C/C++ Reference Manual

g‘com:unnsnr 0890497-020
:cggyggzﬁ;:,,,, May 2000

Copyright 2000 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end-users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the
information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion, 2881 Gateway Drive Pompano Beach FL 33069. Mark the envéhapention: Publications Department.”

This publication may not be reproduced for any other reason in any form without written permission of the publisher.

Acknowledgment: This manual contains material contributed by Edison Design Group, Inc. Those portions are copyrighted and reproduced with
permission.

PowerMAX OS, NightView and Power MAXION are trademarks of Concurrent Computer Corporation.

POSIX is a trademark of the Institute of Electrical and Electronics Engineers, Inc.

IBM, PowerPC, PowerPC 601, PowerPC 604, and PowerPC 620 are trademarks of International Business Machines Corporation.
UNIX is a registered trademark, licensed exclusively by X/Open Company Ltd

Printed in U. S. A.

Revision History: Level: Effective With:
Original Release -- July 1996 000 PowerMAX OS 3.1
Previous Release -- January 1998 010 Release 2.0

Current Release -- May 2000 020 Release 5.1

Scope of Manual

Syntax Notation

Preface

This manual is a reference document on Concurrent C/C++, two general-purpose pro-
gramming languages.

Information in this manual applies to the platforms described in the latest Concurrent
Computer Corporation product catalogs.

System manual page (man page) descriptions of programs, system calls and subroutines
can be found online.

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear intalic type. Special terms may also appeatailic.

list bold User input appears ifist bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appebstibold type.

list Operating system and program output such as prompts and

messages and listings of files and programs appedss in type.

1] Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments.

{ Braces enclose mutually exclusive choices separated by the pipe
() character, where one choice must be selected. You do not type
the braces with the choice.

An ellipsis follows an item that can be repeated.

= This symbol means “is defined as” in Backus-Naur Form (BNF).

C/C++ Reference Manual

Referenced Publications

The following Concurrent publications are referenced in this document:

0890459 Compilation Systems Volume 1 (Tools)
0890460 Compilation Systems Volume 2 (Concepts)

Chapter 1 Compilation

Development Environment

Contents

OVBIVIBW . . o oot 1-1
Compilation Phases e 1-2
Compiler Invocation 1-4
Program Development Environment. 1-5
Multiple Release SUppPOrt 1-5
Command Line OptioNsS.o 1-6
Controlling Compilation Process 1-7
Preprocessingo 1-7
C++ Specific Features. 1-10
Error MESSageso 1-12
Other . . 1-13
Language Dialect 1-16
Optimization. 1-26
LiNKINg . . oo 1-34
Chapter 2 Overview of Concurrent C/C++ Program
CIC T ULIIIES .« oottt e e e e e e e e e 2-1
CICT Core ULIlItIESo o ettt e e e e 2-3
Chapter 3 Using Concurrent C/C++
Program Development Environment
Hello World - An Example 3-1
Creating an environmentttt e 3-1
INtroducCing UNItS.ot 3-2
Defining a partition. e 3-3
Building a partition 3-4
SUCCESSI . 3-4
Let'slook around.... i 3-4
Listing the contents of your environment 3-4
Viewing the source for a particularunit 3-5
Looking at the Environment Search Path 3-6
What are my OptionS?o 3-6
Hello Galaxy - The Example Continues....o 3-11
Setting up another environment e 3-11
Modifying an existing unit. 3-11
Building a unit with references outside the local environment 3-12
Adding an environment to the Environment Search Path. 3-13
Making contact!!l. 3-13
Who resides here NOW?. 3-14

C/C++ Reference Manual

Chapter 4 Concurrent C/C++ Program
Development Environment Concepts

OV VI B . o oot 4-1
ENVIFONMENTS . . o o 4-1
Local ENVIrONMENtSt 4-2
Foreign ENvironments. 4-2
Environment Search Path. 4-2
Naturalization 4-3
Fetching e 4-3
Freezing EnvironmMeNtSottt e e 4-3
Environment-wide Compile Options 4-3
UNItS . . 4-4
Unit Identification. 4-4
Nationalities 4-4
Local UNits. . .. 4-4
Foreign Units. e e 4-5
Artificial Units 4-5
Unit Compile OptioNS. oo e e 4-5
PartitioONS . . . 6. 4
Types Oof Partitions 4-6
Executable Partitions 4-6
ATCNIVES . L o 4-6
Shared ObjectS. e 4-6
LinK OptioNSo e 4-8
Compilation and Program Generationt 4-10
Compilation e 4-10
Automatic Compilation Utility 4-10
Compile OptioNS 4-10
Compilation States. 4-12
CONSISIBNCY &« v vttt e e 4-13
Programming Hintsand Caveats.o, 4-14
Linking Executable Programs. e 4-14
DEbUGOING .« . vttt e e 4-15
Real-Time Debugging.o e e e 4-15
Debug Information and Cprs.o e 4-15
Source Control Integration. 4-16
Makefile Integration. 4-17

Chapter 5 Concurrent C/C++ Ultilities

OVBIVIBW . o oottt 5-1
Utilities. . . . e 5-1
CommoN OPLIONS . . .ottt 5-1
C.aANAlYZE. . . o -3.. 5
Link-Time Optimizations with c.analyze 5-5
Profiling with c.analyze 5-6
C.hUId. .. 5-8
Gl . L 5:10
C.ChMOd . . . 11. 5-
C.COMPIlE . 12. 5-
Cedit. .. 5-14
CLBITON . o o et 5:15
CXPEl 5:19.

Contents

CHetCh. . . 5-20
CHreezZe. . . 5:21.
C.help . 5-22
Canstall. . oo 5-23
C.NStantiation. 5. 5-2
CaNENO . o o o e 5-27
canvalid 5-28
CAiNK L e 5-29
CS o 5-30
Formattingthe listing 5-33
SOMtING . .o e 5-35
CSSIC . o o 5-36
CaMAN o 5:37
C.MKBNV . 39. b5-
C.OPLIONS. . . oo e 74005
OPtION SetS . . . 5-41
LiSting OptioNS e 5-41
Setting OPLIONS 5-42
Modifying Options 5-42
Clearing OptioNS e 5-42
Deleting Options e 5-43
Keeping temporary Options 5-43
Setting options on foreign units 5-43
CPAIIION . . .o -44. 5
Link OptioNns. 5-46
G PatN . e 5-:48
C.prelinK . . . e -49. 5
Crelease 50.. 5
o3 (= 0) 5-52.
CIMBNV e e 54. 5-
o 1105 o 1o T 1
C. SO P . oo 5-56
COUCKH .« . 5-58.
Link OptioNso e 5-59

Chapter 6 C++ and C Dialects

OV VB o o ottt 6-1

C++ Dialect Acceptedo 6-1
New Language Features Accepted.t i 6-2
New Language Features Not Accepted 6-4
Anachronisms Accepted. i e 6-5
Extensions Accepted in Normal C++Mode. 6-6
Extensions Accepted in Cfront 2.1 Compatibility Mode 6-8
Extensions Accepted in Cfront 2.1 and 3.0 Compatibility Mode. 6-9

CDialect Accepted e 6-14
COX EXIENSIONS . . ot e 6-14
ANSI C EXIENSIONS. . .\ttt e e 6-16
K&R/pCC Mode 6-19
Extensions Accepted in SVR4 Compatibility Mode 6-24

C/C++ Reference Manual

Chapter 7 Special Features of C++

Chapter 8 Compilation

Vi

OV VI B . o oot 7-1
Namespace SUPPOIT 7-1
Template Instantiation 7-3
Automatic Instantiation. 7-4
Instantiation Modes. 7-7
Instantiation #pragma Directives e 7-8
Implicit INClUSION e 7-9
Automatic Instantiation in the Program Development Environment 7-10
Predefined MacCroso 7-10
Pragmas 12.. 7-
Edison Defined Pragmas. 7-12
Concurrent Defined Pragmaso e 7-13
Source Listing Controls. 7-14
Optimization DireCtives. e e 7-15
Data Alignment Control Directives. 7-16
Miscellaneous DIrectives.ot 7-18
Template Instantiation Pragmas. i 7-19
Precompiled Headers e 7-19
Automatic Precompiled Header Processing v, 7-19
Manual Precompiled Header Processing i, 7-22
Other Ways for Users to Control Precompiled Headers. 7-23
Performance ISSUESt 7-23
INtriNSIC FUNCHIONSo e e 7-24
Environment Variables. 7-25
DiagnoStic MESSAgES - . . v vttt et e 7-26
Termination MESSAgES v vttt ittt e 7-27
Response to Signals e 7-28
EXit Status . ..o 28. 7-
Finding Include Files 7-28
Modes
OV IV B . . ottt e 8-1
Compilation MOdES 8-1
ANSIC MOdE. . ..o e 8-2
Normal CH+ Mode e 8-2
Strictly-Conforming Mode 8-3
cfront 2.1 Compatibility Mode. 8-4
cfront 3.0 Compatibility Mode. 8-4
Transition Mode. 8-4
Old MOde . . . 8-5
Mode Features e 8-6
CommOoN FeatUIesS.o 8-6
Differentiating Features e 8-7
PreproCesSiNg. oo 8-7
Type-Promotion Rules. 8-10
Binary Operator EXPressions. v vt e 8-13
Escape Characters 8-14
Redeclaration of Typedefs. 8-14
Scope of Parameters 8-15
Header File Features e e e 8-15
Function Prototypes 8-15

