tions, etc. The file name is searched for in the directories on
include search list.

--list lfile

Generate raw listing information in the filelfile. This information is
likely to be used to generate a formatted listing. The raw listing f
contains raw source lines, information on transitions into and out
include files, and diagnostics generated by the front end. Each lin
the listing file begins with a key character that identifies the type
line, as follows:

N: a normal line of source; the rest of the line is the
text of the line.

X: the expanded form of a normal line of source;
the rest of the line is the text of the line. This
line appears following theN line, and only if the
line contains non-trivial modifications (com-
ments are considered trivial modifications;
1-8

Compilation

for
. If
macro expansions, line splices, and trigraphs
are considered non-trivial modifications).

S: a line of source skipped by an#if or the like;
the rest of the line is text. Note that the#else ,
#elif , or #endif that ends a skip is marked
with anN.

L: an indication of a change in source position.
The line has a format similar to the# line-iden-
tifying directive output bycpp , that is to say

L line-number "file-name" key

wherekey is 1 for entry into an include file,2
for exit from an include file, and omitted other-
wise. The first line in the raw listing file is
always anL line identifying the primary input
file. L lines are also output for#line direc-
tives (keyis omitted).L lines indicate the source
position of the following source line in the raw
listing file.

R, W, E, or C:
an indication of a diagnostic (R for remark,W
for warning,E for error, andC for catastrophic
error). The line has the form

S "file-name" line-number column-number mes-
sage-text

whereS is R, W, E, or C, as explained above.
Errors at the end of file indicate the last line of
the primary source file and a column number of
zero. Command-line errors are catastrophes
with an empty file name ("") and a line and col-
umn number of zero. Internal errors are catas-
trophes with position information as usual, and
message-text beginning with(internal
error) . When a diagnostic displays a list
(e.g., all the contending routines when there is
ambiguity on an overloaded call), the initial
diagnostic line is followed by one or more lines
with the same overall format (code letter, file
name, line number, column number, and mes-
sage text), but in which the code letter is the
lower case version of the code letter in the ini-
tial line. The source position in such lines is the
same as that in the corresponding initial line.

--pch Automatically use and/or create a precompiled header file —
details, see the “Precompiled Headers” section in this chapter
--use_pch or --create_pch (manual PCH mode) appears on
the command line following this option, its effect is erased.
1-9

C/C++ Reference Manual

ec-

the

s

ed
de

om-

is

of
on

ate
s is
--create_pch file-name
If other conditions are satisfied (see the “Precompiled Headers” s
tion), create a precompiled header file with the specified name. If--
pch (automatic PCH mode) or--use_pch appears on the com-
mand line following this option, its effect is erased.

--use_pch file-name
Use a precompiled header file of the specified name as part of
current compilation. If--pch (automatic PCH mode) or
--create_pch appears on the command line following thi
option, its effect is erased.

--pch_dir directory-name
The directory in which to search for and/or create a precompil
header file. This option may be used with automatic PCH mo
(--pch) or with manual PCH mode (--create_pch or
--use_pch).

--pch_messages

--no_pch_messages
Enable or disable the display of a message indicating that a prec
piled header file was created or used in the current compilation.

--list_macros List all macro definitions tostdout .

C++ Specific Features 1

--auto_instantiation

--no_auto_instantiation

Enable or disable automatic instantiation of templates. This option
va l id on ly in C++ mode. The de fau l t i s
--no_auto_instantiation unless the compilation is done
under control of the PDE.

--implicit_include

--no_implicit_include

Enable or disable implicit inclusion of source files as a method
finding definitions of template entities to be instantiated. This opti
i s va l id on ly in C++ mode. The de fau l t i s
--no_implicit_include .

--pending_instantiations=n

Specifies the maximum number of instantiations of a given templ
that may be in process of being instantiated at a given time. Thi
used to detect runaway recursive instantiations. Ifn is zero, there is
no limit. The default is 64.
1-10

Compilation

d
fault

eu-
n
is

f
es
ir-

on
-

i-

tic
es

te
ns
ines
the
--retain_out_of_line_copy

-Qretain_out_of_line_copy
Retain an out-of-line copy of inlined functions, even if not neede
because it gets called or its address gets taken. This is on by de
when the -g option is used.

--suppress_vtbl

Suppress definition of virtual function tables in cases where the h
ristic used by the front end to decide on definition of virtual functio
tables provides no guidance. The virtual function table for a class
defined in a compilation if the compilation contains a definition o
the first non-inline non-pure virtual function of the class. For class
that contain no such function, the default behavior is to define the v
tual function table (but to define it as a local static entity). The opti
--suppress_vtbl suppresses the definition of the virtual func
tion tables for such classes, and--force_vtbl forces the defini-
tion of the virtual function table for such classes.--force_vtbl
differs from the default behavior in that it does not force the defin
tion to be local. This option is valid only in C++ mode.

--force_vtbl

Force definition of virtual function tables in cases where the heuris
used by the front end to decide on definition of virtual function tabl
provides no guidance. See--suppress_vtbl . This option is
valid only in C++ mode.

--instantiatemode

Control instantiation of external template entities. External templa
entities are external (i.e., noninline and nonstatic) template functio
and template static data members. The instantiation mode determ
the template entities for which code should be generated based on
template definition):

none Instantiate no template entities. This is the
default.

used Instantiate only the template entities that are
used in this compilation.

all Instantiate all template entities whether or not
they are used.

local Instantiate only the template entities that are
used in this compilation, and force those entities
to be local to this compilation.

This option is valid only in C++ mode.
1-11

C/C++ Reference Manual

arn-

ted

s-
r tag

that
ber

fore
ses
zer
ht

iza-
not

is
ce
Error Messages 1

--no_warnings

-w Suppress warnings. Errors are still issued.

--remarks

--nitpick

-n Issue remarks, which are diagnostic messages even milder than w
ings.

--error_limitnumber

-e number Set the error limit tonumber. The front end will abandon compilation
after this number of errors (remarks and warnings are not coun
toward the limit). By default, the limit is 100.

--diag_suppresstag, tag,...

--diag_remarktag, tag,.

--diag_warningtag, tag,...

--diag_error tag, tag,...
Override the normal error severity of the specified diagnostic me
sages. The message(s) may be specified using a mnemonic erro
or using an error number.

--display_error_number

Display the error message number in any diagnostic messages
are generated. The option may be used to determine the error num
to be used when overriding the severity of a diagnostic message.

--no_use_before_set_warnings

Suppress warnings on local automatic variables that are used be
their values are set. The front end’s algorithm for detecting such u
is conservative and is likely to miss some cases that an optimi
with sophisticated flow analysis could detect; thus, an user mig
choose to suppress the warnings from the front end when optim
tion has been requested but to permit them when the optimizer is
being run.

--error_output efile
Redirect the output that would normally go tostderr (i.e., diag-
nostic messages) to the fileefile. This option is useful on systems
where output redirection of files is not well supported. If used, th
option should probably be specified first in the command line, sin
otherwise any command-line errors for options preceding the--
error_output would be written tostderr before redirection.
1-12

Compilation

tic
is-
o fit

not

or

r

d

ers.

he
ed

ila-
--brief_diagnostics

--no_brief_diagnostics

Enable or disable a mode in which a shorter form of the diagnos
output is used. When enabled, the original source line is not d
played and the error message text is not wrapped when too long t
on a single line.

--wrap_diagnostics

--no_wrap_diagnostics
Enable or disable a mode in which the error message text is
wrapped when too long to fit on a single line.

Other 1

--outputofile

-o ofile Specify the output file of the compilation, i.e., the preprocessing
intermediate language output file.

--version

Display the version number.

--no_code_gen

-k Do syntax-checking only, i.e., do not run the back end.

--xref xfile

Generate cross-reference information in the filexfile. For each refer-
ence to an identifier in the source program, a line of the form

symbol-id name ref-code file-name line-number column-numbe

is written, where ref-codeis D for definition,d for declaration (that
is, a declaration that is not a definition),Mfor modification,A for
address taken,U for used,C for changed (but actually meaning “use
and modified in a single operation,” such as an increment),R for any
other kind of reference, orE for an error in which the kind of refer-
ence is indeterminate.symbol-idis a unique decimal number for the
symbol. The fields of the above line are separated by tab charact

--timing

Generate compilation timing information. This option causes t
compiler to display the amount of CPU time and elapsed time us
by each phase of the compilation and a total for the entire comp
tion.
1-13

C/C++ Reference Manual

ri-
d.”
nly
bal
on-

th

m-
r

ler.

a-
to

ors

ut in

ject
o

--remove_unneeded_entities

--no_remove_unneeded_entities

Enable or disable an optimization to prune the IL tree of types, va
ables, routines, and related IL entries that are not “really neede
(Something may be referenced but unneeded if it is referenced o
by something that is itself unneeded; certain entities, such as glo
variables and routines defined in the translation unit, are always c
sidered to be needed.)

--debug

-g Produce additional symbolic debugging information for use wi
NightView.

--full_debug_info

-Qfull_debug_info
Generate debugging information for every entity declared in a co
pilation unit. Normally debugging information is created only fo
types that are actually used in the compilation unit.

--help

--help_screen

-H Display a help message showing invocation options for this compi

--leave_temp_files

-Qleave_temp_files
Do not remove the intermediate files created during compilation.

--symtab_size=symtab_size

-T symtab_sizePassed toas(1) .

--verbose

-v Be verbose when running the compiler. This option causes inform
tional messages about compilation and optimization to be written
stderr . This information can be used to determine the process
(and their arguments) invoked during the compilation.

-S Compile the named files and leave the assembler-language outp
the corresponding files suffixed by.s . No object file or executable
is produced (See also -c).

-c Suppress the loading phase of the copmilation, and force an ob
file to be produced even if only one program is compiled. (see als-
S).

--bin_path=string
1-14

Compilation

er
ult
ces-

ou-
re-
for

.

ified

e.
es-
-b string Search for alternative assembler, link editor, and post-link optimiz
processors. The compiler removes the path prefix from the defa
processor and uses string as a substitute prefix for the default pro
sor basename. For example, if the compiler is invoked with-
b/abc/ , the compiler searches for an assembler named/abc/as .
If the compiler is invoked with-b/dev/test_ , the compiler
searches for an assembler named/dev/test_as . Multiple -b
options may be used to specify multiple strings to try.

--lib_path=string

-B string Search for alternative compiler, instruction scheduler, startup r
tines, and auxiliary object files. The compiler removes the path p
fix from the default processor and uses string as a substitute prefix
the default processor basename. For example, ifec++ is invoked
with -B/abc/ , it searches for a compiler named/abc/cxc++ .
Multiple -B options may be used to specify multiple strings to try

--processors=[craPlAs]

-t [craPlAs] Find only the designated compiler passes using the paths spec
with a -B or -b option. The letters indicate processors as follows:

c compiler

r reorder, also known as instruction scheduler

a assembler

P prelinker

l link editor

A analyze, also known as post link optimizer

s startup routines and auxiliary object files

--pass_to_analyze=arg1[,arg2...]

--pass_to_assembler=arg1[,arg2...]

--pass_to_code_generator=arg1[,arg2...]

--pass_to_front_end=arg1[,arg2...]

--pass_to_linker=arg1[,arg2...]

--pass_to_prelink=arg1[,arg2...]

--pass_to_prelinker=arg1[,arg2...]

--pass_to_reorder=“options”

-Wx,arg1[,arg2...] hand off the specified arguments to the processorx, wherex is one of
the letters [fcraPlA] corresponding to the processors listed abov
This can be used to specify special arguments to particular proc
sors that the compiler invokes during compilation.
1-15

C/C++ Reference Manual

s.

-

la-
an-

nt

he

is
An alternative method is the setting of environment variable
PATH_TO_MCRT0, PATH_TO_CRT0, PATH_TO_STRICT, and
PATH_TO_ANSIallows the user to specify alternative startup rou
t ines and aux i l i a ry ob jec t fi l es . PATH_TO_CXCPP,
PATH_TO_REORDER, PATH_TO_AS, PATH_TO_LD,
PATH_TO_ANALYZE, andPATH_TO_DECODEallow the user to
specify alternativecxc++ , reorder , as , ld , analyze , and
c++decode tools respectively.

--limit_search_paths

-X Do not look in unspecified search paths for include files or compi
tion processors. An error message will be generated if the files c
not be found in the specified search paths

--cfront_io

--no_cfront_io

Enable or disable automatic link and prelink inclusion of the cfro
<iostream.h> based-lCio archive/library, or for threaded
applications the-lCio_mt archive/library. This is disabled by
default unless either--cfront_2.1 or --cfront_3.0 is speci-
fied.

--rel= release Select which release of the compiler (post-5.1) to invoke.

--testing

-# Don’t actually do anything. Use with-v option to see what the com-
piler would invoke.

Language Dialect 1

--c++ Enable compilation of C++. This is the default forec++ .

--c Enable compilation of C rather than C++. This is the default forec .

--old_c

-Xo Enable K&R/pcc mode, which approximates the behavior of t
standard UNIXpcc . ANSI C features that do not conflict with
K&R/pcc features are still supported in this mode.

-Xa Enable ANSI C mode. This is the default mode when C mode
selected.

-Xc

--strict_warnings
1-16

Compilation

hen
ith

e
g).
as
ion
as

ed.

lid

hat,
he
so

hat,
he
so

re.

tch
er-

ce;
--strict Enable strict ANSI mode, which provides diagnostic messages w
non-ANSI features are used, and disables features that conflict w
ANSI C or C++. This is compatible with both C and C++ mod
(although ANSI conformance with C++ does not yet mean anythin
It is not compatible with pcc mode. ANSI violations can be issued
either warnings or errors depending on which command line opt
is used. The--strict option causes errors to be issued where
the--strict_warnings and -Xc options produce warnings. The
error threshold is set so that the requested diagnostics will be list

--anachronisms

--no_anachronisms

Enable or disable anachronisms in C++ mode. This option is va
only in C++ mode. The default is--no_anachronisms .

--cfront_2.1 Enable compilation of C++ with compatibility with cfront version
2.1. This causes the compiler to accept language constructs t
while not part of the C++ language definition, are accepted by t
AT&T C++ Language System (cfront) release 2.1. This option al
enables acceptance of anachronisms.

--cfront_3.0 Enable compilation of C++ with compatibility with cfront version
3.0. This causes the compiler to accept language constructs t
while not part of the C++ language definition, are accepted by t
AT&T C++ Language System (cfront) release 3.0. This option al
enables acceptance of anachronisms.

--signed_chars

-Qchars_signed

-Qsigned_char

Make plain char signed. The default “signedness” forchar is
unsigned, as this is more efficient on the PowerPC architectu
When plainchar is signed, the macro__SIGNED_CHARS__is
defined by the front end.

--unsigned_chars

Make plainchar unsigned.

--distinct_template_signatures

--no_distinct_template_signatures

Control whether the signatures for template functions can ma
those for non-template functions when the functions appear in diff
en t comp i la t ion un i t s . The de fau l t i s
--distinct_template_signatures , under which a normal
function cannot be used to satisfy the need for a template instan
e.g, a function “void f(int) ” could not be used to satisfy the
need for an instantiation of a template “void f(T) ” with T set to
int . --no_distinct_template_signatures provides the
1-17

C/C++ Reference Manual

an
tes
gna-

ould
is
er

t use
fied

lid

a-

is

is

nly
older language behavior, under which a non-template function c
match a template function. Also controls whether function templa
may have template parameters that are not used in the function si
ture of the function template.

--nonstd_qualifier_deduction

--no_nonstd_qualifier_deduction

Controls whether nonstandard template argument deduction sh
be performed in the qualifier portion of a qualified name. With th
feature enabled, a template argument for the template parametT
can de deduced in contexts likeA<T>::B or T::B . The standard
deduction mechanism treats these as nondeduced contexts tha
the values of template parameters that were either explicitly speci
or deduced elsewhere.

--exceptions

--no_exceptions

Enable or disable support for exception handling. This option is va
only in C++ mode. The default is--exceptions .

--rtti

--no_rtti Enable or disable support for RTTI (runtime type information) fe
tures:dynamic_cast , typeid . This option is valid only in C++
mode. The default is--rtti .

--array_new_and_delete

--no_array_new_and_delete

Enable or disable support for array new and delete. This option
valid only in C++ mode.

--explicit

--no_explicit

Enable or disable support for theexplicit specifier on constructor
declarations. This option is valid only in C++ mode. The default
--explicit .

--namespaces

--no_namespaces

Enable or disable support for namespaces. This option is valid o
in C++ mode. The default is --namespaces.

--old_for_init

--new_for_init
1-18

Compilation

in
-

+

iled
v-

ew
is

ons

te
at
ni-
r

a

efi-
+

in

n

Control the scope of a declaration in afor-init-statement .
The old (cfront-compatible) scoping rules mean the declaration is
the scope to which thefor statement itself belongs; the new (stan
dard-conforming) rules in effect wrap the entirefor statement in its
own implicitly generated scope. This option is valid only in C+
mode. The default is--new_for_init .

--for_init_diff_warning

--no_for_init_diff_warning

Enable or disable a warning that is issued when programs comp
under the new for-init scoping rules would have had different beha
ior under the old rules. The diagnostic is only put out when the n
rules are used. This option is valid only in C++ mode. The default
--for_init_diff_warnings .

--old_specializations

--no_old_specializations

Enable or disable acceptance of old-style template specializati
(i.e., specializations that do not use thetemplate<> syntax). This
op t ion is va l id on ly in C++ mode. The de fau l t i s
--old_specializations .

--guiding_decls

--no_guiding_decls

Enable or disable recognition of “guiding declarations” of templa
functions. A guiding declaration is a function declaration th
matches an instance of a function template but has no explicit defi
tion (since its definition derives from the function template). Fo
example:

template <class T> void f(T) { ... }
void f(int);

When regarded as a guiding declaration,f(int) is an instance of
the template; otherwise, it is an independent function for which
definition must be supplied. If--no_guiding_decls is com-
bined with--old_specializations , a specialization of a non-
member template function is not recognized — it is treated as a d
nition of an independent function. This option is valid only in C+
mode. The default is--guiding_decls .

--implicit_extern_c_type_conversion

--no_implicit_extern_c_type_conversion

Enable or disable an extension to permit implicit type conversion
C++ between a pointer to anextern "C" function and a pointer to
anextern "C++" function. (It is useful for cfront compatibility
— in standard C++ the linkage specification is part of the functio
1-19

C/C++ Reference Manual

es,

ith
,

in

is

l

he
,

h

ll
of

g”
y

type, with the consequence that otherwise identical function typ
one declaredextern "C" and the other declaredextern
"C++" , a re v iewed as d is t inc t .) The de fau l t i s
--implicit_extern_c_type_conversion .

--long_preserving_rules

--no_long_preserving_rules

Enable or disable the K&R usual arithmetic conversion rules w
respect tolong . This means the rules of K&R I, Appendix A, 6.6
not the rules used by the pcc compiler. The significant difference is
the handling of “long op unsigned int ” when int andlong
are the same size. The ANSI/ISO/pcc rules say the result
unsigned long , but K&R I says the result islong (unsigned
long did not exist in K&R I).

--extern_inline

--no_extern_inline

Enable or disable support forinline functions with external link-
age in C++. Wheninline functions are allowed to have externa
linkage (as required by the standard), thenextern andinline are
compatible specifiers on a nonmember function declaration; t
default linkage wheninline appears alone is external (that is
inline meansextern inline on nonmember functions); and
an inline member function takes on the linkage of its class (whic
is usually external). However, wheninline functions have only
internal linkage (as specified in the ARM), thenextern and
inline are incompatible; the default linkage wheninline
appears alone is internal (that is,inline meansstatic inline
on nonmember functions); andinline member functions have
internal linkage no matter what the linkage of their class.

--restrict

--no_restrict Enable or disable recognition of therestrict keyword.

--long_lifetime_temps

--short_lifetime_temps

Select the lifetime for temporaries: “short” means to end of fu
expression; “long” means to the earliest of end of scope, end
switch clause, or the next label. “short” is standard C++, and “lon
is what cfront uses (the cfront compatibility modes select “long” b
default).

--wchar_t_keyword

--no_wchar_t_keyword
Enable or disable recognition ofwchar_t as a keyword. This option
is valid only in C++ mode. The default is--wchar_t_keyword .
1-20

Compilation

a
tion

ion

ng
ith

ec-
ni-
--bool

--no_bool Enable or disable recognition ofbool . This option is valid only in
C++ mode. The default is--bool .

--typename

--no_typename

Enable or disable recognition oftypename . This option is valid
only in C++ mode. The default is--typename .

--implicit_typename

--no_implicit_typename

Enable or disable implicit determination, from context, whether
template parameter dependent name is a type or nontype. This op
is valid only in C++ mode. The default is--implicit_-
typename .

--special_subscript_cost

--no_special_subscript_cost

Enable or disable a special nonstandard weighting of the convers
to the integral operand of the[] operator in overload resolution.
This is a compatibility feature that may be useful with some existi
code. The special cost is enabled by default in cfront 3.0 mode. W
this feature enabled, the following code compiles without error:

struct A {
 A();
 operator int *();
 int operator[](unsigned);
};
void main() {
 A a;
 a[0]; // Ambiguous, but allowed
 // with this option
 // operator[] is chosen
}

As of July 1996, the above is again acceptable, ifptrdiff_t is
configured aslong . Using a parameter of typeptrdiff_t
(instead ofunsigned int) is recommended for portability.

--alternative_tokens

--no_alternative_tokens

Enable or disable recognition of alternative tokens. This controls r
ognition of the digraph tokens in C and C++, and controls recog
1-21

C/C++ Reference Manual

s in
od-
ult is

-

is
d is

on-
is

ad
tion of the operator keywords (e.g.,and , bitand , etc.) in C++. The
default is--alternative_tokens .

--multibyte_chars

--no_multibyte_chars

Enable or disable processing for multibyte character sequence
comments, string literals, and character constants. Multibyte enc
ings are used for character sets like the Japanese SJIS. The defa
--no_multibyte_chars .

--inlining

--no_inlining

Enable or disable function inlining. If disabled, calls to inline func
tions will call out-of-line instances. The default is--inlining .

-Xt

--svr4

--no_svr4 Enable or disable recognition of SVR4 C compatibility features. Th
option also specifies that the source language being compile
ANSI C. The default is--no_svr4 .

--nonconst_ref_anachronism

--no_nonconst_ref_anachronism

Enable or disable the anachronism of allowing a reference to n
const to bind to a class rvalue of the right type. This anachronism
also enabled by the--anachronisms option and the cfront-com-
patibility options.

--embedded_c++

Enable the diagnosis of noncompliance with the
“Embedded C++” subset (from which templates,
exceptions, namespaces, new-style casts, RTTI,
multiple inheritance, virtual base classes,
and mutable are excluded).

--enum_overloading

--no_enum_overloading

Enable or disable support for using operator functions to overlo
builtin operations on enum-typed operands.

--const_string_literals

--no_const_string_literals
1-22

Compilation

st
ver-

he
(as

ed

is
al
ible
by
nt-

ply
e-
f the

ding
ker
on,
on
unc-

eci-
Control whether C++ string literals and wide string literals are con
(as required by the standard) or non-const (as was true in earlier
sions of the C++ language).

--class_name_injection

--no_class_name_injection

In C++, controls whether the name of a class is injected into t
scope of the class (as required by the standard) or is not injected
was true in earlier versions of the C++ language).

--arg_dep_lookup

--no_arg_dep_lookup

In C++, controls whether argument dependent lookup of unqualifi
function names is performed

--friend_injection

--no_friend_injection

In C++, controls whether the name of a class or function that
declared only in friend declarations is visible when using the norm
lookup mechanisms. When friend names are injected, they are vis
to such lookups. When friend names are not injected (as required
the standard), function names are visible only when using argume
dependent lookup, and class names are never visible.

--late_tiebreaker

--early_tiebreaker

Select the way that tie-breakers (e.g., cv-qualifier differences) ap
in overload resolution. In “early” tie-breaker processing, the ti
breakers are considered at the same time as other measures o
goodness of the match of an argument value and the correspon
parameter type (this is the standard approach). In “late” tiebrea
processing, tie-breakers are ignored during the initial comparis
and considered only if two functions are otherwise equally good
all arguments; the tie-breakers can then be used to choose one f
tion over another.

--nonstd_using_decl

--no_nonstd_using_decl

In C++, controls whether a nonmember using-declaration that sp
fies an unqualified name is allowed.
1-23

C/C++ Reference Manual

ese

ion
r C

hat

en-
n it

ent
class
his

f
.

to

-

nd
on-
--designators

--no_designators

Enable or disable support for designators (a C9X extension). Th
options are not available in C++ mode.

--extended_designators

--no_extended_designators

Enable or disable support for “extended designators,” an extens
accepted only in C mode to emulate the behavior of certain othe
compilers when it comes to designators in aggregate initializers.

--variadic_macros

--no_variadic_macros
Enable or disable support for variadic macros (a C9X extension t
is also available in C++ mode).

--extended_variadic_macros

--no_extended_variadic_macros

Enable or disable support for “extended variadic macros,” an ext
sion that emulates the behavior of certain other C compilers whe
comes to variadic macros.

--base_assign_op_is_default

--no_base_assign_op_is_default

Enable or disable the anachronism of accepting a copy assignm
operator that has an input parameter that is a reference to a base
as a default copy assignment operator for the derived class. T
option is enabled by default in cfront compatibility mode.

--float_single

-fsingle Cause all floating-point constants to have typefloat instead of the
default typedouble . This can be used to prevent type promotion o
floating-point expressions involving constants to double precision

Note that it is possible to force individual floating point constants
have type float by adding anf or F suffix. For example,3.13f has
type float while 3.14 has typedouble (by default). This elimi-
nates the need to use the-fsingle option and allows greater flexi-
bility in controlling the types of floating-point literals.

--float_single2

-fsingle2 Like the -fsingle option, but also disable the automatic type pro
motion of floating-point expressions to typedouble when passed as
parameters to functions. With this option, it is possible to write a
use true single-precision functions, but it becomes the user’s resp
1-24

Compilation

at

that
les.

ry

as

e
tion

he
d in

ions
ara-
sibility to provide double-precision arguments to functions th
expect them (such as standard library routines likeprintf).

Note that function prototypes may be used to declare routines
accept float arguments, regardless of default type-promotion ru
This can eliminate the need to use the-fsingle2 option. In ANSI
mode, prototype declarations for the single-precision math libra
routines are available in <math.h> . Seetrig(3M) .

--float_mode=floatmode

-f floatmode Use float mode as the floating-point mode during compilation and
the floating-point mode of the resulting object file.

IEEE-COMPATIBLE
Use modeieeecom

IEEE-ZERO
Use modeieeezero or zero

IEEE-NEAREST
Use modeieeenear , near , or ieee ; this is
the default.

IEEE-POS-INFINITY
Use modeieeepos or pos

IEEE-NEG-INFINITY
Use modeieeeneg or neg

--enable_intrinsics

-F Turn on intrinsic functions. The compiler will then generate in-lin
code for accessing special machine instructions. Use of this op
also defines the preprocessor macro_FAST_MATH_INTRINSICS.

--read_only_literals

-R Make initialized variables shared and read-only.

--namespace_in_headers

--no_namespace_in_headers

Define entities mandated by the ANSI/ISO C standard in t
namespace std or in the global namespace. Entities are define
namespace std by default when namespaces are enabled.

--ansi_cplusplus_headers

--no_ansi_cplusplus_headers

Enable or disable the overloaded declarations of standard C funct
which are mandated by the C++ standard. The overloaded decl
tions are enabled by default.
1-25

C/C++ Reference Manual

not
is

ng
d line

his

e-
-O
--const_object_in_nonconst_member

Enable the anachronism of calling a member function that does
require a const this pointer with a const selector. This anachronism
also enabed by the--anachronisms option and the cfront-com-
patibility options.

--check_long_long

-Qcheck_long_long

Define the predefined macro__LONG_LONGto condition header
files to allow long long types and signatures. In order to get warni
messages whenever these types are seen supply the comman
option--strict_warnings .

--long_long
--no_long_long
-Qlong_long

-Qno_long_long

Enable or Disable the extensionlong long , a 64-bit integer. Also
defines the predefined macro__LONG_LONG.

--const_constant_is_constant

In C Mode, when aconst variable is initialized with a constant lit-
eral, replace references to the variable with the constant literal. T
is always done in C++.

-K Treatconst , signed , andvolatile as normal identifiers, not as
ANSI-C keywords.

Optimization 1

-O[keyword[,keyword2...]]

Control the level of optimization performed during compilation. Pr
vious choices are preserved if not overridden, thus multiple
options may be used. Valid keywords are:

--optimization_level=none
--optimization_level=0

-Onone or -O0
Places strict controls on minimal optimization.
1-26

Compilation
Usually used only on extremely large, usually
machine generated, source files.

--optimization_level=minimal
--optimization_level=1

-Ominimal or -O1
Perform some minimal level of optimization
that will yield reasonably fast code. This is the
default if no-O option is specified.

--optimization_level=global
--optimization_level=2

-Oglobal or -O2
Perform some routine-wide optimizations. This
is the default if-O is specified with no explicit
level.

--optimization_level=maximal
--optimization_level=3

-Omaximal or -O3
Perform all routine-wide optimizations, but
with restraint to limit compile time.

--optimization_level=ultimate
--optimization_level=4
-Qbenchmark

-Oultimate or -O4
Perform maximal optimizations, uses fastest
transformations, link with fastest libraries, and
take lots of time to do it.

--safe

-Osafe
Set the optimization class tosafe . Avoids all
transformations that might cause subtle differ-
ences in program behaviour. See also-
Qopt_class .

--standard

-Ostandard

Set the optimization class tostandard .
Allows transformations that might cause differ-
ences in program behaviour if the language
1-27

C/C++ Reference Manual

trol
hat
ro-
2
he
s tandard permi ts them. See a lso-
Qopt_class .

--unsafe

-Ounsafe
Set the optimization class tounsafe . See also
-Qopt_class .

--reorder

-Oreorder
Perform instruction scheduling (default for glo-
bal and higher)

--no_reorder
-Onoreorder

-Ono_reorder
Do not perform instruction scheduling (default
for minimal and lower)

--post_linker
-Oanalyze

-Opost_linker
Perform post-linker optimization (default for
global and higher).

--no_post_linker
-Ono_analyze

-Ono_post_linker
Do not perform post-l inker optimization
(default for minimal and lower)

-Qflag Provide access to a number of special-purpose compiler con
options. Many of these options specify optimization parameters t
are common to all Concurrent CCG-based compilers; see the “P
gram Optimization” chapter of Compilation Systems Volume
(Concepts) for a detailed description of CCG optimizations and t
use of these options. The following flags are available:

--alias_array_elements_limit= N
-Qalias_array_elements_limit= N

Limit the number of constant array references
that are given separate object numbers. For
arrays of structures this controls the number of
structures to be assigned object numbers. A
value of zero means no limits will be applied.
1-28

Compilation
Used when-Qprecise_alias is in effect.
Default value is 100.

--alias_ignore_const

-Qalias_ignore_const
Instruct the alias analysis to ignore the const
keyword in performing alias analysis. By
default variables that have this attribute are
assumed to be constant.

--alias_object_limit= N

-Qalias_object_limit= N
Limit the number of objects used in alias analy-
sis, which is a measure of the preciseness of the
analysis. A value of zero mans no limits will be
applied. Used when-Qprecise_alias is in
effect. Default value is 10000.

--alias_structure_fields_limit= N

-Qalias_structure_fields_limit= N
Limit the number of fields in a structure that are
given separate object numbers. A value of zero
means that no limit will be applied. Used with
-Qprecise_alias is in effect. Default value
is 100.

--complete_unroll_debugging

-Qcomplete_unroll_debugging
Generate complete debugging information for
basic blocks duplicated during loop unrolling
and for zero trip loop optimization at the cost of
increased compilation time and object module
size.

--dont_peel_var

-Qdont_peel_var
Specifie that loop unrolling should not peel any
iterations from loops with unknown iteration
count. This is the default since peeling itera-
tions from such loops can adversely effect cach-
ing in loops that only execute a few times.

--flttrap

-Qflttrap
Enable software floating-point exceptions. This
1-29

C/C++ Reference Manual
also disables hardware floating-point excep-
tions. See-Qfpexcept .

--fpexcept= {precise | imprecise | disabled }

-Qfpexcept= {precise | imprecise | dis-
abled }
Control hardware floating-point exception han-
dling. This option is passed to the linker. See
ld(1) .

--full_debug_line_info

-Qfull_debug_line_info
Produce debug information when inlining and
other optimizations that copy and move code so
that the debugger is aware that such a transfor-
mation has happened. This is the default. See
also -Qsparse_debug_line_info.

--growth_limit= N

-Qgrowth_limit= N
Limit the amount of intermediate code the opti-
mizer is allowed to duplicate when performing
optimizations such as loop unrolling and repair-
ing irreducible flow graphs. The integer con-
stantN represents the percentage increase in
code size permitted. The default value is 25.

--huge_heuristic= N

-Qhuge_heuristic= N

Limit the aggressiveness of register allocation.
Values of N may be from 1 through 1000000.
The default is 1000000. Very low values (ie,
below 100) are most likely to significantly
reduce the time required to optimize very large,
complicated subprograms using many variables
at the cost of reduced efficiency of register
usage.

--inline= “list”

-Qinline= “list”

Inline the comma-separated list of routine
names. These routines cannot be class names,
cannot be overloaded, and cannot be in
namespaces.

--inline_depth= N

-Qinline_depth= N
Place a limit on the level of nested procedure
1-30

Compilation
inlining. A value of zero disables inlining. By
default it is set to one at minimal or less and two
at g loba l and above . See a lso- -
no_inlining . SettingN higher than 2 can
result in runaway program size growth and
exteremly long compile times.

--int_div_exception

-Qint_div_exception
Generate an exception if an integer division by
zero is detected at run time. The PowerPC
architecture does not provide this facility with-
out software support. Use of this option
instructs the compiler to provide this software
support at the expense of integer divide perfor-
mance.

--invert_divides

-Qinvert_divides

Host divides by region constants (an expression
whose value will not change during the execu-
tion of the loop containing it) out of loops and
replace them with a multiply by the reciprocal
in the loop. Also, transform divide by a literal
into a multiply by its reciprocal.

--loops= N

-Qloops= N

Set the number of loops for which the compiler
will perform the copy-variable optimization.N
must be an integer constant. The default value
is 20.

--no_float_reg_agg_move

-Qno_float_reg_agg_move
Disable the use of floating point registers to
accelerate the copying of structures.

--no_float_varargs

-Qno_float_varargs
Tell the compiler that there will be no floating
point arguments passed to any stdard or vararg
routine. This enables the compiler to generate
1-31

C/C++ Reference Manual
faster code by avoiding the spill of floating
point registers to a buffer.

--no_invert_divides

-Qno_invert_divides
Disable the implicit -Qinvert_divides present at
ultimate optimization.

--no_multiply_add

-Qno_multiply_add
Disable the use of multiply-add instructions.
Separate multiply and add instructions will be
used instead.

-Qreentrant_library
Disallow the implied use of the non reentrant C
library libnc at ultimate optimization.

--report_optimizations

-Qreport_optimizations
Report on what optimizations are being per-
formed.

--objects= N

-Qobjects= N

Set the maximum number of variables that the
compiler will optimize when global or maximal
optimization is specifed.N must be an integer
constant. (Limits optimizations such as dead
code elimination, copy propagation and copy
variables). The default is 128.

-Qopt_class= {unsafe | standard | safe }
Select the class of compiler optimization. The
default isunsafe . See also--unsafe , -
Ounsafe , --standard , -Ostandard , --
safe , and-Osafe .

--optimize_for_space

-Qoptimize_for_space
Make space rather than time the critical factor
in optimizing this program.

--peel_limit_const= N

-Qpeel_limit_const= N

Specify the minimum number of iterations that
loop unrolling will peel from a loop whose
number of iterations is a compile-time constant.
1-32

Compilation
This is used for software pipelining so that each
iteration of a loop can overlap instructions from
N+1 iterations of the original loop. The default
is 1 at global and 2 at maximal and up.

--peel_var

-Qpeel_var
Specify that loop unrolling can pull 1 iteration
off a loop with an unknown iteration count. The
default is -Qdont_peel_var.

--plt

-Qplt
Generate function calls using plt instead of gotp
entries if-Zpic also specified. See Chapter 22
of Compilation Systems Volume 2 (Concepts)
for the cases when it is desirable to use this
option.

--precise_alias

-Qprecise_alias
Specify that the time consuming, but precise,
method of alias analysis is used. It is the default
at global and above.

--quick_alias

-Qquick_alias
Specify that the quick, but not very precise,
method of alias analysis is used. It is the default
at minimal and below.

--sparse_debug_line_info

-Qsparse_debug_line_info
Produce smaller debug info for inlining and
other optimizations that copy and move code.
Debugging inlined procedures, unrolled loops,
etc. will be somewhat more difficult. See also-
Qfull_debug_line_info .

--spill_register_if_address_taken

-Qspill_register_if_address_taken

Copy the contents of all argument register to
memory locations if the address of a formal
parameter is taken. This option can sometimes
be used to work around problems with functions
that attempt to step through argument lists
assuming that they were passed in as a list of
arguments on the stack. Typically, these func-
t ions should have been coded using the
1-33

C/C++ Reference Manual

d
d in
ct’s
er
varargs(5) interface for passing variable
argument lists to functions.

--target= {ppc604 |ppc604e |ppc750 |ppc }

-Qtarget= {ppc604 |ppc604e |ppc750 |ppc }

Select the target architecture for compilation
and optimization. The default isppc750 . The
more general target ppc produces code using
only instructions common to the entire Pow-
erPC CPU family.

The target may also be specified by setting the
TARGET_ARCH environment variable.

--unroll_limit_const= N

-Qunroll_limit_const= N

Limit the number of times a loop with a number
of iterations known at compile time may be
unrolled. For more information, see the “Pro-
gram Optimization” chapter of theCompilation
Systems Volume 2 (Concepts). N must be an
integer greater than or equal to 0. The default is
10.

--unroll_limit_var= N

-Qunroll_limit_var= N
Limit the number of times a loop with an
unknown number of iterations may be unrolled.
See also-Qunroll_limit_const .

Linking 1

--dynamic_link_name=name

-h name Passed told(1) in dynamic mode only. When building a share
object, put name in the object’s dynamic section. name is recorde
executables that are linked with this object rather than the obje
system file name. Accordingly, name is used by the dynamic link
as the name of the shared object to search for at run time. (See-l
and-o .)

--library=name

-l name Passed told(1) , to search for the librarylibname.a from
/usr/ccs/lib or /usr/lib, and load referenced modules from
that library into the executable file. Multiple-l options may be used
to specify multiple libraries to search. (See -h and -o).
1-34

Compilation

r-
or
en

n

ld

nly

file
)

lso
-lnc Link with the nonreentrant C library libnc, which has better perfo
mance compared with libc while sacrificing use with threaded
dynamically-linked executables. This option cannot be used wh
linking dynamically or with the-lthread library This option is
implied by the-O4 option when linking a static executable, but ca
be disallowed by specifying the-Qreentrant_library option.

--library_directory=path

-L path Passed told , to add path to the library search directories.
searches for libraries first in any directories specifeid with-L
options, then in the standard directories. This option is effective o
if it precedes the-l option on the command line. Multiple-L
options may be used to specify multple paths to search.

-Z flag Provided access to a number of options that control the object
formats used by C/C++. SeeCompilation Systems Volume 1 (Tools
andCompilation Systems Volume 2 (Concepts)for more information
about the object-file formats and the tools that deal with them. (A
see the-h option). The following flags are available:

--library_linkage= {dynamic | static }

-Zlibs= {dynamic | static }

Govern library inclusion. -Zlibs=dynamic
i s va l id on ly in dynamic mode (see
-Zlink=static) in which case it is the
default value. If the-Zlibs=static option
is given, no shared objects will be accepted until
-Zlibs=dynamic is seen.

--link_mode= {dynamic | static }

-Zlink= {dynamic | static }

Produce dynamically-linked or statically-linked
object files. Dynamic linking is the default
un less the env i ronment var iab le
STATIC_LINK is defined.

--link_mode=so

-Zlink=so

Produce a shared object instead of an execut-
able. Requires that all object be compiled with
the-Zpic option.

--pic
-pic

-Zpic
Cause the compiler to produce position-inde-
1-35

C/C++ Reference Manual

ject
is

the

s fo

td-
pendent code. Use in conjunction with-
Zlink=so .

--symbolic

-Zsymbolic

In dynamic mode only, when building a shared
object, bind references to global symbols to
their definitions within the object, if definitions
are available. Normally, references to global
symbols within shared objects are not bound
until run time, even if definitions are available,
so that definitions of the same symbol in an exe-
cutable or other shared objects can override the
object’s own definition. ld(1) issues warn-
ings for undefined symbols unlessld ’s -zdefs
overrides.

--combine_relocatable_objects

-r Combine relocatable object files to produce one relocatable ob
file. ld(1) will not complain about unresolved references. Th
option cannot be used in dynamic mode.

-Qno_vendor_reloc

Do not generate relocation in the vendor section. This disables
ability of analyze(1) to optimize a program.

--entry_point= symbol

Set the entry point address for the executable to be the addres
symbol.

--linker_z=flag

-z flag Pass-z option told(1) .

--mapfile=filename

-Mfilename Read filename as a text file of directives told(1) . Because these
directives change the shape of the output file created byld , use of
this option is strongly discouraged.

--memory_map

-m Produce a memory map or listing of the input/output sections on s
out. Seeld(1) .

--reduced_symbols

-x Do not preserve local symbols with typeSTT_NOTYPE. This option
saves some space in the output file.
1-36

Compilation

e
ed.
nd
le.

is
e
orce
he
at
--strip

-s Strip symbolic information from the output file. The debug and lin
sections and their associated relocation entries will be remov
Except for relocatable files or shared objects, the symbol table a
string table sections will also be removed from the output object fi

--undefined_linker_symbol=symbol

-u symbol Enter symbolas an undefined symbol in the symbol table. This
useful for loading entirely from an archive library, since initially th
symbol table is empty and an unresolved reference is needed to f
the loading of the first routine. The placement of this option on t
command line is significant; it must be placed before the library th
will define the symbol.
1-37

C/C++ Reference Manual
1-38

2-1
2-3
2
 Overview of Concurrent C/C++ Program

Development Environment

C/C++ Utilities .
C/C++ Core Utilities .

PowerMAX OS Real-Time Guide

ities
and

's
2
 Overview of Concurrent C/C++ Program

Development Environment

2
2
2

C/C++ Utilities 2

Concurrent C/C++ Program Development Environment consists of a number of util
that provide support for library management, compilation, program generation,
debugging. Table 2 lists these tools and gives a brief description of each one.