Contents

Name-Space RestriCtions e 8-16

Library EnhanCcementst 8-16
Locale-Support Enhancements e 8-18

Anachronism Mode 8-18

Chapter 9 Runtime Libraries

Appendix A ANSI C++

OV IV W . o et 9-1
Runtime Library. e 9-1
GBNeral . . o 9-1
Language Support Library e 9-2
LiNKING . . e 9-2
Template Instantiation 9-2
Cfront Libraries 9-3
Implementation
OVBIVIBW . . o et A-1
Lexical Conventions (Chapter 2).t A-1
Phases of Translation (2.1). A-1
Character Literals (2.9.2)o A-1
String Literals (2.9.4)o A-2
Basic Concepts (Chapter 3) A-2
TYPES (B.9) . oot A-2
Main Function (3.6.1).ot A-2
Fundamental Types (3.9.1)t ii A-2
Standard Conversions (Chapter 4). A-4
Integral Conversions (4.7)t A-4
Expressions (Chapter 5). A-4
Reinterpret Cast (5.2)ot A-4
SIZeOf (5.3.3) .ot A-4
Multiplicative Operators (5.6)o A-4
Additive Operators (5.7). . . oot A-4
Shift Operators (5.8).o A-5
Relational Operators (5.9)t A-5
Declarations (Chapter 7)o A-5
The asm declaration (7.4).t A-5
Linkage Specifications (7.5).o A-5
Declarators (Chapter 8)o A-5
Default Arguments (8.3.6) oot A-5
Classes (Chapter 9)t A-6
Class Members (9.2).o A-6
Bit-fields (9.7). . . o oot A-6
Special Member Functions (Chapter 12). e A-6
Temporary Objects (12.2).ot A-6
Preprocessing Directives (Chapter 16)t A-6
Conditional Inclusion (16.1).t A-6
Source File Inclusion (16.2)ot A-7
Predefined Macro Names (16.8).t A-7
Headers (Chapter 17). oo e A-7
Freestanding Implementations (17.3.1.3).o A-7
Library Introduction (Chapter 17)o A-8
Reentrancy (17.3.4.5)ot A-8

Vi

C/C++ Reference Manual

Language Support Library A-8
Classbad_alloc (18.4.2.1).o A-8
Classbad _cast (18.5.2). ... i e e e A-8
Class bad_typeid (18.5.3)ot A-8
Class bad_exception (18.6.2.1).ottt A-8
Class exception (18.6.1)ttt A-8

Input/Output Library (Chapter 27).o e A-9
TYPES (27.4.0) . o oo A-9
basic_ios iostate flags functions (27.4.4.3). A-9
Standard Manipulators (27.6.3) e A-9

Compatibility (Appendix C) e A-9
Predefined Names (16.8). e A-9

Appendix B Architecture Dependencies

Illustrations

Tables

viii

OV IV W . o ot B-1
Bit-Field . . .o -1. B
BY e . B-2
Half-Word e B-3
VO, . . B-3
Double WOrd B-4
Shift Operations e e B-4
Floating-Point. e B-5
G+t Data TYPOS . o v oot e e e e B-6
Figure 1-1. Compiling and Linking C++ Programs 1-3
Figure 4-1. ProfilingaProgram e 5-7
Figure 7-1. Name-Space Restriction 8-16
Figure B-1. Bit-Field Example B-2
Figure B-2. Addressand MSBofaByte B-2
Figure B-3. Addressand MSB ofaHalf-Word B-3
Figure B-4. Addressand MSBofaWord B-3
Figure B-5. Address and MSB of aDoubleWord B-4
Figure B-6. Left/Right Shift of Unsigned Integer B-5
Figure B-7. Left/Right Shift of Signed Integer B-5
Figure B-8. Single-Precision Floating-Point Format B-5
Figure B-9. Double-Precision Floating-Point Format B-6
Table 2-1. Concurrent CTCULIlItIESot 2-1
Table 3-1. Effective options fdrello wunit. 3-9
Table 3-2. Effective options férello unit (after-keeptemp) 3-10
Table 4-1. Effective options based on hierarchical relationship 4-12
Table 7-1. Implementation Defined Directives Used with #pragma. 7-14
Table 7-1. Alignmentsby Data Type e 7-16
Table 8-1. C++ Compilation ModesC++ Compilation Modes 8-1
Table 8-2. C_Compilation Modes Compilation Modes 8-2
Table 8-1. Trigraph Mappingo e 8-8
Table 8-1. Constants and Type LiSts 8-11
Table 8-2. Constant Representationst 8-12

Screens

Contents

Table 9-1. Choice of Runtime Library 9-2
Table A-1. Floating-Point Types. e A-3
Table A-2. Integer TYPeSo e A-3
Screen 3-1. Creating an environmentt 3-2
Screen 3-2. Source filello.c containinghello unit................... 3-2
Screen 3-3. Introducing unit from a sourcefile 3-2
Screen 3-4. Definingapartition 3-3
Screen 3-5. Buildingapartition e 3-4
Screen 3-6. Executingthe program i 3-4
Screen 3-7. Listing the unitsinan environment. 3-5
Screen 3-8. Listing the units in an environment éption) 3-5
Screen 3-9. Viewing the source for a particularunit 3-6
Screen 3-10. Viewing your Environment SearchPath 3-6
Screen 3-11. Listing the environment-wide compile options. 3-7
Screen 3-12. Setting the environment-wide compile options. 3-7
Screen 3-13. Listing the environment-wide compile options (aftgér) 3-7
Screen 3-14. Setting the permanent unit optionedbo unit 3-8
Screen 3-15. Setting the temporary unit optiongwéio unit. 3-8
Screen 3-16. Modifying the temporary unit optionsHelto unit. 3-8
Screen 3-17. Listing the temporary optionstfello unit 3-8
Screen 3-18. Listing the effective optionshetlo wunit. 3-9
Screen 3-19. Deleting from the temporary options séidlbo unit.......... 3-9
Screen 3-20. Propagating the temporary options to the permanentset 3-10
Screen 3-21. Listing the effective optionsiietlo unit (after-keeptemp) ... 3-10

Screen 3-22. Source fiddien.c containingalien unit.................. 3-11
Screen 3-23. Setting up another environment. 3-11
Screen 3-24. Editingaunit. e 3-12
Screen 3-25. Reference taéen unit within thehello unit 3-12
Screen 3-26. Building the partition with referencalten unit. 3-13
Screen 3-27. Adding to and Viewing the updated Environment Search Path. 3-13
Screen 3-28. Executing the nbello - contactismade!................... 3-14
Screen 3-29. Listingtheunits. e 3-14
Screen 5-1. Filebadtry.C............ . e 5-16
Screen 5-2. File badtry.errors 5-16
Screen 5-3. c.error -l Output Listing. 5-17
Screen 5-4. crelease OUtpUL 5-50
Screen 5-5. c.release -qQOutput e 5-51

C/C++ Reference Manual

1

Compilation

OV VB . o o ottt e e 1-1
Compilation Phases o e 1-2
Compiler Invocation 1-4
Program Development Environment. i . 1-5
Multiple Release SUPPOIt e e 1-5
Command Line OptioNS.o e 1-6

Controlling Compilation Processot e 1-7
Preprocessingo 1-7
C++SpecificFeatures. e 1-10

Ermror MESSagesS . . oot 1-12

Other . . 1-13
Language Dialect e 1-16
OptiMIizZation. e 1-26

LiNKING . . oo e 1-34

PowerMAX OS Real-Time Guide

Overview

1
Compilation

C and C++ are programming languages suitable for systems programming and general
applications. C is a relatively low—level language in that it was designed to accommodate
the actual architecture of digital computers.

Many of the advantages of assembly language are available to the C and C++ programmer.
These include indirect addressing, address arithmetic, bit manipulation, and access to
low—level I/O routines and system services.

A wide variety of operators are also included in the language to take advantage of
computer instruction sets, such as shift operators that convert directly into shift right/shift
left instructions.

C++ is an extension of the C language, although C++ is not strictly a superset of C. Many
of the extensions support object-oriented programming. The evolution of C++ has resulted
the development of national and international standards for the language.

The Concurrent C/C++ compiler can be invokedeasor ec++, or through the program
development environment tools. Concurrent C/C++ consists of:

* An implementation of the language specified by the ANSI C++ standard.
For more information on ANSI C++, refer to the following:

- The C++ Programming Language, Third Editidoy B. Stroustrup
(Addison-Wesley Publishing Company, Reading, Mass.).

- The Annotated C++ Reference Manu@RM) by M. Ellis and B.
Stroustrup (Addison-Wesley Publishing Company, Reading, Mass.).

- International Standard for Information Systems--Programming Lan-
guage C++ Document No. X3J16/95-0185 by the American
National Standards Institute.

¢ Partial support of thefront dialect of C++. (Thecfront dialect and
technology were developed by AT&T’s UNIX Software Operation, then
transferred to Unix System Laboratories, Inc., and finally sold to Novell,
Inc.)

¢ A full implementation of the language specified by the ANSI C standard.
For more information on ANSI C, refer 16: A Reference Manual, Second
Edition by S. Harbison and G. Steele (Prentice—Hall, Inc., Englewood
Cliffs, N.J.) andProgramming Languages-;CSO/IEC 9899:1990 by the
International Organization for Standardization. (The ANSI/ISO standard
for C was formerly ANSI document X3.159-1989.)

1-1

C/C++ Reference Manual

* A full implementation of the language describedTihe C Programming
Languageby B. Kernighan and D. Ritchie (Prentice—Hall, Inc., Englewood
Cliffs, N.J.)

* Extensions documented in Chapter 7 (“Special Features of C-ai
architecture—dependencies documented in Appendix B (“Architecture
Dependencies”) . Refer to the on-line manual pages for descriptions of
system calls and library routines. Refer to #ef1) andec++(1) man
pages for an overview of the Concurrent C/C++ compiler and its options.

* A program development environment (PDE) very similar to the one pro-
vided with MaxADA and supported by the NightBench tool. This consists
of a number of tools for building large projects and controlling template
instantiation, compilation options, library management, etc.

The Concurrent C/C++ compiler consists of front end technology developed and licensed
by Edison Design Group, Inc., and back end (code generation and optimization) technol-
ogy developed and owned by Concurrent Computer Corporation.

This manual presents the features, specifics of implementation, and usage of the Concur-
rent C/C++ compiler. See the preceding sources for general information on C++ and C.

The Concurrent C/C++ programming environment allows high-level program coding and
source-level testing of code. The C and C++ languages are implemented for high-level
programming, and they contain many control and structuring facilities that greatly sim-
plify the task of algorithm construction. Each tool (e&g, ec++, as, Id) can preserve

all the information necessary for meaningful symbolic testing at the source level. The ELF
object file format is supported. (For more information, sea+(1) . See “Executable

and Linking Format (ELF)” in theCompilation Systems Volumg@oncepty manual.)

The environment provides utility packages (eagdb, dump) that aid in testing and
debuggingNightView ™2 Concurrent’s source-level, multi-lingual, multi-processor
debugger, is also available.

Compilation Phases

The Concurrent C/C++ compileec/ec++(1) , is based on Concurrent’'s Common
Code Generator. The steps involved in creating an executable from C/C++ source appear
in the following list and in Figure 1-1

1. Create afile containing C/C++ source code. This is typically done in a text
editor likevi(1) oremacs(l) .

2. Invoke the Concurrent C++ compileg++(1) , or the Concurrent C com-
piler, ec(1) , with appropriate options and arguments. Seeeitie+(1)
ec(l) man pages, “Command Line Options” on page 1-6 and “Environ-
ment Variables” on page 7-25 for information on options, arguments, and
environment variables available. See Chapter 8 (“Compilation Modes”) for
information on options that control compilation modes. Some of the possi-
ble arguments include: C or C++ source files (generally end with.C,
or .cpp), assembly language source files (must end v&th, object files

1-2

1. NightView is a trademark of Concurrent Computer Corporation.

Compilation

(must end with.o), and libraries. Unless you provide options to cut the
process shortc++ performs all of the following steps.

Directives To Recompile To Do Instantiation

Code Generator

Pseudo Assembly Language Code

Instruction
Scheduler

Assembly Language Code

Assembler

/

Prelinker

Object Files

Link Editor

Executable

Post-Link
Optimizer

Executable

Program

Figure 1-1. Compiling and Linking C++ Programs

1-3

C/C++ Reference Manual

A. ec++ andec call atranslator/(sr/ccs/lib/release/ release
/lib/cxc++) to convert the C/C++ source code into pseudo-
assembly language. For information on target systems, see “Pre-
defined Macros” on page 7-10 ach+(1)

B. After producing the pseudo-assembly language code, the compiler
calls the instruction scheduleluér/ccs/lib/release/ release
/lib/reorder) to perform the final pass of code generation, to
schedule instructions, and to translate the pseudo-assembly language
code into assembly language.

C. The compiler then calls the assembées(1) , providing the.s files
and the output files fromeorder . The assembler creates object
files ending in.o . (When object files are created, basenames are
retained. For example, if there is a C++ source file named
solver.c , the name of its object file counterpartselver.o . If
there is an assembly language source file naghgthmo.s , the
name of its object file counterpartdgnamo.o .)

D. Because automatic instantiation of C++ template entities is not
performed in the previous steps, the compiler calls a prelinker
({usr/ccsllib/release/ releasdlib/c++prelink) to
examine object files, looking for information about entities that could
be instantiated. See “Template Instantiation” on page 7-3 for a dis-
cussion of the procedure used. Note that this procedure may cause
files to be recompiled and may generate additional filgs (.ii)
to support automatic instantiation., and steps B through D are
repeated until there are no more entitites to be instantiated. Auto-
instantiation is enabled only if theauto_instantiation
option is used or the compilation is being done under control of the
Program Development Environment tools.

E. The compiler next calls the link editdd(1) . The link editor uses
two models of linking, static or dynamic. It collects and merges
object files and libraries into binary executable load modules.

F. The compiler next calls the post-link optimizanalyze(1) . By
default, the executable is namaaut . For more information about
analyze , see “Performance Analysis”, and for more information
aboutld , see “Link Editor and Linking”, both in th€ompilation
Systems Volume 1 (Tootspnual.

Compiler Invocation

Theec andec++ compilers accepts many command-line options, also referred to as
flags. See thec(l) andec++(1) man page and Chapter 8 (“Compilation Modes”) for
more information. A compiler invocation looks like this:

$ ec++ [optiong arguments
$ ec [optiong arguments

1-4

Compilation

In the following examplepartl.c andpart2.c are C++ source filepart3.s is an
assembly language source file, gyaift4.0 is an object file. By default, the compilation
and linking is in C++ mode, and the compiler automatically performs the steps listed
above and creates a binary executable naread .

$ ec++ partl.c part2.c part3.s part4.o

In the following example, the same files are automatically compiled and linked in strict
mode ¢-strict option) and the executable is nanfigght_sim (-o option).

$ ec++ --strict -oflight_sim partl.c part2.c part3.s \
art4.o

Program Development Environment

Also provided with the Concurrent C/C++ compiler is a high level Program Development
Environment (PDE), a set of tools for maintaining complex projects. The PDE maintains

a database of all source files, libraries, and executables associated with a defined environ-
ment. This database approach has several advantages:

¢ Concentration of information makes it possible to make queries using tools
in the PDE about what options a given object file is built with, what include
files were pulled in, etc.

* Template instantiation can deal with libraries better and doesn't clutter up
directories with template and instantiation info files.

* NightBench provides a graphical user interface that sits on top of the PDE,
providing the user with an intuitive graphical way of building complex
projects.

* A database provides a means for implementing program development tools
such as interprocedural analysis and class browsers in future releases of the
compilers.

Multiple Release Support

Beginning with release 5.1, the C and C++ compilers support having multiple releases
installed at the same time. Additionally, the Concurrent C 4.3 and Concurrent C++ 3.1
compilers can also be installed with C/C++ 5.1.

The follow-on release of both C 4.3 and C++ 3.1 is the C/C++ 5.1 compiler. To access

release 5.1 and later, as well as the PDE tools, the user musisdrts/bin to his
PATH environment variable. The C++ compiler is then accessed as
usr/ccs/binfec++ and the C compiler is accessed/asr/ccs/bin/ec and

/usr/ccs/bin/ec++ --c

By default, the commands formerly used to invoke C 4u&i/ccs/bin/cc and
fusr/ccs/bin/hc) and the commands formerly used to invoke C++ 3.1

1-5

C/C++ Reference Manual

(/usr/bin/cc++ and/usr/bin/c++) will now invoke C/C++ 5.1. However, the
system administrator can use thestall -p option to configure these commands to
invoke the pre-5.1 releases by default. Refer to the release notes and “c.install” on page
5-23 for details.

The programs irusr/ccs/bin are actually stubs that then invoke the correct release.
There is a system wide default release set by the system administrator when he installs the
compiler. The user may override that in a number of ways. He may specify a specific
release on the command line with theel= releaseoption to the compiler (or therel
releaseoption to the PDE tools), or he may set the environment variBBlE_RELEASE

to the release he wants, or he may set a user specific default with.thkease com-

mand. The stub attempts selecting the release by each of these in turn before resorting to
the system wide release.

If the PDE is being used to maintain an environment, then the environment remembers
what release was used to create it and any tool acting upon that environment will use that
release unless the user overrides it with-tele option.