Table 2-1. Concurrent C/C ++ Utilities

Environment Utilities

c.mkenv Create an environment which is required for compilation, linking, etc.

c.path Display or change the Environment Search Path for an environment

c.options Set compilation options for the environment (or for units)

c.rmenv Destroy an environment; compilation, linking, etc. no longer possible

c.chmod Modify the UNIX file system permissions of an environment

c.release Display release installation information

c.script Generate a script that will recreate an environment

c.freeze Disallow changes to, and optimize uses of an environment

Unit Utilities

c.ls List units in the environment (state, source file, dependencies, etc.)

c.options Set compilation options for units (or the environment)

c.edit Edit the source of a unit, then update the environment

c.cat Output the source of a unit

c.touch Make the environment consider a unit consistent with its source file
timestamp

c.invalid Force a unit to be inconsistent thus requiring it to be recompiled

c.instantiation Control instantiation automation

c.fetch Fetch the compiled form of a unit from another environment

c.expel Expel fetched or naturalized units from the environment
2-1

 C/C++ Reference Manual

n-

t

ools
Source File Utilities

c.intro Introduce source files (and units therein) to the environment

c.lssrc List sources files in the environment

c.rmsrc Remove knowledge of source files (and units therein) from the enviro
ment

Debug Utilities

c.analyze Optimize or analyze performance of fully-linked executables

c.report Generate profile reports in conjunction with a.analyze -P

Compilation Utilities

c.build Compile and link as necessary to build a unit, partition or environmen

c.partition Define or display a partition for the linker

Internal Utilities

c.install Install, remove, or modify a release installation

c.compile Compile the specification and/or body of one or more units

c.prelink Resolve unit selection and template instantiation

c.error Process diagnostic messages generated by the compiler and other t

c.link Link a partition (an executable, archive or shared object file)

Help Utilities

c.help List usage and summary of each Concurrent C/C++ utility

c.man Invoke/position interactive help system (requires an X terminal)

Table 2-1. Concurrent C/C ++ Utilities (Cont.)
2-2

Overview of Concurrent C/C++ Program Development

e
iven

, etc.

ment
C/C++ Core Utilities 2

Of the C/C++ Utilities listed in Table 2-1, there are four tools that form the “core” of th
C/C++ system. These tools will most likely be used quite heavily and therefore are g
special attention here. See Table 2-2.

Table 2-2. Predefined Macros

Core Utilities

c.mkenv Create an environment which is required for compilation, linking

c.intro Introduce source files to the environment

c.partition Define or display a partition for the linker

c.build Compile and link as necessary to build a unit, partition or environ
2-3

 C/C++ Reference Manual
2-4

3-1
3-1
3-2
3-3
3-4
3-4
3-4

3-4
3-5
3-6
3-6

3-11
3-11

3-11
3-12
3-13

3-13
3-14
3
Using Concurrent C/C++

Program Development Environment

Hello World - An Example .
Creating an environment .
Introducing units. .
Defining a partition. .
Building a partition .
Success!!! .
Let’s look around... .

Listing the contents of your environment .
Viewing the source for a particular unit .
Looking at the Environment Search Path .
What are my options? .

Hello Galaxy - The Example Continues... .
Setting up another environment .
Modifying an existing unit .
Building a unit with references outside the local environment
Adding an environment to the Environment Search Path.
Making contact!!! .
Who resides here now?. .

PowerMAX OS Real-Time Guide

iven.
nder

four

ple -

tion.
on-
3
Chapter 3Using Concurrent C/C++

Program Development Environment

3
3
3

Hello World - An Example 3

To demonstrate the ease of use of Concurrent C/C++, a simple example will be g
This example will traverse through the core functions needed to build an executable u
the Concurrent C/C++ system.

Building an executable under Concurrent C/C++ can be broken down into as few as
steps:

• Creating an environment

• Introducing units

• Defining a partition

• Building the partition

This section will demonstrate each of these steps on a simple, but well-known exam
Hello World.

Before we begin...

You must make sure that the path/usr/ccs/bin is added to
your PATHenvironment variable. This is the only path necessary
to access the Concurrent C/C++ utilities, regardless of the number
of releases of Concurrent C/C++ installed on the system.

Creating an environment 3

One of the first steps you must take in order to use Concurrent C/C++ is to create anenvi-
ronment. Concurrent C/C++ uses environments as its basic structure of organiza
Environments contain all the information relevant to a particular project. All of the C
current C/C++ utilities work within the context of a particular environment.

The Concurrent C/C++ tool used to create an environment isc.mkenv . It requires a Unix
directory where this environment will reside.

For our example, we will create a new directory on our system and runc.mkenv from
within that directory.
3-1

C/C++ Reference Manual

iron-
This
ment

rms
ver,

e of

It is
You

t

Screen 3-1. Creating an environment

This creates the Concurrent C/C++ internal directory structure that comprises the env
ment and that is essential before any other Concurrent C/C++ tools can be utilized.
environment has the same name as the directory in which it was created. Our environ
in this example, therefore, is/pathname/earth .

Introducing units 3

Compilation units(henceforth referred to simply asunits) are the basic building blocks of
Concurrent C/C++ environments. It is through units that Concurrent C/C++ perfo
most all its library management and compilation activities. These units are, howe
introduced into the system in the form ofsource files.

In our example, we have one unit,hello , that resides in a source file,hello.c . This
source file is just an ordinary text file. By default, the name of the unit is the file nam
the source file without any path prepended or extension postpended.

Screen 3-2. Source file hello.c containing hello unit

Create this source file within the directory in which you created your environment. (
not necessary for the source file to reside in the same directory as the environment.
may specify a relative or absolute path name of the source file.)

We introduce this unit to the environment by using thec.intro utility. (See “Command
Line Options” on page 1-6)c.intro introduces a unit for source file into the curren
environment.

Screen 3-3. Introducing unit from a source file

$ mkdir /pathname/earth

$ cd /pathname/earth

$ c.mkenv

#include <stdio.h>
main() {
 printf (“Hello World!!!”);
}

$ c.intro hello.c
3-2

Using Concurrent C/C++ Program Development Envi-

the

le

then
.

The unithello is now a part of the environmentearth .

From this point on, the unithello is considered to beownedby the environmentearth .
Any functions performed on this unit must be managed by the environment through
Concurrent C/C++ utilities.

Defining a partition 3

If we want to create an executable program to use our unit, we must define apartition. We
will be creating anexecutable partitionwhich is the type that corresponds to executab
programs.

We must also name the partition. You can name your partition anything you want and
add units to it, but since this is a simple example, we are taking the most direct route

Hence, our partition will be namedhello . We will use the Concurrent C/C++ utility
c.partition to do this.

Screen 3-4. Defining a partition

Because it has the same name as the executable partition being created, the unithello is
automatically added to this partition.

NOTE

The command in Screen 3-4 could have been explicitly specified
as:

$ c.partition -create executable -add hello hello

This command creates an active partition namedhello and adds
thehello unit to it.

$ c.partition -create executable hello
3-3

C/C++ Reference Manual

. Just

nter

d see
ate

ithin

ria.
by
Building a partition 3

The last step now is to build the executable. All the necessary steps have been done
issuec.build . This will build an executable file that you can run.

Screen 3-5. Building a partition

Because no arguments were specified,c.build tries to build everything it can within this
environment. Since we’ve only defined one unit,hello , contained in one partition,
hello , it will only build that.

Success!!! 3

Now all that’s left is to run the program as you would any other executable program. E
the name of the executable, in this casehello .

Screen 3-6. Executing the program

And there you have it! Your program has successfully been built and run.

Let’s look around... 3

Now that we have some substance to our environment, let’s take a look around an
what things look like. We can use some of the Concurrent C/C++ utilities to investig
the state of our environment and what’s in it.

Listing the contents of your environment 3

Something you might want to do is to see what units and partitions are contained w
this environment.c.ls provides this list for you.c.ls provides many different options,
allowing you to sort the list by some attribute or filter the units based on certain crite
We’ll just take a look at a basic list of the contents of the environment. This is done
issuing thec.ls command with no options from within your current environment.

$ c.build

$./hello

Hello World!!!

$

3-4

Using Concurrent C/C++ Program Development Envi-

n

for a
-
sup-
Screen 3-7. Listing the units in an environment

You may want to see more information. You can do this by specifying the-1 or -l
options to thec.ls command which will give you a long listing. (Even more informatio
can be seen by specifying the-v option.)

Screen 3-8. Listing the units in an environment (-l option)

Viewing the source for a particular unit 3

Once you know what units are in your environment, you may want to see the source
particular unit. The Concurrent C/C++ utilityc.cat outputs the source of a given pro
gram unit. It outputs a filename header for the source file by default, but this can be
pressed by specifying the option-h .

The following figure shows how to view the source for the unithello usingc.cat .

$ c.ls

PROJECT /pathname/earth
frozen : no
language : C++

units:

hello

 partitions:
hello

$

$ c.ls -1

PROJECT /pathname/earth
 frozen : no
 language : C++

 UNIT LANGUAGE SOURCE FILE EFFECTIVE OPTIONS
 hello C++ hello.c

 PARTITION KIND PATH
 hello executable hello
$

3-5

C/C++ Reference Manual

ith it.
your

ents.
’s as

spec-
to
nits
po-
tions

nits
w-
Screen 3-9. Viewing the source for a particular unit

Looking at the Environment Search Path 3

Each Concurrent C/C++ environment has an Environment Search Path associated w
The Environment Search Path is your gateway to other environments. You can list
Environment Search Path by using thec.path utility.

Screen 3-10. Viewing your Environment Search Path

Using the Environment Search Path, you can use units that exist in foreign environm
All you need to do is add the environment’s path to your Environment Search Path. It
simple as that!

What are my options? 3

Concurrent C/C++ uses the concept of persistent compile options. These options are
ified throughc.options and are “remembered” at compilation time. They can apply
any of four areas: permanent environment-wide compile options (which apply to all u
within the environment), temporary environment-wide compile options (which tem
rarily override the permanent ones), permanent unit options and temporary unit op
(both of which apply and are unique to specific units).

Let’s manipulate the options in our example to give an idea of how it all works.

First, we will consider the environment-wide compile options. These apply to all the u
within the environment. Since we only have one unit right now, it will apply to that. Ho
ever, if we add any others later, they will “inherit” these options automatically.

The environment-wide compile optionsare referenced by the-default flag to
c.options . We’ll use the-list flag to display what they’re set to now:

$ c.cat hello
********** hello.c **********
 #include <stdio.h>
 main() {
 printf("Hello World!!!\n");
 }
$

$ c.path -v

Environment Search Path:

$

3-6

Using Concurrent C/C++ Program Development Envi-

s set

r

-6)

ions

” by

ide
Screen 3-11. Listing the environment-wide compile options

You’ll see that nothing is listed. That’s because we haven’t set anything yet. So let’
them to something and see what happens.

c.options provides the-set option to initialize or reset an option group. Let’s set ou
environment-wide compile option set to contain the options-g and-O2 . (These turn on
the generation of debug information and set the optimization level toGLOBAL, respec-
tively. You can find out all about these options in “Command Line Options” on page 1

Screen 3-12. Setting the environment-wide compile options

The “-- ” sets off the options toc.options itself from the options for the compiler.
Now let’s list them again to see if they’ve taken effect:

Screen 3-13. Listing the environment-wide compile options (after -set)

We can see that the environment-wide compile option set now consists of-O2 and-g .
The effective options line shows what options are effective after the temporary opt
have overridden some or all of the permanent options.

Remember, these options apply to all units in the environment and will be “inherited
any units we add to this environment.

If we’d like to set particular options for a specific unit, we can use thepermanent unit
compile optionsfor that unit. They’re set in much the same way as environment-w
options, except that we need to specify the units to which they apply.

$ c.options -list -default
permanent options:
temporary options:
effective options:

$ c.options -set -default -- -g -O2

$ c.options -list -default
permanent options: -g -O2
temporary options:
effective options: -g -O2
$

3-7

C/C++ Reference Manual

me
y”.

is
Let’s set the permanent options for the unithello so it is compiled at aMAXIMALopti-
mization level (-O3). This is done with the following command:

Screen 3-14. Setting the permanent unit options for hello unit

We may decide that in addition to the specified options, we may want to “try out” so
options or change particular options for a specific compilation but only “temporaril
Thetemporary environment-wide default and unit compile options are for this purpose.

Say we want to produce no debug information for ourhello unit for this particular com-
pilation. We can set a temporary compile option for that.

Screen 3-15. Setting the temporary unit options for hello unit

In addition, we remember that we also want to limit the depth that function inlining
done. We can “add” this to the temporary option set by using the-mod flag to
c.options .

Screen 3-16. Modifying the temporary unit options for hello unit

If we list the temporary options for the unithello , we will see that we now have-!g and
-Qinline_depth=1 in the temporary option set:

Screen 3-17. Listing the temporary options for hello unit

$ c.options -set -- -O3 hello
$ c.options -list all
UNIT hello
 permanent options: -O3
 temporary options:
 effective options: -g -O3
$

$ c.options -set -temp -- -!g hello

$ c.options -mod -temp -- -Qinline_depth=1 hello

$ c.options -list -temp hello
UNIT hello
 temporary options: -!g -Qinline_depth=1
$

3-8

Using Concurrent C/C++ Program Development Envi-

at the
iron-
are,

ee

to
h

ma-

his,
These four option sets have a hierarchical relationship to one another which means th
permanent environment-wide compile options are overridden by the temporary env
ment-wide options which are, in turn, overridden by the permanent unit options which
in turn, overridden by the temporary unit options. This relationship forms theeffective
compile optionsfor the unit, which the compiler will use during compilation. We can s
these in Table 3-1.

If we list the effective options for thehello unit, we will see similar results:

Screen 3-18. Listing the effective options for hello unit

If, after we compile with these options, we find any particular option that we would like
delete, we can do so by using the-del flag. For example, let’s delete the inline dept
option from the temporary options.

Screen 3-19. Deleting from the temporary options set for hello unit

And if we like the other temporary options so much that we’d like to make them per
nent, Concurrent C/C++ provides the-keeptemp flag to propagate all the temporary
options for a particular unit to the permanent option set for that same unit. If we do t

Table 3-1. Effective options for hello unit

Permanent env i ron-
ment-wide options

-g -O2

Temporary env i ron-
ment-wide options

Permanent unit options -O3

Temporary unit options -!g -Qinline_d
epth=1

EFFECTIVE OPTIONS
-O3 -Qinline_d

epth=1

$ c.options -eff hello
UNIT: hello
 effective options: -O3 -Qinline_depth=1
$

$ c.options -del -temp -- -Qinline_depth=1 hello
3-9

C/C++ Reference Manual

on-
Screen 3-20. Propagating the temporary options to the permanent set

the temporary option-!g will become a permanent unit option for the unithello .

The effective options will now resemble that of Table 3-2

If we list the effective options for thehello unit, we will see similar results:

Screen 3-21. Listing the effective options for hello unit (after -keeptemp)

See “c.options” on page 5-40 for a complete description of the functionality of this C
current C/C++ utility.

Table 3-2. Effective options for hello unit (after -keeptemp)

Permanent env i ron-
ment-wide options

-g -O2

Temporary env i ron-
ment-wide options

Permanent unit options -!g -O3

Temporary unit options

EFFECTIVE OPTIONS -O3

$ c.options -keeptemp hello

$ c.options -list hello
UNIT hello
 permanent options: -!g -O3
 temporary options:
 effective options: -O3
$

3-10

Using Concurrent C/C++ Program Development Envi-

It
Hello Galaxy - The Example Continues... 3

Setting up another environment 3

Let’s set up another environment with a function that ourhello unit can contact.

Let’s set up a new environment,galaxy , and introduce a source file very similar to
hello.c . We’ll call this file alien.c and it will contain the following unit,alien .
The file is shown in Screen 3-22 .

Screen 3-22. Source file alien.c containing alien unit

Create a different directory/pathname/galaxy to contain our new environment and
place the source file,alien.c in it. From within that directory, the following commands
will create our environment and introduce the source file into it.

Screen 3-23. Setting up another environment

NOTE

We have not compiled this unit nor have we created a partition and
included the unit in the partition to be built. This was intentional
to demonstrate a point later in the example.

Modifying an existing unit 3

Now we must go back to our original environmentearth that contains our original unit
hello .

We will update the unithello so that it references the newalien unit. We do this by
using thec.edit utility. c.edit edits the source file that contains the unit specified.
does this by using the editor referenced in theEDITORenvironment variable. It then

#include <stdio.h>
void planet() {
 printf (“Greetings from Outer Space!!!\n”);
}

$ c.mkenv

$ c.intro alien.c
3-11

C/C++ Reference Manual
updates the environment so that the automatic compilation utility,c.build , knows that
this unit needs to be rebuilt.

NOTE

c.edit is the supported method for modifying units that have
been introduced into the environment. Any modifications to the
units other than through the tools provided is discouraged,
although the tools support it.

Specify the unit name to thec.edit command.

Screen 3-24. Editing a unit

Add the following line to thehello unit.

Screen 3-25. Reference the alien unit within the hello unit

Save the changes to the file.

Building a unit with references outside the local environment 3

Now let’s try to build it.

Issue thec.build command as before.

$ c.edit hello

#include <stdio.h>
extern void planet();
main() {
 printf("Hello World!!!\n");

planet();
}

3-12

Using Concurrent C/C++ Program Development Envi-

ave

arch

g the
Screen 3-26. Building the partition with reference to alien unit

Because thealien unit does not exist in the current environment AND because we h
not manually added it to our Environment Search Path,c.build cannot find it and there-
fore complains.

Adding an environment to the Environment Search Path 3

This is easily remedied by adding the new environment’s path to the Environment Se
Path for theearth environment using thec.path utility.

You can see that it has been added to your Environment Search Path by issuin
c.path command with no parameters again.

Screen 3-27. Adding to and Viewing the updated Environment Search Path

Making contact!!! 3

Now try to issuec.build again. This time it will be successful.

After it is successfully built, run thehello executable again.

$ c.build
Undefinedfirst referenced
 symbol in file
planet() .C++-units/hello.o
ld: hello: fatal error: Symbol referencing errors. No output written to hello
ec++: ERROR: Errors in the ld pass, status = 1
c.build: link failed
c.build: failed building partition hello
c.build: there was a failure building one or more partitions
$

$ c.path -A /pathname/galaxy
$ c.partition -add alien hello
$ c.path -v
Environment Search Path:
 /pathname/galaxy
$

3-13

C/C++ Reference Manual

nit
ontact

-

ns
Screen 3-28. Executing the new hello - contact is made!

Who resides here now? 3

Let’s take a look at who inhabits our environmentearth now. Remember before when
we issued thec.ls command, we saw that our environment contained the lone u
hello . Let’s issue the command again and see what has happened since we made c
with thealien.

Screen 3-29. Listing the units

You can now see that the unitalien has been added to the list of units in this environ
ment.

Although they are both listedlocal to this environment, they each have a different mea
of citizenship.

- The unithello was introduced directly into this environment. Therefore,
it is regarded as anative unit.

- The alien unit, however, was never formally introduced into the local
environment. It was found on the Environment Search Path.

Now, remember that thealien unit was not compiled in its original for-
eign environment. Thec.build command, when run in this local envi-
ronment, could not find a compiled form of thealien unit on the Environ-
ment Search Path and had to do something in order to build the partition. It
therefore compiled thealien unit in the local environment.

$ c.build
$./hello
Hello World!!!
Greetings from Outer Space!!!
$

$ c.ls

PROJECT /pathname/earth
 frozen : no
 language : C++
 default permanent options : -g -O2
 foreign environment path:
 /pathname/galaxy

 units:
 alien
 hello

 partitions:
 hello
$

3-14

Using Concurrent C/C++ Program Development Envi-
This compiled form of a foreign unit within the local environment is con-
siderednaturalized by the system.

NOTE

If the alien unit had been compiled in its own foreign environ-
ment,c.build would have found that compiled form on the
Environment Search Path and would have used that when linking
thehello executable together.

FURTHER NOTE

The -noimport option will inhibit the automatic naturalization
behavior ofc.build . If it had been used in this example,
c.build would have reported an error.
3-15

C/C++ Reference Manual
3-16

4-1
4-1

4-2
4-2
4-2

4-3
4-3
4-3

4-3

4-4
4-4
4-4
4-5
4-5
4-5
4
4-6
4-6
4-6
4-6

4-7
4-7
4-8
4-8
4-8
4-10

4-10
-10
4-10
-11

4-11
-11

4-11
4-12
4-13
4-14
4-14
4-15

4-15
4-15
4-16
4-17
4
Concurrent C/C++ Program

Development Environment Concepts

Overview .
Environments .

Local Environments .
Foreign Environments .

Environment Search Path .
Naturalization .
Fetching. .

Freezing Environments. .
Environment-wide Compile Options .

Units. 4-4
Unit Identification. .
Nationalities .

Local Units .
Foreign Units. .

Artificial Units .
Unit Compile Options. .

Partitions .-6
Types of Partitions .

Executable Partitions. .
Archives. .
Shared Objects. .

Lazy Versus Immediate Binding .
Position Independent Code .
Share Path. .
Issues to consider .

Link Options. .
Compilation and Program Generation .

Compilation .
Automatic Compilation Utility . 4
Compile Options .

Environment-wide Options . 4
Permanent Unit Options. .
Temporary Unit Options . 4
Effective Options .

Compilation States .
Consistency .
Programming Hints and Caveats. .

Linking Executable Programs .
Debugging .

Real-Time Debugging .
Debug Information and cprs .

Source Control Integration .
Makefile Integration. .

PowerMAX OS Real-Time Guide

.
+ to

are

arti-
ing.

ation.

m-
der

n in

the
the
4
Chapter 4Concurrent C/C++ Program

Development Environment Concepts

4
4
4

Overview 4

Concurrent C/C++ uses the concept ofenvironmentsas its basic structure of organization
These environments take advantage of various utilities provided by Concurrent C/C+
manipulatecompilation units (referred to simply asunits) that may formpartitions.

Utilities for library management, compilation and program generation, and debugging
provided by Concurrent C/C++.

This chapter will discuss in further detail the concepts of environments, units and p
tions and their relationship to library management, program generation, and debugg

Environments 4

Concurrent C/C++ uses the concept of environments as its basic structure of organiz
Environments may include:

• units that have been introduced

• partitions that have been defined

• Environment Search Paths

• references to source files (which generally contain units)

• other information used internally by Concurrent C/C++

Environments collect and maintainseparate compilation informationwhich is information
collected from previous compilations.

Concurrent C/C++ permits local environments to reference otherforeignenvironments
thus providing visibility to the units and partitions therein. This feature allows progra
mers to work on local versions of individual program units while retrieving the remain
of the program from previously developed environments.

A Concurrent C/C++ environment may be initialized or created in any desired locatio
a filesystem using thec.mkenv utility.

Concurrent C/C++ provides several other utilities to maintain, modify and report on
contents of environments. Any modifications to the environment other than through
4-1

 C/C++ Reference Manual

well

ss

ng

The
n-

C++

eign
local

vail-
par-

o the
ced
ced
ent

Path,

arti-
iron-
tools provided by Concurrent C/C++ is discouraged, although the tools support it as
as possible.

Local Environments 4

By default, Concurrent C/C++ uses the current working directory as itslocal environment.
All Concurrent C/C++ utilities perform their actions within this local environment unle
the-env option is explicitly specified.

For example, if no environment is specified with thec.mkenv tool, Concurrent C/C++
will set up its internal directory structure for that environment within the current worki
directory.

When used with any of the Concurrent C/C++ utilities, however, the-env option allows
the user to specify a target environment other than the current working directory.
actions of the Concurrent C/C++ utility using this option will be performed in the enviro
ment specified and not in the local environment. (See Chapter 5 (“Concurrent C/
Utilities”) for more details on using this parameter with each of the tools.)

Foreign Environments 4

Concurrent C/C++ uses the Environment Search Path to reference units within for
environments. These units can be used as foreign units or can be brought into the
environment through naturalization or fetching.

Environment Search Path 4

Concurrent C/C++ uses the concept of anEnvironment Search Pathto allow users to spec-
ify that units from environments other than the current environment should be made a
able in the current environment. This Environment Search Path relates only to each
ticular environment and each environment has its own Environment Search Path.

By placing the location of another environment on theEnvironment Search Pathfor a
given environment, all the units from the other environment are conceptually added t
given environment, unless that would involve replacing a unit which was either introdu
manually into the environment by a user, or would replace a unit which was introdu
from yet a third environment which precedes the other environment in the Environm
Search Path. In order to add or delete environments on your Environment Search
you may use thec.path tool. See “c.path” on page 48

In addition to accessing units in foreign environments, the user may also link with p
tions (archives, shared-object, and object partitions) that are located in foreign env
ments. Partition names have the same visibility rules that units do.
4-2

Concurrent C/C++ Program Development Environment

exist
nit

local
ny
ser.
the

the

ents
d in

in the
from

t

that
func-

ich
pila-

vi-
Naturalization 4

At times, it is necessary for the compilation system to make local copies of units that
in foreign environments. For example, if a foreign unit is referenced within a local u
and no compilation has been done on that foreign unit in that foreign environment, a
copy of the foreign unit will be compiled within the current environment, using a
options that would apply to the foreign unit. This happens transparently to the u
Should a naturalized unit subsequently be built within its native environment, then
tools will automatically expel the naturalized copy and begin using the object file in
foreign environment.

Fetching 4

It may be desirable for users to force copies of specified units from other environm
into the current environment. This eliminates any requirement that the unit be compile
the foreign environment, so long as it is compiled locally. Thec.fetch tool is provided
for that purpose. Units that are fetched also take precedence over units that are
Environment Search Path. See “c.fetch” on page 5-20 . Units may even be fetched
environments that are not on the Environment Search Path.

Freezing Environments 4

An environment may be frozen using thec.freeze utility. This changes an environmen
so that it is unalterable.

A frozen environment is able to provide more information about its contents than one
is not frozen. Therefore, accesses to frozen environments from other environments
tion much faster than accesses to unfrozen environments.

Any environment which will not be changed for a significant period of time and wh
will be used by other environments is a good candidate to be frozen to improve com
tion performance.

See “c.freeze” on page 5-21 for information on this utility.

Environment-wide Compile Options 4

Environment-wide compile options apply to all units within an environment. See “En
ronment-wide Options” on page 4-11.
4-3

 C/C++ Reference Manual

++
pila-

ction,

is

nits

the

by
ged

is
s a
d.

nt.
on-

nt
Units 4

Compilation units (or simply units) are the basic building blocks of Concurrent C/C
environments. Instead of dealing with source files for library management and com
tion activities, Concurrent C/C++ focuses on the concept of units. Acompilation unitcan
be the routines and global data packaged in a primary source file, an extern inline fun
or an instantiatable template entity (in C++).

Unit Identification 4

For many of the Concurrent C/C++ utilities in Chapter 5 the following definition
given:

unit-id is defined by the following syntax:

unit | all

Nationalities 4

Compilation units in Concurrent C/C++ have a nationality associated with them. U
can be eitherlocal or foreign.

Local Units 4

Compilation units that arelocal to a system can be one of three types:

native

Native compilation units are introduced into an environment by using
c.intro function.

Once a unit is introduced into an environment, it is considered to be owned
that environment and any functions performed on that unit should be mana
by the environment through the Concurrent C/C++ utilities.

naturalized

Sometimes, the compiled form of a foreign unit is not available when it
needed locally for a build. In this case, the system automatically make
local compilation. This local compiled form is considered to be naturalize

A naturalized unit retains the compile options from its original environme
These options can only be altered by changing them in the original envir
ment.

Naturalized units are automatically expelled from the local environme
should an up-to-date version be built in its native environment.
4-4

Concurrent C/C++ Program Development Environment

om

se
tain
the

on-
these
nvi-

ting
ome-

ore

hese
-11.
fetched

In some cases, it may be desirable for users to manually fetch unit fr
another environment into the local environment.

A fetched unit retains the unit-specific options from the original unit but the
options may be changed in the local environment. However, it does not re
the environment-wide options of its original environment. It uses those of
current environment instead.

Fetched units must beexpelledfrom the environment by usingc.expel if they are no
longer desired.

Foreign Units 4

Foreign unitsare those units that exist in other environments which are on the Envir
ment Search Path. The user is not required to do anything special in order to use
units. They become automatically available once their environment is added to the E
ronment Search Path. A foreign unit is markedvisiting if it is actually used in the con-
struction of a local partition.

Artificial Units 4

At times, the implementation may create units to fill internal roles such as instantia
template entities or extern inline functions. These units are created, utilized, and s
times discarded during the compilation phase. The user may use the-art option to
c.ls to display the artificial units in the environment. See “c.ls” on page 5-30 for m
information.

Unit Compile Options 4

Each unit has a set of permanent and temporary compile options associated with it. T
compile options are described in more detail in “Permanent Unit Options” on page 4
4-5

 C/C++ Reference Manual

d or
arti-
The
they
s link

om

tion
are
how

ring

it.
ion

tion
r C/
Partitions 4

A partition is an executable, archive, shared object, or object file that can be invoke
referenced outside of the Concurrent C/C++ Program Development Environment. P
tions consist of one or more units that have been introduced into the environment.
units included in a partition are those that the user explictly assigns and units which
require. Concurrent C/C++ manages these units and their dependencies, as well a
options and configuration information for each partition within the context of anenviron-
ment. A partition definition must include one or more units in order to be built.

A partition within Concurrent C/C++ is created and maintained by using thec.parti-
tion function. This function provides tools to create a partition, add or delete units fr
a partition, and various other utilities.

In much the same way that options and configuration information concerning compila
are associated with units, linker options and configuration information for linking
associated with partitions. Partitions are basically recipes to the linker which indicate
to build a target file from units.

Types of Partitions 4

Concurrent C/C++ defines three types of partitions:

• Executable Programs

• Archives

• Shared Object Files

Executable Partitions 4

Executable partitions describe how to build an executable program.

Archives 4

An archiveis a collection of routines and data that is associated with an application du
the link phase. Archives are useful for linking into other, potentially non-C/C++, applica-
tions. Archives are usually designated with a.a suffix.

Archives differ from shared objects by the form of the object contained within
Archives contain statically-built (i.e. non-shared) objects within them. (See “Posit
Independent Code” on page 4-7 for more details)

Shared Objects 4

A shared objectis a collection of routines and data that is associated with an applica
during the link and execution phases. Shared objects are useful for linking into othe
C++ or non-C/C++ applications. Shared objects are usually designated with a.so suffix.
4-6

Concurrent C/C++ Program Development Environment

red
code.

efer-
ecut-
hase

on that
s, it
has

and
s with
ppli-

to the
ry for
g that

the
m’s

lica-
the

the
e other
rence
rence.

the

epen-
ely
until

than

tion
Shared objects differ from archives by the form of the object contained within it. Sha
objects are dynamically built (i.e. shared) objects that contain position independent
(See “Position Independent Code” on 4-7 for more details)

At link time, routines and data objects from a shared object may satisfy unresolved r
ences from an application, but they are not copied into the resultant application’s ex
able image. The actual associations and memory allocations occur during the initial p
of the application’s execution; this is termed thedynamic linkingphase. Because of this, it
is possible for shared objects to be changed and these changes to affect the applicati
has linked with them. However, due to this dynamic linking property of shared object
is often not necessary to rebuild the calling application after the shared object
changed.

During dynamic linking, all shared objects that the application requires are allocated
linked into the application’s address space, sharing as many physical memory page
other concurrently executing applications as possible. Therefore, totally dissimilar a
cations may share the same physical pages for the same shared object. This applies
memory for the actual code or machine instructions in the shared object. The memo
the data segments in a shared object is usually replicated for each application usin
shared object.

Lazy Versus Immediate Binding 4

After the dynamic linker successfully locates all of the shared objects required for
application program, it maps their memory segments into the application progra
address space.

The dynamic linker uses internal symbol tables to satisfy symbol references in the app
tion program. Entries in these tables describe the final location of symbols found in
shared objects; this is termedrelocation. All data references are immediately relocated.

By default, the dynamic linker does not fully relocate all subprogram references in
application program (or the shared objects themselves, because they can referenc
shared objects or routines in the application program). If an as-yet unrelocated refe
occurs, control passes once again to the dynamic linker which then relocates the refe
This is termedlazy binding.

To force immediate binding of all references, the user may invoke the program with
LD_BIND_NOWenvironment variable set. SeeCompilation Systems Volume 1 (Tools)for
more information.

Position Independent Code 4

In order to create a shared object, the compiler must generate code in a position-ind
dent manner.Position independencerefers to the fact that the generated code cannot r
on labels, data, or routines being in known locations; these locations are not known
dynamic linking occurs.Position independent code(PIC) requires additional indirections
at run-time; therefore, routines within shared objects are inherently slightly slower
non-shared versions of those routines.

You control whether a unit is compiled as position independent code via a compila
option,-ZPIC , set with thec.options command.
4-7

 C/C++ Reference Manual

occur
loca-
that

tar-
e run.

target
link
g

xe-
used
larity

are
Share Path 4

Because the actual association of a shared object with a user application does not
until execution time, the shared object must exist on the target system in a specific
tion, configurable by the user. By default, the path name of the shared object is
defined by the target of the partition.

When creating a partition, you may specify an alternative path name (orshare path) for
the shared object. The shared object will still be built at the pathname specified for the
get, but it must be placed at the share path before any executables using it can b
This is set by the-sp link option in thec.partition command. Alternatively, a soft
link can be created by using the-sl link option in thec.partition command when
defining the shared object.

Issues to consider 4

While the use of shared objects almost always reduces disk space utilization on the
architecture and often improves development productivity by minimizing application
time, it may or may not actually improve run-time memory utilization. The followin
issues should be considered.

1. Are the shared objects configured with an appropriategranularity (i.e. the
number of C/C++ units located in each shared object) with respect to the
particular client application programs that will be concurrently executing?

For example, it is possible that if only two application programs concurrently e
cute and use large granular shared objects, more memory may potentially be
than in a non-shared object scenario. There is a trade-off between small granu
and manageability.

2. Will the application make use of local memory, and if so, how many appli-
cations will be executing out of the same local memory pools using the
same shared object?

3. What disk storage capacity does the system have? The difference in size
between ordinary objects and PIC objects is negligible. However, if both a
shared and static version of a source file is built, then the disk storage
requirements for the object files in the environment is approximately dou-
bled.

4. What time constraints are there?

Link Options 4

Concurrent C/C++ supports a set of link options for each partition. These link options
persistent and can be specified using the following options toc.partition :

-oset opts Sets the link options as indicated byopts

-oappend opts Appends theopts argument to the link option listing

-oprepend opts Prepends theopts argument to the link option listing
4-8

Concurrent C/C++ Program Development Environment

ons
ould

.

-oclear Clears the link options

optsis a single parameter containing one or more link options; it
must be enclosed in double quotes.

A link option set is maintained for each Concurrent C/C++ partition and these opti
remain effective throughout the life of the partition. Any changes to these options sh
be done usingc.partition .

For more information about setting link options withc.partition , see “Link Options”
on page 5-46. Also, see “c.link” on page 5-29 for details about this internal utility.

A list of available link options can be found under “Link Options” on page 5-46
4-9

 C/C++ Reference Manual

entire

eful
ases

ling.

n.
See

pila-
nit’s
tion
Compilation and Program Generation 4

The compiler operates in several distinct phases, designed to satisfy the needs of the
software development process. These phases include:

• Syntax checking

• Semantic checking

• Code generation and optimization

• Instruction scheduling

• Machine-code assembly

Various options can be specified with thec.options command in order to control com-
pilation phases. For example, during preliminary software development, it is often us
to limit the compilation phases to syntax and semantic checking. Errors from these ph
can be brought up into a text editor automatically for fast, iterative editing and compi

Compilation 4

Concurrent C/C++ uses an C/C++ compiler that supports the C/C++ language specification
as defined in the ISO/IEC 14882Programming languages -- C++.

Automatic Compilation Utility 4

Concurrent C/C++ providesc.build for automatic compilation and program generatio
c.build calls various internal tools to create an executable image of the program.
“c.build” on page 5-8 for more information.

Compile Options 4

Unlike most compilation systems, Concurrent C/C++ uses the concept ofpersistent
options. These options do not need to be specified on the command line for each com
tion. Rather, they are stored as part of the environment or as part of an individual u
information. These options are “remembered” when the Concurrent C/C++ compila
tools are used.

There are four “levels” of compilation options:

• Permanent environment-wide options

• Temporary environment-wide options

• Permanent unit options

• Temporary unit options
4-10

Concurrent C/C++ Program Development Environment

den.

hose
the

rride

ting
d then
tem-

unit
it is
bug
can

tions
unit

e
of a
Environment-wide Options 4

Environment-wide optionsapply to all units within that environment. All compilations
within this environment then observe these environment-wide options unless overrid

Environment-wide options can be overridden by

• Temporary environment-wide options

• individual unit compile options (permanent or temporary - see below)

• command-line options (which change temporary options on a unit)

• pragmas in the source of the units themselves

Permanent Unit Options 4

Each unit has its own set of options permanently associated with it that override t
specified for the environment. They may be specified and later modified via
c.options utility.

See the description of “c.options” on page 5-40 for more details.

Temporary Unit Options 4

Each unit also has a set of options that may be temporarily associated with it that ove
those that are permanently associated with it.

- If a unit is manually compiled (usingc.compile - see page 5-12) with
any specified options, these are added to its set of temporary options.

- The temporary options may also be set using thec.options tool.

Temporary options allow users to “try out” options under consideration. By designa
these options as “temporary”, the user can first see the effect these options have an
decide if this is what is desired. If so, Concurrent C/C++ provides a way to add these
porary options to the set of permanent options for that unit usingc.options . If these
options are not what the user desires,c.options also provides a way to eliminate all
temporary options from a unit (or from all units in the environment).

Another case in which temporary options might also prove useful is one in which a
needs to be compiled with debug information. If this is not the manner in which the un
normally compiled, a temporary option can be set for that unit to be compiled with de
information. When the debug information is no longer needed, the temporary option
be removed and the unit can be recompiled in its usual manner.

See the description of “c.options” on page 5-40 for more details.

Effective Options 4

These levels have a hierarchical relationship to one another. Environment-wide op
can be overridden by permanent unit options which can be overridden by temporary
options. The set ofeffective optionsfor a unit are that unit’s sum total of these thre
option sets, with respect to this hierarchical relationship. Table 4-1 shows an example
4-11

 C/C++ Reference Manual

ions,

ption
e
, all

hus

.

iron-
else.

t no

ere is
tion.

s been
unit’s effective options based on the relationship between its environment-wide opt
permanent unit options, and temporary unit options.

As shown in this example, compilation options can be negated by preceding the o
with the “! ” symbol. Therefore, the option “-!g ” means no debug information should b
generated for this unit. Because it is a temporary option for only this particular unit
other units in the environment will be compiled with debug information (due to the “-g ”
environment-wide option listed in the example).

Option sets controlling a particular attribute of the compilation override each other. T
--no_anachronisms will override --anachronisms and--!anachronisms
will override any anachronism setting (i.e., both--no_anachronisms and--anach-
ronisms).

See “Command Line Options” on page 1-6 for a list of available compilation options

Compilation States 4

Units in the environment can be in any of several different compilation states:

• uncompiled

The state of a newly-introduced unit, or one that has been invalidated. The env
ment is aware of the unit and some basic dependency information but very little

• preprocessed

In this state, proprocessing is done, so the full set of include files is known, bu
parsing has been done.

• parsed

In this state, some semantic information about the unit has been generated. Th
a complete picture of the meaning of the unit, but none of the actual implementa
Needed and available instantiatable entities have been determined.

• prereorder

In this state, source file has been compiled, and pseudo-assembly language ha
output, but the instruction scheduler has not been run.

Table 4-1. Effective options based on hierarchical relationship

Permanent environment-
wide options

-g -O2 -Qinline
_depth=2

Temporary environment-
wide options

-Qinline
_depth=1

Permanent unit options -!S -O3

Temporary unit options -S -!g

EFFECTIVE OPTIONS
-S -O3 -Qinline

_depth=1
4-12

Concurrent C/C++ Program Development Environment

h the

in the
et-

nt

the

, the
unit

not
• assembly

In this state, The pseudo-assembly language output has been run throug
instruction scheduler, and an assembly file has been generated.

• compiled

Object files have been generated for the unit

The benefit of having this information generated at each of these states for each unit
environment is that it allows the compilation utility to use this information to produce b
ter code in the unit currently being compiled.

c.build allows the user to compile units to a specified state using the-state option,
however,compiled is the only fully supported state allowed for this option in the curre
release. See “c.build” on page 5-8 for more information.

NOTE

Only theuncompiled andcompiled states are available at
this time. These states are documented because they are visible in
such utilities asc.build , c.compile , andc.ls .

Consistency 4

Along with compilation states comes the idea ofconsistency. Each unit is considered con-
sistent up to a particular state. This means that it is validup to that state of compilation.
Any recompilation of the unit can start from that state. It does not need to go through
earlier stages of recompilation.

Modification of a unit may possibly change its consistency. Modifications include:

• changes to the source file itself

• changes to any of the options

• changes to any required units upon which this unit depends

For example, if the source of a unit has been modified since it was last compiled
semantics of the unit are potentially changed. New semantic information about the
must be generated. Therefore, it is considered “consistent up to theuncompiled state”.
This means that when it is recompiled, it must start at the inconsistent state,uncom-
piled .

Not all changes to a unit make it “consistent up to theuncompiled state”. Changing the
options on a unit may not affect the syntax or semantics of a unit and therefore do
require a total recompilation.
4-13

 C/C++ Reference Manual

zed.

data
enalty

ge of
but
Programming Hints and Caveats 4

In general, programs that are to be debugged with NightView should not be optimi
Optimization levelsGLOBAL, MAXIMAL, and ULTIMATE should be reserved for thor-
oughly tested code.

There is no misaligned handler. The hardware allows misaligned integer (fixed-point)
accesses, but floats and long floats must be word-aligned. There is a performance p
for misaligned accesses.

Linking Executable Programs 4

Concurrent C/C++ provides a linker that verifies and creates an ELF executable ima
all component units required for a given main unit. The linker can be invoked directly
should be called from the compilation utilityc.build .
4-14

Concurrent C/C++ Program Development Environment

also

n

ther

then

ce
tion

in
Debugging 4

Real-Time Debugging 4

In addition to the symbolic debugging capabilities provided bynview , and the post-anal-
ysis debugging capabilities provided by the tracing mechanism, Concurrent C/C++
provides several ways to debug programs in real-time.