Thec.release command can also be used to obtain a list of installed releases. See
“c.release” on page 5-50

Command Line Options

The compiler is invoked by a command of the form
ec[++][optiong ifile

to compile the single input fildile. If - (hyphen) is specified faifile, the compiler reads
from stdin

Command line options may be specified using either single character option codes (e.g.,
-0) or keyword options (e.g-routput). A single character option specification con-
sists of a hyphen followed by one or more option characters (€A@.). If an option
requires an argument, the argument may immediately follow the option letter, or may be
separated from the option letter by white space. A keyword option specification consists of
two hyphens followed by the option keyword (e.gstrict). If an option requires an
argument, the argument may be separated from the keyword by white space, or the key-
word may be immediately followed byoption When the second form is used there may

not be any white space on either side of the equals sign.

A list of files may appear foffile. If a list of files is specified, options that specify a com-
pilation output file (-output , --list , and--xref) may not be used, and the name
of each source file is written saderr as the compilation of that file begins.

When one of the preprocessing-only modes is specified (see below:aigput

option can be used to specify the preprocessing output fileoutput is not specified,
preprocessing output is written sddout . Preprocessing output has trigraphs and line
splices processed (and thus they do not appear in their original form).

1. This is not recommended in general, since diagnostic messages and the like will then not include a file
name or will refer to the file name ™

1-6

Compilation

When compilation (rather than just preprocessing) is done, the output (if any) from the

compilation is written to a file selected by the back end; see the documentation of the back
end for further information. For versions of the front end that generate an intermediate lan-
guage file, the-output option can be used to specify the IL output file.

Theoptionsare as follows:

Controlling Compilation Process

Preprocessing

--preprocess

-E Do preprocessing only. Write preprocessed text to the preprocessing
output file, with comments removed and with line control informa-
tion.

--no_line_commands

--preprocess_to_file

-P Do preprocessing only. Write preprocessed text to the preprocessing
output file, with comments removed and without line control infor-
mation.

--comments

-C Keep comments in the preprocessed output. This should be specified

after either--preprocess or --no_line_commands ; it does
not of itself request preprocessing output.

--dependencies

Do preprocessing only. Instead of the normal preprocessing output,
generate on the preprocessing output file a list of dependency lines
suitable for input to the UNIX make program. Note that when
implicit inclusion of templates is enabled, the output may indicate
false (but safe) dependencies unles®_preproc_only is

also used.

--trace_includes

Do preprocessing only. Instead of the normal preprocessing output,
generate on the preprocessing output file a list of the names of files
#include d.

--define_macrmame [= def]

-D name[= def]
Define macrcmmameasdef If “= def” is omitted, definenameas1.

1. UNIX is a trademark of X/Open.

C/C++ Reference Manual

1-8

There are no macro names defined by default (except folNE___
and similar language-mandated macros).

--undefine_macroame

-Uname

Remove any initial definition of the macrmame

--undefine_macro options are processed after all
--define_macro options in the command line have been pro-
cessed.

--include_directondir

--sys_includedir

-1 dir

--incl_suffixes

Add dir to the list of directories searched féinclude s. See Sec-
tion “Finding Include Files” on page 7-28 for more information..

str

Specifies the list of suffixes to be used when searching for an include
file whose name was specified without a suffix. The argument is a
colon-separated list of suffixes (e.g., “h:hpp::”). If a null suffix is to
be allowed, it must be included in the suffix list. The default value is
“:h:hpp”.

--preincludefilename

-i filename

--list Ifile

Include the source code of the indicated file at the beginning of the
compilation. This can be used to establish standard macro defini-
tions, etc. The file name is searched for in the directories on the
include search list.

Generate raw listing information in the fille. This information is
likely to be used to generate a formatted listing. The raw listing file
contains raw source lines, information on transitions into and out of
include files, and diagnostics generated by the front end. Each line of
the listing file begins with a key character that identifies the type of
line, as follows:

a normal line of source; the rest of the line is the
text of the line.

the expanded form of a normal line of source;
the rest of the line is the text of the line. This
line appears following thalline, and only if the

line contains non-trivial modifications (com-
ments are considered trivial modifications;

Compilation

macro expansions, line splices, and trigraphs
are considered non-trivial modifications).

S: a line of source skipped by afif or the like;
the rest of the line is text. Note that titelse ,
#elif , or#endif that ends a skip is marked
with anN.

L: an indication of a change in source position.
The line has a format similar to theline-iden-
tifying directive output bycpp, that is to say

L line-number "file-name" key

wherekeyis 1 for entry into an include file2
for exit from an include file, and omitted other-
wise. The first line in the raw listing file is
always arnL line identifying the primary input
file. L lines are also output fo#line direc-
tives (keyis omitted).L lines indicate the source
position of the following source line in the raw
listing file.

R, WE, or C:
an indication of a diagnostidX(for remark,W
for warning, E for error, andC for catastrophic
error). The line has the form

S"file-name" line-number column-number mes-
sage-text

whereSis R, WE, or C, as explained above.
Errors at the end of file indicate the last line of
the primary source file and a column number of
zero. Command-line errors are catastrophes
with an empty file name'() and a line and col-
umn number of zero. Internal errors are catas-
trophes with position information as usual, and
message-text beginning witfinternal

error) . When a diagnostic displays a list
(e.g., all the contending routines when there is
ambiguity on an overloaded call), the initial
diagnostic line is followed by one or more lines
with the same overall format (code letter, file
name, line number, column number, and mes-
sage text), but in which the code letter is the
lower case version of the code letter in the ini-
tial line. The source position in such lines is the
same as that in the corresponding initial line.

Automatically use and/or create a precompiled header file — for
details, see the “Precompiled Headers” section in this chapter. If
--use_pch or--create_pch (manual PCH mode) appears on
the command line following this option, its effect is erased.

1-9

C/C++ Reference Manual

--Create_pch file-name
If other conditions are satisfied (see the “Precompiled Headers” sec-
tion), create a precompiled header file with the specified name. If
pch (automatic PCH mode) cruse_pch appears on the com-
mand line following this option, its effect is erased.

--use_pch file-name
Use a precompiled header file of the specified name as part of the
current compilation. If--pch (automatic PCH mode) or
--create_pch appears on the command line following this
option, its effect is erased.

--pch_dir directory-name
The directory in which to search for and/or create a precompiled
header file. This option may be used with automatic PCH mode
(--pch) or with manual PCH mode-{create_pch or
--use_pch).

--pch_messages

--no_pch_messages
Enable or disable the display of a message indicating that a precom-
piled header file was created or used in the current compilation.

--list_macros List all macro definitions tetdout

C++ Specific Features

1-10

--auto_instantiation
--n0_auto_instantiation

Enable or disable automatic instantiation of templates. This option is
valid only in C++ mode. The default is
--no_auto_instantiation unless the compilation is done
under control of the PDE.

--implicit_include
--no_implicit_include

Enable or disable implicit inclusion of source files as a method of
finding definitions of template entities to be instantiated. This option
is valid only in C++ mode. The default is
--no_implicit_include

--pending_instantiationsr

Specifies the maximum number of instantiations of a given template
that may be in process of being instantiated at a given time. This is
used to detect runaway recursive instantiations.if zero, there is

no limit. The default is 64.

Compilation

--retain_out_of_line_copy

-Qretain_out_of_line_copy

--suppress_vtbl

--force_vtbl

--instantiateanode

Retain an out-of-line copy of inlined functions, even if not needed
because it gets called or its address gets taken. This is on by default
when the -g option is used.

Suppress definition of virtual function tables in cases where the heu-
ristic used by the front end to decide on definition of virtual function
tables provides no guidance. The virtual function table for a class is
defined in a compilation if the compilation contains a definition of
the first non-inline non-pure virtual function of the class. For classes
that contain no such function, the default behavior is to define the vir-
tual function table (but to define it as a local static entity). The option
--suppress_vtbl suppresses the definition of the virtual func-
tion tables for such classes, antbrce vtbl forces the defini-
tion of the virtual function table for such classedorce vtbl

differs from the default behavior in that it does not force the defini-
tion to be local. This option is valid only in C++ mode.

Force definition of virtual function tables in cases where the heuristic
used by the front end to decide on definition of virtual function tables
provides no guidance. Seesuppress_vtbl . This option is
valid only in C++ mode.

Control instantiation of external template entities. External template
entities are external (i.e., noninline and nonstatic) template functions
and template static data members. The instantiation mode determines
the template entities for which code should be generated based on the
template definition):

none Instantiate no template entities. This is the
default.

used Instantiate only the template entities that are

used in this compilation.

all Instantiate all template entities whether or not
they are used.
local Instantiate only the template entities that are

used in this compilation, and force those entities
to be local to this compilation.

This option is valid only in C++ mode.

1-11

C/C++ Reference Manual

Error Messages

1-12

--no_warnings
-w

--remarks
--nitpick

-n

Suppress warnings. Errors are still issued.

Issue remarks, which are diagnostic messages even milder than warn-
ings.

--error_limitnumber

-e number

Set the error limit tamumber The front end will abandon compilation
after this number of errors (remarks and warnings are not counted
toward the limit). By default, the limit is 100.

--diag_supprestag, tag,...

--diag_remarkag, tag,.

--diag_warningag, tag,...

--diag_error

tag, tag,...

Override the normal error severity of the specified diagnostic mes-
sages. The message(s) may be specified using a mnemonic error tag
or using an error number.

--display_error_number

Display the error message number in any diagnostic messages that
are generated. The option may be used to determine the error number
to be used when overriding the severity of a diagnostic message.

--n0_use_bhefore_set_warnings

--error_output

Suppress warnings on local automatic variables that are used before
their values are set. The front end’s algorithm for detecting such uses
is conservative and is likely to miss some cases that an optimizer
with sophisticated flow analysis could detect; thus, an user might
choose to suppress the warnings from the front end when optimiza-
tion has been requested but to permit them when the optimizer is not
being run.

efile
Redirect the output that would normally godtderr (i.e., diag-
nostic messages) to the figdile. This option is useful on systems
where output redirection of files is not well supported. If used, this
option should probably be specified first in the command line, since
otherwise any command-line errors for options precedingthe
error_output would be written testderr before redirection.

Compilation

--brief_diagnostics
--no_brief_diagnostics

Enable or disable a mode in which a shorter form of the diagnostic
output is used. When enabled, the original source line is not dis-
played and the error message text is not wrapped when too long to fit
on a single line.

--wrap_diagnostics
--no_wrap_diagnostics

Enable or disable a mode in which the error message text is not
wrapped when too long to fit on a single line.

Other
--outputofile
-0 ofile Specify the output file of the compilation, i.e., the preprocessing or
intermediate language output file.
--version

Display the version number.
--no_code_gen
-k Do syntax-checking only, i.e., do not run the back end.
--xref xfile

Generate cross-reference information in theXfite. For each refer-
ence to an identifier in the source program, a line of the form

symbol-id name ref-code file-name line-number column-number

is written, whereref-codeis D for definition,d for declaration (that

is, a declaration that is not a definitioriyifor modification, A for
address taken) for used,C for changed (but actually meaning “used
and modified in a single operation,” such as an increm&ir any
other kind of reference, d& for an error in which the kind of refer-
ence is indeterminatsymbol-idis a unique decimal number for the
symbol. The fields of the above line are separated by tab characters.

--timing

Generate compilation timing information. This option causes the
compiler to display the amount of CPU time and elapsed time used
by each phase of the compilation and a total for the entire compila-
tion.

1-13

C/C++ Reference Manual

1-14

--remove_unneeded_entities

--no_remove_unneeded_entities

--debug

-9

--full_debug_info
-Qfull_debug_info

--help
--help_screen

-H

--leave_temp_files

-Qleave_temp_files

Enable or disable an optimization to prune the IL tree of types, vari-

ables, routines, and related IL entries that are not “really needed.”
(Something may be referenced but unneeded if it is referenced only
by something that is itself unneeded; certain entities, such as global
variables and routines defined in the translation unit, are always con-
sidered to be needed.)

Produce additional symbolic debugging information for use with
NightView.

Generate debugging information for every entity declared in a com-
pilation unit. Normally debugging information is created only for
types that are actually used in the compilation unit.

Display a help message showing invocation options for this compiler.

Do not remove the intermediate files created during compilation.

--symtab_sizesymtab_size

-T symtab_sizPassed tas(1) .

--verbose

-V

--bin_path=string

Be verbose when running the compiler. This option causes informa-
tional messages about compilation and optimization to be written to
stderr . This information can be used to determine the processors
(and their arguments) invoked during the compilation.

Compile the named files and leave the assembler-language output in
the corresponding files suffixed by . No object file or executable
is produced (See also).

Suppress the loading phase of the copmilation, and force an object
file to be produced even if only one program is compiled. (see-also
S).

Compilation

-b string Search for alternative assembler, link editor, and post-link optimizer
processors. The compiler removes the path prefix from the default
processor and uses string as a substitute prefix for the default proces-
sor basename. For example, if the compiler is invoked with
b/abc/ , the compiler searches for an assembler nafabd/as
If the compiler is invoked with-b/dev/test_ , the compiler
searches for an assembler nanidelv/test_as . Multiple -b
options may be used to specify multiple strings to try.

--lib_path=string

-B string Search for alternative compiler, instruction scheduler, startup rou-
tines, and auxiliary object files. The compiler removes the path pre-
fix from the default processor and uses string as a substitute prefix for
the default processor basename. For examplegtft is invoked
with -B/abc/ , it searches for a compiler naméabc/cxc++
Multiple -B options may be used to specify multiple strings to try.

--processorsieraPIAg

-t [craPlAs] Find only the designated compiler passes using the paths specified
with a-B or-b option. The letters indicate processors as follows:

c compiler

r reorder, also known as instruction scheduler
a assembler

P prelinker

I link editor

A analyze, also known as post link optimizer

S startup routines and auxiliary object files

--pass_to_analyzewrgl[,arg2...]
--pass_to_assembleargl[,arg2...]
--pass_to_code_generatargl[,arg2...]
--pass_to_front_endwgl[,arg2...]
--pass_to_linkerargl[,arg2...]
--pass_to_prelinkargl[,arg2...]
--pass_to_prelinkeargl[,arg2...]
--pass_to_reordefgptions”

-Wx,argl[,arg2...] hand off the specified arguments to the procegsaherex is one of
the lettersfcraPIA] corresponding to the processors listed above.
This can be used to specify special arguments to particular proces-
sors that the compiler invokes during compilation.

1-15

C/C++ Reference Manual

An alternative method is the setting of environment variables.
PATH_TO_MCRT,(PATH_TO_CRTPPATH_TO_STRICT and
PATH_TO_ANSIallows the user to specify alternative startup rou-
tines and auxiliary object files. PATH_TO_CXCPP
PATH_TO_REORDERPATH_TO_AS PATH_TO_LD
PATH_TO_ANALYZEandPATH_TO_DECOD&low the user to
specify alternativexc++ , reorder , as, Id , analyze , and
ct++decode tools respectively.

--limit_search_paths

-X

--cfront_io

--no_cfront_io

--rel= release
--testing

-#

Language Dialect

1-16

—-CH+

-Xc

--strict_warnings

Do not look in unspecified search paths for include files or compila-
tion processors. An error message will be generated if the files can-
not be found in the specified search paths

Enable or disable automatic link and prelink inclusion of the cfront
<iostream.h> based-ICio archive/library, or for threaded
applications thelCio_mt archive/library. This is disabled by
default unless eithercfront_2.1 or --cfront_3.0 is speci-
fied.

Select which release of the compiler (post-5.1) to invoke.

Don't actually do anything. Use witlv option to see what the com-
piler would invoke.

Enable compilation of C++. This is the defaultdot+ .

Enable compilation of C rather than C++. This is the defaukdor

Enable K&R/pcc mode, which approximates the behavior of the
standard UNIXpcc . ANSI C features that do not conflict with
K&R/pcc features are still supported in this mode.

Enable ANSI C mode. This is the default mode when C mode is
selected.

--strict

--anachronisms

Compilation

Enable strict ANSI mode, which provides diagnostic messages when
non-ANSI features are used, and disables features that conflict with
ANSI C or C++. This is compatible with both C and C++ mode
(although ANSI conformance with C++ does not yet mean anything).
It is not compatible with pcc mode. ANSI violations can be issued as
either warnings or errors depending on which command line option
is used. The-strict option causes errors to be issued whereas
the--strict_warnings and -Xc options produce warnings. The
error threshold is set so that the requested diagnostics will be listed.

--no_anachronisms

--cfront_2.1

--cfront_3.0

--signed_chars
-Qchars_signed

-Qsigned_char

--unsigned_chars

Enable or disable anachronisms in C++ mode. This option is valid
only in C++ mode. The defaultiso_anachronisms

Enable compilation of C++ with compatibility with cfront version
2.1. This causes the compiler to accept language constructs that,
while not part of the C++ language definition, are accepted by the
AT&T C++ Language System (cfront) release 2.1. This option also
enables acceptance of anachronisms.

Enable compilation of C++ with compatibility with cfront version
3.0. This causes the compiler to accept language constructs that,
while not part of the C++ language definition, are accepted by the
AT&T C++ Language System (cfront) release 3.0. This option also
enables acceptance of anachronisms.

Make plainchar signed. The default “signedness” fahar is
unsigned, as this is more efficient on the PowerPC architecture.
When plainchar is signed, the macro_SIGNED_CHARS__is
defined by the front end.

Make plainchar unsigned.

--distinct_template_signatures

--no_distinct_template_signatures

Control whether the signatures for template functions can match
those for non-template functions when the functions appear in differ-
ent compilation units. The default is
--distinct_template_signatures , under which a normal
function cannot be used to satisfy the need for a template instance;
e.g, afunction Void f(int) " could not be used to satisfy the
need for an instantiation of a templatedid f(T) ”with T setto

int . --no_distinct_template_signatures provides the

1-17

C/C++ Reference Manual

1-18

older language behavior, under which a non-template function can
match a template function. Also controls whether function templates
may have template parameters that are not used in the function signa-
ture of the function template.