Debug Information and cprs 4

Thecprs utility (seecprs(1)), supplied with PowerMAX OS, reduces the size of a
application by removing duplicate type information. The C/C++ compiler reduces the
value of this tool by already referencing the debug information for types defined in o
units from those other units. However, thecprs utility can still reduce the size of C/C++

applications. Also, if debug code from other languages is included in an application,
cprs can significantly reduce the size of those portions as well.

If users compile only certain units with full debug information, it is possible to produ
duplicate debug information for types in several units. Also, even if an entire applica
is compiled with full debug information, anonymous types are frequently duplicated
several units, as are types for certain compiler-generated constructs.
4-15

 C/C++ Reference Manual

envi-
irec-
a

it and

with

dit
ource
Source Control Integration 4

There are a number of software packages for managing versions of source code. The
ronment provides a rudimentary way inter integrate with such packages. In the d
tory /usr/ccs/release/ release/source , the system administrator can create
directory for a particular source management system, that we’ll callsmsfor illustrative
purposes. In that directory, the system administrator should place two scripts: pre-ed
post-edit. These scripts are destined to run before and after a source file is edited.

Now, the user, when he creates his environment, would issue the c.mkenv command
the -src option like this:

$ c.mkenv -src “ sms -v %f”

Now, wheneverc.edit , or any command that invokes c.edit is run, the pre- and post-e
scripts are run before and after the editor, passing the -v option and the name of the s
file, as if the user had invoked:

$ /usr/ccs/release/ release/source/ sms/pre-edit -v file.c
$ $EDITOR file.c
$ /usr/ccs/release/ release/source/ sms/post-edit -v file.c

DISCLAIMER

Concurrent Computer Corporation does not support any particular
source management system. The-src mechanism may not pro-
vide the flexibility needed by any particular system.
4-16

Concurrent C/C++ Program Development Environment

ake-
iting

l
mine

If

rce
Makefile Integration 4

The C/C++ Program Development Environment provides a mechanism to escape to M
files or any other arbitrary software to generate source files by means other than ed
them. Thec.intro command includes a-make option that specifies an arbitrary shel
command line that will be used to construct the source file whenever it needs to deter
if it needs to rebuild the unit that is being introduced.

$ c.intro -make “make myfile.c” myfile.c

The contents of the makefile then might be something like this:

myfile.c: definition.txt
 c.build builder
 builder <definition.txt >myfile.c

Wheneverc.build needs to build the unit myfile, it will invoke the make command.
the definition file formyfile.c is newer thanmyfile.c , it will in turn, recursively
invokec.build to make sure the builder tool is there, then invoke it to build the sou
file.

If invoking the make command changes the timestamp onmyfile.c , then the unit
myfile will be rebuilt. Otherwise, the existing object for unit myfile will be used.
4-17

 C/C++ Reference Manual
4-18

5-1

5-1
5-

5-5
5-6

5-
5-

5-2

5-33
5-35

5-
5
5-41

5-41
5-42

5-42
5-42
5-43
5-43
5-43
5

5-46

5
5

5-
5

5-59
5
Concurrent C/C++ Utilities

Overview .
Utilities .5-1

Common Options .
c.analyze .3

Link-Time Optimizations with c.analyze .
Profiling with c.analyze .

c.build .5-8
c.cat . 5-10
c.chmod .11
c.compile .12
c.edit. 5-14
c.error. 5-15
c.expel .5-19
c.fetch. 5-20
c.freeze. .5-21
c.help . 5-22
c.install. 5-23
c.instantiation. .5
c.intro . 5-27
c.invalid .5-28
c.link . 5-29
c.ls . 5-30

Formatting the listing .
Sorting .

c.lssrc . 5-36
c.man .5-37
c.mkenv .39
c.options. .-40

Option Sets .
Listing options .
Setting options .
Modifying options .
Clearing options .
Deleting options .
Keeping temporary options .
Setting options on foreign units .

c.partition .-44
Link Options. .

c.path . 5-48
c.prelink .-49
c.release .-50
c.report .5-52
c.rmenv .54
c.rmsrc .-55
c.script . 5-56
c.touch .5-58
Link Options .

PowerMAX OS Real-Time Guide

an-
ll go
etical
y are
ing

es the
ne-

unc-

each
5
Chapter 5Concurrent C/C++ Utilities

5
5
5

Overview 5

Concurrent C/C++ consists of a number of utilities that provide support for library m
agement, compilation and program generation, and debugging. This section wi
through these tools and give an overview of their uses. The utilities appear in alphab
order. For easy reference, the command syntax and options available for each utilit
provided in table format. Available options for each tool are also provided by specify
the-H (Help) option to any tool listed.

Utilities 5

Each section describes a command, shows the command’s syntax and discuss
options that can be specified. For each option flag listed in the “Option” column, a m
monic and a short description are provided in the columns labeled “Meaning” and “F
tion,” respectively.

Common Options 5

There are a number of options that are the same for each utility. They are listed for
tool but are also listed below.

Option Meaning Function

-env env environment Specify an environment pathname

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-H help Display syntax and options for that particular function
5-1

 C/C++ Reference Manual Utilities

ll

es
all
unit-id is defined by the following syntax:

unit | all

See “Unit Identification” on page 4-4 for more information about theunit-id.

-V verify Show actions that would be executed without actually doing them. Not a
commands have a-V option.

-v verbose Provide feedback as actions are performed. Not all commands have a-v
option.

-vv very verbose Provide extra feedback as actions are performed. This usually includ
showing the exact command line used to invoke subordinate tools. Not
commands have a-vv option.

Option Meaning Function
5-2

c.analyze Concurrent C/C++ Utilities

e

he
lt
ion
son

ach

s

ce
d
ost
re

er
c.analyze 5

Optimize or analyze performance of fully-linked executables

The syntax of thec.analyze command is:

c.analyze [options] executable-file

The following represents thec.analyze options:

Option Meaning Function

-A all Include all the routines in the analysis (initial default)

-a routine add Add the specific namedroutine to the list of routines to analyze (implies
-N)

-C cache Gather cache activity statistics during profiling. Requires -P option.

-D flag debug Turn on the specified debug flag. Not of general user interest. Us
-Dhelp for list of options

-Dhelp debug help List of debug options

-d file disassemble Generate a detailed disassembly listing of each routine included in t
analysis infile. The listing is done on a per basic block basis. By defau
this only generates the assembler listing, the clock cycle each instruct
executes at (relative to the beginning of each basic block), and the rea
any instruction is delayed. Use the-v option for more detail. Use -
Zstage_status for much more verbose status of each pipeline stage e
cycle. Use- for file to direct output tostdout.

-env env environment Specify an environment pathname. Defaults to current directory.

-g file global Generate global program statistics tofile. Use- for file to direct output to
stdout

-H help Display syntax and options for this function

-i information Display information only messages

-N null Set the list of routines to be analyzed to the empty set (no routines)

-n nesting level use nesting level to weight the count of lis instructions. This option i
used with the -O option.

-O file optimize Generate a new program file infile which has been optimized by replacing
many of the two-instruction sequences (which are required to referen
global memory locations) with single instructions which use the reserve
linker registers as base registers. This allows faster access to the four m
commonly referenced 64K data blocks. Certain library routines that a
known to access the linker registers (e.g.,setjmp and longjmp) are
automatically excluded from the optimization process. The-X option may
be used to specifically exclude others. (Normally any reference to a link
register will cause an error)
5-3

 C/C++ Reference Manual c.analyze

ts

-

m

NOTE

Thec.analyze command is not normally invoked by the user,
except to do profiling; it is most often called byc.link (which is
called in turn byc.build).

NOTE

The -a , -s , and-X options toc.analyze take a routine
name as a parameter. Thec.analyze processor recognizes C/
C++ routines only by their link names. These names may not be
intuitive for C++ routines. Using thenm(1) utility may be help-
ful in order to determine C++ routine names.

-P file profile Generate a new program file infile which has been patched to gather pro-
filing statistics on each basic block and dump them tofile . prof on
exit. Thec.report program can be used to generate various repor
from this information. The-X option may be useful with this option. See
also thec.report(1) manual page

-r file routine Print summary statistics for each routine tofile. Use - forfile to direct out-
put tostdout

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-S section section Analyze the specifiedsectionof the object file, rather than the default
.text section

-s routine subtract Subtract theroutine from the list to be analyzed. Implies the-A option.

-vv very verbose Print invocations of sub-processes

-v verbose Show verbose timing info in disassembly listing

-Wroutine[=weight] weight Specify a weighting factor for counting lis instructions in specified rou
tine. If weight is omitted, 5 is assumed. This option is used with the -O
option.

-w warnings Suppress the output of warning messages

-X routine exclude Declareroutine to be the name of a subroutine which causes the progra
to exit. When the-P option is used, this routine, when called, will append
the accumulated statistics to the.prof file. After writing the statistics
data set to the.prof file, the statistics are reset to zero. When the-O
option is used, the-X option will exclude the named routine from the opti-
mization

-Zraw_names raw Print routine and source file names in raw form (i.e. do not filter)

-Z misc keyword Set various obscure keyword flags (use-Zhelp for list)

-Zhelp keyword help Displays list of obscure keyword flags

Option Meaning Function
5-4

c.analyze Concurrent C/C++ Utilities

ou-

hole
con-

u-
rs.

l-
h the

at

fer-

to

ted

mory

K data
Thec.analyze tool is available for performing static performance analysis of C/C++

object files.c.analyze reads the object, finds the routine entry points, breaks the r
tines into basic blocks, and analyzes each basic block for instruction times.c.analyze
can generate detailed basic block information or a flow graph picture showing the w
program. By default, all routines are analyzed, but the above options can be used to
trol which routines are included or excluded.

With the -O option,c.analyze generates a new program file that optimizes many do
ble word memory reference instructions into single words by use of the linker registe

With the-P option,c.analyze generates a new program file that will accumulate profi
ing statistics. Running this program file generates profiling data that can be used wit
c.report command to provide profiling statistics.

Link-Time Optimizations with c.analyze 5

To enhance the optimization of C/C++ source, in addition to compiling the source code
theMAXIMALlevel (-O3), you can elect to invokec.analyze when linking your C/C++

programs in order to perform additional optimizations at link time. For example, the-O
option toc.analyze replaces many of the two-instruction sequences required for re
encing global memory locations with a single instruction.

You can invokec.analyze in two ways: either directly on executables or as an option
the linker (c.link).

To invoke thec.analyze optimizer directly on an executable file (a.out), simply type
the following:

$ c.analyze -O na.out a.out

The original executable,a.out , remains the same and the resulting executable genera
by c.analyze is contained in a file calledna.out .

Alternatively, you can invokea.analyze at link time by specifying the-O link option
for a given partition:

$ c.partition -oappend -O main
$ c.build main

What results from this sequence of commands is that a single executable file (a.out) is
optimized at levelGLOBALfollowed by an additional link-time optimization performed
by thec.analyze optimizer.

Because of the-O option,c.analyze performs the following link optimization. It
replaces the two-instruction sequences (which are required to reference global me
locations) with single instructions which use the reserved linker registers (r28 andr30)
as base registers. This allows faster access to the two most commonly referenced 64
blocks.

(Certain library routines that are known to access the linker registers (e.g.,setjmp and
longjmp) are automatically excluded from the optimization process.)
5-5

 C/C++ Reference Manual c.analyze

ge

hed
, the

ble
ing
the

s

Additional c.analyze options may be specified directly on thec.analyze command
line or indirectly by supplying an option string via the-WA link option for a given parti-
tion.

Profiling with c.analyze 5

In addition to performing link-time optimizations,c.analyze can be used in tandem
with thec.report tool in order to generate profiling statistics. See “c.report” on pa
5-52.

To profile an executable C/C++ program withc.analyze , the-P (profiling) option must
be specified. With the-P option set, a new executable file is created that has been patc
to gather profiling statistics. The original executable file remains intact. For example
following command line:

$ c.analyze -P profiled_a.out a.out

takes the executablec.out as input, profiles it, and then produces the patched executa
file profiled_a.out . The original executable remains unchanged; however, invok
the patched executable gathers profiling information and dumps this information to
file profiled_a.out.prof . The.prof file can then be displayed in various format
with the help of thec.report program.

Many other options are available for profiling executables usingc.analyze . Refer to the
online man pages for more information aboutc.analyze andc.report .
5-6

c.analyze Concurrent C/C++ Utilities
Figure 4-1. Profiling a Program

Invoke c.analyze -P

a.out
(executable)

profiled_a.out
(patched executable)

a.out
(original executable)

Invoke profiled_a.out

Invoke c.report

profiled_a.out.prof
5-7

 C/C++ Reference Manual c.build

-

ror

n

be
c.build 5

Compile and link as necessary to build a unit, partition or environment

The syntax of thec.build command is:

c.build [options] [partition ...]

The following represents thec.build options:

Option Meaning Function

-allparts all partitions Build all partitions in the environment. This option is not allowed if the
-o option is specified.

-C “compiler” compiler Usecompilerto compile units (may be used to pass options to the com
piler, e.g.c.build -C “c.compile -v”)

-e[e|l|v] error Pipe compiler output throughc.error :
-e lists errors to stdout;
-ee embeds errors in the source file and invokes$EDITOR;
-el lists errors with the source file tostdout ; and
-ev embeds errors in the source file and invokesvi .

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-i infos Suppressc.build information messages

-L “ linker” linker Use “linker” to link partitions (may be used to pass options to the
c.link)

-noimport no import Don’t naturalize foreign units that are not up to date. Generates an er
instead.

-nomake no make Don’t invoke make command to build source file. Use whatever versio
of the source that is already built.

-nosource no source Skip checks of the source timestamps for out-of-date units (should only
used if no source files have changed)

-P “prelinker” prelinker Use “prelinker” to prelink partitions (may be used to pass options to
c.prelink).

-part partition partition Build the givenpartition, all included units and all units upon which they
directly or indirectly depend

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-source file source file Build all units defined in the given sourcefile and all units upon which
they directly or indirectly depend

-state s state Build all specified units to compilation states.
5-8

c.build Concurrent C/C++ Utilities

et,

mines
ary to

n-

ther

a-

n-
NOTE

Specified partitions are equivalent to partitions passed as argu-
ments to the-part option.

If no options are specified, then all units and partitions in the envi-
ronment are built.

Concurrent C/C++ provides thec.build utility to build partitions and units in an envi-
ronment. c.build determines which units must be compiled to build the given targ
builds them, and calls the linker to produce the desired partition.c.build examines the
current environment (and the environments on the Environment Search Path), deter
and automatically executes the proper sequence of compilations and links necess
build the given partition.

Targets toc.build can be:

partitions which can be specified directly, with the-part option, or
with the-allparts option

units which can be specified the-u option

If the -u option is specified,c.build ensures the namedunit is up-to-date.

Normally,c.build attempts to build all units in the current Concurrent C/C++ enviro
ment and all units on the Environment Search Path that are required. The-noimport
option can be used to prevent automatic recompilation of out-of-date units from o
environments.

See “Compile Options” on page 4-10 and “Link Options” on page 4-8 for more inform

tion.

-stop stop on errors If an error is encountered, stop building (normally, any units not depe
dent upon the erroneous units would be built)

-u “unit list” unit Compile the unit. Theunit parameter can be “all ”.

-ufile file units from file Build the units listed infile

-V verify List compilations that would occur, but do not actually perform them

-v verbose Display actions as they are done

-vv very verbose Display commands as they are done

-w warnings Suppressc.build warnings

Option Meaning Function
5-9

 C/C++ Reference Manual c.cat

n be
c.cat 5

Output the source of a unit

The syntax of thec.cat command is:

c.cat [options] unit-id

The following represents thec.cat options:

unit-id is defined by the following syntax:

unit

ie, all may not be specified as a unit name.

The c.cat command is similar to the UNIXcat(1) command in functionality. It
accepts as its argument aunit_idand prints tostdout the source file in which this unit is
found.

By default, it outputs a header containing the full path name of the source file. This ca
suppressed by specifying the-h option.

Also, line numbers can be prepended to each line of source by using the-l option.

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-h no header Does not output filename header

-l line numbers Prepend each line of source with its line number

-rel release release Specify a Concurrent C/C++ release (other than the default release)
5-10

c.chmod Concurrent C/C++ Utilities

.

c.chmod 5

Modify the UNIX file system permissions of an environment

The syntax of thec.chmod command is:

c.chmod [options] access_mode

The following represents thec.chmod options:

access_mode is an octal digit parameter indicating the desired file system permission

For details, see thechmod(1) manual page.

Option Meaning Function

-env env environment Specify an environment pathname

-f force Force, if some environment components are missing

-H help Display syntax and options for this function

-i ignore Quietly ignore all non-fatal errors

-q query Display the permissions on the current environment

-rel release release Specify a Concurrent C/C++ release (other than the default release)
5-11

 C/C++ Reference Manual c.compile

tic
c.compile 5

Compile one or more units

The syntax of thec.compile command is:

c.compile [options] [--] [compile_options] [unit-id ...]

The following represents thec.compile options:

Option Meaning Function

-e[e|l|v] error Pipe compiler output throughc.error :
-e lists errors to stdout;
-ee embeds errors in the source file and invokes$EDITOR;
-el lists errors with the source file tostdout ; and
-ev embeds errors in the source file and invokesvi .

-env env environment Specify an environment pathname, default is $PWD

-H help Display syntax and options for this function

-HC help compile Display list of compile options

-HQ help qualifier Display list of qualifier keywords (-Q options)

-language lang language Select C or C++ as language to be used.

-partition part partition Let compiler know which partition is being built for template instantiation
purposes (not necessary, but it lets the compiler make better automa
decisions)

-quiet quiet options Suppress display of effective options

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-state s state Compile the specified unit to compilation states.

-v verbose Print header for each compilation

-vv very verbose Print subordinate tool invocations

INTERNAL UTILITY

This tool is used internally byc.build which is the recommended
utility for compilation and program generation.

c.compile is not intended for general usage.
5-12

c.compile Concurrent C/C++ Utilities

nit
unit-id is defined by the following syntax:

unit | all

If compile_optionsare specified to this command, they override the set of temporary u
options. For instance, if the temporary compile options for the unithello consist of-S
and the following command is issued

$ c.compile -g hello

the effective options will now consist of-S and-g .

See “Link Options” on page 5-59” for list of compile options.
5-13

 C/C++ Reference Manual c.edit

d

)

e-
c.edit 5

Edit the source of a unit

The syntax of thec.edit command is:

c.edit [options] unit-id

The following represents thec.edit options:

unit-id is defined by the following syntax:

unit | all

Option Meaning Function

-e editor editor Useeditor instead of$EDITOR

-env env environ-
ment

Specify an environment pathname

-H help Display syntax and options for this function

-i inhibit Do not immediately notify the environment that the unit has change

-rel release release Specify a Concurrent C/C++ release (other than the default release

-src “ dir [options] %f” source
management

Run pre- and post-edit scripts for interfacing with source manag
ment.

-v verbose Generate verbose output.
5-14

c.error Concurrent C/C++ Utilities

ls

con-

-

)

e-
c.error 5

Process diagnostic messages generated by the compiler and other too

The syntax of thec.error command is:

c.error [options]

The following represents thec.error options:

Compiler output may be redirected into a file and examined with the aid of thec.error
command or can be piped directly intoc.error via the-e c.build option.

c.error reads the specified file or the standard input, determining the source file(s)
taining errors and processing the errors according to the options given.

Option Meaning Function

-e [editor] editor Embed error messages in the source file and invoke the specifiededi-
tor. The default editor is$EDITOR.

-env env environment Specify an environment pathname

-f file source file Restrict errors to those in specified source file

-H help Display syntax and options for this function

-l listing Produce listing tostdout

-N no line #’s Do not display line numbers

-o order Do not sort the order of the diagnostics by file and line number; pro
cess each diagnostic in the order given

-rel release release Specify a Concurrent C/C++ release (other than the default release

-s suppress Suppress non-error lines

-src “ dir [options] %f” source man-
agement

Run pre- and post-edit scripts for interfacing with source manag
ment.

-vi vi Embed error messages in the source file and invoke thevi editor

-W warnings Ignore warnings

INTERNAL UTILITY

This tool is used internally byc.build which is the recommended
utility for compilation and program generation.

c.error is not intended for general usage.
5-15

 C/C++ Reference Manual c.error

the

i-

ron-
Perhaps more generally useful are the-e c.build options (-e , -ee , -el , -ev) , which
automatically callc.error to process any compiler error messages resulting from
current compilation.

Screen 5-1 shows the filebadtry.c . This file containing errors is used to illustrate var
ous ways Concurrent C/C++ tools can usec.error to process error messages.

Screen 5-1. File badtry.c

Before it can be compiled, the file must be introduced into a Concurrent C/C++ envi
ment, and a partition must be created for it:

$ c.mkenv
$ c.intro badtry.c
$ c.partition -create executable badtry

The file can be compiled and the output directed as follows (stdout is redirected to the
file badtry.errors):

$ c.build 2> badtry.errors

Screen 5-2 shows the contents of filebadtry.errors .

Screen 5-2. File badtry.errors

/csteam/vir/PDE/pde_gui_fixes/EXEC/bugppcpde/test/badtry.c
 #include <stdio.h>
 main() {
 for (inst i=99; i>0; i--) {
 printf("%d bottles of soda on the wall\n"
 " %d bottles of soda on the wall\n"
 "if one of those bottles should happen to fall\n"
 " %d bottles of soda on the wall\n",
 i,i,i-1);
 }
 }

"badtry.c", line 3: error: identifier "inst" is undefined
 for (inst i=99; i>0; i--) {
 ^

1 error detected in the compilation of "badtry.c".
ec++: ERROR: Errors in the cxc++ pass, status = 2
c.compile: failed to compile unit badtry
c.build: failed building partition badtry
c.build: there was a failure building one or more partitions
5-16

c.error Concurrent C/C++ Utilities

ce
rked

leted.

d

ges
ges.

e same
This file can simply be listed, if desired, but it is more useful to usec.error as follows.

$ c.error -l badtry.errors

outputs the listing that appears in Screen 5-3 .

Screen 5-3. c.error -l Output Listing

With the -v option,c.error writes the error messages directly into the original sour
file and calls thevi text editor. Line numbers are suppressed, and error messages ma
with the pattern### .

After the compilation,

$ c.error -v < badtry.errors

callsvi .

The### is provided so that error messages can be easily found and subsequently de
For example, if invoked with the-v (vi) option,c.error embeds error text in the
source file and then invokes thevi editor. All error text can easily be found and remove
with simple editor commands by searching for the### pattern and deleting. Invi , for
instance, the sequence “:g/###/d ” deletes all lines matching the### pattern.

It should also be noted that all error message lines are prefixed with// , which denotes an
C++ comment. Thus, even ifc.error -v has been used to intersperse error messa
into a file, the compiler can still process that file without deleting the error messa
Since-v places the error messages directly in the source file, ifc.error -v is called
again before the messages are deleted and the error corrected, a second copy of th
messages appears.

Non-specific diagnostics:
 ec++: ERROR: Errors in the cxc++ pass, status = 2
 c.compile: failed to compile unit badtry
 c.build: failed building partition badtry
 c.build: there was a failure building one or more partitions

*********************** badtry.c ******************************

 1:#include <stdio.h>
 2:main() {
 3: for (inst i=99; i>0; i--) {
A -----------^
A:error:identifier "inst" is undefined
 4: printf("%d bottles of soda on the wall\n"
 5: " %d bottles of soda on the wall\n"
 6: "if one of those bottles should happen to fall\n"

 9: }
 10:}

8: i,i,i-1);
 7: " %d bottles of soda on the wall\n",
5-17

 C/C++ Reference Manual c.error

iler.

g the

does

1-12.
The filebadtry.c can now be edited to repair the error and resubmitted to the comp
If those errors are fixed correctly, semantic analysis can proceed.

The preferred method for achieving the same results is to invokec.build with a -e
option.

$ c.build -ev

Now, when errors are encountered during compilation, thevi editor will be automatically
opened to the source file with the error messages embedded in it. Also, upon leavin
editor, the compiler offers to recompile the file.

This method is generally faster for rapid interactive program development because it
not require any intermediate files.

For more information about compiler error messages, see “Error Messages” on page
5-18

c.expel Concurrent C/C++ Utilities

sions
c.expel 5

Expel fetched or naturalized units from the environment

The syntax of thec.expel command is:

c.expel [options] unit-id ...

The following represents thec.expel options:

unit-id is defined by the following syntax:

unit | all

Local versions of foreign units may be created via thec.fetch tool (see “c.rmsrc” on
page 5-55). These versions are calledfetched. (See “Nationalities” on page 4-4 for a
more detailed discussion.)

It may be desirable to later remove these local versions, thus making the foreign ver
once again visible. Thec.expel tool is provided for this purpose.

NOTE

Other methods exist for removing native units. See Section
“c.rmsrc” on page 5-55 for more information.

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-v verbose Print message for each expelled unit
5-19

 C/C++ Reference Manual c.fetch

rom
ified

nits.

al
on
c.fetch 5

Fetch the compiled form of a unit from another environment

The syntax of thec.fetch command is:

c.fetch [options] unit-id ...

The following represents thec.fetch options:

unit-id is defined by the following syntax:

unit | all

NOTE

If the -from option is not specified,c.fetch will try to “find”
the specified unit by searching the Environment Search Path.

At times, it may be desirable for users to be able to force copies of specified units f
other environments into the current environment. This command will cause the spec
foreign units to be built in the local environment as if they were introduced as local u

The c.expel tool is provided to allow a fetched unit to be removed from the loc
environment, thus restoring visibility to the foreign version. See Section “c.expel”
page 5-19 for more information.

Option Meaning Function

-env env environment Specify an environment pathname

-from env from env Specify an environment pathname from which to fetch the unit(s)

-H help Display syntax and options for this function

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-v verbose Display a message for each fetched unit
5-20

c.freeze Concurrent C/C++ Utilities

t

ch
pila-
c.freeze 5

Freeze an environment, preventing changes

The syntax of thec.freeze command is:

c.freeze [options]

The following represents thec.freeze options:

An environment may be frozen using thec.freeze utility. This changes an environmen
so that it is unalterable.

Any environment which will not be changed for a significant period of time and whi
will be used by other environments is a good candidate to be frozen to improve com
tion performance.

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-q query Displays an environment’s frozen status

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-t transitive Freeze whole Environment Search Path

-u unfreeze Thaw the environment, allowing changes

-v verbose Displays the environment(s) being frozen (or thawed)
5-21

 C/C++ Reference Manual c.help
c.help 5

List usage and summary of each Concurrent C/C++ utility

The syntax of thec.help command is:

c.help
5-22

c.install Concurrent C/C++ Utilities

s-
talla-

ified
talla-

s

c.install 5

Install, remove, or modify a release installation

The syntax of thec.install command is:

c.install -rel release[options]

The following options are available with thec.install command:

NOTE

Only the System Administrator (or a super user) can invoke
c.install.

The-i , -m, and-r options may never be used together.

Thec.install utility is the tool that allows users to register installations with the sy
tem’s Concurrent C/C++ database. It may be used to install, move, and remove ins
tions.

When the-i option is given, then the Concurrent C/C++ structure located at the spec
path name is registered with the database as a valid installation. The name of the ins
tion is registered as the release given by the-rel option. Therefore, the-rel option is
required when using the-i option to install a Concurrent C/C++ installation.

For example, the following command:

Option Meaning Function

-d default Mark the selected release installation as the system-wide default

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-i path install Install the release located atpath into the release database (the name i
determined from the-rel option)

-m path move Move the selected release installation topath

-p pre-5.1 Mark the selected release isntallation as the default forcc , hc , cc++ , and
c++ .

-r remove Remove the specified release installation from the release database

-rel release release Specify a Concurrent C/C++ release (REQUIRED)

-v verbose Report changes as they are made
5-23

 C/C++ Reference Manual c.install

e

e,
bove
$ c.install -rel newc -d -i /somedir/c_dir

assumes that/somedir/c_dir contains a valid Concurrent C/C++ directory structur
and “installs” this version of Concurrent C/C++ in the database asnewc.

When the-d option is used, thenc.install registers the installation with the databas
and also marks the installation as the system-wide default installation (as in the a
example).

To ease the transition to the new multiple release scheme, the-p option allows the system
administrator set set the default release for thecc , hc , cc++ , andc++ commands inde-
pendently ofec , ec++ , and thec.* utilities. Typically this will be used to set them to
use the pre-5.1 releases:

c.install -rel pre5.1 -p

Note a subsequent invocation ofc.install with the-d option will override this setting.
This is because it is expected that normally thecc , hc , cc++ , andc++ commands will
invoke the latest release.
5-24

c.instantiation Concurrent C/C++ Utilities

es

e

a-

g

to-
-

v-

f

n

c.instantiation 5

Manipulate instantiation of templates and extern inlines.

The syntax of thec.instantiation command is:

c.instantiation [options] [unit-id]

The following represents thec.instantiation options:

Option Meaning Function

-env env environment Specify an environment pathname

-F force Force unit-id to exist. Used to setup template resolutions before any fil
are compiled, usually via thec.script command.

-f force If the unit in the -r option is not in the potential associated units list, forc
it to be added anyway (otherwise an error is generated)

-H help Display syntax and options for this function

-hide “ unit-list” hide Hide specified normal units from being considered for resolving instanti
tion requests

-!hide “ unit-list” unhide Unhide specified normal units so they may be considered for resolvin
instantiation requests

-l list List the potential and actual associated units of unit-id

-magnet “ unit-list” magnet Designate specified units as magnets. This means that instantiation au
mation will prefer them over other units for hosting artificial units for tem
plate and extern inline instantiation.

-!magnet “ unit-list” unmagnet Remove magnet designation. Specified units will be consider for resol
ing instantiation only if no magnetic unit can perform the resolution.

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-resolve “ unit-list” resolve Add specified units to the list of units that will host the instantiation o
unit-id.

-!resolve “ unit-list” unresolve Remove specified units from the list of units that will host the instantiatio
of unit-id.

-v verbose Display a message for each selected or hidden definition
5-25

 C/C++ Reference Manual c.instantiation

if
unit-id is defined by the following syntax:

unit

unit-list is a comma or white space list ofunit-ids. The list must be enclosed in quotes
more than one unit is specified.
5-26

c.intro Concurrent C/C++ Utilities

le

ed

ent

o the
eady
ment

ent.
on-

)

e
e
e

c.intro 5

Introduce source files (and units therein) to the environment

The syntax of thec.intro command is:

c.intro [options] [source_file ...]

The following represents thec.intro options:

The -s option takes as its argument afile_list containing the names of all the files to be
processed byc.intro . This is useful in order to introduce many files at once. Each fi
must be on a separate line in thefile_list.

If - is specified forfile_list, c.intro uses input fromstdin . This is provided mainly so
that users can pipe output from another UNIX command toc.intro .

Since the unit nameall is reserved to mean all units in various commands, if a file call
all.c is introduced, its default unit name is_all , and if a file called_all. c is intro-
duced, its default unit name is__all , etc.

To reference a foreign unit that hasn’t actually be introduced into a foreign environm
on the environment search path yet, use “c.intro -name name” without specifying a
source file. This declares the name to the local environment so that you can refer t
name without getting an error message. This isn’t necessary if the foreign unit has alr
been introduced into the foreign environment and that environment is on the environ
search path.

c.rmsrc can be used to eliminate the association of source files with the environm
c.rmsrc removes all knowledge of source files (and units therein) from the envir
ment. See “c.rmsrc” on page 5-55 for more information.

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-language [C|C++] language Specify whether the source file is written in C or C++

-rel release release Specify a Concurrent C/C++ release (other than the default release

-s file_list file list Readfile_list for a list of files to process

If - is specified, read file list fromstdin

-unit name unit name Override the default unit name for the source file. This allows th
same source file to be introduced multiple times (to be built in mor
than one way), or to introduce two source files that share the sam
basename, but have different paths.

-v verbose Echo files as they are processed
5-27

 C/C++ Reference Manual c.invalid

rce
n
tanti-
nit’s

page

ge
c.invalid 5

Force a unit to be inconsistent thus requiring it to be recompiled

The syntax of thec.invalid command is:

c.invalid [options] [unit-id ...]

The following represents thec.invalid options:

unit-id is defined by the following syntax:

unit | all

Thec.invalid tool is used to force a unit to be considered inconsistent, usually to fo
them to be rebuilt byc.build . If the -t option is also specified, template instantiatio
automation will forget the associates it made between the specified units and any ins
atable entities (such as templates or extern inlines) that it decided to build using this u
source, but not those made explicitly by the user. See “Template Instantiation” on
7-3 and “c.instantiation” on page 5-25“.

Thec.touch tool is provided to allow the opposite functionality. See “c.touch” on pa
5-58

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-source file source file Invalidate all units built from the specified file

-t template Erase template instantiation associations

-v verbose Display a message for each invalidated unit
5-28

c.link Concurrent C/C++ Utilities
c.link 5

Link a partition (an executable, or shared object file)

The syntax of thec.link command is:

c.link [options] [link-options] partitions ...

The following represents thec.link options:

See “Link Options” on page 5-59 for list of link options.

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-i information Suppress information messages

-o file output Override the default output for the partition and place the output infile

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-V verify Display the link commands, suppressing execution

-v verbose Display links as they are done

-vv very verbose Display the link commands before execution

-w warnings Suppress warning messages

INTERNAL UTILITY

This tool is used internally byc.build which is the recommended
utility for compilation and program generation.

c.link is not intended for general usage.
5-29

 C/C++ Reference Manual c.ls

h

rt

-

at

e

ict
c.ls 5

List information about the environment

The syntax of thec.ls command is:

c.ls [options]

The following represents thec.ls options:

Option Meaning Function

-A all Dump information about everything information can be dumped: sets-
E, -S , -U , -T , and-P.

-all all Include information from all environments on the Environment Searc
Path.

-art artificial Include artificial units (those created by the environment to suppo
templates and extern inlines)

-E environment List attributes of the local environment

-e everything Provide an all-encompassing listing using the same format as the-l
and-v options, but omitting nothing that may be known. Often gener
ates an overwhelming amount of output.

-env env environment Specify an environment pathname

-format fmt format Format the information supplied for each unit based on the form
descriptorfmt. This option may not be used with any option that dis-
plays information about the environment other than units.

-format help format help Display list of format descriptors

-H help Display syntax and options for this function

-h headers Suppress headers on long and verbose listings

-instantiation instantiation Display instantiation information

-l long List the same information as the-1 option, but use a long format.

-local local Filter candidate units and partitions to include only those found in th
local environment (default)

-N name Sort lists by name in ascending order

-n number Include a total count of the number of units, partitions, etc.

-P partition List information about all partitions. Use-all or -local to include
partitions in all environments on the environment search path or restr
to local partitions only.
5-30

c.ls Concurrent C/C++ Utilities

t be
ti-

le
/or

th

d
a-
y.
ss

t be
d.

n
or
as

t be
ti-

le
ces.
-plist “list” partition List information about specific partitions.list is a list of partitions sepa-
rated by commas or spaces. It is a single parameter, and so mus
enclosed in double-quotes if more than one partition is specified. Mul
ple -plist options may be specified on the command line.

-pfile filename partition List information about specific partitions. The list of partitions is in the
specified filename. The partition names can be one per line, or multip
partitions can be specified on a line, separated by commas and
spaces. Multiple-pfile options may be specified on the command
line.

-r reverse Reverse the sorting order

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-S source List information about all source files. Use-all or -local to
include source files in all environments on the environment search pa
or restrict to local source files only.

-shadow shadow units
and partitions

When the-all option is not specified,c.ls does not scan the foreign
environments in the environment search path for all visible units an
partitions. The local environment does however contain some inform
tion about those units and partitions if they are referenced locall
These “shadows” of the foreign units and partitions are not listed unle
explicitly asked for with the-shadow option.

-slist “list” source List information about specific source files.list is a list of source files
separated by commas or spaces. It is a single parameter, and so mus
enclosed in double-quotes if more than one source file is specifie
Multiple -slist options may be specified on the command line.

-sfile filename source List information about specific source files. The list of source files is i
the specified filename. The source file names can be one per line,
multiple source files can be specified on a line, separated by comm
and/or spaces. Multiple-sfile options may be specified on the com-
mand line.

-t time Sort lists by timestamp.

-T unit List information about all symbols.

-templates templates show units associated with template instantiation (same as-art).

-tlist “list” unit List information about specific symbols.list is a list of symbols sepa-
rated by commas or spaces. It is a single parameter, and so mus
enclosed in double-quotes if more than one symbol is specified. Mul
ple -tlist options may be specified on the command line.

-tfile filename unit List information about specific symbols. The list of symbols is in the
specified filename. The symbol names can be one per line, or multip
symbols can be specified on a line, separated by commas and/or spa
Multiple -tfile options may be specified on the command line.

Option Meaning Function
5-31

 C/C++ Reference Manual c.ls

cal
s

al

d in

be
le

-

unit-id is defined by the following syntax:

unit | all

The behavior ofc.ls with no options orunit-id specified is to display only some basic
information about the local environments, list the names of all the units within the lo
environment (if no options are specified,-local is assumed), and the names of partition
within the local environment.

To see more information than is provided in a default listing,c.ls provides a number of
options:

The options-l , -v , -e , -format , and-1 options are mutually exclusive.

-U unit List information about all units. Use-all or -local to include units
in all environments on the environment search path or restrict to loc
units only.

-ulist “list” unit List information about specific units.list is a list of units separated by
commas or spaces. It is a single parameter, and so must be enclose
double-quotes if more than one unit is specified. Multiple-ulist
options may be specified on the command line.

-ufile filename unit List information about specific units. The list of units is in the specified
filename. The unit names can be one per line, or multiple units can
specified on a line, separated by commas and/or spaces. Multip
-ufile options may be specified on the command line.

-v verbose Provide a verbose listing, using the same format as the-l option, but
providing more information. Empty values are not displayed.

-1 one, single Display lists with one line per item

-1 Provides a brief listing of units, partititions, etc, with
one item per row and some additional information in
multiple columns.

-l Provides a long listing consisting the same informa
tion as the-1 option.

-v Provides a verbose listing.

-e Provides an all-encompassing listing.

-instantiation Provides a listing of just instantiation information.
This option can only be used to display information
about units.

-format Provides a method to display only the fields that are
desired. This option can only be used to display
information about units.

Option Meaning Function
5-32

c.ls Concurrent C/C++ Utilities

ith

n a

r are
cur-
When displaying instantiation information, instantiations set explicitly by the user w
thec.instantiation -resolve command are marked with “* ”. Instantiations set
explicitly by the user with#pragma instantiation or by command line options are
marked with “#”.

Formatting the listing 5

The-format option allows you to format the information listed for each unit based o
format descriptor,fmt, which takes the form:

“%[Modifier]Descriptor random_text %[Modifier]Descriptor...” ...

Characters encountered in the quoted format string which are not part of a descripto
echoed in the output. Any character other than ‘a’..’z’ and ‘_’ serve to terminate the
rent descriptor; any such characters are echoed.

The descriptors and their potential modifiers are shown below.

Descriptor Modifier Meaning

consistent CY Is the unit up-to-date with the source:
consistent or not consistent , or
yes or no respectively ifY modifier is given.

date C Timestamp of the object file, orobject
file missing if the unit has never been
built.

environment CL The native environment of foreign and fetched
units. Empty string if the unit is local.

hidden CY Is the unit hidden from being considered for
hosting an instantiation:
hidden or not hidden , or
yes or no respectively ifY modifier is given.

incdate C Timestamp of the most recently modified
included file (including the source file itself),
or include file missing is the source
file or one of the include files is missing.

kind C Kind of unit: normal or artificial (a unit
created by the environment for templates and
extern inlines).

language C Language of the Unit:C or C++.

magnet CY Is the unit prefered over other units for assocti-
ating artificial units for instantiation automa-
tion: magnet or not magnet , or yes or no
respectively ifY modifier is used.
5-33

 C/C++ Reference Manual c.ls

t

s

ry
The modifiers have the following meanings:

For example, in an environment that contains the unithello , the following -format
option toa.ls produces the following output:

$ c.ls -format “%name was built on %date\n”
hello was introduced on Mon Dec 6 15:49:58 1999

missing CY Is the unit’s source file missing:missing or
not missing , or yes or no respectively ifY
modifier is used.

name CL Name of the unit

options PTEQ The Permanent,Temporary, orEffective
options of the unit, depending on the modifier.

scrdate C Timestamp of the source file (not including
any include files, orsource file miss-
ing if the source file doesn’t exist.

srcfile CL Name of the source file

state C Is the unit compiled:compiled or not
compiled .

visa C Visa of a unit:native , fetched , natu-
ralized , visiting , or foreign .

Modifier Meaning Description

C column Causes the current item to be padded with sufficien
trailing blanks to form a column; this modifier is
allowed for any descriptor

L long Causes the long-form of the item to be output: date
descriptors will include microseconds; path descriptor
will be forced into fully-rooted filename notation

Y yes Outputyes or no, instead ofX or not X respectively.

Q quote Quote or escape special shell characters.

E, P, T options Selects between the effective, permanent, or tempora
option sets; only legal for the option descriptor

Descriptor Modifier Meaning
5-34

c.ls Concurrent C/C++ Utilities
Sorting 5

There are a few options with which to sort the output. They are:

-N Sort by name in ascending order

-t Sort by timestamp

-r Reverse the sorting order
5-35

 C/C++ Reference Manual c.lssrc

he
out
e

he

will
c.lssrc 5

List source files associated with the environment

The syntax of thec.lssrc command is:

c.lssrc [options] [source-file]

The following represents thec.lssrc options:

c.lssrc provides information about source files introduced to the environment. T
information available via this tool is specific only to the source file. For information ab
units contained within the source file, thec.ls tool should be used. See “c.ls” on pag
4-39 for more information.

With no options,c.lssrc provides a list of the names of all source files introduced to t
environment. If asource-filename is specified on the command line or the-s option is
used with a file containing a list of source file names, only the mentioned source files
be listed.

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-s file_list file_list Readfile_list for a list of files

-vv very verbose Display command lines used to invoke subordinate tools
5-36

c.man Concurrent C/C++ Utilities

ents.

tili-
c.man 5

Invoke/position interactive help system (requires an X terminal)

The syntax of thec.man command is:

c.man [options] [manual [topic]]

The following represents thec.man options:

c.man invokes the interactive HyperHelp system as directed by options and argum
If a HyperHelp session for the user is already active,c.man will position the existing ses-
sion to the specified topic or manual.

To see a list of the names of each onlinemanualavailable for viewing with HyperHelp,
issue:

$ c.man -l

To open a specificmanual, issuec.man with the name of thatmanual:

$ c.man c++

If the manual is not recognized (and is not interpreted as atopic), then HyperHelp is
opened to the Bookshelf.