--nonstd_qualifier_deduction
--no_nonstd_qualifier_deduction

Controls whether nonstandard template argument deduction should
be performed in the qualifier portion of a qualified name. With this
feature enabled, a template argument for the template parameter
can de deduced in contexts like<T>::B or T::B . The standard
deduction mechanism treats these as nondeduced contexts that use
the values of template parameters that were either explicitly specified
or deduced elsewhere.

--exceptions
--no_exceptions

Enable or disable support for exception handling. This option is valid
only in C++ mode. The defaultisexceptions

--rtti

--no_rtti Enable or disable support for RTTI (runtime type information) fea-
tures:dynamic_cast , typeid . This option is valid only in C++
mode. The default isrtti

--array_new_and_delete
--no_array_new_and_delete

Enable or disable support for array new and delete. This option is
valid only in C++ mode.

--explicit

--no_explicit
Enable or disable support for tleaplicit specifier on constructor
declarations. This option is valid only in C++ mode. The default is
--explicit

--namespaces

--no_namespaces

Enable or disable support for namespaces. This option is valid only
in C++ mode. The default is --namespaces.

--old_for_init

--new_for_init

Compilation

Control the scope of a declaration inf@r-init-statement

The old (cfront-compatible) scoping rules mean the declaration is in
the scope to which thior statement itself belongs; the new (stan-
dard-conforming) rules in effect wrap the entiog statement in its
own implicitly generated scope. This option is valid only in C++
mode. The default isnew_for_init

--for_init_diff_warning
--no_for_init_diff_warning

Enable or disable a warning that is issued when programs compiled
under the new for-init scoping rules would have had different behav-

ior under the old rules. The diagnostic is only put out when the new
rules are used. This option is valid only in C++ mode. The default is

--for_init_diff_warnings

--old_specializations
--no_old_specializations

Enable or disable acceptance of old-style template specializations
(i.e., specializations that do not use teenplate<> syntax). This
option is valid only in C++ mode. The default is
--old_specializations

--guiding_decls
--no_guiding_decls

Enable or disable recognition of “guiding declarations” of template
functions. A guiding declaration is a function declaration that
matches an instance of a function template but has no explicit defini-
tion (since its definition derives from the function template). For
example:

template <class T> void f(T) { ... }
void f(int);

When regarded as a guiding declaratif{imt) is an instance of
the template; otherwise, it is an independent function for which a
definition must be supplied. H-no_guiding_decls is com-
bined with--old_specializations , & specialization of a non-
member template function is not recognized — it is treated as a defi-
nition of an independent function. This option is valid only in C++
mode. The default isguiding_decls

--implicit_extern_c_type_conversion
--no_implicit_extern_c_type_conversion

Enable or disable an extension to permit implicit type conversion in
C++ between a pointer to axtern "C" function and a pointer to
anextern "C++" function. (It is useful for cfront compatibility
— in standard C++ the linkage specification is part of the function

1-19

C/C++ Reference Manual

1-20

type, with the consequence that otherwise identical function types,
one declareckextern "C" and the other declareextern
"C++" , are viewed as distinct.) The default is
--implicit_extern_c_type_conversion

--long_preserving_rules

--no_long_preserving_rules

--extern_inline

Enable or disable the K&R usual arithmetic conversion rules with
respect tdong . This means the rules of K&R I, Appendix A, 6.6,
not the rules used by the pcc compiler. The significant difference is in
the handling of fong opunsigned int ”whenint andlong

are the same size. The ANSI/ISO/pcc rules say the result is
unsigned long , but K&R | says the resultibbng (unsigned

long did not exist in K&R I).

--no_extern_inline

--restrict

--no_restrict

Enable or disable support famline functions with external link-
age in C++. Wherinline functions are allowed to have external
linkage (as required by the standard), tleeaitern andinline are
compatible specifiers on a nonmember function declaration; the
default linkage whernnline appears alone is external (that is,
inline meansextern inline on nonmember functions); and
aninline member function takes on the linkage of its class (which
is usually external). However, whenline functions have only
internal linkage (as specified in the ARM), thextern and
inline are incompatible; the default linkage whénrine
appears alone is internal (thatiisline meansstatic inline

on nonmember functions); andline member functions have
internal linkage no matter what the linkage of their class.

Enable or disable recognition of thestrict keyword.

--long_lifetime_temps

--short_lifetime_temps

Select the lifetime for temporaries: “short” means to end of full
expression; “long” means to the earliest of end of scope, end of
switch clause, or the next label. “short” is standard C++, and “long”
is what cfront uses (the cfront compatibility modes select “long” by
default).

--wchar_t_keyword

--no_wechar_t_keyword

Enable or disable recognition wfchar_t as a keyword. This option
is valid only in C++ mode. The default-isvchar_t_keyword

Compilation

--bool

--no_bool Enable or disable recognition dbol . This option is valid only in
C++ mode. The default isbool

--typename

--no_typename

Enable or disable recognition @afpename . This option is valid
only in C++ mode. The defaultidypename

--implicit_typename
--no_implicit_typename

Enable or disable implicit determination, from context, whether a
template parameter dependent name is a type or nontype. This option
is valid only in C++ mode. The default isimplicit_-

typename .

--special_subscript_cost
--no_special_subscript_cost

Enable or disable a special nonstandard weighting of the conversion
to the integral operand of tH¢ operator in overload resolution.
This is a compatibility feature that may be useful with some existing
code. The special cost is enabled by default in cfront 3.0 mode. With
this feature enabled, the following code compiles without error:

struct A {
AQ;
operator int *();
int operator[](unsigned);
I3
void main() {
A a;
a[0]; // Ambiguous, but allowed
/1 with this option
/I operator][] is chosen

As of July 1996, the above is again acceptabletitiff t is
configured adong . Using a parameter of typptrdiff_t
(instead olunsigned int) is recommended for portability.

--alternative_tokens
--no_alternative_tokens

Enable or disable recognition of alternative tokens. This controls rec-
ognition of the digraph tokens in C and C++, and controls recogni-

1-21

C/C++ Reference Manual

tion of the operator keywords (e.@nd, bitand , etc.) in C++. The
default is--alternative_tokens

--multibyte_chars
--no_multibyte_chars

Enable or disable processing for multibyte character sequences in
comments, string literals, and character constants. Multibyte encod-
ings are used for character sets like the Japanese SJIS. The default is
--no_multibyte _chars

--inlining

--no_inlining
Enable or disable function inlining. If disabled, calls to inline func-
tions will call out-of-line instances. The default-imlining

-Xt

--svr4

--no_svr4d Enable or disable recognition of SVR4 C compatibility features. This

option also specifies that the source language being compiled is
ANSI C. The default is-no_svr4

--nonconst_ref_anachronism
--no_nonconst_ref_anachronism

Enable or disable the anachronism of allowing a reference to non-
const to bind to a class rvalue of the right type. This anachronism is
also enabled by theanachronisms option and the cfront-com-
patibility options.

--embedded_c++

Enable the diagnosis of noncompliance with the
“Embedded C++" subset (from which templates,
exceptions, namespaces, new-style casts, RTTI,
multiple inheritance, virtual base classes,

and mutable are excluded).

--enum_overloading
--no_enum_overloading

Enable or disable support for using operator functions to overload
builtin operations on enum-typed operands.

--const_string_literals

--no_const_string_literals

1-22

Compilation

Control whether C++ string literals and wide string literals are const
(as required by the standard) or non-const (as was true in earlier ver-
sions of the C++ language).

--class_name_injection
--no_class_name_injection

In C++, controls whether the name of a class is injected into the
scope of the class (as required by the standard) or is not injected (as
was true in earlier versions of the C++ language).

--arg_dep_lookup
--no_arg_dep_lookup

In C++, controls whether argument dependent lookup of unqualified
function names is performed

--friend_injection
--no_friend_injection

In C++, controls whether the name of a class or function that is
declared only in friend declarations is visible when using the normal
lookup mechanisms. When friend names are injected, they are visible
to such lookups. When friend names are not injected (as required by
the standard), function names are visible only when using argument-
dependent lookup, and class names are never visible.

--late_tiebreaker
--early_tiebreaker

Select the way that tie-breakers (e.g., cv-qualifier differences) apply
in overload resolution. In “early” tie-breaker processing, the tie-
breakers are considered at the same time as other measures of the
goodness of the match of an argument value and the corresponding
parameter type (this is the standard approach). In “late” tiebreaker
processing, tie-breakers are ignored during the initial comparison,
and considered only if two functions are otherwise equally good on
all arguments; the tie-breakers can then be used to choose one func-
tion over another.

--nonstd_using_decl
--no_nonstd_using_decl

In C++, controls whether a nonmember using-declaration that speci-
fies an unqualified name is allowed.

1-23

C/C++ Reference Manual

--designators
--no_designators

Enable or disable support for designators (a C9X extension). These
options are not available in C++ mode.