To view a particulartopic within a specificmanual, issue either thattopic along with the
manual in which it is contained, or thetopic alone.

$ c.man c++ c.build

or

$ c.man c.build

will position the HyperHelp system to the description of thec.build command.

Topics for the C/C++ Reference Manual include the names of all Concurrent C/C++ u
ties, all pragmas recognized by Concurrent C/C++, and various C/C++ bindings.

Option Meaning Function

-display disp X display Select an X terminal

-env env environment Specify an environment pathname

-l list Lists available online manuals

-man manpage man page Displayman page for specifiedmanpage

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-H help Display syntax and options for this function
5-37

 C/C++ Reference Manual c.man
NOTE

The topic argument is meant as a shortcut for positioning the
HyperHelp session. The list of topics recognized byc.man is
short and obviously not meant to be comprehensive. Direct use of
HyperHelp is intended for general manual browsing and selection.

If a topic is not recognized, but themanualis, HyperHelp will be positioned at the
“Find” window for thatmanual.
5-38

c.mkenv Concurrent C/C++ Utilities

nt-
ay

n-
ions
f this

or if

ment

ror

y

e)

e-
c.mkenv 5

Create an environment which is required for compilation, linking, etc.

The syntax of thec.mkenv command is:

c.mkenv [options] [--] [compile_options] [environment_pathname]

The following represents thec.mkenv options:

Thecompile_optionsspecified with this command become the permanent environme
wide compile options and apply to all units introduced into this environment. They m
be changed by usingc.options . They may also be overridden by temporary enviro
ment-wide compile options, or for particular units by permanent or temporary unit opt
or pragmas. See “Compile Options” on page 4-10 for a more detailed explanation o
relationship.

The-f option forces creation of an environment even if one has already been created
only a portion of it already exists. If thec.mkenv tool is interrupted or fails for some rea-
son (such as not enough disk space, power failure, etc.), the creation of the environ
may not have completed. Trying to recover from this failure by running thec.mkenv
tool again may result in a message similar to the following:

c.mkenv: database file .C++ already exists
 in environment /some_dir/env_dir.

The -f option will force this environment to be created, thereby overriding such er
messages.

Usec.options -HC for a list of compile_options. Also, “Link Options” on page 5-59
provides a similar list An environment can be removed withc.rmenv . See “c.rmenv” on
page 5-54 for details.

Option Meaning Function

-env env environment Specify an environment pathname

-f force Force environment creation even if it or some portion of it alread
exists

-H help Display syntax and options for this function

-language lang language Select C or C++ as language to be used as the default inc.intro
invocations.

-rel release release Specify a Concurrent C/C++ release (other than the default releas

-src “ dir [options] %f” source
management

Run pre- and post-edit scripts for interfacing with source manag
ment when ever file is edited withc.edit .
5-39

 C/C++ Reference Manual c.options

vi-

a-

e)

-

c.options 5

Set compilation options for units or the environment

The syntax of thec.options command is:

c.options [options] [--] [compile_options] [unit-id ...]

The following represents thec.options options:

Option Meaning Function

-clear clear Clear all designated options for the specified entities

-default default Operate on the default options for the entire environment

-del delete Delete the designated options from the specified entities

-eff effective Display the effective options (based on temporary, permanent, en
ronment defaults)

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-h header Remove the header from the option list output

-HC help compile Display list of compile options

-HQ help qualifier Display list of qualifier keywords (-Q options)

-keeptemp keep temporar-
ies

Propagate the temporary options for the units into the set of perm
nent options

-language lang language SelectC or C++ as language to be used

-list list List the option sets for the specified entities

-mod modify Modify the designated options for the specified entities

-perm permanent Operate on the permanent options (this is the default)

-rel release release Specify a Concurrent C/C++ release (other than the default releas

-set set Set the designated options for the specified entities

-src “ dir [options] %f” source
management

Specify pre- and post-edit scripts for interfacing with source man
agement when editing source files withc.edit .

-temp temporary Operate on the temporary options

-v verbose Display a message for each change

-- separator Separate options toc.options from compiler options. Optional
if there is no ambiguity.
5-40

c.options Concurrent C/C++ Utilities

s of
wing

n-
age

For

is
unit

iple
unit-id is defined by the following syntax:

unit| all

Option Sets 5

As discussed in “Compile Options” on page 4-10 , there are three different level
options in Concurrent C/C++. These three option sets are designated by the follo
flags toc.options :

In addition, theeffective optionsare derived from these four and their hierarchical relatio
ship to one another. This set is discussed in greater detail in “Effective Options” on p
4-11.

Listing options 5

The option sets may be viewed using the-list option. When issued alone,-list
shows the permanent, temporary, and effective option sets for the units specified.
example, the following command lists those option sets for the unithello ,

$ c.options -list hello

By combining the-list option and the desired option set’s flag, only that option set
displayed for the specified units. For instance, to view the permanent options for the
hello ,

$ c.options -list -perm hello

This only lists the permanent options for the units specified. You may specify mult
unit names, or you may use the keywordall to specify all units in the environment.

To list the effective options for all units in the environment,

$ c.options -list -eff all

However, this particular option does the same thing when issued alone,

$ c.options -eff all

Flag Designation Operates on

-default -perm environment-wide compile optionsall units

-default -temp temporary environment-wide com-
pile options.

all units

-perm permanent compile options specified units

-temp temporary compile options specified units
5-41

 C/C++ Reference Manual c.options

i-

esig-

d
oup-
Note that since the-default flag operates on all the units in the environment by defin
tion, there is no need to specify any unit names. To list the default options,

$ c.options -list -default

Setting options 5

The option sets may be initialized or reset by using the-set flag to c.options . This
sets the specified options for the units designated. Any previous options for the set d
nated are replaced. For example,

$ c.options -set -perm -g hello

turns on debug information in the permanent option set for the unithello .

If the following command is issued,

$ c.options -set -perm -O1 hello

the permanent option set will only contain the-O1 option (the previous-g option will
have been replaced).

Modifying options 5

In order to modify an option set, the-mod flag is used. This flag adds the specifie
options to the designated set, while retaining any other options that existed in this gr
ing. For instance, after the following command,

$ c.options -set -temp -g hello

the temporary option set for the unithello consists of-g .

To add an optimization compile option to this set,

$ c.options -mod -temp -O2 hello

The temporary option set forhello now consists of-g and-O2 .

Clearing options 5

All of the options may be cleared from a designated option set by using the-clear
option. To clear all of the temporary options from all units in the environment,

$ c.options -clear -temp all
5-42

c.options Concurrent C/C++ Utilities

e

e to a

ng
e

s the

be
Deleting options 5

The-del flag is more specific than the-clear option and allows specified options to b
deleted from a particular option set.

For example, if the environment-wide compile option set (-default) contains-O2 ,
-!g and-S , the following command,

$ c.options -del -!g -default

will remove the-!g option from the set and leave-O2 and-S to remain as the environ-
ment-wide compile options.

Some sets of options are mutually exclusive because they effectively set an attribut
particular value. For example,--early_tiebreaker and--late_tiebreaker .
Specifying one will remove the other from the effective option list. Similarly, specifyi
--!early_tiebreaker will actually remove any tiebreaker setting from the effectiv
options list.

Keeping temporary options 5

Temporary options may be propagated into the permanent set by using the-keeptemp
option. This moves the temporary options into the permanent option set and clear
temporary set. The following command does this for all units in the environment,

$ c.options -keeptemp all

See “Link Options” on page 5-59 for more information.

Also, see the example of this in “What are my options?” on page 3-6 .

Setting options on foreign units 5

Options for units in foreign environments cannot be changed usingc.options in the
local environment. In order to change the options on a foreign unit, it must first
fetched.
5-43

 C/C++ Reference Manual c.partition

e

e

s

c.partition 5

Define or display a partition for the linker

The syntax of thec.partition command is:

c.partition [options] [partitions ...]

The following represents thec.partition options:

Option Meaning Function

-a all Display all partitions in the environment

(Normally, only those originating in the environment are displayed)

-add "units" add Add units to the partitions while retaining previously added units

units is a single parameter; the names of individual units should b
comma-separated and enclosed in double quotes

-addfile file add from file As -add , but reads units fromfile

-create kind create Create the new named partitions askind wherekind could beexecut-
able (exe) , shared_object (so), archive (ar), or object
(obj). See also discussion ofshadow below.

-del "units" delete Deleteunits from the partitions

units is a single parameter; the names of individual units should b
comma-separated and enclosed in double quotes

-delfile file delete from file As -del , but reads units fromfile

-env env environment Specify an environment pathname

-f force Force creation of existing partitions and removal of nonexistent partition

-H help Display syntax and options for this function

-HL help link Display link options

-List list all Display all partitions and information about them

-list list List all partition names

-o file output Set the name of the corresponding partition output file to be created

-oappend opts append link
options

Appends theopts argument to the link option listing

opts is a single parameter; it must be enclosed in double quotes

-oclear clear link
options

Clear the link options
5-44

c.partition Concurrent C/C++ Utilities

t.

he

e

units is defined by the following syntax:

[[unit_name[!][,[+-] unit_name[!]]... (comma-separated list)
+ indicates an included unit (the default)
- indicates an excluded unit
! indicates all units directly or indirectly required by the given unit
all as theunit_name is special. It means all units, not at the time the

command is issued, but at the timec.prelink is done.c.ls will show
all as a included unit before all explicitly specified units if it is presen

NOTES

You may specify multiplepartitions to c.partition and all
optionsspecified will apply to every one of thosepartitions. Each
option, however, may only be specified once. If a particularoption
is repeated on the command line, the last occurrence of thatoption
overrides all others.

! only can pull in native and fetched units. Use of! forces all
units in the environment to get built because their symbol tables
must be used to determine dependencies.

-oprepend opts prepend l ink
options

Prepends theopts argument to the link option listing

opts is a single parameter; it must be enclosed in double quotes

-oset opts set link options Set the link options as indicated byopts

opts is a single parameter; it must be enclosed in double quotes

-parts list partition list Set the dependent (comma-separated) partition list for each partition

-refs references Remove local references to a partition when it is removed. Otherwise, t
environment will attempt to find a foreign partition to satisfy any partition
dependent on the removed partition.

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-remove remove Remove the specified partitions

-set "units" set Add units to the partitions, and remove all others

units is a single parameter; the names of individual units should b
comma-separated and enclosed in double quotes (see below)

-setfile file set from file As -set , but reads units fromfile

-v verbose verbose

-vv veri verbose Display command lines invoking subordinate tools

Option Meaning Function
5-45

 C/C++ Reference Manual c.partition

to

dou-
The idiom “+unit!,-unit ” means to include all units that
unit directly or indirectly requires, but not includeunit itself.

If no action is requested, thenc.partition will list informa-
tion about the named partitions (the equivalent ofc.ls -v
-plist).

To reference a foreign partition before the foreign environment
has defined it or before the foreign environment as been added to
the environment search path, it is necessary to declare it to the
local environment with the “c.partition -create
shadow name” command. Otherwise, referencing an unknown
partition name results in an error

Link Options 5

Link options are specified for a particular partition by using the following options
c.partition :

-oset opts Sets the link options as indicated byopts

-oappend opts Appends theopts argument to the link option listing

-oprepend opts Prepends theopts argument to the link option listing

-oclear Clears the link options

optsis a single parameter containing one or more link options; it must be enclosed in
ble quotes.

NOTE

Be sure to specify the link options within the double quotes and
ensure that they are specified as listed on page 5-59. For example,
if the link option -bound is desired, the leading “- ” must be
specified as well.

For example, to set the link options for the partitionhello to include the link options
--strip and-udump :

$ c.partition -oset “--strip -udump” hello

Issuingc.ls will show the link options for this partition:

$ c.ls -plist hello -v
 PARTITION: hello
 nationality : native
 kind : executable
 output file : hello
5-46

c.partition Concurrent C/C++ Utilities
 link options : --strip -udump
 included units (+) :
 hello

To append a link option to this set, use the-oappend option:

$ c.partition -oappend “-lm” hello

The link options now will be:

$ c.ls -plist hello -v
 PARTITION: hello
 nationality : native
 kind : executable
 output file : hello
 link options : --strip -udump -lm
 included units (+) :
 hello

To clear all link options for this partition, use the-oclear option:

$ c.partition -oclear hello

See “Link Options” on page 5-59 for a list of link options.

Also, “Link Options” on page 4-8 provides further discussion of this topic.
5-47

 C/C++ Reference Manual c.path

spec-
ould
page

th
c.path 5

Display or change the Environment Search Path for an environment

The syntax of thec.path command is:

c.path [options]

The following represents thec.path options:

Concurrent C/C++ uses the concept of an Environment Search Path to allow users to
ify that units and partitions from environments other than the current environment sh
be made available in the current environment. See “Environment Search Path” on
4-2 for a more complete discussion.

Option Meaning Function

-A path append Appendpath to the end of the Environment Search Path

-a path1[path2] append Appendpath1afterpath2. If path2is not specified, this option is identical
to the-A option

-env env environment Specify an environment pathname

-f full path Display full environment pathnames

-H help Display syntax and options for this function

-I path insert Insertpath at the beginning of the Environment Search Path

-i path1[path2] insert Insertpath1beforepath2. If path2is not specified, this option is identical
to the-I option

-P purge Remove all paths in the Environment Search Path

-R path1 path2 replace Replacepath1 with path2

-r path remove Removepath from the Environment Search Path

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-t transitive Display transitive closure of environments in the Environment Search Pa

-v verbose If combined with any otherc.path option, display the Environment
Search Path after the operation is complete

-w warnings Suppress warning messages

-x path exclude Remove all butpath from the Environment Search Path
5-48

c.prelink Concurrent C/C++ Utilities

oing
ed
c.prelink 5

Resolve transitive closure of included units and template instantiation
before linking.

The syntax of thec.prelink command is:

c.prelink [options] [partitions]

The following represents thec.prelink options:

This tool takes care of template instantiation automation, selection of units that are g
to be included in the final link, and other bookkeeping activities that must be perform
before actually linking a partition.

Option Meaning Function

-C “compiler” compiler Specify alternate compiler when compiling template instantiations

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-v verbose Print header for each compilation

-vv very verbose Print subordinate tool command lines

INTERNAL UTILITY

This tool is used internally byc.build which is the recommended
utility for compilation and program generation.

c.prelink is not intended for general usage.
5-49

 C/C++ Reference Manual c.release

r-
c.release 5

Display release installation information

The syntax of thec.release command is:

c.release [options]

The following represents thec.release options:

If invoked without options,c.release lists all available release installations on the cu
rent host. For example,

$ c.release

provides output similar to the following:

Screen 5-4. c.release output

Option Meaning Function

-e env Display the path of the selected environment

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-n name Display the name of the selected release

-p path Display the path to the selected release

-q query Display the selected environment and release

-r remove Remove the default release currently set for the invoking user

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-u user Set the default release for the invoking user

The following releases are available on this machine:

 Name Path
 ---- ----
*jgj /csteam/vir/PDE/pde_gui_fixes/TOOLS/pde
stef /csteam/londo/stef/debug_info_in_pde/
TOOLS/pde
alpha5.0 /usr/ccs/alpha5.0
script /csteam/vir/PDE/pde_to_do_2/TOOLS/pde
5-50

c.release Concurrent C/C++ Utilities

ent

tion
The-q option displays the release for the specified environment (or the local environm
if no environment is specified). For example,

$ c.release -q

in a Concurrent C/C++ environment namedtest provides the following output:

Screen 5-5. c.release -q output

c.release may be invoked with any combination of-rel and/or-env options. All
remaining options are mutually exclusive, and may not be combined in a single invoca
of c.release .

environment path: /csteam/vir/PDE/pde_gui_fixes/EXEC/bugppcpde/test
release name: jgj
release path: /csteam/vir/PDE/pde_gui_fixes/TOOLS/pde
5-51

 C/C++ Reference Manual c.report
c.report 5

Generate profile reports in conjunction withc.analyze -P

The syntax of thec.report command is:

c.report [options] executable_file[executable_file.prof]

The following represents thec.report options:

Option Meaning Function

-env env environment Specify an environment pathname

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-v verbose Print invocations of subprocesses

-H help Display syntax and options for this function

-a all List information from all individual runs even if-t option is on

-b basic List basic block statistics

-B num expens ive
basic

List only thenum most expensive basic blocks

-B num% % time basic List only the basic blocks where the firstnum% of time was spent

-c calls For each routine, list calls it makes

-d rng data range Restrict range of data sets examined

-f for each For each routine, list who calls it

-i info List summary information for the whole run

-l max Use max time instead of min time of basic block

-M hz Mhz Specify assumed megahertz clock rate for computing wall time

-m milliseconds Print milliseconds rather than cycles for most reports

-n miss List data access cache miss statistics

-N num data acc miss List only thenum most numerous data access secondary cache misses

-o cache miss List instruction cache miss statistics

-O num secondary miss List only thenum most numerous instruction secondary cache misses

-r routine List routine statistics

-R num expensive rou-
tine

List only thenum most expensive routines

-R num% % time routine List only the routines that use the firstnum% of time
5-52

c.report Concurrent C/C++ Utilities

m.
executable_file.prof is the name of the profile data file generated by running the progra
The default is the program name with the suffix.prof .

See “c.analyze” on page 5-3 for more information.

-s summary List header summarizing data set from each run

-t total Total all data sets and list cumulative times

-T file dump Dump sum of all data sets into specifiedfile

-w readable Just dump the raw profile data in human readable form

-z zero List routines and basic blocks with zero time

Option Meaning Function
5-53

 C/C++ Reference Manual c.rmenv

tion
.

n of

been
/C++

ror

ot
c.rmenv 5

Destroy an environment; compilation, linking, etc. no longer possible

The syntax of thec.rmenv command is:

c.rmenv [options] environment_pathname

The following represents thec.rmenv options:

Removes an environment, including all units, their state information, and any parti
definitions. The source files and any built partitions are left intact after this operation

The -f option can be used to force an environment’s destruction, even if some portio
it does not exist. For example, if thec.mkenv utility was interrupted during its execution
(due to not enough disk space, power failure, etc.), the environment may not have
successfully created. If the environment cannot be recognized as valid, Concurrent C
will fail with a message similar to the following:

c.rmenv: database file .c++/.database doesn’t exist
 in environment earth.

The -f option will force this environment to be removed, thereby overriding such er
messages.

The environment can be re-created withc.mkenv (see page 5-39), but it will be empty
and any state will have to be reconstructed by the user.

Option Meaning Function

-env env environment Specify an environment pathname

-f force Force an environment destruction, even if it or some portion of it does n
exist

-H help Display syntax and options for this function

-rel release release Specify a Concurrent C/C++ release (other than the default release)
5-54

c.rmsrc Concurrent C/C++ Utilities

the

ill
rch

,

c.rmsrc 5

Remove knowledge of source files (and units therein) from the environ-
ment

The syntax of thec.rmsrc command is:

c.rmsrc [options] [source_file ...]

The following represents thec.rmsrc options:

Thec.intro tool can be used to re-associate the source files (and units therein) with
environment, but those units will be re-created in theuncompiled state.

Option Meaning Function

-all remove all Remove all units in the current environment

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-r remove Remove the actual source files

-refs references Remove references to removed units. Otherwise, the environment w
attempt to satisfy those references by searching the environment sea
path for a unit of the same name.

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-s file_list file list file_list is assumed to be a list of files. When this option is given
c.rmsrc readsfile_list and removes each file in the list

If - is given,c.rmsrc readsstdin instead

-v verbose Display a message for each removed source file

-vv very verbose Echo removed units tostdout
5-55

 C/C++ Reference Manual c.script

am-
ill be
s com-

iron-
rt of

s are
the

e-

n-

re

e-

)

c.script 5

Produce a script of c.* commands to reproduce the current environ-
ment

The syntax of thec.script command is:

c.script

The following represents thec.script options:

Thec.script tool can be used to reconstruct an environment at a later time. For ex
ple, a future release of the tools may not use a compatible database format, so it w
necessary to use c.script in the old release, then run the script using the new release’
mands.

The-no_mkenv option suppresses the generatation of commands that create the env
ment and that set environment-wide options. This would be used to merge all or pa
one environment into another, for example.

The -allparts , -plist , -pfile , and-executables options restrict the script to
just recreating some or all partitions. Referenced units and unspecified partition
declared so that they can be found on the environment search path, unless-
no_shadow option is specified.

Option Meaning Function

-allparts Restrict script to recreating partitions; units are not recreated

-echo echo Include echo commands in generated script to indicate progress

-env env environment Specify an environment pathname

-executables Restrict script to recreating executable partitions; units are not recr
ated

-H help Display syntax and options for this function

-no_mkenv Restrict script from creating a new environment and setting enviro
ment wide options

-no_shadow Restrict script from declaring referenced units and partitions that a
not being recreated. Only useful with the-allparts, -pfile , or
-plist options

-pfile file Restrict script to recreating those partitions specified infile; units are
not recreated

-plist “partition-list” Restrict script to recreating specified partitions; units are not recr
ated

-rel release release Specify a Concurrent C/C++ release (other than the default release
5-56

c.script Concurrent C/C++ Utilities

f
loper

ent

s. So

n-
Consider the following senario: environmentA is a huge environment with hundreds o
units, dozens of archives, and scores of executable programs. It is frozen. A deve
wishes to test a small change to one program without modifying enviornmentA and with-
out rebuilding everything. The developer could do the following, starting in environm
A’s directory:

$ c.script -plist program_1 > ../B/doit.sh
$ cd ../B
$ sh ./doit.sh
$ c.path -A ../A

Now, environmentB can see all the units and partitions of environmentA as Foreign units
and partitions, exceptprogram_1 , which is Native. Buildingprogram_1 in environ-
mentB will use the units and libraries from environmentA.

Now, to actually try the change, the developer could:

$ cp ../A/unit_1.c .
$ c.intro unit_1.c
$ c.edit unit_1
$ c.partition -add unit_1 program_1
$ c.build program_1

This forcesprogram_1 to link with environmentB’s local copy ofunit_1 rather than
picking up the un-fixed copy in an archive in environmentA. Now, let’s say that because
of link order issues, it turns out thatunit_1 must be picked up form the archive. So now
the developer wants to export the definition of the archive in environmentA, but doesn’t
need, or want, to re-create the environment or re-declare the other units and partition
the developer could:

$ cd ../A
$ c.script -no_mkenv -no_shadow -plist archive_1 > ../B/
doit.sh
$ cd ../B
$ sh ./doit.sh
$ c.partition -del unit_1 program_1
$ c.build program_1

Now whenprogram_1 is built, the program development environment finds the depe
dant partitionarchive_1 to be a local partition that isn’t built yet, so it recursively
builds it. All the units that go intoarchive_1 come from environmentA, except
unit_1 , which is built locally.
5-57

 C/C++ Reference Manual c.touch

file,

n

c.touch 5

Make the environment consider a unit consistent with its source file's
timestamp

The syntax of thec.touch command is:

c.touch [options] [unit-id ...]

The following represents thec.touch options:

unit-id is defined by the following syntax:

unit | all

Thec.touch tool is used to force a unit to be considered consistent with its source
usually to keep it from being rebuilt byc.build . Note that it may still be considered
inconsistent for other reasons.

Thec.invalid tool is provided to allow the opposite functionality. See “c.invalid” o
page 5-28 for details.

Option Meaning Function

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-source file source file Touch all units in the specified file

-v verbose Display a message for each invalidated unit
5-58

Link Options Concurrent C/C++ Utilities

ol

for

t

s

i-

link

-

Link Options 5

Many link options have more than one spelling.

Option Function

--c
--c++

Force linking as C or C++ program.

-e sym
--entry_point= sym

Set the entry point address for the output file to be that of the symb
sym.

-h name
--dynamic_link_name= name
-sp name

Recordnamein the object’sdynamic section. namewill be used by
the dynamic linker as the pathname of the shared object to search
at run time.

-L dir
--library_directory= dir

Add dir to the library search directories. This will effect subsequen
-l link options.

-l lib
--library= lib

Search the library search path for a liblib.so or liblib.a file to link with.

-Mmapfile
--mapfile= mapfile

Read mapfile as a text files of directives to ld. Use of this option i
strongly discouraged.

-m
--memory_map

Produce a memory map of the input/output sections on stdout.

-O[level,[no_]post_linker]
-O[no_] analyze
--optimization_level= level
--post_linker
--no_post_linker

Invoke the post-link optimization (analyze(1)), select faster
libraries by default, etc. See “Optimization” inCompailtaion Systems
Volume 2 (Concepts)for detailed discussion of link-time and post-
link-time optimizations.

-P partition Link with the named partition. This is the same as specifying a part
tion with the-parts option ofc.partition , except that using
the -P link option allows the user to control the order that partitions
are loaded with respect to each other and to other object files and
options.

-Qfpexcept= precision
--fpexcept= precision

Initialize the machine state register to indicate the kind of floating
point exceptions that can be taken.precisioncan beimprecise (the
default),precise , ordisabled .

-Qno_vendor_reloc Do not output relocation information in the vendor section of the
object file for use by theanalyze(1) tool. Post-link optimization
will not be possible if this option is used.

-Qreentrant_library Disallow the implied use of the nonreentrant C library libnc.

-s
--strip

Strip symbolic information from the output file.

-sl Create a symbolic link from the output file of the partition to the path
specified by the-sp link option.
5-59

 C/C++ Reference Manual Link Options

h

ch

c

s
s
,
-
t’s

e

-

le
-Uunit Link with the named unit. This is the same as specifying a unit wit
the -add option of c.partition, except using the -U link option allows
the user to control the order that units are loaded with respect to ea
other and other link options.

-u sym
--undefined_linker_symbol= sym

Treatsym as an undefined symbol that must be resolved.

-V Verbose output fromld(1) .

-Wa, option
--pass_to_analyze= option

Pass an option directory toanalyze(1) .

-Wl, option
--pass_to_linker= option

Pass an option directly told(1) . Use of this option is strongly dis-
couraged.

-X Do not look in alternative search paths for libraries.

-x
--reduce_symbols

Do not preserve local symbols with typeSTT_NOTYPE.

-Zlibs= mode
--library_linkage= mode

Govern library inclusion.modemay bedynamic , to direct subse-
quent-l link options to search for shared objects before trying stati
libraries, orstatic , to direct subsequent-l options to search only
for static libraries

-Zlink= mode
--link_mode= mode

Select whether to linkstatic or dynamic .

-Zsymbolic
--symbolic

In shared object, bind references to global symbols to their definition
when in the object, if definitions are available. Normally, reference
to global symbols within shared objects are not bound until run time
even if definitions are available, so that definitions of the same sym
bol in an executable or other shared objects can overed the objec
own definition.

-zdefs
--linker_z=defs

Force a fatal error if any undefined symbols remain at the end of th
link. This is the default for executable partitions.

-zlowzeros
-zlowzeroes
--linker_z=lowzeros
--linker_z=lowzeroes

Support dereferencing of NULL pointers. Seeld(1) .

-znodefs
--linker_z=nodefs

Allow undefined symbols. This is the default for shared object par
tititions.

-ztext
--linker_z=text

Force a fatal error if any relocations against non-writable, allocatab
sections remain.

Option Function
5-60

6-1
6-1
6-2
6-4
6-5

6-6
6-8
6-9
6-14
6-14
6-16
6-19
-24
6
C++ and C Dialects

Overview .
C++ Dialect Accepted .

New Language Features Accepted .
New Language Features Not Accepted .
Anachronisms Accepted. .
Extensions Accepted in Normal C++ Mode. .
Extensions Accepted in Cfront 2.1 Compatibility Mode
Extensions Accepted in Cfront 2.1 and 3.0 Compatibility Mode.

C Dialect Accepted .
C9X Extensions .
ANSI C Extensions. .
K&R/pcc Mode .
Extensions Accepted in SVR4 Compatibility Mode . 6

PowerMAX OS Real-Time Guide

ncur-

es.

dard,

fea-
d or
fea-
rror
r at

strict
6
Chapter 6C++ and C Dialects

6
6
5

Overview 6

This chapter discusses the various dialects of C++ and C that are supported by the Co
rent C++ compiler. The following topics are covered:

• New Language Features Accepted

• New Language Features Not Accepted

• Anachronisms Accepted

• Extensions Accepted in Normal C++ Mode

• Extensions Accepted incfront 2.1 Compatibility Mode

• Extensions Accepted incfront 2.1 and 3.0 Compatibility Mode

• C Dialects Accepted

- ANSI C Extensions

- K&R/pcc Mode

- Extensions Accepted in SVR4 C Compatibility Mode

See Chapter 8 (“Compilation Modes”) for information on options to select these mod

C++ Dialect Accepted 6

The front end accepts the C++ language as defined by the ISO/IEC 14882:1998 stan
with the exceptions listed below.

The front end also has a cfront compatibility mode, which duplicates a number of “
tures” and bugs of cfront 2.1 and 3.0.x. Complete compatibility is not guarantee
intended—the mode is there to allow programmers who have unwittingly used cfront
tures to continue to compile their existing code. In particular, if a program gets an e
when compiled by cfront, the EDG front end may produce a different error or no erro
all.

Command-line options are also available to enable and disable anachronisms and
standard-conformance checking.
6-1

C/C++ Reference Manual
New Language Features Accepted 6

The following features not in traditional C++1 but in the standard are implemented:

• The dependent statement of anif , while , do-while , or for is consid-
ered to be a scope, and the restriction on having such a dependent statement
be a declaration is removed.

• The expression tested in anif , while , do-while , or for , as the first
operand of a “?” operator, or as an operand of the “&&”, “ || ”, or “ ! ” oper-
ators may have a pointer-to-member type or a class type that can be con-
verted to a pointer-to-member type in addition to the scalar cases permitted
by the ARM.

• Qualified names are allowed in elaborated type specifiers.

• A global-scope qualifier is allowed in member references of the form
x.::A::B andp->::A::B .

• The precedence of the third operand of the “?” operator is changed.

• If control reaches the end of themain() routine, andmain() has an inte-
gral return type, it is treated as if areturn 0; statement were executed.

• Pointers to arrays with unknown bounds as parameter types are diagnosed
as errors.

• A functional-notation cast of the formA() can be used even ifA is a class
without a (nontrivial) constructor. The temporary created gets the same
default initialization to zero as a static object of the class type.

• A cast can be used to select one out of a set of overloaded functions when
taking the address of a function.

• Template friend declarations and definitions are permitted in class defini-
tions and class template definitions.

• Type template parameters are permitted to have default arguments.

• Function templates may have nontype template parameters.

• A reference toconst volatile cannot be bound to an rvalue.

• Qualification conversions such as conversion fromT** to T const *
const * are allowed.

• Digraphs are recognized.

• Operator keywords (e.g.,and , bitand , etc.) are recognized.

• Static data member declarations can be used to declare member constants.

• wchar_t is recognized as a keyword and a distinct type.

• bool is recognized.

1. The C++ language of “The Annotated C++ Reference Manual” by Ellis and Stroustrup.
6-2

C++ and C Dialects
• RTTI (runtime type identification), includingdynamic_cast and the
typeid operator, is implemented.

• Declarations in tested conditions (inif , switch , for , andwhile state-
ments) are supported.

• Array new anddelete are implemented.

• New-style casts (static_cast , reinterpret_cast , and
const_cast) are implemented.

• Definition of a nested class outside its enclosing class is allowed.

• mutable is accepted on nonstatic data member declarations.

• Namespaces are implemented, includingusing declarations and direc-
tives. Access declarations are broadened to match the corresponding
using declarations.

• Explicit instantiation of templates is implemented.

• Thetypename keyword is recognized.

• explicit is accepted to declare non-converting constructors.

• The scope of a variable declared in thefor-init-statement of a
for loop is the scope of the loop (not the surrounding scope).

• Member templates are implemented.

• The new specialization syntax (using “template <> ”) is implemented.

• Cv-qualifiers are retained on rvalues (in particular, on function return val-
ues).

• The distinction between trivial and nontrivial constructors has been imple-
mented, as has the distinction between PODs and non-PODs with trivial
constructors.

• The linkage specification is treated as part of the function type (affecting
function overloading and implicit conversions).

• extern inline functions are supported, and the default linkage for
inline functions is external.

• A typedef name may be used in an explicit destructor call.

• Placement delete is implemented.

• An array allocated via a placement new can be deallocated via delete.

• Covariant return types on overriding virtual functions are supported.

• enum types are considered to be non-integral types.

• Partial specialization of class templates is implemented.

• Partial ordering of function templates is implemented.

• Function declarations that match a function template are regarded as inde-
pendent functions, not as “guiding declarations” that are instances of the
template.
6-3

C/C++ Reference Manual
• It is possible to overload operators using functions that take enum types
and no class types.

• Explicit specification of function template arguments is supported.

• Unnamed template parameters are supported.

• The new lookup rules for member references of the formx.A::B and
p->A::B are supported.

• The notation:: template (and->template , etc.) is supported.

• In a reference of the formf()->g() , with g a static member function,
f() is evaluated, and likewise for a similar reference to a static data mem-
ber. The ARM specifies that the left operand is not evaluated in such cases.

• enum types can contain values larger than can be contained in anint .

• Default arguments of function templates and member functions of class
templates are instantiated only when the default argument is used in a call.

• String literals and wide string literals haveconst type.

• Class name injection is implemented.

• Argument-dependent (Koenig) lookup of function names is implemented.

• Class and function names declared only in unqualified friend declarations
are not visible except for functions found by argument-dependent lookup.

• A void expression can be specified on a return statement in avoid func-
tion.

• Universal character set escapes (e.g.,\uabcd) are implemented.

• On a call in which the expression to the left of the opening parenthesis has
class type, overload resolution looks for conversion functions that can con-
vert the class object to pointer-to-function types, and each such pointed-to
“surrogate function” type is evaluated alongside any other candidate func-
tions.

New Language Features Not Accepted 6

The following features of the C++ standard are not implemented yet:

• reinterpret_cast does not allow casting a pointer to member of one
class to a pointer to member of another class if the classes are unrelated.

• Two-phase name binding in templates, as described in [temp.res] and
[temp.dep] of the standard, is not implemented.

• Template template parameters are not implemented.

• Theexport keyword for templates is not implemented.

• A typedef of a function type cannot include member function cv-qualifi-
ers.
6-4

C++ and C Dialects
• A partial specialization of a class member template cannot be added out-
side of the class definition.

Anachronisms Accepted 6

The following anachronisms are accepted when anachronisms are enabled:

• overload is allowed in function declarations. It is accepted and ignored.

• Definitions are not required for static data members that can be initialized
using default initialization. The anachronism does not apply to static data
members of template classes; they must always be defined.

• The number of elements in an array may be specified in an arraydelete
operation. The value is ignored.

• A single operator++() andoperator--() function can be used to
overload both prefix and postfix operations.

• The base class name may be omitted in a base class initializer if there is
only one immediate base class.

• A bound function pointer (a pointer to a member function for a given
object) can be cast to a pointer to a function.

• A nested class name may be used as a nonnested class name provided no
other class of that name has been declared. The anachronism is not applied
to template classes.

• A reference to a non-const type may be initialized from a value of a differ-
ent type. A temporary is created, it is initialized from the (converted) initial
value, and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an rvalue of
the class type or a derived class thereof. No (additional) temporary is used.

• A function with old-style parameter declarations is allowed and may partic-
ipate in function overloading as though it were prototyped. Default argu-
ment promotion is not applied to parameter types of such functions when
the check for compatibility is done, so that the following declares the over-
loading of two functions namedf :

int f(int);
int f(x) char x; { return x; }

• It will be noted that in C this code is legal but has a different meaning: a
tentative declaration off is followed by its definition.

• When --nonconst_ref_anachronism is enabled, a reference to a
nonconst class can be bound to a class rvalue of the same type or a derived
type thereof.

struct A {
 A(int);
 A operator=(A&);
 A operator+(const A&);
6-5

C/C++ Reference Manual

ions

ous
mem-
other
};
main () {
 A b(1);
 b = A(1) + A(2); // Allowed as anachronism
}

Extensions Accepted in Normal C++ Mode 6

The following extensions are accepted in all modes (except when strict ANSI violat
are diagnosed as errors):

• A friend declaration for a class may omit theclass keyword:

class B;
class A {
 friend B; // Should be "friend class B"
};

• Constants of scalar type may be defined within classes (this is an old form;
the modern form uses an initialized static data member):

class A {
 const int size = 10;
 int a[size];
};

• In the declaration of a class member, a qualified name may be used:

struct A {
 int A::f(); // Should be int f();
};

• The preprocessing symbolc_plusplus is defined in addition to the stan-
dard__cplusplus .

• An extension is supported to allow an anonymous union to be introduced
into a containing class by atypedef name — it needn’t be declared
directly, as with a true anonymous union. For example:

typedef union {
 int i, j;
} U; // U identifies a reusable anonymous union.
class A {
 U; // Okay -- references to A::i and
 // A::j are allowed.
};

In addition, the extension also permits “anonymous classes” and “anonym
structs,” as long as they have no C++ features (e.g., no static data members or
ber functions and no nonpublic members) and have no nested types other than
anonymous classes, structs, or unions. For instance,

struct A {
 struct {
 int i, j;
6-6

C++ and C Dialects

a-

n

also
 }; // Okay -- references to A::i and
 // A::j are allowed.
};

• The NCEG proposed extension for C (see below) is itself extended to allow
restrict as a type qualifier for reference and pointer-to-member types
and for nonstatic member functions. The set of C++ extensions is described
in J16/92-0057.

• An assignment operator declared in a derived class with a parameter type
matching one of its base classes is treated as a “default” assignment opera-
tor — that is, such a declaration blocks the implicit generation of a copy
assignment operator. (This is cfront behavior that is known to be relied
upon in at least one widely used library.) Here’s an example:

struct A { };
struct B : public A {
 B& operator=(A&);
};

By default, as well as in cfront-compatibility mode, there will be no implicit decl
ration of B::operator=(const B&) , whereas in strict-ANSI mode
B::operator=(A&) is not a copy assignment operator andB::opera-
tor=(const B&) is implicitly declared.

• Implicit type conversion between a pointer to anextern "C" function
and a pointer to anextern "C++" function is permitted. Here’s an
example:

extern "C" void f(); // f’s type has extern "C"
linkage
void (*pf)() // pf points to an extern
"C++" function
 = &f; // error unless implicit
conversion is allowed

I t i s d isab led in s t r ic t -ANSI mode, un less you spec i fy the opt io
--implicit_extern_c_type_conversion .

• A “ ?” operator whose second and third operands are string literals or wide
string literals can be implicitly converted to “char * ” or “ wchar_t * ”.
(Recall that in C++ string literals areconst . There is a deprecated
implicit conversion that allows conversion of a string literal to “char * ”,
dropping theconst . That conversion, however, applies only to simple
string literals. Allowing it for the result of a “?” operation is an extension.)

char *p = x ? "abc" : "def";

• Except in strict-ANSI mode, default arguments may be specified for func-
tion parameters other than those of a top-level function declaration (e.g.,
they are accepted ontypedef declarations and on pointer-to-function and
pointer-to-member-function declarations).

Except where noted, all of the extensions described in the C dialect section are
allowed in C++ mode.
6-7

C/C++ Reference Manual

the
cted
Extensions Accepted in Cfront 2.1 Compatibility Mode 6

The following extensions are accepted in cfront 2.1 compatibility mode in addition to
extensions listed in the 2.1/3.0 section following (i.e., these are things that were corre
in the 3.0 release of cfront):

• The dependent statement of anif , while , do-while , or for is not con-
sidered to define a scope. The dependent statement may not be a declara-
tion. Any objects constructed within the dependent statement are destroyed
at exit from the dependent statement.

• Implicit conversion from integral types to enumeration types is allowed.

• A non-const member function may be called for aconst object. A
warning is issued.

• A const void * value may be implicitly converted to avoid * value,
e.g., when passed as an argument.

• When, in determining the level of argument match for overloading, a refer-
ence parameter is initialized from an argument that requires a non-class
standard conversion, the conversion counts as a user-defined conversion.
(This is an outright bug, which unfortunately happens to be exploited in the
NIH class libraries.)

• When a builtin operator is considered alongside overloaded operators in
overload resolution, the match of an operand of a builtin type against the
builtin type required by the builtin operator is considered a standard con-
version in all cases (e.g., even when the type is exactly right without con-
version).

• A reference to a non-const type may be initialized from a value that is a
const -qualified version of the same type, but only if the value is the result
of selecting a member from aconst class object or a pointer to such an
object.

• A cast to an array type is allowed; it is treated like a cast to a pointer to the
array element type. A warning is issued.

• When an array is selected from a class, the type qualifiers on the class
object (if any) are not preserved in the selected array. (In the normal mode,
any type qualifiers on the object are preserved in the element type of the
resultant array.)

• An identifier in a function is allowed to have the same name as a parameter
of the function. A warning is issued.

• An expression of typevoid may be supplied on the return statement in a
function with avoid return type. A warning is issued.

• A parameter of type “const void * ” is allowed on operator
delete ; it is treated as equivalent to “void * ”.

• A period (“. ”) may be used for qualification where “:: ” should be used.
Only “:: ” may be used as a global qualifier. Except for the global quali-
fier, the two kinds of qualifier operators may not be mixed in a given name
(i.e., you may sayA::B::C or A.B.C but notA::B.C or A.B::C). A
6-8

C++ and C Dialects

the

ility
period may not be used in a vacuous destructor reference nor in a qualifier
that follows a template reference such asA<T>::B .

• Cfront 2.1 does not correctly look up names in friend functions that are
inside class definitions. In this example function f should refer to the func-
tions and variables (e.g.,f1 anda1) from the class declaration. Instead,
the global definitions are used.

int a1;
int e1;
void f1();
class A {
 int a1;
 void f1();
 friend void f()
 {
 int i1 = a1; // cfront uses global a1
 f1(); // cfront uses global f1
 }
};

Only the innermost class scope is (incorrectly) skipped by cfront as illustrated in
following example.

int a1;
int b1;
struct A {
 static int a1;
 class B {
 static int b1;
 friend void f()
 {
 int i1 = a1; // cfront uses A::a1
 int j1 = b1; // cfront uses global b1
 }
 };
};

• operator= may be declared as a nonmember function. (This is flagged
as an anachronism by cfront 2.1)

• A type qualifier is allowed (but ignored) on the declaration of a constructor
or destructor. For example:

class A {
 A() const; // No error in cfront 2.1 mode
};

Extensions Accepted in Cfront 2.1 and 3.0 Compatibility Mode 6

The following extensions are accepted in both cfront 2.1 and cfront 3.0 compatib
mode (i.e., these are features or problems that exist in both cfront 2.1 and 3.0):
6-9

C/C++ Reference Manual

he
ite
• Type qualifiers on thethis parameter may to be dropped in contexts such
as this example:

struct A {
 void f() const;
};
void (A::*fp)() = &A::f;

This is actually a safe operation. A pointer to aconst function may be put into a
pointer to non-const , because a call using the pointer is permitted to modify t
object and the function pointed to will actually not modify the object. The oppos
assignment would not be safe.

• Conversion operators specifying conversion tovoid are allowed.

• A nonstandard friend declaration may introduce a new type. A friend dec-
laration that omits the elaborated type specifier is allowed in default mode,
but in cfront mode the declaration is also allowed to introduce a new type
name.

struct A {
 friend B;
};

• The third operand of the? operator is a conditional expression instead of
an assignment expression as it is in the modern language.

• A reference to a pointer type may be initialized from a pointer value with-
out use of a temporary even when the reference pointer type has additional
type qualifiers above those present in the pointer value. For example,

int *p;
const int *&r = p; // No temporary used

• A reference may be initialized with a null.

• Because cfront does not check the accessibility of types, access errors for
types are issued as warnings instead of errors.

• When matching arguments of an overloaded function, aconst variable
with value zero is not considered to be a null pointer constant. In general,
in overload resolution a null pointer constant must be spelled “0” to be
considered a null pointer constant (e.g.,’\0’ is not considered a null
pointer constant).

• Inside the definition of a class type, the qualifier in the declarator for a
member declaration is dropped if that qualifier names the class being
defined.

struct S {
 void S::f(); // No warning with --microsoft_bugs
};

• An alternate form of declaring pointer-to-member-function variables is
supported, namely:

struct A {
 void f(int);
6-10

C++ and C Dialects

lass
d

:

ecla-
o
ch as
2.1

s

thing
 static void sf(int);
 typedef void A::T3(int); // nonstd typedef decl
 typedef void T2(int); // std typedef
};
typedef void A::T(int); // nonstd typedef decl
T* pmf = &A::f; // nonstd ptr-to-member decl
A::T2* pf = A::sf; // std ptr to static mem decl
A::T3* pmf2 = &A::f; // nonstd ptr-to-member
decl

whereT is construed to name a routine type for a nonstatic member function of c
A that takes anint argument and returnsvoid ; the use of such types is restricte
to nonstandard pointer-to-member declarations. The declarations ofT andpmf in
combination are equivalent to a single standard pointer-to-member declaration

void (A::* pmf)(int) = &A::f;

A nonstandard pointer-to-member declaration that appears outside of a class d
ration, such as the declaration ofT, is normally invalid and would cause an error t
be issued. However, for declarations that appear within a class declaration, su
A::T3 , this feature changes the meaning of a valid declaration. cfront version
accepts declarations, such asT, even whenA is an incomplete type; so this case i
also excepted.

• Protected member access checking is not done when the address of a pro-
tected member is taken. For example:

class B { protected: int i; };
class D : public B { void mf(); };
void D::mf() {
 int B::* pmi1 = &B::i; // error, OK in cfront mode
 int D::* pmi2 = &D::i; // OK
}

Note that protected member access checking for other operations (i.e., every
except taking a pointer-to-member address) is done in the normal manner.

• The destructor of a derived class may implicitly call the private destructor
of a base class. In default mode this is an error but in cfront mode it is
reduced to a warning. For example:

class A {
 ~A();
};
class B : public A {
 ~B();
};
B::~B(){} // Error except in cfront mode

• When disambiguation requires deciding whether something is a parameter
declaration or an argument expression, the patterntype-name-or-key-
word(identifier...) is treated as an argument. For example:

class A { A(); };
double d;
6-11

C/C++ Reference Manual

ren-

as
-

o
n

A x(int(d));
A(x2);

By defaultint(d) is interpreted as a parameter declaration (with redundant pa
theses), and sox is a function; but in cfront-compatibility modeint(d) is an argu-
ment andx is a variable.

The declarationA(x2); is also misinterpreted by cfront. It should be interpreted
the declaration of an object namedx2 , but in cfront mode is interpreted as a func
tion style cast ofx2 to the typeA.

Similarly, the declaration

int xyz(int());

declares a function namedxyz , that takes a parameter of type “function taking n
arguments and returning anint .” In cfront mode this is interpreted as a declaratio
of an object that is initialized with the valueint() (which evaluates to zero).

• A named bit-field may have a size of zero. The declaration is treated as
though no name had been declared.

• Plain bit fields (i.e., bit fields declared with a type ofint) are always
unsigned.

• The name given in an elaborated type specifier is permitted to be atype-
def name that is the synonym for a class name, e.g.,

typedef class A T;
class T *pa; // No error in cfront mode

• No warning is issued on duplicate size and sign specifiers.

short short int i; // No warning in cfront mode

• Virtual function table pointer update code is not generated in destructors
for base classes of classes without virtual functions, even if the base class
virtual functions might be overridden in a further-derived class. For exam-
ple:

struct A {
 virtual void f() {}
 A() {}
 ~A() {}
};
struct B : public A {
 B() {}
 ~B() {f();} // Should call A::f according to ARM
12.7
};
struct C : public B {
 void f() {}
} c;

In cfront compatibility mode,B::~B callsC::f .
6-12

C++ and C Dialects
• An extra comma is allowed after the last argument in an argument list, as
for example in

f(1, 2,);

• A constant pointer-to-member-function may be cast to a pointer-to-func-
tion. A warning is issued.

struct A {int f();};
main () {
 int (*p)();
 p = (int (*)())A::f; // Okay, with warning
}

• Arguments of class types that allow bitwise copy construction but also have
destructors are passed by value (i.e., like C structures), and the destructor is
not called on the “copy.” In normal mode, the class object is copied into a
temporary, the address of the temporary is passed as the argument, and the
destructor is called on the temporary after the call returns. Note that
because the argument is passed differently (by value instead of by address),
code like this compiled in cfront mode is not calling-sequence compatible
with the same code compiled in normal mode. In practice, this is not much
of a problem, since classes that allow bitwise copying usually do not have
destructors.

• A union member may be declared to have the type of a class for which the
user has defined an assignment operator (as long as the class has no con-
structor or destructor). A warning is issued.

• When an unnamed class appears in atypedef declaration, thetypedef
name may appear as the class name in an elaborated type specifier.

typedef struct { int i, j; } S;
struct S x; // No error in cfront mode

• Two member functions may be declared with the same parameter types
when one is static and the other is nonstatic with a function qualifier.

class A {
 void f(int) const;
 static void f(int); // No error in cfront
mode
};

• The scope of a variable declared in thefor-init-statement is the
scope to which thefor statement belongs.

int f(int i) {
 for (int j = 0; j < i; ++j) { /* ... */ }
 return j; // No error in cfront
mode
}

• Function types differing only in that one is declaredextern "C" and
the otherextern "C++" can be treated as identical:

typedef void (*PF)();
extern "C" typedef void (*PCF)();
6-13

C/C++ Reference Manual

d

ming
d been
e of
le in
void f(PF);
void f(PCF);

• Functions declaredinline have internal linkage.

• enum types are regarded as integral types.

• An uninitializedconst object of non-POD class type is allowed even if its
default constructor is implicitly declared:

struct A { virtual void f(); int i; };
const A a;

• A function parameter type is allowed to involve a pointer or reference to
array of unknown bounds.

• If the user declares anoperator= function in a class, but not one that can
serve as the defaultoperator= , and bitwise assignment could be done on
the class, a defaultoperator= is not generated; only the user-written
operator= functions are considered for assignments (and therefore bit-
wise assignment is not done).

• A member function declaration whose return type is omitted (and thus
implicitly int) and whose name is found to be that of a type is accepted if
it takes no parameters:

typedef int I;
struct S {
 I(); // Accepted in Cfront mode (declares "int
S::I()")
 I(int); // Not accepted
};

C Dialect Accepted 6

The front end accepts the ANSI C language as defined by X3.159–1989.

The special comments recognized by the UNIXlint program —/*ARGSUSED*/ ,
/*VARARGS*/ (with or without a count of non-varying arguments), an
/*NOTREACHED*/ — are also recognized by the front end.

C9X Extensions 6

Certain C language extensions that have been approved for inclusion in the forthco
C9X language definition can be enabled selectively. Sometimes these extensions ha
available in existing compilers under slightly different guises: options to enable som
these C9X-like extensions are also provided. Not all of the C9X extensions are availab
C++ mode.

• Whennot compiling in strict ANSI C mode, end-of-line comments (using
// as delimiter) are supported.
6-14

C++ and C Dialects

us-

spe-

se a
sen

oken
the
rt of a

.

be
• The options --variadic_macros , --no_variadic_macros ,
--extended_variadic_macros and--no_extended_variadic_macros
control whether macros taking a variable number of arguments are recog-
nized. These are also available in C++ mode. The current default is to dis-
allow them.

Ordinary variadic macros (as included in the proposed C9X definition) are ill
trated by the following example:

#define OVM(x, ...) x(__VA_ARGS__)
void f() { OVM(printf, "%s %d\n", "Three args for ",
1); }
/* Expands to: printf("%s %d\n", "Three args for ",
1) */

During expansion the special identifier__VA_ARGS__will be replaced by the
trailing arguments of the macro invocation. If variadic macros are enabled, this
cial identifier can appear only in the replacement list of variadic macros.

Extended variadic macros (as implemented by certain pre-C9X compiler) u
slightly different syntax and allow the name of the variadic parameter to be cho
(instead of... /__VA_ARGS__):

#define EVM(x, args...) x(args)
void f() { EVM(printf, "%s %d\n", "Three args for ",
1); }
/* Same expansion as previous example. */

In addition, enabling extended variadic macros adds a special behavior to the t
pasting operator ## when it is followed by an empty or omitted macro argument:
macro parameter or continuous sequence of non-whitespace characters (not pa
macro parameter) preceding the operator is erased. Hence,

EVM("Hello World\n")

expands toprintf("Hello World\n") and the extraneous comma is erased

Enabling either kind of variadic macros also allows trailing macro arguments to
omitted:

#define M(a, b)
void M(f); /* Becomes: void f(); No error or warning.
*/

• If the --long_long option is specified,

• the long long andunsigned long long types are accepted;

• integer constants suffixed byLL are given the typelong long , and
those suffixed byULL are given the typeunsigned long long
(any of the suffix letters may be written in lower case);

• the specifier%lld is recognized inprintf andscanf formatting
strings; and

• the long long types are accommodated in the usual arithmetic
conversions.
6-15

C/C++ Reference Manual

r exam-

lue
• An extension is supported to allowrestrict as a type qualifier for
object pointer types and function parameter arrays that decay to pointers.
Its presence is recorded in the IL so that back ends can perform optimiza-
tions that would otherwise be prevented because of possible aliasing. This
extension follows the NCEG proposal for incorporatingrestrict into C
(see X3J11.1 Technical Report 2).

• Designators may be accepted in initializers for aggregates. Designators are
notallowed inC++modehowever.Seealsocommand lineoptions--desig-
nators , --no_designators , --extended_designators and
--no_extended_designators . Currently, they are disabled by default.

When--designators is specified, designators of the forms.x and [k] are
accepted. They can be concatenated to reach nested aggregate elements. Fo
ple:

struct X { double a; int b[10] } x
 { .b = { 1, [5] = 2 }, .b[3] = 1, .a = 42.0 };

In addition, when--extended_designators is used, designators of the form
x: and[m ... n] are accepted and the assignment (=) token becomes optional
after array element designators. Field designators of the formx: cannot immedi-
ately be followed by an assignment token (=) or another designator. Examples:

struct X { double a; int b[10] } x
 { b: { 1, [5 ... 9] = 2 }, .b[7] 1, a: 42.0 };
struct Y y = { b:[3] /* Error */ = 7,
 a: = /* Error */ 42.0 };

Designators permit multiple initializations of the same subobject: only the last va
is retained, but side-effects of prior initializing expressions do occur.

A future release will enable these options by default.

ANSI C Extensions 6

The following extensions are accepted:

• A translation unit (input file) can contain no declarations.

• Comment text can appear at the ends of preprocessing directives.

• __ALIGNOF__ is similar tosizeof , but returns the alignment require-
ment value for a type, or1 if there is no alignment requirement. It may be
followed by a type or expression in parentheses:

__ALIGNOF__(type)
__ALIGNOF__(expression)

The expression in the second form is not evaluated.

• __INTADDR__(expression) scans the enclosed expression as a constant
expression, and converts it to an integer constant (it is used in theoff-
setof macro).
6-16

C++ and C Dialects
• Bit fields may have base types that areenums or integral types besides
int andunsigned int . This matches A.6.5.8 in the ANSI Common
Extensions appendix.

• The last member of astruct may have an incomplete array type. It may
not be the only member of the struct (otherwise, the struct would have zero
size). (Allowed also in C++, but only when the structure is C-like.)

• A file-scope array may have an incompletestruct , union , or enum
type as its element type. The type must be completed before the array is
subscripted (if it is), and by the end of the compilation if the array is not
extern . In C++, an incompleteclass is also allowed.

• Static functions may be declared in function and block scopes. Their decla-
rations are moved to the file scope.

• enum tags may be incomplete: one may define the tag name and resolve it
(by specifying the brace-enclosed list) later.

• The values of enumeration constants may be given by expressions that
evaluate to unsigned quantities that fit in theunsigned int range but
not in theint range. A warning is issued for suspicious cases.

/* When ints are 32 bits: */
enum a {w = -2147483648}; /* No warning */
enum b {x = 0x80000000}; /* No warning */
enum c {y = 0x80000001}; /* No warning */
enum d {z = 2147483649}; /* Warning */

• An extra comma is allowed at the end of anenum list. A remark is issued
except inpcc mode.

• The final semicolon preceding the closing} of a struct or union specifier
may be omitted. A warning is issued except inpcc mode.

• A label definition may be immediately followed by a right brace. (Nor-
mally, a statement must follow a label definition.) A warning is issued.

• An empty declaration (a semicolon with nothing before it) is allowed. A
remark is issued.

• An initializer expression that is a single value and is used to initialize an
entire static array, struct, or union need not be enclosed in braces. ANSI C
requires the braces.

• In an initializer, a pointer constant value may be cast to an integral type if
the integral type is big enough to contain it.

• The address of a variable withregister storage class may be taken. A
warning is issued.

• In an integral constant expression, an integer constant may be cast to a
pointer type and then back to an integral type.

• In duplicate size and sign specifiers (e.g.,short short or unsigned
unsigned) the redundancy is ignored. A warning is issued.

• long float is accepted as a synonym fordouble .
6-17

C/C++ Reference Manual

e at a
• Benign redeclarations oftypedef names are allowed. That is, a typedef
name may be redeclared in the same scope as the same type. A warning is
issued.

• Dollar signs can be accepted in identifiers.

• Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. Thus,0x123e+1 is scanned as three tokens instead
of one invalid token.

• Assignment and pointer difference are allowed between pointers to types
that are interchangeable but not identical, for example,unsigned char
* andchar * . This includes pointers to same-sized integral types (e.g.,
typically, int * andlong *). A warning is issued except inpcc mode.
Assignment of a string constant to a pointer to any kind of character is
allowed without a warning.

• Assignment of pointer types is allowed in cases where the destination type
has added type qualifiers that are not at the top level (e.g.,int ** to
const int **). Comparisons and pointer difference of such pairs of
pointer types are also allowed. A warning is issued.

• In operations on pointers, a pointer tovoid is always implicitly converted
to another type if necessary, and a null pointer constant is always implicitly
converted to a null pointer of the right type if necessary. In ANSI C, some
operators allow such things, and others (generally, where it does not make
sense) do not allow them.

• Pointers to different function types may be assigned or compared for equal-
ity (==) or inequality (!=) without an explicit type cast. A warning is
issued. This extension is not allowed in C++ mode.

• A pointer tovoid may be implicitly converted to or from a pointer to a
function type.

• The#assert preprocessing extensions of AT&T System V release 4 are
allowed. These allow definition and testing of predicate names. Such
names are in a name space distinct from all other names, including macro
names. A predicate name is given a definition by a preprocessing directive
of the form

#assert name
#assert name(token-sequence)

which defines the predicatename. In the first form, the predicate is not given a
value. In the second form, it is given the valuetoken-sequence.

Such a predicate can be tested in a#if expression, as follows

#name(token-sequence)

which has the value 1 if a#assert of that namewith that token-sequencehas
appeared, and 0 otherwise. A given predicate may be given more than one valu
given time.

A predicate may be deleted by a preprocessing directive of the form

#unassert name
6-18

C++ and C Dialects

ond

ront

d by

er
ta-
ran-
#unassert name(token-sequence)

The first form removes all definitions of the indicated predicate name; the sec
form removes just the indicated definition, leaving any others there may be.

• An extension is supported to allow constructs similar to C++ anonymous
unions, including the following:

• not only anonymous unions but also anonymous structs are allowed
— that is, their members are promoted to the scope of the containing
struct and looked up like ordinary members;

• they can be introduced into the containing struct by atypedef
name — they needn’t be declared directly, as with true anonymous
unions; and

• a tag may be declared (C mode only).

Among the restrictions: the extension only applies to constructs within structs.

• External entities declared in other scopes are visible. A warning is issued.

void f1(void) { extern void f(); }
void f2() { f(); /* Using out of scope declaration */
}

• A non-lvalue array expression is converted to a pointer to the first element
of the array when it is subscripted or similarly used.

In the following areas considered “undefined behavior” by the ANSI C standard, the f
end does the following:

• Adjacent wide and non-wide string literals are not concatenated unless
wchar_t andchar are the same type. (In C++ mode, whenwchar_t is
a keyword, adjacent wide and non-wide string literals are never concate-
nated.)

• In character and string escapes, if the character following the\ has no spe-
cial meaning, the value of the escape is the character itself. Thus"\s" ==
"s" . A warning is issued.

• A struct that has no named fields but at least one unnamed field is
accepted by default, but a diagnostic (a warning or error) is issued in strict
ANSI C mode.

K&R/pcc Mode 6

Whenpcc mode is specified, the front end accepts the traditional C language define
The C Programming Language, first edition, by Kernighan and Ritchie (K&R), Pren-
tice-Hall, 1978. In addition, it provides almost complete compatibility with the Reis
cpp and Johnsonpcc widely used as part of UNIX systems; since there is no documen
tion of the exact behavior of those programs, complete compatibility cannot be gua
teed.
6-19

C/C++ Reference Manual

ro-

pt
-

lank
In general, when compiling inpcc mode, the front end attempts to interpret a source p
gram that is valid topcc in the same way thatpcc would. However, ANSI features that
do not conflict with this behavior are not disabled.

In some cases wherepcc allows a highly questionable construct, the front end will acce
it but give a warning, wherepcc would be silent (for example:0x , a degenerate hexadec
imal number, is accepted as zero).

The known cases where the front end is not compatible withpcc are the following:

• Token pasting is not done outside of macro expansions (i.e., in the primary
source line) when two tokens are separated only by a comment. That is,
a/**/b is not considered to beab. Thepcc behavior in that case can be
gotten by preprocessing to a text file and then compiling that file.

The textual output from preprocessing is also equivalent but not identical: the b
lines and white space will not be exactly the same.

• pcc will consider the result of a?: operator to be an lvalue if the first
operand is constant and the second and third operands are compatible lval-
ues. This front end will not.

• pcc mis-parses the third operand of a?: operator in a way that some pro-
grams exploit:

i ? j : k += l

is parsed bypcc as

i ? j : (k += l)

which is not correct, since the precedence of+= is lower than the precedence of?: .
This front end will generate an error for that case.

• lint recognizes the keywords for its special comments anywhere in a
comment, regardless of whether or not they are preceded by other text in
the comment. The front end only recognizes the keywords when they are
the first identifier following an optional initial series of blanks and/or hori-
zontal tabs.lint also recognizes only a single digit of theVARARGS
count; the front end will accumulate as many digits as appear.

The differences inpcc mode relative to the default ANSI mode are as follows:

• The keywordssigned , const , andvolatile are disabled, to avoid
problems with items declared with those names in old-style code. Those
keywords were ANSI C inventions. The other non-K&R keywords (enum
andvoid) are judged to have existed already in code and are not disabled.

• Declarations of the form

typedef some-type void;

are ignored.

• Assignment is allowed between pointers and integers, and between incom-
patible pointer types, without an explicit cast. A warning is issued.
6-20

C++ and C Dialects

ror.
• A field selection of the formp-> field is allowed even ifp does not point to
a struct or union that containsfield. p must be a pointer or an integer.
Likewise,x. field is allowed even ifx is not astruct or union that con-
tainsfield. x must be an lvalue. For both cases, all definitions offield as a
field must have the same offset within theirstruct or union .

• Overflows detected while folding signed integer operations on constants
will cause warnings rather than errors. Usually this should be set to match
the desired target machine behavior on integer operations in C.

• Integral types with the same representation (size, signedness, and align-
ment) will be considered identical and may be used interchangeably. For
example, this means thatint and long will be interchangeable if they
have the same size.

• A warning will be issued for a& applied to an array. The type of such an
operation is “address of array element” rather than “address of array”.

• For the shift operators<< and >>, the usual arithmetic conversions are
done, the right operand is converted toint , and the result type is the type
of the left operand. In ANSI C, the integral promotions are done on the two
operands, and the result type is the type of the left operand. The effect of
this difference is that, inpcc mode, along shift count will force the shift
to be done aslong .

• When preprocessing output is generated, the line-identifying directives will
have thepcc form instead of the ANSI form.

• String literals will not be shared. Identical string literals will cause multiple
copies of the string to be allocated.

• sizeof may be applied to bit fields; the size is that of the underlying type
(e.g.,unsigned int).

• lvalues cast to a type of the same size remain lvalues, except when they
involve a floating-point conversion.

• When a function parameter list begins with atypedef identifier, the
parameter list is considered prototyped only if thetypedef identifier is
followed by something other than a comma or right parenthesis:

typedef int t;
int f(t) {} /* Old-style list */
int g(t x) {} /* Prototyped list, parameter x of
type t */

That is, function parameters are allowed to have the same names astypedef s. In
the normal ANSI mode, of course, any parameter list that begins with atypedef
identifier is considered prototyped, so the first example above would give an er

• The names of functions and of external variables are always entered at the
file scope.

• A function declaredstatic , used, and never defined is treated as if its
storage class wereextern .

• A file-scope array that has an unspecified storage class and remains incom-
plete at the end of the compilation will be treated as if its storage class is
6-21

C/C++ Reference Manual
extern (in ANSI mode, the number of elements is changed to 1, and the
storage class remains unspecified).

• The empty declaration

struct x;

will not hide an outer-scope declaration of the same tag.

• In a declaration of a member of astruct or union , no diagnostic is
issued for omitting the declarator list; nevertheless, such a declaration has
no effect on the layout. For example,

struct s {char a; int; char b[2];} v;
 /* sizeof(v) is 3 */

• enums are always given typeint . In ANSI mode, smaller integral types
will be used if possible.

• No warning is generated for a storage specifier appearing in other than the
first position in a list of specifiers (as inint static).

• short , long , andunsigned are treated as “adjectives” in type specifi-
ers, and they may be used to modify atypedef type.

• A “plain” char is considered to be the same asunsigned char unless
modified by command-line options. In ANSI C, “plain”char is a third
type distinct from bothsigned char andunsigned char .

• Free-standing tag declarations are allowed in the parameter declaration list
for a function with old-style parameters.

• float function parameters are promoted todouble function parameters.

• float functions are promoted todouble functions.

• Declaration specifiers are allowed to be completely omitted in declarations
(ANSI C allows this only for function declarations). Thus

i;

declaresi as anint variable. A warning is issued.

• All float operations are done asdouble .

• __STDC__ is left undefined.

• Extra spaces to prevent pasting of adjacent confusable tokens are not gen-
erated in textual preprocessing output.

• The first directory searched for include files is the directory containing the
file containing the#include instead of the directory containing the pri-
mary source file.

• Trigraphs are not recognized.

• Comments are deleted entirely (instead of being replaced by one space) in
preprocessing output.

• 0x is accepted as a hexadecimal0, with a warning.
6-22

C++ and C Dialects
• 1E+ is accepted as a floating-point constant with an exponent of0, with a
warning.

• The compound assignment operators may be written as two tokens (e.g.,
+= may be written+ =).

• The digits8 and9 are allowed in octal constants.

• A warning rather than an error is issued for integer constants that are larger
than can be accommodated in anunsigned long . The value is trun-
cated to an acceptable number of low-order bits.

• The types of large integer constants are determined according to the K&R
rules (they won’t beunsigned in some cases where ANSI C would
define them that way). Integer constants with apparent values larger than
LONG_MAXare typed aslong and are also marked as “non-arithmetic”,
which suppresses some warnings when using them.

• The escape\a (alert) is not recognized in character and string constants.

• Macro expansion is done differently. Arguments to macros are not
macro-expanded before being inserted into the expansion of the macro.
Any macro invocations in the argument text are expanded when the macro
expansion is rescanned. With this method, macro recursion is possible and
is checked for.

• Token pasting inside macro expansions is done differently. End-of-token
markers are not maintained, so tokens that abut after macro substitution
may be parsed as a single token.

• Macro parameter names inside character and string constants are recog-
nized and substituted for.

• Macro invocations having too many arguments are flagged with a warning
rather than an error. The extra arguments are ignored.

• Macro invocations having too few arguments are flagged with a warning
rather than an error. A null string is used as the value of the missing param-
eters.

• Extra #else s (after the first has appeared in an#if block) are ignored,
with a warning.

• Expressions in aswitch statement are cast toint ; this differs from the
ANSI C definition in that along expression is (possibly) truncated.

• The promotion rules for integers are different:unsigned char and
unsigned short are promoted tounsigned int .

• An identifier in a function is allowed to have the same name as a parameter
of the function. A warning is issued.
6-23

C/C++ Reference Manual
Extensions Accepted in SVR4 Compatibility Mode 6

The following extensions are accepted in SVR4 C compatibility mode:

• Macro invocations having too many arguments are flagged with a warning
rather than an error. The extra arguments are ignored.

• Macro invocations having too few arguments are flagged with a warning
rather than an error. A null string is used as the value of the missing param-
eters.

• The sequence/**/ in a macro definition is treated as equivalent to the
token-pasting operator## .

• lvalues cast to a type of the same size remain lvalues, except when they
involve a floating-point conversion.

• Assignment is allowed between pointers and integers, and between incom-
patible pointer types, without an explicit cast. A warning is issued.

• A field selection of the formp-> field is allowed even ifp does not point to
a struct or union that containsfield. p must be a pointer. Likewise,
x. field is allowed even ifx is not astruct or union that containsfield. x
must be an lvalue. For both cases, all definitions offield as a field must
have the same offset within theirstruct or union .

• In an integral constant expression, an integer constant may be cast to a
pointer type and then back to an integral type.

• Incompatible external object declarations are allowed if the object types
share the same underlying representation.

• Certain incompatible function declarations are allowed. A warning is
issued.

typedef unsigned int size_t;
extern size_t strlen(const char *);
extern int strlen(); /* Warning */
6-24

7-1
7-1

7-3
7-4
7-7
7-8

7-9
-10
7-10
7-

7-12
7-13

7-14
7-15
-16

7-16
7-17
7-17
7-18
7-18
7-18
7-19
7-19
7-19

7-19
7-22
7-23
7-23

7-24
7-25
7-26
7-27
7-28

7-
7-28
7
Special Features of C++

Overview .
Namespace Support .
Template Instantiation .

Automatic Instantiation .
Instantiation Modes .
Instantiation #pragma Directives .
Implicit Inclusion .
Automatic Instantiation in the Program Development Environment 7

Predefined Macros .
Pragmas .12

Edison Defined Pragmas. .
Concurrent Defined Pragmas .

Source Listing Controls. .
Optimization Directives. .
Data Alignment Control Directives. 7

Data Alignment Rules .
#pragma align. .
#pragma min_align .

Miscellaneous Directives. .
#pragma once .
#pragma ident. .
#pragma weak .

Template Instantiation Pragmas .
Precompiled Headers .

Automatic Precompiled Header Processing .
Manual Precompiled Header Processing .
Other Ways for Users to Control Precompiled Headers.
Performance Issues. .

Intrinsic Functions .
Environment Variables. .
Diagnostic Messages .
Termination Messages .
Response to Signals .
Exit Status .28
Finding Include Files .

PowerMAX OS Real-Time Guide

rrent

ptions
a-

s the
plate
7
Chapter 7Special Features of C++

7
7
6

Overview 7

C++ provides powerful programming constructs. This chapter discusses the Concu
C++ compiler’s support of the following features:

• Namespace

• Templates

- Automatic Instantiation

- Instantiation Modes

- Instantiation #pragma Directives

- Implicit Inclusion

• Predefined Macros

• Pragmas

• Precompiled Headers

• Intrinsic Functions

• Environment Variables

• Diagnostic Messages

• Termination Messages

• Response to Signals

• Exit Status

• Finding Include Files

Namespace Support 7

Namespaces are enabled by default except in the cfront modes. The command-line o
--namespaces and--no_namespaces can be used to enable or disable the fe
tures.

Name lookup during template instantiations now does something that approximate
two-phase lookup rule of the standard. When a name is looked up as part of a tem
7-1

C/C++ Reference Manual

n a
ules
of the

stan-

r the

dard,
rator
per-

a pro-
pace
instantiation but is not found in the local context of the instantiation, it is looked up i
synthesized instantiation context. The front end follows the new instantiation lookup r
for namespaces as closely as possible in the absence of a complete implementation
new template name binding rules. Here’s an example:

namespace N {
 int g(int);
 int x = 0;
 template <class T> struct A {
 T f(T t) { return g(t); }
 T f() { return x; }
 };
}
namespace M {
 int x = 99;
 double g(double);
 N::A<int> ai;
 int i = ai.f(0); // N::A<int>::f(int) calls N::g(int)
 int i2 = ai.f(); // N::A<int>::f() returns 0 (= N::x)
 N::A<double> ad;
 double d = ad.f(0); // N::A<double>::f(double) calls
M::g(double)
 double d2 = ad.f(); // N::A<double>::f() also returns 0 (=
N::x)
}

The lookup of names in template instantiations does not conform to the rules in the
dard in the following respects:

• Although only names from the template definition context are considered
for names that are not functions, the lookup is not limited to those names
visible at the point at which the template was defined.

• Functions from the context in which the template was referenced are con-
sidered for all function calls in the template. Functions from the referenc-
ing context should only be visible for “dependent” function calls.

For details of the algorithm implemented, see the Symbol Table chapter (in particula
section entitled “Instantiation Context Lookup”).

The lookup rules for overloaded operators are implemented as specified by the stan
which means that the operator functions in the global scope overload with the ope
functions declared extern inside a function, instead of being hidden by them. The old o
ator function lookup rules are used when namespaces are turned off. This means
gram can have different behavior, depending on whether it is compiled with names
support enabled or disabled:

struct A { };
A operator+(A, double);
void f() {
 A a1;
 A operator+(A, int);
 a1 + 1.0; // calls operator+(A, double)
with
} // namespaces enabled but
otherwise
 // calls operator+(A, int);
7-2

Special Features of C++

ats,
tten
f

pila-
late
te enti-

, e.g.,

ll the
om-
ll the

iation
ntia-

ate upon,
Template Instantiation 7

The C++ language includes the concept oftemplates. A template is a description of a class
or function that is a model for a family of related classes or functions.1 For example, one
can write a template for aStack class, and then use a stack of integers, a stack of flo
and a stack of some user-defined type. In the source, these might be wri
Stack<int> , Stack<float> , andStack<X> . From a single source description o
the template for a stack, the compiler can createinstantiationsof the template for each of
the types required.

The instantiation of a class template is always done as soon as it is needed in a com
tion. However, the instantiations of template functions, member functions of temp
classes, and static data members of template classes (hereafter referred to as templa
ties) are not necessarily done immediately, for several reasons:

• One would like to end up with only one copy of each instantiated entity
across all the object files that make up a program. (This of course applies to
entities with external linkage.)

• The language allows one to write aspecializationof a template entity, i.e.,
a specific version to be used in place of a version generated from the tem-
plate for a specific data type. (One could, for example, write a version of
Stack<int> , or of justStack<int>::push , that replaces the tem-
plate-generated version; often, such a specialization provides a more effi-
cient representation for a particular data type.) Since the compiler cannot
know, when compiling a reference to a template entity, if a specialization
for that entity will be provided in another compilation, it cannot do the
instantiation automatically in any source file that references it. (The mod-
ern C++ language requires that a specialization be declared in every compi-
lation in which it is used, but for compatibility with existing code and older
compilers the Concurrent compiler does not require that in some modes.
See the command-line option
--no_distinct_template_signatures .)

• The language also dictates that template functions that are not referenced
should not be compiled, that, in fact, such functions might contain semantic
errors that would prevent them from being compiled. Therefore, a refer-
ence to a template class should not automatically instantiate all the member
functions of that class.

(It should be noted that certain template entities are always instantiated when used
inline functions.)

From these requirements, one can see that if the compiler is responsible for doing a
instantiations automatically, it can only do so on a program-wide basis. That is, the c
piler cannot make decisions about instantiation of template entities until it has seen a
source files that make up a complete program.

The C++ front end provides an instantiation mechanism that does automatic instant
at link time. For cases where the programmer wants more explicit control over insta

1. Since templates are descriptions of entities (typically, classes) that are parameterizable according to the types they oper
they are sometimes calledparameterized types.
7-3

C/C++ Reference Manual

h can
elop-

vide

pro-
n the
s get

uto-

-
-
ld
r-
tak-

nstan-
ne

ong
dec-
com-
iling
dency

set
s are

xes
tion, the front end also provides instantiation modes and instantiation pragmas, whic
be used to exert fine-grained control over the instantiation process. The Program Dev
ment Environment (PDE) tools handle template instantiation automatically, but pro
tools for manipulating how the instantiation happens.

Automatic Instantiation 7

The goal of an automatic instantiation mode is to provide painless instantiation. The
grammer should be able to compile source files to object code, then link them and ru
resulting program, and never have to worry about how the necessary instantiation
done.

In practice, this is hard for a compiler to do, and different compilers use different a
matic instantiation schemes with different strengths and weaknesses:

• AT&T/USL/Novell/SCO’scfront product saves information about each file
it compiles in a special directory calledptrepository . It instantiates
nothing during normal compilations. At link time, it looks for entities that
are referenced but not defined, and whose mangled names indicate that
they are template entities. For each such entity, it consults theptreposi-
tory information to find the file containing the source for the entity, and it
does a compilation of the source to generate an object file containing object
code for that entity. This object code for instantiated objects is then com-
bined with the “normal” object code in the link step.

The programmer usingcfront must follow a particular coding convention: all tem
plates must be declared in “.h ” files, and for each such file there must be a corre
sponding “.C ” file containing the associated definitions. The compiler is never to
about the “.C ” files explicitly; one does not, for example, compile them in the no
mal way. The link step looks for them when and if it needs them, and does so by
ing the “.h ” file name and replacing its suffix.2

This scheme has the disadvantage that it does a separate compilation for each i
tiated function (or, at best, one compilation for all the member functions of o
class). Even though the function itself is often quite small, it must be compiled al
with the declarations for the types on which the instantiation is based, and those
larations can easily run into many thousands of lines. For large systems, these
pilations can take a very long time. The link step tries to be smart about recomp
instantiations only when necessary, but because it keeps no fine-grained depen
information, it is often forced to “recompile the world” for a minor change in a “.h ”
file. In addition,cfront has no way of ensuring that preprocessing symbols are
correctly when it does these instantiation compilations, if preprocessing symbol
set other than on the command line.

• Borland’s C++ compiler instantiates everything referenced in a compila-
tion, then uses a special linker to remove duplicate definitions of instanti-
ated functions.

2. The actual implementation allows for several different suffixes and provides a command-line option to change the suffi
sought.
7-4

Special Features of C++

tion
ced in
if a
ns

sys-
t file
late

re is
the
types

upport
The programmer using Borland’s compiler must make sure that every compila
sees all the source code it needs to instantiate all the template entities referen
that compilation. That is, one cannot refer to a template entity in a source file
definition for that entity is not included by that source file. In practice, this mea
that either all the definition code is put directly in the “.h ” files, or that each “.h ”
file includes an associated “.C ” (actually, “.CPP”) file.

This scheme is straightforward, and works well for small programs. For large
tems, however, it tends to produce very large object files, because each objec
must contain object code (and symbolic debugging information) for each temp
entity it references.

Concurrent’s approach is a little different. It requires that, for each instantiation, the
some (normal, top-level, explicitly-compiled) source file that contains the definition of
template entity, a reference that causes the instantiation, and the declarations of any
required for the instantiation.3 This requirement can be met in various ways:

• The Borland convention: each “.h ” file that declares a template entity also
contains either the definition of the entity or includes another file contain-
ing the definition.

• Implicit inclusion: when the compiler sees a template declaration in a “.h ”
file and discovers a need to instantiate that entity, it is given permission to
go off looking for an associated definition file having the same base name
and a different suffix, and it implicitly includes that file at the end of the
compilation. This method allows most programs written using thecfront
convention to be compiled with Concurrent’s approach. See the section on
implicit inclusion.

• The ad hoc approach: the programmer makes sure that the files that define
template entities also have the definitions of all the available types, and
adds code or pragmas in those files to request instantiation of the entities
there.

The EDG automatic instantiation method works as follows:4

1. The first time the source files of a program are compiled, no template enti-
ties are instantiated. However, template information files (with, by default,
a “.ti ” suffix) are generated and contain information about things that
could have been instantiated in each compilation. When compilation is
done through the PDE tools or NightBench, the template information is
placed in the environment’s database.

2. When the object files are linked together, a program called theprelinker is
run. It examines the object files, looking for references and definitions of
template entities, and for the added information about entities that could be
instantiated.

3. Isn’t this always the case? No. Suppose that file A contains a definition of classX and a reference toStack<X>::push , and
that file B contains the definition for the member functionpush . There would be no file containing both the definition ofpush
and the definition ofX.

4. It should be noted that automatic instantiation, more than most aspects of the C++ language, requires environmental s
outside of the compiler. This is likely to be operating-system and object-format dependent.
7-5

C/C++ Reference Manual

com-
piled,
ions
set of
ces-
djust-

pro-
ition
ed to
gram
the

. One
om-
d the

anti-
the

tion
3. If the prelinker finds a reference to a template entity for which there is no
definition anywhere in the set of object files, it looks for a file that indicates
that it could instantiate that template entity. When it finds such a file, it
assigns the instantiation to it. The set of instantiations assigned to a given
file is recorded in an associated instantiation request file (with, by default, a
“ .ii ” suffix). When compilation is done through the PDE tools or Night-
Bench, the instantiation requests are recorded in the environment’s data-
base.

4. The prelinker then executes the compiler again to recompile each file for
which the instantiation request file was changed. The original compilation
command-line options (saved in the template information file) are used for
the recompilation.

5. When the compiler compiles a file, it reads the instantiation request file or
consults the PDE’s database for that file and obeys the requests therein. It
produces a new object file containing the requested template entities (and
all the other things that were already in the object file). The compiler also
receives a definition list file, which lists all the instantiations for which def-
initions already exist in the set of object files. If during the compilation the
compiler has the opportunity to instantiate a referenced entity that is not on
that list, it goes ahead and does the instantiation. It passes back to the
prelinker (in the definition list file) a list of the instantiations that it has
“adopted” in this way, so the prelinker can assign them to the file. This
adoption process allows rapid instantiation and assignment of instantiations
referenced from new instantiations, and reduces the need to recompile a
given file more than once during the prelinking process.

6. The prelinker repeats steps 3–5 until there are no more instantiations to be
adjusted.

7. The object files are linked together.

Once the program has been linked correctly, the instantiation request files contain a
plete set of instantiation assignments. From then on, whenever source files are recom
the compiler will consult the instantiation request files and do the indicated instantiat
as it does the normal compilations. That means that, except in cases where the
required instantiations changes, the prelink step from then on will find that all the ne
sary instantiations are present in the object files and no instantiation assignment a
ments need be done. That’s true even if the entire program is recompiled.

If the programmer provides a specialization of a template entity somewhere in the
gram, the specialization will be seen as a definition by the prelinker. Since that defin
satisfies whatever references there might be to that entity, the prelinker will see no ne
request an instantiation of the entity. If the programmer adds a specialization to a pro
that has previously been compiled, the prelinker will notice that too and remove
assignment of the instantiation from the proper instantiation request file.

The instantiation request files should not, in general, require any manual intervention
exception: if a definition is changed in such a way that some instantiation no longer c
piles (it gets errors), and at the same time a specialization is added in another file, an
first file is being recompiled before the specialization file and is getting errors, the inst
ation request file for the file getting the errors must be deleted manually to allow
prelinker to regenerate it. Should such a situation arise in the PDE, use thec.resolve
with the -u option to manually remove the association between a template instantia
and a compilation unit.
7-6

Special Features of C++

tia-
f the

it in
e is
ject
refer-
be

ces.
sing

he

er-

ose
ow-

es.
to-

ion.
te

ila-
er
not
ted

-
se
c-
the

le
ny
If the prelinker changes an instantiation assignment, it will issue a message like

C++ prelinker: A<int>::f() assigned to file test.o
C++ prelinker: executing: /edg/bin/eccp -c test.c

The automatic instantiation scheme can coexist with partial explicit control of instan
tion by the programmer through the use of pragmas or command-line specification o
instantiation mode. See the following sections.

Instantiations are normally generated as part of the object file of the translation un
which the instantiations are performed. But when “one instantiation per object” mod
specified, each instantiation is placed in its own object file. One-instantiation-per-ob
mode is useful when generating libraries that need to include copies of the instances
enced from the library. If each instance is not placed in its own object file, it may
impossible to link the library with another library containing some of the same instan
Without this feature it is necessary to create each individual instantiation object file u
the manual instantiation mechanism.

The au tomat i c ins tan t ia t ion mode can be tu rned on or o f f us ing t
--auto_instantiation and --no_auto_instantiation command-line
options. If automatic instantiation is turned off, the template information file is not gen
ated.

Instantiation Modes 7

Normally, when a file is compiled, no template entities are instantiated (except th
assigned to the file by automatic instantiation). The overall instantiation mode can, h
ever, be changed by a command line option:

-tnone
Do not automatically create instantiations of any template entiti
This is the default. It is also the usually appropriate mode when au
matic instantiation is done.

-tused
Instantiate those template entities that were used in the compilat
This will include all static data members for which there are templa
definitions.

-tall
Instantiate all template entities declared or referenced in the comp
tion unit. For each fully instantiated template class, all of its memb
functions and static data members will be instantiated whether or
they were used. Nonmember template functions will be instantia
even if the only reference was a declaration.