--extended_designators
--no_extended_designators

Enable or disable support for “extended designators,” an extension
accepted only in C mode to emulate the behavior of certain other C
compilers when it comes to designators in aggregate initializers.

--variadic_macros

--no_variadic_macros
Enable or disable support for variadic macros (a C9X extension that
is also available in C++ mode).

--extended_variadic_macros
--n0_extended_variadic_macros

Enable or disable support for “extended variadic macros,” an exten-
sion that emulates the behavior of certain other C compilers when it
comes to variadic macros.

--base_assign_op_is_default
--no_base_assign_op_is_default

Enable or disable the anachronism of accepting a copy assignment
operator that has an input parameter that is a reference to a base class
as a default copy assignment operator for the derived class. This
option is enabled by default in cfront compatibility mode.

--float_single

-fsingle Cause all floating-point constants to have tfjpat instead of the
default typedouble . This can be used to prevent type promotion of
floating-point expressions involving constants to double precision.

Note that it is possible to force individual floating point constants to
have type float by adding @nor F suffix. For example3.13f has
typefloat while 3.14 has typedouble (by default). This elimi-
nates the need to use tHsingle option and allows greater flexi-
bility in controlling the types of floating-point literals.

--float_single2

-fsingle2 Like the-fsingle option, but also disable the automatic type pro-
motion of floating-point expressions to tygeuble when passed as
parameters to functions. With this option, it is possible to write and
use true single-precision functions, but it becomes the user’s respon-

1-24

Compilation

sibility to provide double-precision arguments to functions that
expect them (such as standard library routinesplikef).

Note that function prototypes may be used to declare routines that
accept float arguments, regardless of default type-promotion rules.
This can eliminate the need to use tfengle2 option. In ANSI
mode, prototype declarations for the single-precision math library
routines are available wmath.h> . Seerig(3M)

--float_modefloatmode

-f floatmode Use float mode as the floating-point mode during compilation and as
the floating-point mode of the resulting object file.

IEEE-COMPATIBLE
Use modeeeecom

IEEE-ZERO
Use modeeeezero or zero

IEEE-NEAREST
Use moddeeenear , near , orieee ; thisis
the default.

IEEE-POS-INFINITY
Use modeeeepos or pos

IEEE-NEG-INFINITY
Use modéeeeneg orneg

--enable_intrinsics

-F Turn on intrinsic functions. The compiler will then generate in-line
code for accessing special machine instructions. Use of this option
also defines the preprocessor madfdST_MATH_INTRINSICS.

--read_only_literals

-R Make initialized variables shared and read-only.
--namespace_in_headers

--no_namespace_in_headers

Define entities mandated by the ANSI/ISO C standard in the
namespace std or in the global namespace. Entities are defined in
namespace std by default when namespaces are enabled.

--ansi_cplusplus_headers
--no_ansi_cplusplus_headers

Enable or disable the overloaded declarations of standard C functions
which are mandated by the C++ standard. The overloaded declara-
tions are enabled by default.

1-25

C/C++ Reference Manual

Optimization

1-26

--const_object_in_nonconst_member

--check_long_long

-Qcheck_long_long

--long_long

-Qno_long_long

Enable the anachronism of calling a member function that does not
require a const this pointer with a const selector. This anachronism is
also enabed by theanachronisms option and the cfront-com-
patibility options.

Define the predefined macro LONG_LONGo condition header

files to allow long long types and signatures. In order to get warning
messages whenever these types are seen supply the command line
option--strict_warnings

--no_long_long
-Qlong_long

Enable or Disable the extensitong long , a 64-bit integer. Also
defines the predefined macroLONG_LONG

--const_constant_is_constant

In C Mode, when a&onst variable is initialized with a constant lit-
eral, replace references to the variable with the constant literal. This
is always done in C++.

Treatconst , signed , andvolatile as normal identifiers, not as
ANSI-C keywords.

-O[keyword[,keyword2...]]

Control the level of optimization performed during compilation. Pre-
vious choices are preserved if not overridden, thus multiple -O
options may be used. Valid keywords are:

--optimization_level=none
--optimization_level=0

-Onone or-00
Places strict controls on minimal optimization.

Compilation

Usually used only on extremely large, usually
machine generated, source files.

--optimization_level=minimal
--optimization_level=1

-Ominimal or-O1
Perform some minimal level of optimization
that will yield reasonably fast code. This is the
default if no-O option is specified.

--optimization_level=global
--optimization_level=2

-Oglobal or-02
Perform some routine-wide optimizations. This
is the default if-O is specified with no explicit
level.

--optimization_level=maximal
--optimization_level=3

-Omaximal or-O3
Perform all routine-wide optimizations, but
with restraint to limit compile time.

--optimization_level=ultimate
--optimization_level=4
-Qbenchmark

-Oultimate or-O4
Perform maximal optimizations, uses fastest
transformations, link with fastest libraries, and
take lots of time to do it.

--safe
-Osafe
Set the optimization class safe . Avoids all
transformations that might cause subtle differ-
ences in program behaviour. See also
Qopt_class
--standard
-Ostandard

Set the optimization class tasstandard
Allows transformations that might cause differ-
ences in program behaviour if the language

1-27

C/C++ Reference Manual

1-28

-Qflag

standard permits them. See also
Qopt_class

--unsafe

-Ounsafe
Set the optimization class tmsafe . See also
-Qopt_class

--reorder

-Oreorder
Perform instruction scheduling (default for glo-
bal and higher)

--no_reorder
-Onoreorder

-Ono_reorder
Do not perform instruction scheduling (default
for minimal and lower)

--post_linker
-Oanalyze

-Opost_linker
Perform post-linker optimization (default for
global and higher).

--no_post_linker
-Ono_analyze

-Ono_post_linker
Do not perform post-linker optimization
(default for minimal and lower)

Provide access to a number of special-purpose compiler control
options. Many of these options specify optimization parameters that
are common to all Concurrent CCG-based compilers; see the “Pro-
gram Optimization” chapter of Compilation Systems Volume 2
(Concepts) for a detailed description of CCG optimizations and the
use of these options. The following flags are available:

--alias_array_elements_limit= N
-Qalias_array_elements_limit= N

Limit the number of constant array references
that are given separate object numbers. For
arrays of structures this controls the number of
structures to be assigned object numbers. A
value of zero means no limits will be applied.

Compilation

Used whenQprecise_alias is in effect.
Default value is 100.

--alias_ignore_const

-Qalias_ignore_const
Instruct the alias analysis to ignore the const
keyword in performing alias analysis. By
default variables that have this attribute are
assumed to be constant.

--alias_object_limit= N

-Qalias_object_limit= N
Limit the number of objects used in alias analy-
sis, which is a measure of the preciseness of the
analysis. A value of zero mans no limits will be
applied. Used wherQprecise_alias isin
effect. Default value is 10000.

--alias_structure_fields_limit= N

-Qalias_structure_fields_limit= N
Limit the number of fields in a structure that are
given separate object numbers. A value of zero
means that no limit will be applied. Used with
-Qprecise_alias is in effect. Default value
is 100.

--complete_unroll_debugging

-Qcomplete_unroll_debugging
Generate complete debugging information for
basic blocks duplicated during loop unrolling
and for zero trip loop optimization at the cost of
increased compilation time and object module
size.

--dont_peel_var

-Qdont_peel var
Specifie that loop unrolling should not peel any
iterations from loops with unknown iteration
count. This is the default since peeling itera-
tions from such loops can adversely effect cach-
ing in loops that only execute a few times.

--flttrap

-Qflttrap
Enable software floating-point exceptions. This

1-29

C/C++ Reference Manual

1-30

also disables hardware floating-point excep-
tions. SeeQfpexcept

--fpexcept= {precise | imprecise | disabled }
-Qfpexcept= {precise | imprecise | dis-
abled }

Control hardware floating-point exception han-
dling. This option is passed to the linker. See
Id(1)

--full_debug_line_info

-Qfull_debug_line_info

Produce debug information when inlining and
other optimizations that copy and move code so
that the debugger is aware that such a transfor-
mation has happened. This is the default. See
also -Qsparse_debug_line_info.

--growth_limit= N

-Qgrowth_limit= N

Limit the amount of intermediate code the opti-
mizer is allowed to duplicate when performing
optimizations such as loop unrolling and repair-
ing irreducible flow graphs. The integer con-
stantN represents the percentage increase in
code size permitted. The default value is 25.

--huge_heuristic= N

-Qhuge_heuristic= N

--inline=

-Qinli

Limit the aggressiveness of register allocation.
Values of N may be from 1 through 1000000.
The default is 1000000. Very low values (ie,
below 100) are most likely to significantly
reduce the time required to optimize very large,
complicated subprograms using many variables
at the cost of reduced efficiency of register
usage.

Hlistn
ne= ‘list”

Inline the comma-separated list of routine
names. These routines cannot be class names,
cannot be overloaded, and cannot be in
namespaces.