-tlocal
Similar to -tused except that the functions are given internal link
age. This is intended to provide a very simple mechanism for tho
getting started with templates. The compiler will instantiate the fun
tions that are used in each compilation unit as local functions, and
program will link and run correctly (barring problems due to multip
copies of local static variables.) However, one may end up with ma
7-7

C/C++ Reference Manual

uc-
c
by

file.

tities

data
ction

fer-
copies of the instantiated functions, so this is not suitable for prod
tion use.-tlocal can not be used in conjunction with automati
template instantiation. If automatic instantiation is enabled
default, it will be disabled by the-tlocal option. If automatic
instantiation is not enabled by default, use of-tlocal and-T is an
error.

In the case where theeccp script is given a single file to compile and link, e.g.,

eccp t.c

the compiler knows that all instantiations will have to be done in the single source
Therefore, it uses the-tused mode and suppresses automatic instantiation.

Instantiation #pragma Directives 7

Instantiation pragmas can be used to control the instantiation of specific template en
or sets of template entities. There are three instantiation pragmas:

• The instantiate pragma causes a specified entity to be instantiated.

• The do_not_instantiate pragma suppresses the instantiation of a
specified entity. It is typically used to suppress the instantiation of an entity
for which a specific definition will be supplied.

• The can_instantiate pragma indicates that a specified entity can be
instantiated in the current compilation, but need not be; it is used in con-
junction with automatic instantiation, to indicate potential sites for instanti-
ation if the template entity turns out to be required.5

The argument to the instantiation pragma may be:

a template class nameA<int>

a template class declarationclass A<int>

a member function nameA<int>::f

a static data member nameA<int>::i

a static data declarationint A<int>::i

a member function declarationvoid A<int>::f(int, char)

a template function declarationchar* f(int, float)

A pragma in which the argument is a template class name (e.g.,A<int> or class
A<int>) is equivalent to repeating the pragma for each member function and static
member declared in the class. When instantiating an entire class a given member fun
or static data member may be excluded using thedo_not_instantiate pragma. For
example,

5. At the moment, thecan_instantiate pragma ends up forcing the instantiation of the template instance even if it isn’t re
enced somewhere else in the program; that’s a weakness of the initial implementation which we expect to address.
7-8

Special Features of C++

r an

, an

p-
d at

it
om-

d con-
ver-

ction

n, an

if it

e,

-

ow
was
#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

The template definition of a template entity must be present in the compilation fo
instantiation to occur. If an instantiation is explicitly requested by use of theinstanti-
ate pragma and no template definition is available or a specific definition is provided
error is issued.

template <class T> void f1(T); // No body provided
template <class T> void g1(T); // No body provided
void f1(int) {} // Specific definition
void main()
{
 int i;
 double d;
 f1(i);
 f1(d);
 g1(i);
 g1(d);
}
#pragma instantiate void f1(int) // error - specific definition
#pragma instantiate void g1(int) // error - no body provided

f1(double) andg1(double) will not be instantiated (because no bodies were su
plied) but no errors will be produced during the compilation (if no bodies are supplie
link time, a linker error will be produced).

A member function name (e.g.,A<int>::f) can only be used as a pragma argument if
refers to a single user defined member function (i.e., not an overloaded function). C
piler-generated functions are not considered, so a name may refer to a user define
structor even if a compiler-generated copy constructor of the same name exists. O
loaded member functions can be instantiated by providing the complete member fun
declaration, as in

#pragma instantiate char* A<int>::f(int, char*)

The argument to an instantiation pragma may not be a compiler-generated functio
inline function, or a pure virtual function.

Implicit Inclusion 7

When implicit inclusion is enabled, the front end is given permission to assume that
needs a definition to instantiate a template entity declared in a “.h ” file it can implicitly
include the corresponding “.C ” file to get the source code for the definition. For exampl
if a template entityABC::f is declared in filexyz.h , and an instantiation ofABC::f is
required in a compilation but no definition ofABC::f appears in the source code pro
cessed by the compilation, the compiler will look to see if a filexyz.C exists, and if so it
will process it as if it were included at the end of the main source file.

To find the template definition file for a given template entity the front end needs to kn
the full path name of the file in which the template was declared and whether the file
included using the system include syntax (e.g.,#include <file.h>). This informa-
tion is not available for preprocessed source containing#line directives. Consequently,
the front end will not attempt implicit inclusion for source code containing#line direc-
tives.
7-9

C/C++ Reference Manual

en-
eful

ot
rob-
plicit

plic-

mpila-
art
com-

the

fined
nd the

e

n-

f

g.
The set of definition-file suffixes tried is “.c ”, “ .C ”, “ .cpp ”, “ .CPP ”, “ .cxx ”,
“ .CXX”, and “.cc ”.

Implicit inclusion works well alongside automatic instantiation, but the two are indep
dent. They can be enabled or disabled independently, and implicit inclusion is still us
when automatic instantiation is not done.

The implicit inclusion mode can be on or off using the--implicit_include and
--no_implicit_include command-line options .

Implicit inclusions are only performed during the normal compilation of a file, (i.e., n
when doing only preprocessing). A common means of investigating certain kinds of p
lems is to produce a preprocessed source file that can be inspected. When using im
inclusion it is sometimes desirable for the preprocessed source file to include any im
itly included files. This may be done using the--no_preproc_only command line
option. This causes the preprocessed output to be generated as part of a normal co
tion. When implicit inclusion is being used, the implicitly included files will appear as p
of the preprocessed output in the precise location at which they were included in the
pilation.

Automatic Instantiation in the Program Development Environment 7

See “c.instantiation” on page 5-25 for details about controlling instantiation under
program development environment.

Predefined Macros 7

The front end defines a number of preprocessing macros. Many of them are only de
under certain circumstances. This section describes the macros that are provided a
circumstances under which they are defined.

__STDC__ Defined in ANSI C mode and in C++ mode. In C++ mode th
value may be redefined.__cplusplus Defined in C++ mode.

c_plusplus Defined in default C++ mode, but not in strict mode.

__STDC_VERSION__ Defined in ANSI C mode with the value199409L . The name
of this macro, and its value, are specified in Normative Adde
dum 1 of the ISO C Standard.

__SIGNED_CHARS__ Defined when plainchar is signed. This is used in the<lim-
its.h> header fi le to get the proper defini t ions o
CHAR_MAX andCHAR_MIN.

_WCHAR_T Defined in C++ mode whenwchar_t is a keyword. The name
of this predefined macro is specified by a configuration fla
_WCHAR_T is the default.
7-10

Special Features of C++

g.

led.
ra-

uld

ber
as

e

_BOOL Defined in C++ mode whenbool is a keyword. The name of
this predefined macro is specified by a configuration fla
_BOOL is the default.

__ARRAY_OPERATORS

Defined in C++ mode when array new and delete are enab
The name of this predefined macro is specified by a configu
tion flag.__ARRAY_OPERATORS is the default.

__EXCEPTIONS Defined in C++ mode when exception handling is enabled.

__RTTI Defined in C++ mode when RTTI is enabled.

__PLACEMENT_DELETE

Defined in C++ mode when placement delete is enabled.

__EDG_RUNTIME_USES_NAMESPACES

Defined in C++ mode.

__EDG_IMPLICIT_USING_STD

Defined in C++ mode when the--using_std command line
option is set indicating that the standard header files sho
implicitly do a using-directive on thestd namespace.

__EDG__ Always defined.

__EDG_VERSION__ Defined to an integral value that represents the version num
of the front end. For example. version 2.42 is represented
242.

__embedded_cplusplus

Defined as 1 in Embedded C++ mode.

_ELF Defined for compiling for an ELF object file

_IBM Defined for compiling to an IBM PowerPC based architectur

_PPC Defined when compiling with the-Qtarget=ppc option.

_PPC604 Defined when compiling with the-Qtarget=ppc604
option.

_PPC604E Defined when compiling with the-Qtarget=ppc604e
option.

_PPC750 Defined when compiling with the-Qtarget=ppc750
option.

_FAST_MATH_INTRINSICS

Defined when compiling wiht the-F option
7-11

C/C++ Reference Manual

er-

.

e

e

e

ecial
the
prag-

ter:

a
has
unix Traditionally defined for all UNIX systems. This isnotdefined
when compiling with the--strict option.

_unix Alternate spelling forunix . This is not defined when compil-
ing with the--strict option.

_PowerMAXOS Defined to indicate the target operating system is Pow
MAXOS.

__HC__ Defined to indicate that this is a Concurrent C/C++ compiler

__STDC__ Defined in ANSI C mode and in C++ mode. The default valu
is 1 when compiling with the--strict option; 0, otherwise.

__cplusplus Defined when compiling C++ code.

c_plusplus Defined when compiling C++ code, but not when th
--strict option is used.

_STDC_VERSION_ Defined in ANSI C mode with the value199409L . The name
of this macro and its value are specified in the Normativ
Addendum 1 of the ISO C Standard.

__SIGNED_CHARS__ Defined when the--signed_chars option is used.

Pragmas 7

#pragma directives are used within the source program to request certain kinds of sp
processing. The#pragma directive is part of the standard C and C++ languages, but
meaning of any pragma is implementation-defined. The front end recognizes several
mas.

Edison Defined Pragmas 7

The following are described in detail in the template instantiation section of this chap

#pragma instantiate
#pragma do_not_instantiate
#pragma can_instantiate

and two others are described in the section on precompiled header processing:

#pragma hdrstop
#pragma no_pch

The front end also recognizes#pragma once , which, when placed at the beginning of
header file, indicates that the file is written in such a way that including it several times
the same effect as including it once. Thus, if the front end sees#pragma once at the
start of a header file, it will skip over it if the file is#include d again.
7-12

Special Features of C++

og-

r to

back

sed to

er.
A typical idiom is to place an#ifndef guard around the body of the file, with a
#define of the guard variable after the#ifndef :

#pragma once // optional
#ifndef FILE_H
#define FILE_H
... body of the header file...
#endif

The#pragma once is marked as optional in this example, because the front end rec
nizes the#ifndef idiom and does the optimization even in its absence.#pragma
once is accepted for compatibility with other compilers and to allow the programme
use other guard-code idioms.

#pragma ident is recognized, as is#ident :

#pragma ident " string"
#ident " string"

Both are implemented by recording the string in a pragma entry and passing it to the
end.

#pragma weak is recognized. Its form is

#pragma weak name1 [= name2]

wherename1is the name to be given “weak binding” and is a synonym forname2if the
latter is specified. The entire argument string is recorded in the pragma entry and pas
the back end.

Concurrent Defined Pragmas 7

The directive#pragma communicates implementation defined directives to the compil
Syntax.

#pragma directive_string
directive_string ::=

directive_w_poss_args
directive_w_poss_args ::=

directive_name [argument [, argument ...]]

The Concurrent implementation defined directives for use with#pragma appear below

Table 7-1. Implementation Defined Directives Used with #pragma

align ident optimize_for_space

cautions min_align optimize_for_time

error once warnings
7-13

C/C++ Reference Manual

ges,

The
g

er
y a
-
or
Source Listing Controls 7

The following message classes are supported by the C++ compiler.

inform Advisory, issues such as generated code quality

caution Advisory, like runninglint(1)

warning Probably error in program, compilation not aborted

fatal Error in program, compilation will continue, no object produced

abort Error in program, cannot continue compilation

The following directives control the format of the source listing, including error messa
produced by the C compiler.

#pragma cautions {on | off}

Enables or suppresses the printing of caution messages.
default isoff . The same effect can be obtained by invokin
cc++ with the-n option.

#pragma error errnum [errnum...]

Controls the printing of certain error messages.errnum is
the number displayed when the -display_error_numb
option is on, or the number 0, and must be preceded b
plus or minus sign (+ or -). A minus sign suppresses print
ing of the message, while a plus sign enables printing. F
example, the directive

#pragma error +25-36

enables error message 25 (“Uninitialized
item”) but disables number 36 (“Undefined
function”). An errnum of 0 refers to all
selectable messages. For example,

 #pragma error -0

suppresses the printing of all selectable error
messages. The default forerror is +0 (all
messages are printed). Theerror directive

errcount opt_class weak

opt_level

do_not_instantiate can_instantiate instantiate

Table 7-1. Implementation Defined Directives Used with #pragma (Cont.)
7-14

Special Features of C++

of

es.
ts

st

in

tion

ode.

he
e

er
e

does not affect fatal error messages; they are
always printed.

#pragma errcount {on | off}

Specifies whether error messages disabled by theerror
directive should be included in the error totals at the end
the compilation. The default ison (all errors are included in
the count).

#pragma warnings {on | off}

Enables or suppresses the printing of warning messag
Most warnings indicate that an error exists that preven
proper execution of the program. The default ison.

Listing control directives should occur immediately prior to the definition of the fir
function they affect.

Optimization Directives 7

These#pragma directives should be placed immediately before a function definition
the source code.

The directives that permit the programmer to control the amount and type of optimiza
the compiler uses are:

opt_level
opt_class
optimize_for_space
optimize_for_time

Theopt_level directive controls the level of optimization. The syntax is:

#pragma opt_level { NONE | MINIMAL | GLOBAL | MAXIMAL
|

 ULTIMATE}

The default isMINIMAL.

Theopt_class directive controls the class of optimization. The syntax is:

#pragma opt_class { UNSAFE | SAFE | STANDARD }

UNSAFEis the default. If theopt_class is UNSAFE, then the compiler makes
assumptions as to how the program was written in order to produce more efficient c
Currently, the only optimization affected by theUNSAFEclass is algebraic simplification
of expressions. Theopt_class may be set to SAFE to disable unsafe optimizations. T
opt_class may be set toSTANDARDto provide unsafe optimizations allowed by th
C++ language.

If the optimize_for_space directive is used, a smaller object file is created. A fast
object file is created if theoptimize_for_time directive is used. These directives ar
mutually exclusive;optimize_for_time is the default.
7-15

C/C++ Reference Manual

ect
he
ter

st

data
ntrol
iler to
hine;

target
for all

rrent
All optimization directives must occur outside function definitions. They remain in eff
until explicitly altered. Optimization directives should occur immediately prior to t
definition of the first function they should affect. See the “Program Optimization” chap
of the Compilation Systems Volume 2(Concepts) manual for more information on
optimizations.

Optimization directives should occur immediately prior to the definition of the fir
function they affect.

Data Alignment Control Directives 7

The compiler supports pragmas that override the compiler’s default choice of
alignment. This gives you some control over the size of structures and unions and co
over the location of a structure’s members. These pragmas do not cause the comp
generate extra code for accessing data that is incorrectly aligned for the target mac
therefore, it is possible for you to specify alignments that will cause run-time errors.

Data Alignment Rules 7

Data alignment rules have been chosen to meet the hardware requirements of the
machine, to provide for fast access to data items, and to be as consistent as possible
target machines supported by the Concurrent C++ compiler. Table 7-2 lists the cu
default alignments used by the compiler.

Table 7-2. Alignments by Data Type

Type Alignment (bytes)

[unsigned] char 1

signed char 1

bool 1

unsigned short [int] 2

[signed] short [int] 2

unsigned [int] 4

[signed] int 4

unsigned long [int] 4

[signed] long [int] 4

wchar_t 4

unsigned long long [int] 8

[signed] long long [int] 8

float 4

double 8

long double 8

pointer 4
7-16

Special Features of C++

pe.
their
to the

es”)

en
ged

r the

for
ns is

re
pe to
ay

the
-time

) a
. See

lts.

ay
The

ure

ugh
Pointer indicates all pointer types. Array types have the alignment of their element ty
The alignment of classes, structures, and unions is the maximum of the alignments of
members. In addition, the sizes of classes, structures, and unions are rounded up
nearest multiple of the alignment size. See Appendix B (“Architecture Dependenci
for more information on alignments.

#pragma align 7

Thealign pragma can be used to change the default minimum alignment of a giv
data type. It takes effect when it first appears in a file and remains in effect until chan
by another#pragma align . The syntax for thealign directive is:

#pragma align type n

wheren is an integer constant that represents the minimum byte-alignment to use fo
type,type. The type should be one of the following:

{char | short | int | long | pointer |
float | double | struct | union}

The typepointer represents all pointer types.

Whenstruct or union is used, the pragma specifies a minimum alignment to use
all structures or unions, respectively. The alignment of classes, structures, and unio
then the maximum of that value and of the alignments of the members.

This pragma also affects class, structure, and union bit-fields. When bit-fields a
allocated for structures, they do not cross the alignment boundaries of the data ty
which they were declared; therefore, changing the alignment of a bit-field’s type m
change its location in a structure.

The byte alignment value,n, must be between 0 and 31, inclusive. A value of 0 causes
compiler to reset the value to the default. If a byte value is chosen that can cause run
exceptions (i.e.,n is not a multiple of the minimum required alignment for the machine
compiler warning message is produced, but the requested alignment is used
“Bit-Field” on page B-1 for more information on bit-fields.

Due to the order in which the C++->C translator generates declarations andpragma
directives, repeatedly modifying the alignment of a type may have unpredictable resu

#pragma min_align 7

Most C++ compilation units contain multiple structure definitions, some of which m
represent interfaces to library routines that expect the default alignment rules.
min_align directive provides a way of limiting alignment changes to named struct
and union types.

The syntax of themin_align directive is:

#pragma min_align {struct | union} tag n

wheretag is the class, structure, or union tag to use andn is the minimum byte alignment
to use for the structure. The alignment value,n, must be between 0 and 31.Pragma
min_align must be used before the class, structure, or union definition begins, altho
7-17

C/C++ Reference Manual

side
nion.

nion
d, and

are

a
has

iler

r to
it may be used after a forward reference of the class, structure. or union tag. As a
effect, the pragma introduces a forward reference to the named class, structure, or u

This pragma specifies the minimum alignment to use. If the class, structure, or u
contains a member that requires a larger alignment, then that larger alignment is use
a warning message is issued.

Pragmamin_align overrides any#pragma align that may be in effect, unlessn is 0;
in that case themin_align does not have an effect and the default alignment rules
used.

Example:

/* Force a set of alignment rules for
 * a particular struct, where doubles are

 * aligned to a 4-byte boundary.
 */
#pragma min_align struct old 4
#pragma align int 2
struct old { /* fields */ };
#pragma align double 0 /* reset to
default */

Miscellaneous Directives 7

#pragma once 7

The compiler recognizes#pragma once , which, when placed at the beginning of
header file, indicates that the file is written in such a way that including it several times
the same effect as including it once. Thus, if the compiler sees#pragma once at the
start of a header file, it will skip over the header file if that header file is#include d
again.

A typical idiom is to place an#ifndef guard around the body of the file, with a
#define of the guard variable after the#ifndef :

#pragma once // optional
#ifndef FILE_H
#define FILE_H
... body of the header file ...
#endif

The #pragma once is marked as optional in this example, because the comp
recognizes the#ifndef idiom and does the optimization even in its absence.#pragma
once is accepted for compatibility with other compilers and to allow the programme
use other guard-code idioms.

#pragma ident 7

#pragma ident is recognized, in the same fashion as#ident :
7-18

Special Features of C++

the

ntia-

tro-

f the
ing
file
cor-

r the
; the

ing is
led

int.
not
#pragma ident string
#ident string

The compiler ignores these directives.

#pragma weak 7

Theweak pragma’s form is

#pragma weak name1 [= name2]

wherename1is the name to be given “weak binding” and is a synonym forname2if the
latter is specified. See the “Executable and Linking Format (ELF)” chapter of
Compilation Systems Volume 2(Concepts) manual for more information on weak
symbols.

Template Instantiation Pragmas 7

These pragmas provide explicit control over template instantiation. See Section “Insta
tion #pragma Directives” on page 7-8 for more information.

Precompiled Headers 7

It is often desirable to avoid recompiling a set of header files, especially when they in
duce many lines of code and the primary source files that#include them are relatively
small. The EDG front end provides a mechanism for, in effect, taking a snapshot o
state of the compilation at a particular point and writing it to a disk file before complet
the compilation; then, when recompiling the same source file or compiling another
with the same set of header files, it can recognize the “snapshot point,” verify that the
responding precompiled header (“PCH”) file is reusable, and read it back in. Unde
right circumstances, this can produce a dramatic improvement in compilation time
trade-off is that PCH files can take a lot of disk space.

Automatic Precompiled Header Processing 7

When--pch appears on the command line, automatic precompiled header process
enabled. This means the front end will automatically look for a qualifying precompi
header file to read in and/or will create one for use on a subsequent compilation.

The PCH file will contain a snapshot of all the code preceding the “header stop” po
The header stop point is typically the first token in the primary source file that does
belong to a preprocessing directive, but it can also be specified directly by#pragma
hdrstop (see below) if that comes first. For example:

#include "xxx.h"
#include "yyy.h"
int i;
7-19

C/C++ Reference Manual

n-

g it
The header stop point isint (the first non-preprocessor token) and the PCH file will co
tain a snapshot reflecting the inclusion ofxxx.h andyyy.h . If the first non-preprocessor
token or the#pragma hdrstop appears within a#if block, the header stop point is
the outermost enclosing#if . To illustrate, here’s a more complicated example:

#include "xxx.h"
#ifndef YYY_H
#define YYY_H 1
#include "yyy.h"
#endif
#if TEST
int i;
#endif

Here, the first token that does not belong to a preprocessing directive is againint , but the
header stop point is the start of the#if block containing it. The PCH file will reflect the
inclusion ofxxx.h and conditionally the definition ofYYY_Hand inclusion ofyyy.h ; it
will not contain the state produced by#if TEST .

A PCH file will be produced only if the header stop point and the code precedin
(mainly, the header files themselves) meet certain requirements:

• The header stop point must appear at file scope — it may not be within an
unclosed scope established by a header file. For example, a PCH file will
not be created in this case:

// xxx.h
class A {
// xxx.C
#include "xxx.h"
int i; };

• The header stop point may not be inside a declaration started within a
header file, nor (in C++) may it be part of a declaration list of a linkage
specification. For example, in the following case the header stop point is
int , but since it is not the start of a new declaration, no PCH file will be
created:

// yyy.h
static
// yyy.C
#include "yyy.h"
int i;

• Similarly, the header stop point may not be inside a#if block or a
#define started within a header file.

• The processing preceding the header stop must not have produced any
errors. (Note: warnings and other diagnostics will not be reproduced when
the PCH file is reused.)

• No references to predefined macros__DATE__ or __TIME__ may have
appeared.

• No use of the#line preprocessing directive may have appeared.

• #pragma no_pch (see below) must not have appeared.
7-20

Special Features of C++

f the
cum-

ce
atter

nti-

arg-
ource

r the
for

file,
• The code preceding the header stop point must have introduced a sufficient
number of declarations to justify the overhead associated with precompiled
headers. The threshold is currently set to 1.

When a precompiled header file is produced, it contains, in addition to the snapshot o
compiler state, some information that can be checked to determine under what cir
stances it can be reused. This includes:

• The compiler version, including the date and time the compiler was built.

• The current directory (i.e., the directory in which the compilation is occur-
ring).

• The command line options.

• The initial sequence of preprocessing directives from the primary source
file, including#include directives.

• The date and time of the header files specified in#include directives.

This information comprises the PCH “prefix.” The prefix information of a given sour
file can be compared to the prefix information of a PCH file to determine whether the l
is applicable to the current compilation.

As an illustration, consider two source files:

// a.C
#include "xxx.h"
... // Start of code
// b.C
#include "xxx.h"
... // Start of code

Whena.C is compiled with--pch , a precompiled header file nameda.pch is created.
Then, whenb.C is compiled (or whena.C is recompiled), the prefix section ofa.pch is
read in for comparison with the current source file. If the command line options are ide
cal, if xxx.h has not been modified, and so forth, then, instead of openingxxx.h and
processing it line by line, the front end reads in the rest ofa.pch and thereby establishes
the state for the rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation. If so, the l
est (i.e., the one representing the most preprocessing directives from the primary s
file) is used. For instance, Consider a primary source file that begins with

#include "xxx.h"
#include "yyy.h"
#include "zzz.h"

If there is one PCH file forxxx.h and a second forxxx.h andyyy.h , the latter will be
selected (assuming both are applicable to the current compilation). Moreover, afte
PCH file for the first two headers is read in and the third is compiled, a new PCH file
all three headers may be created.

When a precompiled header file is created, it takes the name of the primary source
with the suffix replaced by a suffix (pch by default). Unless--pch_dir is specified (see
below), it is created in the directory of the primary source file.
7-21

C/C++ Reference Manual

ption

ch
it can-

d

other

s are
f the
more

e

d
ot
CH

name

f
less,
hese
eter-
When a precompiled header file is created or used, a message such as

"test.C": creating precompiled header file "test.pch"

is issued. The user may suppress the message by using the command-line o
--no_pch_messages .

When the--pch_verbose option is used the front end will display a message for ea
precompiled header file that is considered that cannot be used giving the reason that
not be used.

In automatic mode (i.e., when--pch is used) the front end will deem a precompile
header file obsolete and delete it under the following circumstances:

• if the precompiled header file is based on at least one out-of-date header
file but is otherwise applicable for the current compilation; or

• if the precompiled header file has the same base name as the source file
being compiled (e.g.,xxx.pch andxxx.C) but is not applicable for the
current compilation (e.g., because of different command-line options).

This handles some common cases; other PCH file clean-up must be dealt with by
means (e.g., by the user).

Support for precompiled header processing is not available when multiple source file
specified in a single compilation: an error will be issued and the compilation aborted i
command line includes a request for precompiled header processing and specifies
than one primary source file.

Manual Precompiled Header Processing 7

Command-line option--create_pch file-namespecifies that a precompiled header fil
of the specified name should be created.

Command-line option--use_pch file-namespecifies that the indicated precompile
header file should be used for this compilation; if it is invalid (i.e., if its prefix does n
match the prefix for the current primary source file), a warning will be issued and the P
file will not be used.

When either of these options is used in conjunction with--pch_dir , the indicated file
name (which may be a path name) is tacked on to the directory name, unless the file
is an absolute path name.

The --create_pch , --use_pch , and--pch options may not be used together. I
more than one of these options is specified, only the last one will apply. Neverthe
most of the description of automatic PCH processing applies to one or the other of t
modes — header stop points are determined the same way, PCH file applicability is d
mined the same way, and so forth.
7-22

Special Features of C++

aders

ed
r

ader

not
m-
ini-

esn’t

to be
ing
re the
e dis-
the

ect to

m is
Other Ways for Users to Control Precompiled Headers 7

There are several ways in which the user can control and/or tune how precompiled he
are created and used.

• #pragma hdrstop may be inserted in the primary source file at a point
prior to the first token that does not belong to a preprocessing directive. It
enables the user to specify where the set of header files subject to precom-
pilation ends. For example,

#include "xxx.h"
#include "yyy.h"
#pragma hdrstop
#include "zzz.h"

Here, the precompiled header file will include processing state forxxx.h and
yyy.h but notzzz.h . (This is useful if the user decides that the information add
by what follows the#pragma hdrstop does not justify the creation of anothe
PCH file.)

• #pragma no_pch may be used to suppress precompiled header process-
ing for a given source file.

• Command-line option--pch_dir directory-nameis used to specify the
directory in which to search for and/or create a PCH file.

Performance Issues 7

The relative overhead incurred in writing out and reading back in a precompiled he
file is quite small for reasonably large header files.

In general, it doesn’t cost much to write a precompiled header file out even if it does
end up being used, and if itis used it almost always produces a significant speedup in co
pilation. The problem is that the precompiled header files can be quite large (from a m
mum of about 250K bytes to several megabytes or more), and so one probably do
want many of them sitting around.

Thus, despite the faster recompilation, precompiled header processing is not likely
justified for an arbitrary set of files with nonuniform initial sequences of preprocess
directives. Rather, the greatest benefit occurs when a number of source files can sha
same PCH file. The more sharing, the less disk space is consumed. With sharing, th
advantage of large precompiled header files can be minimized, without giving up
advantage of a significant speedup in compilation times.

Consequently, to take full advantage of header file precompilation, users should exp
reorder the#include sections of their source files and/or to group#include direc-
tives within a commonly used header file.

The front end source provides an example of how this can be done. A common idio
this:
7-23

C/C++ Reference Manual

e
le

he

PCH
iled

the

ral,
rt will

ne
the
nsic
insic
lling a
yped
#include "fe_common.h"
#pragma hdrstop
#include ...

wherefe_common.h pulls in, directly and indirectly, a few dozen header files; th
#pragma hdrstop is inserted to get better sharing with fewer PCH files. The PCH fi
produced forfe_common.h is a bit over a megabyte in size. Another idiom, used by t
source files involved in declaration processing, is this:

#include "fe_common.h"
#include "decl_hdrs.h"
#pragma hdrstop
#include ...

decl_hdrs.h pulls in another dozen header files, and a second, somewhat larger,
file is created. In all, the fifty-odd source files of the front end share just six precomp
header files. If disk space were at a premium, one could decide to makefe_common.h
pull in all the header files used — then, a single PCH file could be used in building
EDG front end.

Different environments and different projects will have different needs, but in gene
users should be aware that making the best use of the precompiled header suppo
require some experimentation and probably some minor changes to source code.

Intrinsic Functions 7

Most intrinsic functions(intrinsics) provide access to hardware-related machi
instructions. Others provide inline substitutes for some time-critical functions.When
-F option is used, the compiler recognizes certain function names as being intri
functions. To override this on any given use, enclose the name in parentheses. Intr
functions are used in the same manner as normal functions; however, rather than ca
subroutine, the compiler generates code directly. To use an intrinsic, it must be protot
and marked as an intrinsic with apragma . For example:

extern “C” int abs(int);
#pragma intrinsic abs

Any calls to a function declared like this will refer to the intrinsic.

For example, the following code, when compiled with the-F option, uses theabs intrin-
sic function:

extern “C” int abs(int);
#pragma intrinsic abs
sub(int arg)
{

return abs(arg);
}

However, the following code doesnot use the intrinsic function:
7-24

Special Features of C++

of

the

tion
.

t

of
t if
extern int abs(int);
sub(int arg)
{

return abs(arg);
}

Theabs andfabs intrinsics return the absolute value of their argument. The syntax
these intrinsics follows:

int abs(x)
int x;

float fabs(x)
float x;

double fabs(x)
double x;

Thepow andpowf intrinsics handle certain common cases with inline code where
second operand is a small integral constant. Otherwise, they generate calls topow or
powf , as appropriate. Seeexp(3M) . The syntax of thepow andpowf intrinsics follows:

double pow(x, y)
double x, y;

float powf(x, y)
float x, y;

The_Test_and_Set intrinsic can be used to generate an atomic test and set opera
using machine-specific instructions that are not normally available for C++ programs

int _Test_and_Set(pointer)
int *pointer;

Generates inline code to atomically set*pointer to some unspecified non-zero
value and returns the previous contents of*pointer, under the assumption tha
_Test_and_Set is the only means by which*pointer acquires a non-zero
value.

The__rot intrinsic is used to rotate a word to the right.

unsigned int __rot(word, count)
unsigned int word;
int count;

Returns word,word, rotated to the right bycount bits.

Environment Variables 7

The environment variableUSR_INCLUDEcan be set to a directory to be used instead
/usr/include on the standard include file search list. (Of course, this has no effec
the front end has been configured to have an empty “standard list” of include files.)
7-25

C/C++ Reference Manual

itself
in

xt of
e.

be
cates
erity

ciated
thers.
Diagnostic Messages 7

Diagnostic messages have an associatedseverity, as follows:

• Catastrophic errors indicate problems of such severity that the compilation
cannot continue. For example: command-line errors, internal errors, and
missing include files. If multiple source files are being compiled, any
source files after the current one will not be compiled.

• Errors indicate violations of the syntax or semantic rules of the C or C++
language. Compilation continues, but object code is not generated.

• Warnings indicate something valid but questionable. Compilation contin-
ues and object code is generated (if no errors are detected).

• Remarks indicate something that is valid and probably intended, but which
a careful programmer may want to check. These diagnostics are not issued
by default. Compilation continues and object code is generated (if no errors
are detected).

Diagnostics are written tostderr with a form like the following:

"test.c", line 5: a break statement may only be used within a
loop
 or switch
 break;
 ^

Note that the message identifies the file and line involved, and that the source line
(with position indicated by thê) follows the message. If there are several diagnostics
one source line, each diagnostic will have the form above, with the result that the te
the source line will be displayed several times, with an appropriate position each tim

Long messages are wrapped to additional lines when necessary.

The --display_error_number may be used to request that the error number
included in the diagnostic message. When displayed, the error number also indi
whether the error may have its severity overridden on the command line. If the sev
may be overridden, the error number will include the suffix “-D ” (for “discretionary”);
otherwise no suffix will be present.

"Test_name.c", line 7: error #64-D: declaration does not
declare anything
 struct {};
 ^
"Test_name.c", line 9: error #77: this declaration has no
storage class or
 type specifier
 xxxxx;
 ^

Because an error is determined to be discretionary based on the error severity asso
with a specific context, a given error may be discretionary in some cases and not in o
7-26

Special Features of C++

rror

ntext
stan-
. For

riate

.,

rror
For some messages, a list of entities is useful; they are listed following the initial e
message:

"test.c", line 4: error: more than one instance of overloaded
function "f"
 matches the argument list:
 function "f(int)"
 function "f(float)"
 argument types are: (double)
 f(1.5);
 ^

In some cases, some additional context information is provided; specifically, such co
information is useful when the front end issues a diagnostic while doing a template in
tiation or while generating a constructor, destructor, or assignment operator function
example:

"test.c", line 7: error: "A::A()" is inaccessible
 B x;
 ^
 detected during implicit generation of "B::B()" at
line 7

 Without the context information, it is very hard to figure out what the error refers to.

It is possible to change the severity level of certain messages by using an approp
option.

--diag_suppress tag,tag,... suppress the message
--diag_remark tag,tag,... issue a Remark
--diag_warning tag,tag,... issue a Warning
--diag_error tag,tag,... issue an Error

wheretag is the message number (e.g.,0001) or the message mnemonic name (e.g
last_line_incomplete).

For some messages, a list of entities is useful; they are listed following the initial e
message:

“test.c”, line 4: error: more than one instance of overloaded function “f”
 matches the argument list:

function “f(int)”
function “f(float)”
argument types are: (double)

 f(1.5);
 ^

Termination Messages 7

n errors detected in the compilation of " ifile".
1 catastrophic error detected in the compilation of " ifile".
7-27

C/C++ Reference Manual

f no

cata-

inter-
d be

ostic
were

nos-

c-
oes
n errors and 1 catastrophic error detected in the compilation
of " ifile".

is written to indicate the detection of errors in the compilation. No message is written i
errors were detected. The following message

Error limit reached.

is written when the count of errors reaches the error limit (see the-e option, above); com-
pilation is then terminated. The message

Compilation terminated.

is written at the end of a compilation that was prematurely terminated because of a
strophic error. The message

Compilation aborted.

is written at the end of a compilation that was prematurely terminated because of an
nal error. Such an error indicates an internal problem in the compiler and shoul
reported to those responsible for its maintenance.

Response to Signals 7

The signalsSIGINT (caused by a user interrupt, likêC) andSIGTERM(caused by a
kill command) are trapped by the front end and cause abnormal termination.

Exit Status 7

On completion, the front end returns with a code indicating the highest-severity diagn
detected: 4 if there was a catastrophic error, 2 if there were any errors, or 0 if there
any warnings or remarks or if there were no diagnostics of any kind.

If multiple source files are compiled, the exit status indicates the highest-severity diag
tic detected in the entire compilation.

Finding Include Files 7

A file name specified in a#include directive is searched for in a set of directories spe
ified by command-line options and environment variables. If the file name specified d
not include a suffix, a set of suffixes is used when searching for the file.

Files whose names are not absolute pathnames and that are enclosed in"..." will be
searched for in the following directories, in the order listed:
7-28

Special Features of C++

e
the

in
-

1

stem
ment

lude
rec-
,

ont
uf-

y

1. The directory containing the current input file (the primary source file or
the file containing the#include);6

2. any directories specified in--include_directory options (in the
order in which they were listed on the command line);

3. any directories on the standard list (/usr/include).

For file names enclosed in<...> , only the directories that are specified using th
--include_directory option and those on the standard list are searched. If
directory name is specified as “- ”, e.g., “-I- ”, the option indicates the point in the list of
--include_directory options at which the search for file names enclosed
<...> should begin. That is, the search for<...> names should only consider directo
ries named in--include_directory options following the-I- , and the directories
of item 3 above.-I- also removes the directory containing the current input file (item
above) from the search path for file names enclosed in"..." .

An include directory specified with the--sys_include option is considered a “sys-
tem” include directory. Warnings are suppressed when processing files found in sy
include directories. If a default include directory has been specified using the environ
variable, it is considered a system include directory.

If the file name has no suffix it will be searched for by appending each of a set of inc
file suffixes. When searching in a given directory all of the suffixes are tried in that di
tory before moving on to the next search directory. The default set of suffixes is none.h ,
and.hpp . The default can be overridden using the--incl_suffixes command-line
option. A null file suffix cannot be used unless it is present in the suffix list (i.e., the fr
end will always attempt to add a suffix from the suffix list when the file name has no s
fix).

6. However, ifSTACK_REFERENCED_INCLUDE_DIRECTORIESis TRUE, the directories of all the source input files currentl
in use are searched, in reverse order of#include nesting.
7-29

C/C++ Reference Manual
7-30

8-1
8-1
8-2
8-2

8-3
8-4
8-4
8-4
8-5
8-6
8-6

8-7
8-7

8-10
8-13
8-14

8-14
8-15
8-15

8-15
8-16
8-16
8-18

8-18
8
Compilation Modes

Overview .
Compilation Modes .

ANSI C Mode. .
Normal C++ Mode .
Strictly-Conforming Mode .
cfront 2.1 Compatibility Mode .
cfront 3.0 Compatibility Mode .

Transition Mode .
Old Mode .

Mode Features .
Common Features. .
Differentiating Features .

Preprocessing .
Type-Promotion Rules. .
Binary Operator Expressions .
Escape Characters .
Redeclaration of Typedefs. .
Scope of Parameters .

Header File Features .
Function Prototypes .
Name-Space Restrictions .
Library Enhancements .

Locale-Support Enhancements .
Anachronism Mode .

PowerMAX OS Real-Time Guide

e

their
++.
8
Chapter 8Compilation Modes

8
8
7

Overview 8

This chapter describes the compilation modes of the Concurrent C++ compiler,ec++ and
the Concurrent C compiler,ec . Compiler options let you select a compilation mode; th
modes are differentiated by their support for various dialects of C and C++.

Compilation Modes 8

Compilation modes are selected via compiler options. They are distinguished by
level of conformance to the ANSI C++ and ANSI C standards and dialects of C and C
Table 8-1 depicts these modes and their command-line options.

Table 8-1. C++ Compilation Modes

cc++ Options Mode Description

(none) Normal C++ mode Accept normal ANSI C++ code.

--strict ANSI C++ strictly-conforming
mode

Compile any ANSI C++ strictly-conforming
program.

--strict_warning ANSI C++ stricting-conforming
mode (warn on non-conforming
usage)

Like --strict , but generates warning instead
of error.

--cfront_2.1 cfront 2.1 compatibility mode Support compatibility with cfront 2.1.

--cfront_3.0 cfront 3.0 compatibility mode Support compatibility with cfront 3.0.

--anachronisms Anachronism mode Support various anachronisms (“Anachronisms
Accepted” on page 6-5)
8-1

C/C++ Reference Manual

on

C
I C
s that
ation

I C
I C-
ce in
here

ec-

NSI
line

es

-

See thecc++(1) man page for a brief description of these options and compilati
modes. See Chapter 1 (“Compilation”) for more information on compilation.

When it is unimportant to distinguish among the Transition, ANSI C, and ANSI
Conforming compilation modes, the text refers to them collectively as the ANS
compilation modes. Later sections describe each compilation mode and the feature
characterize it. Table 8-2 summarizes the features that characterize the compil
modes.

ANSI C Mode 8

ANSI C mode provides a nearly standard ANSI C compilation environment. All ANS
language syntax and semantics are obeyed. This mode differs from an ANS
conforming compilation environment because it supports the full system name-spa
the header files; this allows access to all system macros and library routines even w
forbidden for a strictly conforming ANSI implementation.

• All violations of ANSI C constraints on pointer type usage are diagnosed
with warning messages.

• All system macros and library routines are available even where forbidden
for a strictly conforming ANSI C implementation. For more information on
name-space restrictions, see “Name-Space Restriction” on page 8-16.

Normal C++ Mode 8

This mode provides compatibility with the dialect of C++ described in the ARM. See S
tion “Extensions Accepted in Normal C++ Mode” on page 6-6 for more information.

From least to most conforming, these compilation modes for C are: Old, Transition, A
C, and ANSI C Conforming. Table 8-1 depicts these modes and their command-
options.

Table 8-2. C Compilation Modes

cc++
Options

Mode Name Description

-Xo Old mode Compatibility mode for pre-ANSI C code.

-Xt Transition mode Use ANSI C semantics, but provide additional warning messag
where those semantics conflict with previous practice.

-Xa ANSI C mode Silently use ANSI C features. This is the default compilation mode.

-Xc (ANSI C) Conforming mode Enforce ANSI C name-space restrictions and compile any strictly
conforming program.
8-2

Compilation Modes

he
d all
that

de. To

es a
pt
I C
mes,

ming
,

Strictly-Conforming Mode 8

Strictly-conforming mode provides a compilation environment conforming to t
emerging ANSI C++ standard. All ANSI C name-space restrictions are enforced, an
violations of ANSI C++ constraints and syntax rules produce warnings. This means
many variable names, function names, and macro names are not defined in this mo
compile in strictly-conforming mode, invokecc++ with the --strict option. Strictly-
conforming mode has the following characteristics:

Conforming mode is one of the three ANSI C compilation modes. This mode provid
compilation environment conforming to ANSI C. It is identical to ANSI C mode exce
that all ANSI C name-space restrictions are enforced, and all violations of ANS
constraints and syntax rules produce warnings. This means that many variable na
function names, and macro names are not defined in this mode. To compile in Confor
mode, invokehc with the -Xc option. Aside from those features listed in Table 8-2
Conforming mode has the following characteristics:

• The compiler does not predefine macros that violate the ANSI C++ and
ANSI C name-space restrictions. Specifically, the predefined macros
shown below arenot available:

 unix

 _unix

• The following additional compiler error messages are generated for minor
violations of ANSI C++ and ANSI C syntax semantic constraints:

- Warnings for the use of an extra comma at the end ofenum type
declaration lists.

- Warnings for missing declaration specifiers in external definitions.

- Warnings for missing semicolons for the last item instruct and
union declaration list.

- Warnings for emptystruct or union field declarations.

- Warnings for anonymous bit fields with empty type specifiers.

- Warnings for named bit fields with a size of zero.

- Warning messages for empty (no tokens after preprocessing) source
files.

- Fatal errors for the use of the$ character in identifier names. (A fatal
error message is one for whichec++ stops the compilation before
producing an object file and returns an error code to its parent
process.)

- Fatal errors for the use of thesizeof on a bit-field. Normallycc++
returns the size of the type of the bit-field.

- Fatal error messages for using the& on variables declared with the
register storage class. Normallyec++ just produces a warning
message.
8-3

C/C++ Reference Manual

a-

elp
ode
stic
Old
cfront 2.1 Compatibility Mode 8

This mode provides compatibility with thecfront 2.1 dialect of C++. See Section
“Extensions Accepted in Cfront 2.1 Compatibility Mode” on page 6-8 for more inform
tion.

cfront 3.0 Compatibility Mode 8

This mode provides compatibility with thecfront 3.0 dialect of C++. See “Extensions
Accepted in Cfront 2.1 and 3.0 Compatibility Mode” on page 6-9.

Transition Mode 8

Transition mode is one of the three ANSI C compilation modes. It is intended to h
customers convert their existing C code so it makes use of ANSI C semantics. This m
provides all the features of ANSI C mode, but the compiler issues additional diagno
messages where ANSI C semantics conflict with the traditional semantics used in
mode. To compile in Transition mode, invokecc++ with the-Xt option.

There are some cases where Transition mode cannot provide good diagnostics.

• In Transition mode, the ANSI C preprocessor attempts to produce
diagnostics messages forcpp(1) preprocessing tricks but is unable to
splice tokens at the beginning or end of macros. For more information on
token-splicing, see “Preprocessing” on page 8-7 .

• Other undocumented features ofcpp(1) may also fail to receive
diagnostic messages.

The illegal uses of type specifiers with typedefs generates syntax errors,
instead of cleaner diagnostic messages. For example,

foo()
{

typedef int integer ;
{

short integer local ;
}

}

generates the error messages

"file.c", line 5: syntax: deleting, ' local '
"file.c", line 5: syntax: inserting, ' , IDENTIFIER'

 prior to ' ; '

when compiled in any of the ANSI C compilation modes.

• Transition mode attempts to generate warning messages for code whose
behavior may have changed because of changes in the default type-
promotion rules or because of changes in the default types of literals. These
8-4

Compilation Modes

in Old

ure:
messages do not always indicate a problem with the source code. Changes
in default type-promotion may offset a change in the type of a literal or vice
versa. The compiler only detects that at some point in an expression at least
one difference in type-promotion occurred. For example, given the code

#define FLAG 0xffffffff
extern unsigned short us ;
foo()
{

if (us + 1 < FLAG)
return 1 ; /* always does this */

return 0 ;
}

Transition mode generates the warning message

"file.c", line 4: warning: ANSI: Possibly
different type-promotion around "<"
operation

because under the value-preserving rules the expression

us + 1

has typeint instead ofunsigned int and because the literal

0xffffffff

has typeunsigned int instead ofint . Note, however, that the
relational operator,< is always performing an unsigned comparison under
either set of type-promotion rules.

Old Mode 8

Old mode provides maximal support for existing customer code andmakefiles . How-
ever, there have been some compiler changes that may require source changes even
mode. These changes are discussed in “Library Enhancements” on page 8-16 .

In addition to the information provided in Table 8-1 , Old mode has the following feat

• Some instances of illegal pointer usage receive caution messages rather
than warning messages. The printing of caution messages must be
explicitly enabled by using the-n option or the#pragma cautions
directive.
8-5

C/C++ Reference Manual

ibed in
Mode Features 8

Each compilation mode has features that characterize it. These features are descr
the following sections.

Common Features 8

The following ANSI C features are available inall compilation modes.

• The function prototype syntax is always available. The PowerMAX OS
header files, however, only use function prototype declarations if one of the
ANSI C compilation modes (see “Compilation Modes” on page 8-1) is
used. Please refer to Chapter 9 ofC: A Reference Manualby Harbison and
Steele and “Function Prototypes” on page 8-15 in this manual for more
information about function prototypes.

• Initializers for automatic aggregate data objects such as structures and
arrays are accepted in all compilation modes.

• Unions may be initialized. ANSI C defines the initializer for a union to
initialize its first element.

• File-scoped declarations that use theextern storage class may be
initialized, thus producing a definition.

• The long double data type is supported. As currently implemented,
long double objects are of the same size and data format as objects of
type double , however, future releases may use an extended-precision
implementation forlong double .

• Integer constants are permitted to use the “unsigned” suffixes'u' and
'U' . For example, an integer literal of the form 123u or 123U has the type
unsigned int rather than typeint . Note: theu andUsuffixes did not
exist before ANSI C.

• Floating-point constants accept the suffixes'f' or 'F' , and'l' or 'L'
to indicatefloat type orlong double type constants, respectively. For
example, 3.1415f and 3.1415F both produce constants with typefloat ,
while 3.1415l and 3.1415L produce constants with typelong double .

• String constants that are separated by only white space are automatically
concatenated. For example:

"hello" " world\n"

is treated as

 "hello world\n"

rather than as a syntax error.

• Thesigned , const , andvolatile keywords are always recognized by
the compiler in Old mode.
8-6

Compilation Modes

with
s of
nt

e the

is not
man
arate
ented

rd’s
the

ilities
• The syntax and library routine support for wide and multi-byte character
constants and strings is available. Currently no wide or multi-byte locales
are supported.

Differentiating Features 8

The C language defined by the ANSI C standard has a number of incompatibilities
older dialects of the language. This section attempts to explain the major area
incompatibility introduced by the ANSI C standard that are likely to have significa
impact on existing source code.

Preprocessing 8

Older releases of the C compiler used an internal preprocessor. Now, in Old mod
compiler uses the traditional UNIX preprocessorcpp(1) . In either case, ANSI C-
specific preprocessing features are not available.

The ANSI C compilation modes use the/usr/ccs/lib/acpp preprocessor. This is a
separate standalone preprocessor written to the ANSI C standard. (This processor
considered to be a separately supported tool, but rather as a part of the compiler. A
page is not provided, and future releases of the C compiler may not provide it as a sep
tool. Customers should not introduce any dependencies on its existence or undocum
aspects of its behavior.)

Providing the first complete specification of the C preprocessor is the ANSI C standa
most significant change. This change introduced a number of incompatibilities with
preprocessing supported by the traditional UNIX preprocessorcpp(1) and with the
internal preprocessor used by older releases of the C compiler. These incompatib
are:

• Trigraphs are sequences of three adjacent characters that are mapped into
single characters during the first translation phase (before string constants
and comments have been recognized). These sequences are provided to
support non-ASCII hardware environments where certain common C
characters are not available. The trigraphs are shown in Table 8-1 .

The trigraph sequences are seldom encountered in non-ANSI C source;
however, they do introduce a potential incompatibility for some uses in
string constants, character constants, or in#include header file names.
For example, the following statement appears differently in Old mode and
in ANSI C mode after trigraph substitutions:

Old mode:

printf("warning: very strange error condition??!\n");

ANSI C mode:

printf("warning: very strange error condition|\n");
8-7

C/C++ Reference Manual
• ANSI C introduced an explicit token splicing operator,##, that causes
adjacent tokens in macros (#defines) to be spliced into a single token.
ANSI C also reinforces the original Kernighan and Ritchie rule that
specifies that comments are replaced with white space. This makes the
traditionalcpp(1) trick of using comment deletion in macros to perform
token splicing illegal. For example, given a macro of the form

#define declare_stack(name, type) \
type *name/**/_STACK ;

cpp interprets it as being equivalent to

#define declare_stack(name, type) \
type *name_STACK ;
/* there is no space between the e and the _ */

ANSI C interprets it as being equivalent to

#define declare_stack(name, type) \
type *name _STACK ;
/* there is a space between the e and the _ */

To get the intended token splicing behavior, use instead

#define declare_stack(name, type) \
type *name ## _STACK ;

Other examples ofcpp(1) token splicing that rely on splicing tokens at
the beginning or end of macro expansions do not work under ANSI C
preprocessing rules. For example, given

Table 8-1. Trigraph Mapping

Trigraph Corresponding Character

??= #

??([

??)]

??/ \

??’ ^

??< {

??> }

??! |

??- ~
8-8

Compilation Modes
#define DIGIT 5
#define EPSILON 1.0e-DIGIT

an ANSI C preprocessor expands EPSILON to

1.0e-DIGIT

However, because of the ANSI C definition ofpreprocessing tokens,
cpp(1) expands EPSILON to

1.0e-5

• The ANSI C specification also disallows the common practice of
substituting macro parameters into string and character constants. For
example, given

#define str(x) "x\n"
#define CNTRL(x) ('x' & 0x80)
char *string = str(hello) ;
char character = CNTRL(a) ;

an ANSI C preprocessor would produce

char *string = "x\n" ;
char character = ('x' & 0x80) ;

 However,cpp(1) would produce

char *string = "hello\n" ;
char character = ('a' & 0x80) ;

To allow the creation of string constants from macro parameters ANSI C
added a new preprocessing operator,# (sometimes called thestringizeor
stringizationoperator). It, together with the automatic concatenation of
adjacent string constants, can be used to define the str() macro as:

#define str(x)#x "\n"

The following macro call

char *string = str(hello) ;

expands as follows, producing a valid ANSI C initializer

char *string = "hello" "\n" ;

Two approaches may be taken to handle macros that substitute parameters
into character constants, like CNTRL() above.

The first method is to define the macro so that the argument must be
contained within quotes. This requires that all uses of the macro be
changed to put quotes around the arguments. For example,
8-9

C/C++ Reference Manual

s the
fault
havior
#define CNTRL(x) (x & 0x80)
char character = CNTRL('a') ;

This definition works with either ANSI C or oldcpp(1) style
preprocessors, but requires you to change all references to the macro in
question.

The second method is to use the stringization operator and reference the
first element of the string (recall that string constants are defined to be
arrays of characters). For example, define the CNTRL macro as

#define CNTRL(x) (#x[0] & 0x80)

The following macro call

CNTRL(a)

expands to

("a" [0] & 0x80)

This expression has the same value as ('a' & 0x80). The principal advantage
of this method is that it does not require you to changeall references to the
macro, but note that this form of the macro does not expand to a constant
expression and so may not be used in data initializers or in case label
expressions. This method also depends on the use of an ANSI C
preprocessor.

Type-Promotion Rules 8

The ANSI C standard’s most significant change to the semantics of the language i
introduction of new rules for type-promotion in expressions and changes in the de
types of integer constants. This change can introduce undiagnosed changes in the be
of programs that rely on the old type-promotion rules.

• Information about the handling of type-promotion in expressions follows:

In Old mode,cc++ (like many other C compilers) uses unsigned-
preserving rules for type promotion in expressions. Under the unsigned-
preserving rules, any expression that involves an unsigned type
(unsigned char , unsigned short , unsigned int , or unsigned
long) always promotes to an unsigned data type (unsigned int or
unsigned long , as appropriate).

ANSI C standardized the default type-promotion rules to follow what are
called value-preserving semantics. Under the value-preserving rules, the
smaller unsigned types (unsigned char andunsigned short)
promote to the next larger type that can still represent all of the values of
the unsigned data type. Note that this makes C’s type-promotion rules
dependent on the size of the data types in any particular implementation.

For example, if a compiler’s implementation of theint data type is large
enough to represent all of the values representable in anunsigned
8-10

Compilation Modes
short (i.e., sizeof(unsigned short) < sizeof(int)), then
an expression that mixes anunsigned short with an int promotes to
int type under the value-preserving rules, butunsigned int type under
the unsigned-preserving rules. A different compiler that implemented
short and int types with the same representation would promote that
same expression tounsigned int type under the value-preserving rules.

For the current implementation of the cc++ compiler, the following
relationships are true for all target machines:

- sizeof(unsigned char) < sizeof(unsigned short)

- sizeof(unsigned short) < sizeof(int)

- sizeof (int) == sizeof(long)

This means that under the value-preserving rules, expressions
involving unsigned char andunsigned short types promote
to signedint type, instead ofunsigned int as they would under
the unsigned-preserving rules. Expressions promote tounsigned
int types only if anunsigned int appeared explicitly in the
expression. Likewise, expressions mixingunsigned int types
with long types still promote tounsigned long under the value-
preserving rules (becausesizeof(int) == sizeof(long) , on
all current targets).

• Information about the implicit data-typing of integer constants follows:

ANSI C introduced new rules for determining the data types of integer
constants (decimal, hex, and octal constants). In Old mode, these constants
are always treated as having signedint or signedlong (if the L suffix is
used) type. You may apply the ANSI'u' or 'U' unsigned suffix and force
the literals to haveunsigned int or unsigned long type (if theL
suffix is also used).

The ANSI C standard specifies that the data types of integer constants are
chosen by picking the smallest type that can represent the constant value in
the list below. Like the value-preserving type-promotion rules (discussed
before), this rule depends on a particular implementation’s representation
of the int andlong data types. In Table 8-1 parenthesized data types are
valid for ANSI C but are redundant for cc++ because cc++ implements the
int and long data types with the same 32-bit two’s complement
representation.

Table 8-1. Constants and Type Lists

Constant Type List

unsuffixed decimal: int, (long), unsigned long

unsuffixed hex or octal: int, unsigned int, (long), (unsigned long)
8-11

C/C++ Reference Manual

of

ed
t

. For
gned,

the
es is
This
The information in Table 8-1 translates to the following facts. The net effect
applying the ANSI rules to the current target machines (wheresizeof (int) ==
sizeof (long)) is that “unsuffixed” decimal literals that cannot be represent
as a signedint have typeunsigned long , and octal and hex literals that canno
be represented as a signedint have typeunsigned int . Similarly, literals that
use the'l' or 'L' long suffixes automatically promote tounsigned long if
they cannot be represented as a signedlong . Literals that use'u' or 'U' unsigned
suffixes haveunsigned int or unsigned long type (if theL suffix is also
used).

Table 8-2 shows the difference in type rules for the numbers 1 and 4294967295
cc++’s current target machines, the value 1 can be represented as a 32-bit, si
sstwo’s complement integer constant but 4294967295 cannot be.

In the cases marked as overflowing, the old type-promotion rules force
constant’s value to overflow the representation. The result on current machin
that the constant receives a different numeric value (-1 instead of 4294967295).
can be the source of silent changes in behavior.

U suffixed: unsigned int, (unsigned long)

L suffixed: long, unsigned long

UL suffixed: unsigned long

Table 8-2. Constant Representations

Constant Non-ANSI C Type ANSI C Type

 1 int int

 4294967295 int (overflows) unsigned long

 0x1 int int

 0xffffffff int (overflows) unsigned int

 1L long long

 0xffffffffL long (overflows) unsigned long

 1U unsigned int unsigned int

 0xffffffffU unsigned int unsigned int

 0x1UL unsigned long unsigned long

 0xfffffffUL unsigned long nsigned long

Table 8-1. Constants and Type Lists (Cont.)

Constant Type List
8-12

Compilation Modes

nary
ent in
ns, C
ce of
s:

e in
Binary Operator Expressions 8

An expression that involves a binary operator is a binary expression. Before a bi
expression is evaluated, the two operands may be converted. C is especially leni
allowing mixed operands in expressions. Before evaluating most binary expressio
converts all operands to a common data type. In Old mode, the exact sequen
conversion the compiler takes before evaluating an arithmetic expression is as follow

• Any signed char,short or signed short operand is converted to
int ;

• Any char, unsigned char or unsigned short operand is converted
to unsigned int ;

• If one operand isdouble , the other is converted todouble and the result
type isdouble ;

• Otherwise, if one operand isfloat , the other is converted tofloat and
the result type isfloat ;

• Otherwise, if one operand isunsigned long , the other is converted to
unsigned long and the result type isunsigned long ;

• Otherwise, if one operand islong and the other isunsigned int , then
they are both converted tounsigned long and the result type is
unsigned long ;

• Otherwise, if one operand islong , the other is converted tolong and the
result type islong ;

• Otherwise, if one operand isunsigned int , the other is converted to
unsigned int and the result type isunsigned int ;

• Otherwise, both operands areint and the result type isint .

For example, in the following program, the same value is assigned to a
char , int , andfloat variable:

main()
{

float f;
int i;
char c;
/* assign 'A' to c, 65 to i, 65.0 to f */
f = i = c = 'A' ;
printf("c=%c i=%5d f=%5.1f \n",c,i,f);

}

The output is:

c = A i = 65 f = 65.0

The character 'A' is converted to an integer when assigned to i, then
converted to a real number when assigned to f.

The following list is the subset of the ANSI C type-promotion scheme that is applicabl
the ANSI C compilation modes of the Concurrent C compiler.
8-13

C/C++ Reference Manual

es of

r
cape
eing

s
mon
type

Old
• Any unsigned char , char , signed char , unsigned short,
short , orsigned short is converted toint .

• If one operand is anunsigned int or unsigned long , any int (or
value converted toint) is converted tounsigned int .

• If one operand isdouble , the other is converted todouble and the result
type isdouble .

• Otherwise, if one operand isfloat , the other is converted tofloat and
the result type isfloat .

Escape Characters 8

ANSI C allows new escape characters in string and character literals. In older releas
the C compiler and in Old mode,cc++ doesnot recognize these escape characters.

In the ANSI C compilation modes, the sequence\a is interpreted as the alert characte
and the sequence\x introduces a hexadecimal escape sequence (similar to octal es
sequences). (The actual encoding of the alert character is defined by ANSI C as b
implementation-dependent. Thecc++ compiler implements it as the ASCII BEL
character, so in this example, the equivalent octal escape code for BEL is shown.)

Prior to ANSI C the following two strings

 "\a1 is nothing special" "\x2 is nothing special"

would have been treated by the compiler as equivalent to the strings

"a1 is nothing special" "x2 is nothing special"

However, under the ANSI C standard, they are treated as being equivalent to

"\0071 is nothing special" "\02 is nothing special"

This can cause changes in programs that inadvertently make use of the\a or \x escape
sequences.

Redeclaration of Typedefs 8

ANSI C decided that type identifiers (typedefs) may be redeclared as normal identifier
(or other type identifiers) in inner scopes. At the same time, ANSI C made the com
practice of allowing the unsigned and signed type specifiers to be mixed with integer
identifiers illegal. For example, the following code:

typedef int integer ;
unsigned integer local ;

is considered to be illegal in ANSI C; however, older releases of the C compiler and
mode accept it as declaring local to be anunsigned int . On the other hand, ANSI C
treats

typedef int integer
int foo()
8-14

Compilation Modes

ope
lare

iables

n Old

This
{
unsigned integer ;

}

as redeclaring integer as an identifier with typeunsigned int . Older releases of the C
compiler consider this to be a syntax error. Current releases ofcc++ (in Old mode) accept
this as an extension.

Scope of Parameters 8

In Old mode, the formal parameters of a function definition are given a different sc
than the variables declared in the first block of a function. This makes it legal to redec
the name of a formal parameter as a variable in the first block of a function.

In the ANSI C compilation modes, function parameters have the same scope as var
declared in the first block of the function. This makes code like

function (parameter)
int parameter ;
{

short parameter ;/* redeclare a parameter */
}

illegal in ANSI C since there are multiple definitions ofparameter in the same scope.
Names of formal parameters may still be redeclared in subsequent nested blocks. I
mode, this is legal but probably not intentional.

Header File Features 8

The header files under/usr/include provide the following support for ANSI C:

• Meet ANSI C requirements on their contents

• Allow you to take advantage of the additional compile-time error checking
available with function prototypes

Function Prototypes 8

Function prototypes are available for functions declared in most system header files.
has two advantages:

• The compiler can do better error-checking on the type and number of
arguments to library routine calls.

• The single-precision math library routines can be used (assuming
#include <math.h> appears) without resorting to the-fsingle2
command-line option tocc++ .
8-15

C/C++ Reference Manual

the
me-

ax,
, the
nd

by
X

SI C
dards,
eader
given

rary
r is
inal

and
Name-Space Restrictions 8

The system header files contain conditional compilation code (#ifdef __STDC__) that
controls the enforcement of ANSI C restrictions on their contents. In Old mode,
__STDC__macro is undefined; this means that ANSI C syntax, semantics, and na
space restrictions are not enforced. In ANSI C conforming mode (-Xc option), the
__STDC__ macro is defined to be 1, causing enforcement of the ANSI C synt
semantics, and name-space restrictions. In Transition mode and ANSI C mode
__STDC__ macro is defined to be 0 (zero), indicating use of ANSI C syntax a
semantics but not the enforcement of ANSI C name-space restrictions.

A POSIXTM-conforming name-space may be achieved in any compilation mode
defining the macro_POSIX_SOURCEbefore any header files are included (the POSI
1003.1 name-space is a superset of ANSI C name-space).

In Figure 7-1, the User Name-Space represents the universe of identifiers, the AN
and C++ Name-Space represents the identifiers defined by the ANSI C and C++ stan
and the shaded region represents identifiers that are defined in ANSI C and C++ h
files but that are not defined by the ANSI C and C++ standards. The shaded region is
to the user in Conforming mode but is given to the system in all other modes.

Figure 7-1. Name-Space Restriction

Library Enhancements 8

ANSI C specified a number of minor changes in the run-time behavior of several C lib
routines. Where ANSI changes conflict with existing practice, the library behavio
determined by the compilation mode specified on the command line when the f
executable isl inked. Care must be taken withmakefiles (or other ad hocmake
procedures) that do not automatically include compilation options with the link comm
or which create the final executable by usingld(1) directly.

Name-Space

Name-Space
ANSI C/C++

User
8-16

Compilation Modes

to
ed in

and

use

see

I C

C

ages

ode
Thecc++ driver program controls run-time behavior by linking special object files in
the executable depending on the compilation mode. By default, executables are link
the ANSI C mode. In the ANSI C (-Xa) and Transition (-Xt) modes, the object file
/usr/ccs/lib/ansi.o is linked in to force ANSI C behavior. In the ANSI C
conforming mode (-Xc), the object file/usr/ccs/lib/strict.o is used. In Old
mode, no special object file is required.

For example, to compile and link a C program using the ANSI C compilation mode
run-time library behavior, use a command line like the one supplied here

$ ec -o prog file.c

To compile a C program using the ANSI C compilation mode but to link in Old mode,
a command line like the one supplied here

$ ec -c file.c; ec -Xo -o prog file.o

This might cause unexpected behavior if the code infile.c depends on ANSI C library
behavior that conflicts with Old mode behavior. For more information on compilation,
Chapter 1 (“Compilation”) and thecc++(1) man page.

Note thatld(1) does not support the compilation mode options, so to force ANS
behavior, either/usr/ccs/lib/ansi.o or /usr/ccs/lib/strict.o must be
added to the link command. Theld command line to link an executable and force ANSI
behavior from the run-time library would be

$ ld -o prog /usr/ccs/lib/crt0.o /usr/ccs/lib/ansi.o foo.o -lc

The actual differences in library routine behavior are discussed in detail in the man p
for the modified routines. These are:

• ctime(3C)

• exp(3M)

• frexp(3C)

• matherr(3M)

• printf(3S)

• scanf(3S)

• setbuf(3S)

• sinh(3M)

• strtol(3C)

• trig(3M)

The major differences are in error-detection and handling. For example, in ANSI C m
the strtol() routine only accepts input in the rangeLONG_MINto LONG_MAXand
math library routines do not call thematherr routine if linked in ANSI C conforming
mode (since ANSI C forbids this).
8-17

C/C++ Reference Manual
Locale-Support Enhancements 8

The following additional support is now provided bycc++ :

• TheLC_COLLATE locale category is now supported:

• A new tool, colltbl(1M) , is provided to define locale-dependent
collating sequences.

• setlocale(3C) has been enhanced to support theLC_COLLATE
category.

• Two new library routines,strxfrm(3C) and strcoll(3C) , are
provided to support programs that wish to make use of locale-dependent
collating sequence information.

• The following enhancements have been made tochrtbl(1M)

- chrtbl now supports definition of theLC_NUMERIC (non-
monetary numeric formatting information) locale data file.
Previously, this data fi le had to be created manually. See
localeconv(3C) .

- chrtbl now contains preliminary support for the definition of
multi-byte and wide-character locale definitions. This is done with
thecswidth chrtbl specifier.

Multi-byte locales are not currently supported, and these features are unused.

Anachronism Mode 8

This mode supports various anachronisms fromcfront dialects of C++. See Section
“Anachronisms Accepted” on page 6-5 for more information.
8-18

9-1
9-1
9-1
9-2
9-2
9-2
9-3
9
Runtime Libraries

Overview .
Runtime Library. .

General .
Language Support Library .
Linking .
Template Instantiation .

Cfront Libraries .

PowerMAX OS Real-Time Guide

ys-
full

core,
and
sepa-
in.

AX
uded

to the

ly:

+
ard
ilable
9
Chapter 9Runtime Libraries

9
9
8

Overview 9

This chapter identifies the libraries provided with the Concurrent C++ compilation s
tem. This release of the compilation system includes runtime libraries that nearly in
compliance withThe ISO/IEC 14882:1998(E) C++ Standard.

Previous releases included specialized C++ class libraries from another vendor. The
standardized functionality in those libraries is now supported by the runtime library,
third-party libraries have been removed from the general release. They are available
rately, however, for customers who rely heavily on the specialized functionality there

The set of C-compatible system runtime libraries provided in Concurrent’s PowerM
operating system, such as the math library and the networking libraries, may be incl
in programs compiled with the Concurrent C++ compilation system. Theec++ driver
always includes the standard C library among the libraries whose names are passed
link editor.

The runtime library provided with the Concurrent C++ compilation system is:

• Runtime Library:libCruntime

In addition, the following third-party libraries are available from Concurrent separate

• Cfront Libraries

• I/O Library: libCio

• Complex Library:libCcomplex

Runtime Library 9

General 9

The runtime library (libCruntime) includes Concurrent’s implementation of the C+
Standard Library and the Language Support Library. A description of the Stand
Library is beyond the scope of this manual, but there are many good references ava
at bookstores.
9-1

C/C++ Reference Manual

line

e

ion.
y the

many

d-line
itu-

the
-10 ,
-19.
Language Support Library 9

The Language Support Library provides the following support:

• characteristics of predefined types

• program start and termination

• dynamic memory management

• dynamic type identification

• exception handling

Linking 9

The runtime library is provided in 4 forms: static (libCruntime.a), shared (lib-
Cruntime.so), thread-safe static (libCruntime_mt.a), and thread-safe shared
(libCruntime_mt.so). The appropriate library is chosen based on the command
options used when invoking the compiler. These are summarized in Table 9-1.

Note that any sources that use the<iostream> header, and whose object files are to b
linked with the -lthread option, should be compiled with the-D_REENTRANToption to
specify thread safety.

Template Instantiation 9

A common source of confusion when using the runtime library is template instantiat
Certain templates, are instantiated in the library, either because they are required b
standard, they are needed by other parts of the library, or for convenience. Notably,
I/O template routines are instantiated for the typeschar andwchar_t . This is nice
because simple programs can often be compiled without using any special comman
options or explicit instantiation in the source code. However, it can oversimplify the s
ation for user programs including template code.

When using template code with the C++ compiler, it is important to be familiar with
template instantiation command-line options. See “C++ Specific Features” on page 1
“Template Instantiation” on page 7-3, and “Template Instantiation Pragmas” on page 7

Table 9-1. Choice of Runtime Library

-Zlink=static
-Zlink=dynamic
(default)

threads
-lthread libCruntime_mt.a

(thread-safe static)
libCruntime_mt.so
(thread-safe shared)

(default) libCruntime.a
(static)

libCruntime.so
(shared)
9-2

Runtime Libraries

ont
sep-
front
ries

tion

th
Cfront Libraries 9

In previous releases of the C++ compiler, Concurrent supplied a version of AT&T’s cfr
libraries. These libraries are no longer shipped with the compiler. They are available
arately, but their use is discouraged. It is recommended that code using the older c
libraries be migrated to the C++ Standard Library instead. Support for the cfront libra
will be dropped entirely in a future release.

I/O Library The cfront I/O library (libCio) has been replaced by the I/O
support in the Standard Library.

Complex Library The cfront complex library (libCcomplex) has been replaced
by the complex template class in the Standard Library.

If you insist on using the cfront libraries, you will need the--cfront_io command-line
option which tells the compiler to use the old cfront I/O and which makes the compila
link with libCio .

When using the cfront complex library, you must explicitly tell the compiler to link wi
the libCcomplex by using the-lCcomplex option.
9-3

C/C++ Reference Manual
9-4

, it
w the
each
ed

e of a
otes.

f the
A
Appendix AANSI C++ Implementation

1
1
1

Overview 1

Although the ANSI C++ Working Paper defines many details of the C++ language
leaves some areas to be defined by the implementation. This appendix explains ho
Concurrent ANSI C++ implementation defines those areas. The appendix identifies
portion of the April 28, 1995, Working Paper which specifies an implementation-defin
characteristic, along with the definition used in the Concurrent implementation.

Lexical Conventions (Chapter 2) 1

Phases of Translation (2.1) 1

Nonempty sequences of white-space characters are retained by the compiler.

Character Literals (2.9.2) 1

The value of a multicharacter literal that does not begin with the letterL is encoded into an
integer character constant as follows:

'a' = 'a'
'ab' = 'a'<< 8 | 'b'
'abc' = 'a'<<16 | 'b'<< 8 | 'c'
'abcd' = 'a'<<24 | 'b'<<16 | 'c'<<8 | 'd'

Wide-character literals are only supported for single-character sequences. The valu
wide-character literal is the value of the right-most character enclosed in the single qu

If the value of the selected character in a character literal exceeds that of the largestchar
or wchar_t , the right-most byte of the selected character is regarded as the value o
character literal.
A-1

C/C++ Reference Manual

iler

ious

type
nted.)
String Literals (2.9.4) 1

All string literals are distinct (that is, are stored in non-overlapping objects). The comp
-R option may be used, however, to pool string literals.

Basic Concepts (Chapter 3) 1

Types (3.9) 1

See Table 7-2, “Alignments by Data Type” for the alignment requirements of the var
object types.

Main Function (3.6.1) 1

The type and the parameters of themain function are:

int main (int argc, char *argv[], char *envp[]);

Themain function has external linkage.

Fundamental Types (3.9.1) 1

Table A-1 shows the sizes and value ranges of floating–point types. (The epsilon of a
is the difference between one and the next largest number that can be represe
Table A-2 shows the sizes and value ranges of integer types

Table A-1. Floating-Point Types

Designation Size (bits) Range (decimal)

float
32

1.175494350822287e-38 through
3.4028234663852888540e+38
(The epsilon is 1.19209290e-07.)

double
64

2.22507385850720140e-308 through
1.79769313486231470e+308
(The epsilon is 2.77555756156289e-17.)

long double
64

2.22507385850720140e-308 through
1.79769313486231470e+308
(The epsilon is 2.77555756156289e-17.)
A-2

ANSI C++ Implementation

ing-
.

See Appendix B (“Architecture Dependencies”) for the value representations of float
point and integer types

Table A-2. Integer Types

Designation Size (bits) Range (decimal)

char a

a. A plainchar object can take on the same values as asigned char if the --
signed_chars option is used, or it can take on the same values as anunsigned
char if the --unsigned_char s option is used. In the absence of either option, a
plainchar object takes on the same values as anunsigned char .

8 0 through 255
(any 8–bit unsigned integer)

signed char 8 -128 through 127
(ASCII characters plus negative bytes)

unsigned char 8 0 through 255
(any 8–bit unsigned integer)

bool 8 0 through 255
(any 8–bit unsigned integer)

short 16 -32768 through 32767

signed short 16 -32768 through 32767

unsigned short 16 0 through 65535

int 32 -2147483648 through 2147483647

signed int 32 -2147483648 through 2147483647

unsigned int 32 0 through 4294967295

long 32 -2147483648 through 2147483647

signed long 32 -2147483648 through 2147483647

unsigned long 32 0 through 4294967295

wchar_t 32 -2147483648 through 2147483647

long long 64 -9223372036854775808 through
9223372036854775807

signed long long 64 -9223372036854775808 though
9223372036854775807

unsigned long long 64 0 through 18446744073709551615b

b. 18 quintillion, 446 quadrillion, 744 trillion, 73 billion, 709 million, 551 thousand,
615!
A-3

C/C++ Reference Manual

value

n of
that

from

he

type
Standard Conversions (Chapter 4) 1

Integral Conversions (4.7) 1

When an integer type value is converted to a shorter integer type value, the original
is truncated, discarding the high-order bits which do not fit in the new type.

Expressions (Chapter 5) 1

Reinterpret Cast (5.2) 1

When a pointer is converted to an integral type, the mapping function is a conversio
the value of that pointer to the integral type, as if an explicit cast had been done to
integral type.

When an integral type is converted to a pointer, the mapping function is a conversion
the integral type to a value that can be represented as anunsigned int , as if an explicit
cast had been done tounsigned int . The programmer must ensure that the value of t
pointer represents a correct alignment of the type pointed to.

Sizeof (5.3.3) 1

sizeof(bool) is 1.

sizeof(wchar_t) is 4.

The result of thesizeof operator is a constant of typeunsigned int .

Multiplicative Operators (5.6) 1

In the operationE1 % E2 , the sign of the remainder is the sign ofE1.

Additive Operators (5.7) 1

The result of subtraction of two pointers to elements of the same array object is of
signed int .
A-4

ANSI C++ Implementation

rison

line

s to

evel
pecified
he C
ages
iler.

s the
Shift Operators (5.8) 1

In the operationE1 >> E2 , if E1 is negative, the vacated bits ofE1 are one-filled.

Relational Operators (5.9) 1

Other pointer comparisons produce a result equivalent to that produced by a compa
of the pointer values each cast to typeunsigned in t.

Declarations (Chapter 7) 1

The asm declaration (7.4) 1

asm() is regarded as an ordinary function declaration. It is not used to provide in
assembly language code in a C program.

Linkage Specifications (7.5) 1

Only the linkage specifications “C” and “C++” are valid.

Linkage from C++ to objects defined in other languages, or from other language
objects defined in C++, can be achieved by specifying

extern “C” {
}

around the declarations of the objects in the C++ code. Note that the objects’ link-l
names, when used in languages other than C++, must be the same as the names s
in the linkage specification declaration. Linkage can also be achieved without use of t
linkage specification, provided that the objects’ link-level names, when used in langu
other than C++, match the “mangled” names produced by the Concurrent C++ comp

Declarators (Chapter 8) 1

Default Arguments (8.3.6) 1

The order of evaluation of function arguments varies according to such factors a
context of the function call, the level of optimization used in compilation, etc.
A-5

C/C++ Reference Manual

class

er
are

ing

ntext

ave the
e code

ed by
Classes (Chapter 9) 1

Class Members (9.2) 1

Non-static data members separated by an access specifier are allocated within a
object in order of declaration. If membery is declared after memberx , membery has a
higher address than does memberx .

Bit-fields (9.7) 1

Bit-fields are allocated from left to right (most to least significant bits). Bit-fields nev
cross over an alignment boundary for their type. However, multiple bit-fields which
sufficiently small may occupy the same allocation unit. For example, twoint bit-fields
whose total size is less than 32 bits may share a single 32–bit word.

However, if the firstint bit-field is 17 bits and the second is 16 bits, there are 15 padd
bits between them. Bit-fields may also share their allocation unit with otherstruct
members. For example, a 16-bitint bit-field followed by ashort occupies one 32–bit
word.

A plain int bit-field is unsigned.

Special Member Functions (Chapter 12) 1

Temporary Objects (12.2) 1

The creation of temporaries by the compiler varies according to such factors as the co
of the function call, the level of optimization used in compilation, etc.

Preprocessing Directives (Chapter 16) 1

Conditional Inclusion (16.1) 1

Since the source and destination character sets are identical, character constants h
same value whether they are in a preprocessing conditional statement or are in sourc
which is passed by the preprocessor to the compiler.

The above holds for the 7-bit ASCII characters. 8-bit characters are treated as unsign
the preprocessor.
A-6

ANSI C++ Implementation

f
ed

he

faults

. A
Source File Inclusion (16.2) 1

Includable source files whose names do not begin with “/ ” are searched for in the
following manner:

If the name is enclosed in double-quotes (“”), the file is searched for in the directory o
the file containing the#include statement. If that search fails, or if the name is enclos
between a< and a>, the file is searched for under/usr/include . This behavior can be
modified by using the-I command-line option. Refer to thecc++(1) man page for
more details.

The name of the file to be included is the full name by which the file is known to t
operation system. This may include an absolute or relative path. For example:

<stdio.h> Refers to/usr/include/stdio.h

<sys/time.h> Refers to/usr/include/sys/time.h

"/usr/include/sys/time.h "
Also refers to
/usr/include/sys/time.h

"fleas.h " Searches forfleas.h first in the directory
where the including file is located, then in
/usr/include

"sys/fleas.h " Searches for fleas.h in the sys
subdirectory (if any) of the directory in
which the including file is located, then in
/usr/include/sys.

Predefined Macro Names (16.8) 1

The date and time are always provided by the operating system. Therefore, no de
exist for situations where the date and time of translation are not available.

See “Predefined Macros” on page 7-10 for the definition ofthe __STDC__ macro.

Headers (Chapter 17) 1

Freestanding Implementations (17.3.1.3) 1

The implementation provided in the Concurrent C++ compilation system is hosted
freestanding implementation is not provided.
A-7

C/C++ Reference Manual
Library Introduction (Chapter 17) 1

Reentrancy (17.3.4.5) 1

The following libraries are included:

• C system library: /usr/ccs/lib/libc.a and
/usr /ccs/ l ib / l ibc .so prov ide reen t rancy ;
/usr/ccs/lib/libnc.a does not.

• C++ runtime support library:/usr/ccs/lib/libCruntime.a does
not provide reentrancy.

• C++ I/O support library: /usr/ccs/lib/libCio_mt.a provides
reentrancy;/usr/ccs/lib/libCio.a does not.

Language Support Library 1

Class bad_alloc (18.4.2.1) 1

what() returns the empty character string (““).

Class bad_cast (18.5.2) 1

what() returns the empty character string (““).

Class bad_typeid (18.5.3) 1

what() returns the empty character string (““).

Class bad_exception (18.6.2.1) 1

what() returns the empty character string (““).

Class exception (18.6.1) 1

what() returns the empty character string (““).
A-8

ANSI C++ Implementation

n

n

+

m.
Input/Output Library (Chapter 27) 1

Types (27.4.1) 1

The typestreamoff is of typelong .

The typewstreamoff is not currently supported in the Concurrent C++ compilatio
system.

The typestreampos is of typelong .

The typewstreampos is not currently supported in the Concurrent C++ compilatio
system.

basic_ios iostate flags functions (27.4.4.3) 1

The classbasic_ios::failure is not currently supported in the Concurrent C+
compilation system.

Standard Manipulators (27.6.3) 1

The typesmanip is not currently supported in the Concurrent C++ compilation syste
The classSMANIP is supported. Seemanip(3c++) for more information.

Compatibility (Appendix C) 1

Predefined Names (16.8) 1

See “Predefined Macros” on page 7-10 for the definition ofthe __STDC__ macro.
A-9

C/C++ Reference Manual
A-10

m are
ajor

uous

ero-

less
red.
B
Appendix BArchitecture Dependencies

B
B
B

Overview 2

The PowerPC-based systems targeted by the Concurrent C/C++ compilation syste
32-bit word, two’s complement computers. These systems support the following m
data types: bit, byte, half-word, word, double-word, and floating-point.

Bit-Field 2

A bit-field is a structure member or union member that consists of 1 through 31 contig
bits. Bit-fields may be of typeunsigned int , int , andsigned int . The compiler
also allows them to be of typesunsigned , signed , char , andshort . Fields that are
declared to beunsigned int are zero-extended tounsigned int type when used in
an expression. Similarly, fields declared to be of typesigned int are sign-extended to
int type. Fields that are not explicitly declared to be signed or unsigned are z
extended tounsigned int type. The use of bit-fields is often not portable.

The C/C++ compiler determines how bit-fields and structure members that take up
than a word are stored. Each of the following rules is applied before a member is sto

• Members are packed in the order in which they were declared.

• Members are packed as tightly as possible.

• Members’ data-alignment rules are followed.

• Members do not cross their storage unit boundaries; for example, if a field
does not fit into the remaining space left in a word, it is placed into the next
word. Fields declared aschar or short behave just like int fields except
that instead of word boundaries, they do not crosschar andshort
boundaries, respectively.

• Unused space in storage units is padded.

Figure B-1 shows how the system stores sequentially defined bit-fields.
B-1

C/C++ Reference Manual

ment
ween

icant
byte

As a
Figure B-1. Bit-Field Example

Structures may contain fields and members of other types and sizes. The size of astruct
may not be equal to the sum of its members’ sizes. This is because the align
constraints of the individual members may force pad bits or bytes to be inserted bet
members, padding them to the next boundary appropriate for their declared type.

See “Data Alignment Rules” on page 7-16 for alignment constraints.

Byte 2

A bytecontains eight bits starting on an addressable byte boundary. The most signif
bit (MSB) designates the byte’s address. Figure B-2 shows the address and MSB of a
in the system.

Figure B-2. Address and MSB of a Byte

If the byte is an unsigned integer, then its value is in the decimal range 0 - 255 (binary
00000000 - 11111111).

If the byte is a signed numeric integer, then it contains a two’s complement value.
two’s complement number, a byte represents a decimal ranging from -128 to +127.

The following C/C++ data types take up one byte:unsigned char , char , signed
char . The default for the Concurrent C/C++ compiler is to treat plainchar variables as
being unsigned.

Defined
Bit-Fields

unsigned a:4;
unsigned b:7;

unsigned c:15;
unsigned d:6;

Bit-Fields in Word

a b c d

 0 3 4 10 11 25 26 31

0 7

Address MSB
B-2

Architecture Dependencies

ary.
ss.

. If
nges

ord

s a
Half-Word 2

A 16-bit half-wordcontains two bytes and starts on an addressable 16-bit word bound
Figure B-3 shows that the MSB of the most significant byte is the half-word’s addre

Figure B-3. Address and MSB of a Half-Word

If the half-word is an unsigned integer, then its decimal value ranges from 0 to 64K-1
the half-word contains a signed numeric integer, then its two’s complement value ra
from decimal -32K to +32K-1.

The following C/C++ data types take up one half-word:unsigned short , short,
signed short .

Word 2

A word contains four bytes (32 contiguous bits). The word’s address may be a w
boundary or a CPU register. The MSB is the word’s address. See Figure B-4. .

Figure B-4. Address and MSB of a Word

If the word is an unsigned integer, then its value ranges from decimal 0 to 2**32-1. A
signed numeric value, a word represents an integer from -2**31 to +2**31-1.

Byte 0 Byte 1

 0 7 8 15

Address MSB

Byte 0 Byte 1 Byte 2 Byte 3

Address MSB
B-3

C/C++ Reference Manual

d
.

e

e a
B-5 .

s a

ich it
ithin

ing
The following C/C++ data types take up one word:unsigned int , int , signed int ,
unsigned long , long , signed long . Enumerations are implemented as signe
ints , and pointers are implemented asunsigned ints , so they also take up one word

Conceptually, [signed] int and [signed] long represent different data types, wher
the size of along is the same or larger than the size of anint . However, currently the
PowerPC-based systems store bothints andlongs in one 32-bit word of memory.

Double Word 2

A double wordcontains eight bytes (64 contiguous bits). The word’s address may b
double word boundary or a CPU register. The MSB is the word’s address. See Figure

Figure B-5. Address and MSB of a Double Word

If the word is an unsigned integer, then its value ranges from decimal 0 to 2**64-1. A
signed numeric value, a word represents an integer from -2**63 to +2**63-1.

The following C/C++ data types take up two words:unsigned long long int ,
long long int , signed long long int , anddouble .

Shift Operations 2

Theshift operatorsshift an integer by 0 through 31 bit positions to the left (<<) or to the
right (>>).

shift-expression ::= e1 << e2
e1 >> e2

The operands are the integer to be shifted (e1) and the number of bit positions by wh
is to be shifted (e2). Both must be an integral type. The right operand, e2, must be w
the range 0 through 31.

In a left shift, all 32 bits, including the sign bit, are shifted to the left, with zeros replac
the vacated rightmost bits.

Byte 0
Byte 1

Byte 2
Byte 3

Byte 4
Byte 5

Byte 6
Byte 7

Address MSB

Word 0 Word 1
B-4

Architecture Dependencies

1 is
f e1

ed
A right shift has different effects depending on whether or not e1 is signed. If e
unsigned, then it is shifted e2 bits to the right, with zeros replacing the leftmost bits. I
is signed, however, then the sign bit replaces the vacated bits on the left.

Figure B-6 and Figure B-7 illustrate left and right shifts for both signed and unsign
quantities, where MSB is most significant bit and LSB is least significant bit.

Figure B-6. Left/Right Shift of Unsigned Integer

Figure B-7. Left/Right Shift of Signed Integer

Floating-Point 2

Figure B-8 shows the format of a 32-bit single-precision floating-point number.

Figure B-8. Single-Precision Floating-Point Format

Zeroes

MSB LSB MSB LSB

Shift Left Logical Shift Right Logical

ZeroesS S

MSB LSB MSB LSB

Shift Left Shift Right

S E F

Address
0 1 8 9 31
B-5

C/C++ Reference Manual

the

the

rd:
int

1 and
S is an unsigned single-bit sign field, E is an unsigned 8-bit exponent, and F is
unsigned fraction (mantissa).

If E = 0 and F = 0, the value is 0.

If E = 255 and F not = 0, the value is NaN. (NaN is IEEE’s abbreviation for Not-a-
Number.)

If E = 255 and F = 0, the value is (-1)s ∞

If E = 0 and F not = 0, the value is (-1)s2-126(0.F)
 [denormalized].

Otherwise, the value is (-1)s2E-127(1.F).

The 64-bit double-precision floating-point format is shown in Figure B-9.

Figure B-9. Double-Precision Floating-Point Format

S is an unsigned single-bit sign field, E is an unsigned 11-bit exponent, and F is
unsigned fraction (mantissa).

If E = 0 and S is 0, the value of the number equals 0.

 If E = 2047 and F not = 0, the value is NaN.

If E = 2047 and F = 0, the value is (-1)s ∞

If E is 0 and F not = 0, the value is (-1)s2-1022(0.F)
 [denormalized].

Otherwise, the value is (-1)s2E-1023(1.F).

The following C/C++ data types take up a 32-bit single-precision floating-point wo
float . The following C/C++ data types take up a 64-bit double-precision floating-po
word:double , long double .

C/C++ Data Types 2

For a summary of the sizes and value ranges of the C/C++ data types, see Table A-
Table A-2

S E F

Address

 0 1 11 12
B-6

Index
Symbols

! 6-2
!= 6-18
8-9
6-15, 6-24, 8-8
5-17
#assert 6-18
#else 6-23
#if 6-23
#include 6-22, 7-19
#line 7-9, 7-20
#pragma 7-1
#pragma align 7-17
#pragma cautions 7-14
#pragma do_not_instantiate 7-8
#pragma errcount 7-15
#pragma error 7-14
#pragma hdrstop 7-19, 7-20, 7-23
#pragma ident 7-18
#pragma instantiate 7-8
#pragma min_align 7-17
#pragma no_pch 7-20, 7-23
#pragma once 7-18
#pragma opt_class 7-15
#pragma opt_level 7-15
#pragma optimize_for_space 7-15
#pragma optimize_for_time 7-15
#pragma warnings 7-15
#pragma weak 7-19
$ 8-3
%lld 6-15
& 8-3
&& 6-2
. 6-8
.ti 7-5
/**/ 6-20, 6-24
/*ARGSUSED*/ 6-14
/*NOTREACHED*/ 6-14
/*VARARGS*/ 6-14
:: 6-8
:: template 6-4
<< 6-21
== 6-18

-> 6-24
>> 6-21
->template 6-4
? 6-2, 6-7, 6-10, 6-20

 6-20
\a 6-23
__ALIGNOF__ 6-16
__ARRAY_OPERATORS 7-11
__cplusplus 6-6
__DATE__ 7-20
__EDG__ 7-11
__EDG_IMPLICIT_USING_STD 7-11
__EDG_RUNTIME_USES_NAMESPACES 7-11
__EDG_VERSION__ 7-11
__embedded_cplusplus 7-11
__EXCEPTIONS 7-11
__INTADDR__ 6-16
__LINE__ 1-7
__PLACEMENT_DELETE 7-11
__RTTI 7-11
__SIGNED_CHARS__ 1-17, 7-10
__STDC__ 6-22, 7-10, A-7, A-9
__STDC_VERSION__ 7-10
__TIME__ 7-20
__VA_ARGS__ 6-15
_BOOL 7-11
_FAST_MATH_INTRINSICS 1-25
_unix 8-3
_WCHAR_T 7-10
|| 6-2

A

acpp 8-7
Address space 4-7
Ambiguous units 3-15
anachronism 1-22, 6-1, 8-1
analyze 1-15, 1-16, 1-28
and 6-2
anonymous struct 6-19
anonymous union 6-6, 6-19
ANSI C 6-1, 8-2

compilation modes 8-2
Index-1

C++ Reference Manual
conforming mode 8-2, 8-16, 8-17
incompatible features 8-7

escape characters 8-14
preprocessing 8-7
redeclaration of type identifiers 8-14
scope of parameters 8-15
type promotion 8-10

mode 8-2, 8-3, 8-4, 8-7, 8-16, 8-17
standard 8-2, 8-7, 8-10, 8-11, 8-14

ANSI C mode 8-17
ANSI C++ 8-1
ansi.o 8-17
Archive 4-6
ARGSUSED 6-14
argument promotion 6-5
Array 6-3
array 6-5, 6-8
as 1-4, 1-16
asm A-5
assembler 1-14, 1-15
assignment 6-7
Automatic Instantiation 7-1, 7-4

B

base class initializer 6-5
basic_ios::failure A-9
Binary operator expressions 8-13
Binding

immediate 4-7
lazy 4-7

Bit field 7-17
bit field 6-12, 8-3
bitand 6-2
Bit-Field B-1
Bit-field A-6
bit-field 6-12
bitnot 6-2
bitor 6-2
bool 1-21, 6-2, A-3, A-4
Borland C++ 7-4
botxor 6-2
bound function pointer 6-5
builtin operator 6-8
Byte B-2

C

C 4.3 1-5
C++ 3.1 1-5

c++decode 1-16
c++prelink 1-4
c.analyze 2-2,5-3, 5-5, 5-6
c.build 2-2, 2-3, 3-4, 3-12, 3-13, 3-14, 3-15, 4-10,5-8,

5-16
c.cat 2-1,5-10
c.chmod 2-1,5-11
c.compile 2-2, 4-11,5-12
c.edit 2-1, 3-12,5-14
c.error 2-2,5-15, 5-17
c.expel 2-1, 4-5,5-19
c.fetch 2-1, 4-3,5-20
c.freeze 2-1,5-21
c.help 2-2,5-22
c.hide 5-23
c.install 2-2
c.instantiation 2-1,5-25
c.intro 2-2, 2-3, 3-2, 3-11, 5-16,5-27
c.invalid 2-1,5-28
c.link 2-2, 5-5,5-29
c.ls 2-1, 3-4, 3-14,5-30
c.lssrc 5-36
c.man 2-2,5-37
c.mkenv 2-1, 2-3, 3-1, 3-2, 3-11, 4-1, 5-16,5-39
c.options 2-1, 3-6, 4-10, 4-11,5-40
c.out 1-4
c.partition 2-2, 2-3, 3-3, 4-6, 4-8, 5-16,5-43
c.path 2-1, 3-6, 4-2,5-48
c.prelink 2-2
c.release 1-6, 2-1
c.report 2-2, 5-6,5-52
c.resolve 7-6
c.rmenv 2-1,5-54
c.rmsrc 2-2,5-55
c.script 2-1
c.touch 2-1,5-58
C/C++ 5.0 1-5
c_plusplus 6-6, 7-10
C9X 1-24, 6-14
cast 6-5, 6-8, 6-13, 6-17, A-4
CCG 1-2, 1-28
cfront 1-1, 1-17, 6-1, 6-7, 7-4
Cfront 2.1 6-8
cfront 2.1 8-1, 8-4
cfront 3.0 6-9, 8-1
char 6-19, A-3, B-2
char * 6-7
Character

escape 8-14
character constant 1-22
character set escape 6-4
class 6-6
class definition 6-2
class template 6-3, 6-4
Index-2

Index
class template definition 6-2
Classes A-6
comma 6-13, 6-17
Comment 5-17, 6-16, 6-22
comment 1-22
Common Code Generator 1-2
Compatibility A-9
Compatibility problems 8-16
Compilation

separate 4-10
states 4-10

Compilation modes
ANSI C 8-2, 8-3, 8-4, 8-7, 8-16, 8-17
ANSI C conforming 8-2, 8-16, 8-17
Old 8-2, 8-4, 8-5, 8-7, 8-10, 8-11, 8-13, 8-14, 8-15,

8-16, 8-17
Transition 8-2, 8-4, 8-16, 8-17

Compilation states
compiled 4-13
parsed 4-12
uncompiled 4-12

Compiler
automatic compilation 4-10
deleting options 3-9
effective options 3-9, 4-11
environment-wide options 3-6, 4-3, 4-11, 5-41
invocation 1-4
listing options 3-7
modifying options 3-8
setting options 3-7

Compiler option
-# 1-16
--alias_array_elements_limit 1-28
--alias_ignore_const 1-29
--alias_object_limit 1-29
--alias_structure_fields_limit 1-29
--alternative_tokens 1-21
--anachronisms 1-17, 8-1
--ansi_cplusplus_headers 1-25
--arg_dep_lookup 1-23
--array_new_and_delete 1-18
--auto_instantiation 1-10, 7-7
-B 1-15
-b 1-14
--base_assign_op_is_default 1-24
--bin_path 1-14
--bool 1-21
--brief_diagnostics 1-13
-C 1-7
--c 1-16
-c 1-14, 8-17
--c++ 1-16
--cfront_2.1 1-17, 8-1
--cfront_3.0 1-17, 8-1

--cfront_io 1-16
--check_long_long 1-26
--class_name_injection 1-23
--combine_relocatable_objects 1-36
--comments 1-7
--complete_unroll_debugging 1-29
--const_constant_is_constant 1-26
--const_object_in_nonconst_member 1-26
--const_string_literals 1-22
--create_pch 1-9, 7-22
-D 1-7
--debug 1-14
--define_macro 1-7, 1-8
--dependencies 1-7
--designators 1-24, 6-16
--diag_error 1-12
--diag_remark 1-12
--diag_suppress 1-12
--diag_warning 1-12
--display_error_number 1-12
--distinct_template_signatures 1-17
--dont_peel_var 1-29
--dynamic_link_name 1-34
-E 1-7
-e 1-12
--early_tiebreaker 1-23
--embedded_c+ 1-22
--enable_intrinsics 1-25
--entry_point 1-36
--enum_overloading 1-22
--error_limit number 1-12
--error_output 1-12
--exceptions 1-18
--explicit 1-18
--extended_designators 1-24, 6-16
--extended_variadic_macros 1-24, 6-15
--extern_inline 1-20
-F 1-25, 7-24
-f 1-25
--float_mode 1-25
--float_single 1-24
--float_single2 1-24
--flttrap 1-29
--for_init_diff_warning 1-19
--force_vtbl 1-11
--fpexcept 1-30
--friend_injection 1-23
-fsingle 1-24
-fsingle2 1-24, 8-15
--full_debug_info 1-14
--full_debug_line_info 1-30
-g 1-14
--growth_limit 1-30
--guiding_decls 1-19
Index-3

C++ Reference Manual
-H 1-14
-h 1-34
--help 1-14
--help_screen 1-14
--huge_heuristic 1-30
-I 1-8, A-7
-i 1-8
--implicit_extern_c_type_conversion 1-19, 6-7
--implicit_include 1-10, 7-10
--implicit_typename 1-21
--incl_suffixes 1-8
--include_directory 1-8
--inline 1-30
--inline_depth 1-30
--inlining 1-22
--instantiate 1-11
--int_div_exception 1-31
--invert_divides 1-31
-K 1-26
-k 1-13
-L 1-35
-l 1-34
--late_tiebreaker 1-23
--leave_temp_files 1-14
--lib_path 1-15
--library 1-34
--library_directory 1-35
--library_linkage 1-35
--limit_search_paths 1-16
--link_mode 1-35
--linker_z 1-36
--list 1-8
--list_macros 1-10
-lnc 1-35
--long_lifetime_temps 1-20
--long_long 1-26, 6-15
--long_preserving_rules 1-20
--loops 1-31
-M 1-36
-m 1-36
--mapfile 1-36
--memory_map 1-36
--multibyte_chars 1-22
-n 1-12, 7-14, 8-5
--namespace_in_headers 1-25
--namespaces 1-18, 7-1
negating 4-12
--new_for_init 1-18
--nitpick 1-12
--no_alternative_tokens 1-21
--no_anachronisms 1-17
--no_ansi_cplusplus_headers 1-25
--no_arg_dep_lookup 1-23
--no_array_new_and_delete 1-18

--no_auto_instantiation 1-10, 7-7
--no_base_assign_op_is_default 1-24
--no_bool 1-21
--no_brief_diagnostics 1-13
--no_cfront_io 1-16
--no_class_name_injection 1-23
--no_code_gen 1-13
--no_const_string_literals 1-22
--no_designators 1-24, 6-16
--no_distinct_template_signatures 1-17, 7-3
--no_enum_overloading 1-22
--no_exceptions 1-18
--no_explicit 1-18
--no_extended_designators 1-24, 6-16
--no_extended_variadic_macros 1-24, 6-15
--no_extern_inline 1-20
--no_float_reg_agg_move 1-31
--no_float_varargs 1-31
--no_for_init_diff_warning 1-19
--no_friend_injection 1-23
--no_guiding_decls 1-19
--no_implicit_extern_c_type_conversion 1-19
--no_implicit_include 1-10, 7-10
--no_implicit_typename 1-21
--no_inlining 1-22
--no_invert_divides 1-32
--no_line_commands 1-7
--no_long_long 1-26
--no_long_preserving_rules 1-20
--no_multibyte_chars 1-22
--no_multiply_add 1-32
--no_namespace_in_headers 1-25
--no_namespaces 1-18, 7-1
--no_nonconst_ref_anachronism 1-22
--no_nonstd_qualifier_deduction 1-18
--no_nonstd_using_decl 1-23
--no_old_specializations 1-19
--no_pch_messages 1-10, 7-22
--no_post_linker 1-28
--no_preproc_only 1-7
--no_remove_unneeded_entities 1-14
--no_reorder 1-28
--no_restrict 1-20
--no_rtti 1-18
--no_special_subscript_cost 1-21
--no_svr4 1-22
--no_typename 1-21
--no_use_before_set_warnings 1-12
--no_variadic_macros 1-24, 6-15
--no_warnings 1-12
--no_wchar_t_keyword 1-20
--no_wrap_diagnostics 1-13
--nonconst_ref_anachronism 1-22, 6-5
--nonstd_qualifier_deduction 1-18
Index-4

Index
--nonstd_using_decl 1-23
-O 1-26
-o 1-5, 1-13, 8-17
-O0 1-26
-O1 1-27
-O2 1-27
-O3 1-27
-O4 1-27
-Oanalyze 1-28
--objects 1-32
-Oglobal 1-27
--old_c 1-16
--old_for_init 1-18
--old_specializations 1-19
-Omaximal 1-27
-Ominimal 1-27
-Ono_post_linker 1-28
-Ono_reorder 1-28
-Onone 1-26
-Onoreorder 1-28
-Opost_linker 1-28
--optimization_level 1-26
--optimize_for_space 1-32
-Oreorder 1-28
-Osafe 1-27
-Ostandard 1-27
-Ounsafe 1-28
--output 1-13
-P 1-7
--pass_to_analyze 1-15
--pass_to_assembler 1-15
--pass_to_code_generator 1-15
--pass_to_front_end 1-15
--pass_to_linker 1-15
--pass_to_prelink 1-15
--pass_to_prelinker 1-15
--pass_to_reorder 1-15
--pch 1-9, 7-22
--pch_dir 1-10, 7-21, 7-22, 7-23
--pch_messages 1-10
--pch_verbose 7-22
--peel_limit_const 1-32
--pending_instantiations 1-10
persistent 4-10
--pic 1-35
-pic 1-35
--plt 1-33
--post_linker 1-28
--precise_alias 1-33
--preinclude 1-8
--preprocess 1-7
--preprocess_to_file 1-7
--processors 1-15
-Q 1-28

-Qalias_array_elements_limit 1-28
-Qalias_ignore_const 1-29
-Qalias_object_limit 1-29
-Qalias_structure_fields_limit 1-29
-Qbenchmark 1-27
-Qchars_signed 1-17
-Qcheck_long_long 1-26
-Qcomplete_unroll_debugging 1-29
-Qdont_peel_var 1-29
-Qflttrap 1-29
-Qfpexcept 1-30
-Qfpexecpt 1-30
-Qfull_debug_info 1-14
-Qfull_debug_line_info 1-30
-Qgrowth_limit 1-30
-Qhuge_heuristic 1-30
-Qinline 1-30
-Qinline_depth 1-30
-Qint_div_exception 1-31
-Qinvert_divides 1-31
-Qleave_temp_files 1-14
-Qlong_long 1-26
-Qloops 1-31
-Qno_float_reg_agg_move 1-31
-Qno_float_varargs 1-31
-Qno_invert_divides 1-32
-Qno_long_long 1-26
-Qno_multiply_add 1-32
-Qno_vendor_reloc 1-36
-Qobjects 1-32
-Qopt_class 1-32
-Qoptimize_for_space 1-32
-Qpeel_limit_const 1-32
-Qpeel_var 1-33
-Qplt 1-33
-Qprecise_alias 1-29, 1-33
-Qquick_alias 1-33
-Qreentrant_library 1-32
-Qreport_optimizations 1-32
-Qretain_out_of_line_copy 1-11
-Qsigned_char 1-17
-Qsparse_debug_line_info 1-33
-Qspill_register_if_address_taken 1-33
-Qtarget 1-34
--quick_alias 1-33
-Qunroll_limit_const 1-34
-Qunroll_limit_var 1-34
-R 1-25
-r 1-36
--read_only_literals 1-25
--reduced_symbols 1-36
--rel 1-16
--remarks 1-12
--remove_unneeded_entities 1-14
Index-5

C++ Reference Manual
--reorder 1-28
--report_optimizations 1-32
--restrict 1-20
--retain_out_of_line_copy 1-11
--rtti 1-18
-S 1-14
-s 1-37
--safe 1-27
--short_lifetime_temps 1-20
--signed_chars 1-17, A-3
--sparse_debug_line_info 1-33
--special_subscript_cost 1-21
--spill_register_if_address_taken 1-33
--standard 1-27
--strict 1-5, 1-16, 8-1
--strict_warning 8-1
--strict_warnings 1-16
--strip 1-37
--suppress_vtbl 1-11
--svr4 1-22
--symbolic 1-36
--symtab_size 1-14
--sys_include 1-8
-T 1-14
-t 1-15
-tall 7-7
--target 1-34
--testing 1-16
--timing 1-13
-tlocal 7-7
-tnone 7-7
--trace_includes 1-7
-tused 7-7
--typename 1-21
-U 1-8
-u 1-37
ultimate 1-27
--undefine_macro 1-8
--undefined_linker_symbol 1-37
--unroll_limit_const 1-34
--unroll_limit_var 1-34
--unsafe 1-28
--unsigned_char A-3
--unsigned_chars 1-17
--use_pch 1-10, 7-22
-v 1-14
--variadic_macros 1-24, 6-15
--verbose 1-14
--version 1-13
-W 1-15
-w 1-12
--wchar_t_keyword 1-20
--wrap_diagnostics 1-13
-X 1-16, 8-2

-x 1-36
-Xa 1-16, 8-2
-Xc 1-16, 8-2
-Xo 1-16, 8-2
--xref 1-13
-Xt 8-2
-Z 1-35
-z 1-36
-zdefs 1-36
-Zlibs 1-35
-Zlink 1-35
-Zpic 1-33, 1-35
-Zsymbolic 1-36

compiler option
-Ono_analyze 1-28

concatenate 8-6
Consistency 4-13
const 6-2, 6-4, 6-8, 6-10, 6-14, 6-20
const_cast 6-3
Constant 6-6
constructor 6-3, 6-9
conversion 6-4, A-4
copy assignment operator 6-7
Covariant return type 6-3
cpp 8-7, 8-8, 8-9
cprs 4-15
cxc++ 1-4, 1-16

D

Data alignment
defaults 7-16
pragmas 7-16

Data types A-3
implicit 8-11

Debugging 1-2, 1-14
NightView 4-15
tools 4-15

Declarations A-5
Declarators A-5
Default argument 6-4
default arguments 6-2
delete 6-3, 6-5
deprecated 6-7
derived class 6-7, 6-11
Designator 6-16
designator 1-24
destructor 6-3, 6-9, 6-11
Diagnostics Library A-8
Digraph 6-2
disambiguation 6-11
division 1-31
Index-6

Index
Dollar sign 6-18
double 6-22, B-4
do-while 6-2, 6-8
Dynamic linker 4-7
Dynamic linking 4-7
dynamic mode 1-36
dynamic_cast 6-3
dynamically-link 1-35

E

Edison Design Group Inc 1-2
EDITOR 3-11
Effective compile options 3-9, 4-11
elaborated type specifier 6-12
elaborated type specifiers 6-2
Embedded C++ 1-22
Enhancement

header file 8-15
library 8-16
locale–support 8-18

enum 1-22, 6-3, 6-4, 6-8, 6-14, 6-17, 6-20, 6-22, 8-3
Environment 4-1

creating 3-1, 3-11
environment-wide compile options 4-3
environment-wide options 4-11
foreign 4-2
local 4-2

Environment Search Path 3-6, 3-13, 4-2, 4-5
adding environments to 3-13
viewing 3-13

Environment variable
EDITOR 3-11
LD_BIND_NOW 4-7
PATH 3-1
PATH_TO_ANALYZE 1-16
PATH_TO_ANSI 1-16
PATH_TO_AS 1-16
PATH_TO_CRT0 1-16
PATH_TO_CXCPP 1-16
PATH_TO_DECODE 1-16
PATH_TO_LD 1-16
PATH_TO_MCRT0 1-16
PATH_TO_REORDER 1-16
PATH_TO_STRICT 1-16
STATIC_LINK 1-35
TARGET_ARCH 1-34

Environments
restoring 4-3

Environment-wide compile options 5-41
Error messages 7-14, 8-3
Errors

redirecting to a file 5-16
escape 6-4, 6-19, 6-23
Escape characters 8-14
exception 1-31
Exceptions

misaligned access4-14
Executable partition 3-3
explicit 6-3
export 6-4
Expressions A-4

binary operator 8-13
extended variadic macro 1-24
extern 1-19, 6-3, 6-17, 6-21, 8-6
extern "C" 6-7, 6-13
extern "C++" 6-7, 6-13
extra comma 6-13

F

Fetched unit 4-3, 4-5
field selection 6-21, 6-24
File

header 8-15
file scope 6-17
float 6-22, B-3
Floating point B-5
for 1-18, 6-2, 6-3, 6-8, 6-13
Foreign unit 4-5
friend 1-23, 6-2, 6-4, 6-6, 6-10
Function

intrinsic 7-24
prototype 8-15

function template 6-2, 6-3, 6-4
functional-notation cast 6-2

G

global 1-27
GLOBAL optimization 4-14, 7-15
global symbol 1-36
guiding declaration 6-3

H

Half–word B-3
Header file 8-15, A-7

enhancements 8-15
function prototypes 8-15
Index-7

C++ Reference Manual
help 1-14

I

ieee 1-25
ieeecom 1-25
ieeenear 1-25
ieeeneg 1-25
ieeepos 1-25
ieeezero 1-25
if 6-2, 6-3, 6-8
Immediate binding 4-7
implicit conversion 6-3, 6-8
implicit inclusion 7-1
incomplete array type 6-17
initialization 6-5
initialized variable 1-25
initializer 6-17
initializing 8-6
injection 6-4
inline 1-20, 1-22, 6-3, 6-14
Input/Output Library A-9
Instantiation 7-1, 7-3
instantiation 1-11, 6-3
Instantiation Modes 7-7
instruction scheduler 1-15, 1-28
int 6-4, A-3, B-3
Intrinsic functions 7-24

test and set 7-25

J

Johnson pcc 6-19

K

K & R C 6-19, 8-5
pcc 6-1

Kernighan 6-19
Koenig 6-4

L

label 6-17
Language Support Library A-8
Lazy binding 4-7

ld 1-4, 1-16, 1-34, 1-36, 8-16
LD_BIND_NOW 4-7
Level

optimization 5-5
Lexical Conventions A-1
libnc 1-32
Library

enhancements 8-16
library 1-32, 1-34, 1-35
Library Introduction A-8
Link

name 5-4
optimization 5-5, 5-6

Link editor 1-4
link editor 1-14, 1-15
Link option 4-8
Link options 5-59

c.partition 5-46
linkage 6-3
linkage specification A-5
Linker

dynamic 4-7
lint 6-14, 6-20
Listing

compiler options 3-7
effective options 3-9
environment search path 3-13
units 3-4

Local unit 4-4
Locale 8-7

support enhancements 8-18
long 6-22, A-3
long double 8-6, B-6
long float 6-17
long int B-3
long long 6-15, A-3
long long int B-4
LONG_MAX 6-23

M

macro 1-24, 6-23, 6-24
macro recursion 6-23
Macros

predefined 8-3, 8-15
main 6-2, A-2
MaxADA 1-2
maximal 1-27
MAXIMAL optimization 4-14, 5-5, 7-15
member function 6-4
Member templates 6-3
Memory
Index-8

Index
segment 4-7
minimal 1-27
MINIMAL optimization 7-15
Misaligned access4-14
Miscellaneous Directives 7-18
Mode

ANSI C 8-2, 8-3, 8-4, 8-7, 8-16, 8-17
ANSI C conforming 8-2, 8-16, 8-17
Old 8-2, 8-4, 8-5, 8-7, 8-10, 8-11, 8-13, 8-14, 8-15,

8-16, 8-17
Transition 8-2, 8-4, 8-16, 8-17

modulo A-4
multibyte character 1-22
mutable 6-3

N

Namespace 6-3, 7-1
Name–space restrictions 8-16
Native unit 4-4
Naturalization 3-14, 4-3
Naturalized unit 4-4
NCEG 6-7, 6-16
near 1-25
neg 1-25
nested class name 6-5
new 6-3
NightBench 1-2
NightView 1-14, 4-15
NightView debugger 1-2
NIH class libraries 6-8
nm 5-4
none 1-26
Normal C++ Mode 8-2
not 6-2
NOTREACHED 6-14
Number 6-18

O

octal 6-23
Old Mode 8-5
Old mode 8-2, 8-4, 8-5, 8-7, 8-10, 8-11, 8-13, 8-14,

8-15, 8-16, 8-17
old-style parameter declaration 6-5
Operator 6-2
operator-- 6-5
operator++ 6-5
operator= 6-7, 6-9, 6-14
opt_class pragma 7-15

opt_level pragma 7-15
Optimization 1-28

levels 5-5
pragmas 7-15

optimization class 1-27
optimize_for_space pragma 7-15
optimize_for_time pragma 7-15
Options

link 5-59
or 6-2
Overflow 6-21
overload 1-22, 6-4, 6-5
overloaded function 6-2
overloaded operator 6-8
overloading 6-3, 6-8

P

parameter 6-4
Parameters

scope of 8-15
parenthesis 6-4
Partial ordering 6-3
Partial specialization 6-3
partial specialization 6-5
Partition

archive 4-6
building 3-4
defining 3-3
executable 3-3
shared object 4-6
types 4-6

PATH 3-1
pcc 1-20, 6-19
PDE 1-5
Performance

analysis 5-6
Phases

compilation 1-2
Placement delete 6-3
placement new 6-3
plain bit field 6-12
POD 6-3, 6-14
Pointer 7-16, 7-17
pointer B-3
pos 1-25
Position independent code (PIC) 4-7
position-independent code 1-35
POSIX 8-16
post link optimizer 1-15
postfix 6-5
post-link optimizer 1-14
Index-9

C++ Reference Manual
post-linker 1-28
ppc 1-34
ppc604 1-34
ppc604e 1-34
ppc750 1-34
Pragmas 7-13

data-alignment 7-16
opt_class 7-15
opt_level 7-15
optimization 7-15
optimize_for_space 7-15
optimize_for_time 7-15

precedence 6-2
precompiled header 1-9, 7-19
Predefined macro 8-3, 8-15

__LINE__ 1-7
__SIGNED_CHARS__ 1-17
__STDC__ A-7, A-9
_FAST_MATH_INTRINSICS 1-25
_unix 8-3
unix 8-3

prefix 6-5
prelinker 1-15, 7-6
prelinking 1-4
preprocessing directive 6-16
preprocessing directives A-6
Preprocessor 8-7
printf 6-15
Profiling 5-6
Program Development Environment 1-5
Programming

caveats 4-14
hints 4-14

promotion 6-5
promotion rule 6-23
Protected member 6-11
Prototype

function 8-15
ptrdiff_t 1-21
ptrepository 7-4

Q

Qualified names 6-2

R

read-only 1-25
Real-time

debugging 4-15

reentrant 1-32
reference 6-5
register 6-17
Reinterpret Cast A-4
reinterpret_cast 6-3, 6-4
Reiser cpp 6-19
Relocation 4-7
remainder A-4
reorder 1-4, 1-15, 1-16, 1-28
restrict 1-20, 6-7, 6-16
Ritchie 6-19
RTTI 6-3, 7-11
runtime type identification 6-3
rvalue 6-2

S

safe 1-27, 1-32
scalar type 6-6
scanf 6-15
scope 6-2, 6-3, 6-13, 6-17, 6-21
Search path 5-48
semicolon 6-17
Share path 4-8
Shared object 1-35, 4-6

issues to consider 4-8
share path 4-8

Shift B-4
short 6-17, 6-22, A-3
short int B-3
signed 6-20, 8-6
signed char A-3
signed int A-3
signed long A-3
signed long long A-3
signed short A-3
sizeof 6-16, 6-21, 8-3, A-4
smanip A-9
Soft link 4-8
Source listing controls 7-14
Special Member Functions A-6
specialization 6-3, 6-5
standard 1-27, 1-32
STANDARD optimization 7-15
startup routines 1-15
static 6-21
static data member 6-4, 6-5
static member function 6-4
static_cast 6-3
STATIC_LINK 1-35
statically-link 1-35
stdin 5-27, 5-55
Index-10

Index

1

stdout 5-3, 5-4, 5-15, 5-16, 5-55
streamoff A-9
streampos A-9
strict.o 8-17
Strictly-Conforming Mode 8-3
String literal 6-4, 6-21
string literal 1-22, 1-23, 6-7
Stringization 8-9
struct 6-17, 6-19, 7-17, 8-3, B-1
subscript 1-21
Suffix

F or f 8-6
L or l 8-6, 8-12
U or u 8-6, 8-11, 8-12

SVR4 C 1-22, 6-1
switch 6-3, 6-23
Symbolic debugging 1-2

T

Template 6-2, 7-1, 7-3
template 1-11, 6-3, 6-4
Template Instantatin

Implicit inclusion 7-5
Template Instantiation 7-3

Implicit Inclusion 7-9
Instantiation Modes 7-7

template parameter 6-4
template parameters 6-2
Template template parameter 6-4
temporary 6-2, 6-5
Test and set function 7-25
Token pasting 6-20
Token splicing 8-4, 8-8
Transition mode 8-2, 8-4, 8-16, 8-17
Trigraph 6-22, 8-7
Two-phase name binding in templates 6-4
type

basic_ios::failure A-9
bool A-3, A-4
char A-3
enum 8-3
int A-3
long A-3
long double 8-6
long long A-3
short A-3
signed 8-6
signed char A-3
signed int A-3
signed long A-3
signed long long A-3

signed short A-3
smanip A-9
streamoff A-9
streampos A-9
struct 8-3
union 8-3
unsigned char A-3
unsigned int A-3
unsigned long A-3
unsigned long long A-3
unsigned short A-3
volatile 8-6
wchar_t A-3, A-4

type specifiers 6-2
Type template parameter 6-2
typedef 6-3, 6-4, 6-6, 6-7, 6-12, 6-13, 6-18, 6-19, 6-2

redeclaration of 8-14
typeid 6-3
typename 1-21, 6-3
Type–promotion rules 8-10

U

ultimate 1-27
union 6-13, 6-17, 6-19, 7-17, 8-3
Unit

ambiguous 3-15
compile options 4-5
consistency 4-13
fetched 4-3, 4-5
foreign 4-5
introducing 3-2
listing 3-4
local 4-4
modifying 3-11
native 4-4
naturalized 4-3, 4-4
viewing source 3-5

Universal character set escapes 6-4
unix 8-3
unnamed class 6-13
Unnamed template parameter 6-4
unsafe 1-28, 1-32
UNSAFE optimization 7-15
unsigned 6-22
unsigned char A-3
unsigned int A-3
unsigned long A-3
unsigned long long 6-15, A-3
unsigned short A-3
Unsigned–preserving 8-10
using 1-23, 6-3
Index-11

C++ Reference Manual
V

Value–preserving 8-10
VARARGS 6-14, 6-20
variadic macro 1-24, 6-15
vi 5-15, 5-17, 5-18
virtual function 6-3
Virtual function table 6-12
void 6-4, 6-8, 6-10, 6-20
volatile 6-2, 6-20, 8-6

W

warnings 1-12
wchar_t 1-20, 6-2, 6-19, A-3, A-4
wchar_t * 6-7
what A-8
while 6-2, 6-3, 6-8
wide string literal 6-4
Word B-3, B-4

X

xor 6-2

Z

zero 1-25
Index-12

	C/C++ Reference Manual
	Preface
	Contents
	Compilation
	Overview
	Compilation Phases
	Compiler Invocation
	Program Development Environment
	Multiple Release Support
	Command Line Options
	Controlling Compilation Process
	Preprocessing
	C++ Specific Features
	Error Messages
	Other

	Language Dialect
	Optimization
	Linking

	Overview of Concurrent C/C++ Program Development Environment
	C/C++ Utilities
	C/C++ Core Utilities

	Using Concurrent C/C++ Program Development Environment
	Hello World - An Example
	Before we begin...
	Creating an environment
	Introducing units
	Defining a partition
	NOTE

	Building a partition
	Success!!!
	Let’s look around...
	Listing the contents of your environment
	Viewing the source for a particular unit
	Looking at the Environment Search Path
	What are my options?

	Hello Galaxy - The Example Continues...
	Setting up another environment
	NOTE

	Modifying an existing unit
	NOTE

	Building a unit with references outside the local environment
	Adding an environment to the Environment Search Path
	Making contact!!!
	Who resides here now?
	NOTE
	FURTHER NOTE

	Concurrent C/C++ Program Development Environment Concepts
	Overview
	Environments
	Local Environments
	Foreign Environments
	Environment Search Path
	Naturalization
	Fetching

	Freezing Environments
	Environment-wide Compile Options

	Units
	Unit Identification
	Nationalities
	Local Units
	Foreign Units

	Artificial Units
	Unit Compile Options

	Partitions
	Types of Partitions
	Executable Partitions
	Archives
	Shared Objects
	Lazy Versus Immediate Binding
	Position Independent Code
	Share Path
	Issues to consider

	Link Options

	Compilation and Program Generation
	Compilation
	Automatic Compilation Utility
	Compile Options
	Environment-wide Options
	Permanent Unit Options
	Temporary Unit Options
	Effective Options

	Compilation States
	NOTE

	Consistency
	Programming Hints and Caveats

	Linking Executable Programs

	Debugging
	Real-Time Debugging
	Debug Information and cprs

	Source Control Integration
	DISCLAIMER

	Makefile Integration

	Concurrent C/C++ Utilities
	Overview
	Utilities
	Common Options

	c.analyze
	NOTE
	NOTE
	Link-Time Optimizations with c.analyze
	Profiling with c.analyze

	c.build
	NOTE

	c.cat
	c.chmod
	c.compile
	c.edit
	c.error
	c.expel
	NOTE

	c.fetch
	NOTE

	c.freeze
	c.help
	c.install
	NOTE

	c.instantiation
	c.intro
	c.invalid
	c.link
	c.ls
	Formatting the listing
	Sorting

	c.lssrc
	c.man
	NOTE

	c.mkenv
	c.options
	Option Sets
	Listing options
	Setting options
	Modifying options
	Clearing options
	Deleting options
	Keeping temporary options
	Setting options on foreign units

	c.partition
	NOTES
	Link Options
	NOTE

	c.path
	c.prelink
	c.release
	c.report
	c.rmenv
	c.rmsrc
	c.script
	c.touch
	Link Options

	C++ and C Dialects
	Overview
	C++ Dialect Accepted
	New Language Features Accepted
	New Language Features Not Accepted
	Anachronisms Accepted
	Extensions Accepted in Normal C++ Mode
	Extensions Accepted in Cfront 2.1 Compatibility Mode
	Extensions Accepted in Cfront 2.1 and 3.0 Compatibility Mode

	C Dialect Accepted
	C9X Extensions
	ANSI C Extensions
	K&R/pcc Mode
	Extensions Accepted in SVR4 Compatibility Mode

	Special Features of C++
	Overview
	Namespace Support
	Template Instantiation
	Automatic Instantiation
	Instantiation Modes
	Instantiation #pragma Directives
	Implicit Inclusion
	Automatic Instantiation in the Program Development Environment

	Predefined Macros
	Pragmas
	Edison Defined Pragmas
	Concurrent Defined Pragmas
	Source Listing Controls
	Optimization Directives
	Data Alignment Control Directives
	Data Alignment Rules
	#pragma align
	#pragma min_align

	Miscellaneous Directives
	#pragma once
	#pragma ident
	#pragma weak

	Template Instantiation Pragmas

	Precompiled Headers
	Automatic Precompiled Header Processing
	Manual Precompiled Header Processing
	Other Ways for Users to Control Precompiled Headers
	Performance Issues

	Intrinsic Functions
	Environment Variables
	Diagnostic Messages
	Termination Messages
	Response to Signals
	Exit Status
	Finding Include Files

	Compilation Modes
	Overview
	Compilation Modes
	ANSI C Mode
	Normal C++ Mode
	Strictly-Conforming Mode
	cfront 2.1 Compatibility Mode
	cfront 3.0 Compatibility Mode
	Transition Mode

	Old Mode

	Mode Features
	Common Features
	Differentiating Features
	Preprocessing
	Type-Promotion Rules
	Binary Operator Expressions
	Escape Characters
	Redeclaration of Typedefs
	Scope of Parameters

	Header File Features
	Function Prototypes
	Name-Space Restrictions
	Library Enhancements

	Locale-Support Enhancements
	Anachronism Mode

	Runtime Libraries
	Overview
	Runtime Library
	General
	Language Support Library
	Linking
	Template Instantiation

	Cfront Libraries

	ANSI C++ Implementation
	Overview
	Lexical Conventions (Chapter 2)
	Phases of Translation (2.1)
	Character Literals (2.9.2)
	String Literals (2.9.4)

	Basic Concepts (Chapter 3)
	Types (3.9)
	Main Function (3.6.1)
	Fundamental Types (3.9.1)

	Standard Conversions (Chapter 4)
	Integral Conversions (4.7)

	Expressions (Chapter 5)
	Reinterpret Cast (5.2)
	Sizeof (5.3.3)
	Multiplicative Operators (5.6)
	Additive Operators (5.7)
	Shift Operators (5.8)
	Relational Operators (5.9)

	Declarations (Chapter 7)
	The asm declaration (7.4)
	Linkage Specifications (7.5)

	Declarators (Chapter 8)
	Default Arguments (8.3.6)

	Classes (Chapter 9)
	Class Members (9.2)
	Bit-fields (9.7)

	Special Member Functions (Chapter 12)
	Temporary Objects (12.2)

	Preprocessing Directives (Chapter 16)
	Conditional Inclusion (16.1)
	Source File Inclusion (16.2)
	Predefined Macro Names (16.8)

	Headers (Chapter 17)
	Freestanding Implementations (17.3.1.3)

	Library Introduction (Chapter 17)
	Reentrancy (17.3.4.5)

	Language Support Library
	Class bad_alloc (18.4.2.1)
	Class bad_cast (18.5.2)
	Class bad_typeid (18.5.3)
	Class bad_exception (18.6.2.1)
	Class exception (18.6.1)

	Input/Output Library (Chapter 27)
	Types (27.4.1)
	basic_ios iostate flags functions (27.4.4.3)
	Standard Manipulators (27.6.3)

	Compatibility (Appendix C)
	Predefined Names (16.8)

	Architecture Dependencies
	Overview
	Bit-Field
	Byte
	Half-Word
	Word
	Double Word
	Shift Operations

	Floating-Point
	C/C++ Data Types

	Index