--inline_depth= N

-Qinli

ne_depth= N
Place a limit on the level of nested procedure

Compilation

inlining. A value of zero disables inlining. By
default it is set to one at minimal or less and two
at global and above. See also
no_inlining . SettingN higher than 2 can
result in runaway program size growth and
exteremly long compile times.

--int_div_exception

-Qint_div_exception

Generate an exception if an integer division by
zero is detected at run time. The PowerPC
architecture does not provide this facility with-

out software support. Use of this option

instructs the compiler to provide this software
support at the expense of integer divide perfor-
mance.

--invert_divides
-Qinvert_divides

Host divides by region constants (an expression
whose value will not change during the execu-
tion of the loop containing it) out of loops and
replace them with a multiply by the reciprocal
in the loop. Also, transform divide by a literal
into a multiply by its reciprocal.

--loops= N
-Qloops= N

Set the number of loops for which the compiler
will perform the copy-variable optimizationN
must be an integer constant. The default value
is 20.

--no_float_reg_agg_move

-Qno_float_reg_agg_move
Disable the use of floating point registers to
accelerate the copying of structures.

--no_float varargs

-Qno_float_varargs
Tell the compiler that there will be no floating
point arguments passed to any stdard or vararg
routine. This enables the compiler to generate

1-31

C/C++ Reference Manual

1-32

faster code by avoiding the spill of floating
point registers to a buffer.

--no_invert_divides

-Qno_invert_divides
Disable the implicit -Qinvert_divides present at
ultimate optimization.

--no_multiply_add

-Qno_multiply _add
Disable the use of multiply-add instructions.
Separate multiply and add instructions will be
used instead.

-Qreentrant_library
Disallow the implied use of the non reentrant C
library libnc at ultimate optimization.

--report_optimizations

-Qreport_optimizations
Report on what optimizations are being per-
formed.

--objects= N
-Qobjects= N

Set the maximum number of variables that the
compiler will optimize when global or maximal
optimization is specifedN must be an integer
constant. (Limits optimizations such as dead
code elimination, copy propagation and copy
variables). The default is 128.

-Qopt_class= {unsafe | standard | safe }
Select the class of compiler optimization. The
default isunsafe . See also-unsafe | -
Ounsafe , --standard , -Ostandard |, --
safe , and-Osafe .

--optimize_for_space
-Qoptimize_for_space
Make space rather than time the critical factor
in optimizing this program.
--peel_limit_const= N

-Qpeel_limit_const= N

Specify the minimum number of iterations that
loop unrolling will peel from a loop whose
number of iterations is a compile-time constant.

Compilation

This is used for software pipelining so that each
iteration of a loop can overlap instructions from
N+1 iterations of the original loop. The default
is 1 at global and 2 at maximal and up.

--peel_var

-Qpeel_var
Specify that loop unrolling can pull 1 iteration
off a loop with an unknown iteration count. The
default is -Qdont_peel_var.

--plt
-Qplt

Generate function calls using plt instead of gotp
entries if-Zpic also specified. See Chapter 22
of Compilation Systems Volume 2 (Concepts)
for the cases when it is desirable to use this
option.

--precise_alias

-Qprecise_alias
Specify that the time consuming, but precise,
method of alias analysis is used. Itis the default
at global and above.

--quick_alias

-Qquick_alias
Specify that the quick, but not very precise,
method of alias analysis is used. It is the default
at minimal and below.

--sparse_debug_line_info

-Qsparse_debug_line_info
Produce smaller debug info for inlining and
other optimizations that copy and move code.
Debugging inlined procedures, unrolled loops,
etc. will be somewhat more difficult. See also
Qfull_debug_line_info

--spill_register_if address_taken
-Qspill_register_if_address_taken

Copy the contents of all argument register to
memory locations if the address of a formal

parameter is taken. This option can sometimes
be used to work around problems with functions
that attempt to step through argument lists
assuming that they were passed in as a list of
arguments on the stack. Typically, these func-
tions should have been coded using the

1-33

C/C++ Reference Manual

varargs(5) interface for passing variable
argument lists to functions.

-target= {ppc604 |ppc604e |ppc750 |ppc}
-Qtarget= {ppc604 |ppc604e |ppc750 |ppc}

Select the target architecture for compilation
and optimization. The default gpc750 . The
more general target ppc produces code using
only instructions common to the entire Pow-
erPC CPU family.

The target may also be specified by setting the
TARGET_ARCIdnvironment variable.

--unroll_limit_const= N
-Qunroll_limit_const= N

Limit the number of times a loop with a number
of iterations known at compile time may be
unrolled. For more information, see the “Pro-
gram Optimization” chapter of thEompilation
Systems Volume 2 (Conceptd) must be an
integer greater than or equal to 0. The default is

10.
--unroll_limit_var= N
-Qunroll_limit_var= N

Limit the number of times a loop with an
unknown number of iterations may be unrolled.
See alseQunroll_limit_const

Linking

--dynamic_link_namemame

-h name Passed tdd(1) in dynamic mode only. When building a shared
object, put name in the object’s dynamic section. name is recorded in
executables that are linked with this object rather than the object’s
system file name. Accordingly, name is used by the dynamic linker
as the name of the shared object to search for at run time. -{See

and-o .)

--library=name

-l name Passed told(1) , to search for the librarfibname.a from
lusr/ccsl/lib or /usr/lib, and load referenced modules from

that library into the executable file. Multiple options may be used
to specify multiple libraries to search. (See -h and -0).

1-34

-Inc

Compilation

Link with the nonreentrant C library libnc, which has better perfor-
mance compared with libc while sacrificing use with threaded or
dynamically-linked executables. This option cannot be used when
linking dynamically or with thelthread library This option is
implied by the-O4 option when linking a static executable, but can
be disallowed by specifying th@reentrant_library option.

--library_directorysath

-L path

-Z flag

Passed tdd , to add path to the library search directories. Id
searches for libraries first in any directories specifeid with
options, then in the standard directories. This option is effective only
if it precedes thel option on the command line. Multipld
options may be used to specify multple paths to search.

Provided access to a number of options that control the object file
formats used by C/C++. Sé&ompilation Systems Volume 1 (Tools)
andCompilation Systems Volume 2 (Concepos)more information
about the object-file formats and the tools that deal with them. (Also
see theh option). The following flags are available:

--library_linkage= {dynamic |static }
-Zlibs= {dynamic |static }

Govern library inclusion. -Zlibs=dynamic

is valid only in dynamic mode (see
-Zlink=static) in which case it is the
default value. If theZlibs=static option

is given, no shared objects will be accepted until
-Zlibs=dynamic is seen.

-link_mode= {dynamic |static }
-Zlink= {dynamic | static }

Produce dynamically-linked or statically-linked
object files. Dynamic linking is the default
unless the environment variable
STATIC_LINK is defined.

--link_mode=so
-Zlink=so

Produce a shared object instead of an execut-
able. Requires that all object be compiled with
the-Zpic option.
--pic
-pic
-Zpic
Cause the compiler to produce position-inde-

1-35

C/C++ Reference Manual

pendent code. Use in conjunction with
Zlink=so

--symbolic
-Zsymbolic

In dynamic mode only, when building a shared
object, bind references to global symbols to
their definitions within the object, if definitions
are available. Normally, references to global
symbols within shared objects are not bound
until run time, even if definitions are available,
so that definitions of the same symbol in an exe-
cutable or other shared objects can override the
object’s own definition.ld(1) issues warn-
ings for undefined symbols unleks s -zdefs
overrides.

--combine_relocatable_objects

-r Combine relocatable object files to produce one relocatable object
file. 1d(1) will not complain about unresolved references. This
option cannot be used in dynamic mode.

-Qno_vendor_reloc

Do not generate relocation in the vendor section. This disables the
ability of analyze(1) to optimize a program.

--entry_point= symbol
Set the entry point address for the executable to be the address fo
symbol

--linker_z=flag

-z flag Passz option told(1)

--mapfilefilename

-Mfilename Read filename as a text file of directivesltifl) . Because these

directives change the shape of the output file createlitibyuse of
this option is strongly discouraged.

--memory_map

-m Produce a memory map or listing of the input/output sections on std-
out. Sedd(1)

--reduced_symbols

-X Do not preserve local symbols with ty88T_NOTYPE This option
saves some space in the output file.

1-36

Compilation

--strip

-S Strip symbolic information from the output file. The debug and line
sections and their associated relocation entries will be removed.
Except for relocatable files or shared objects, the symbol table and
string table sections will also be removed from the output object file.

--undefined_linker_symbosymbol

-u symbol Enter symbolas an undefined symbol in the symbol table. This is
useful for loading entirely from an archive library, since initially the
symbol table is empty and an unresolved reference is needed to force
the loading of the first routine. The placement of this option on the
command line is significant; it must be placed before the library that
will define the symbol.

1-37

C/C++ Reference Manual

1-38

Overview of Concurrent C/C++ Program

CIC** Utilities

Development Environment

CICH Core ULIILIES . .« . v oot e e e e e e e e

PowerMAX OS Real-Time Guide

Overview of Concurrent C/C++ Program

C/C*™ Utilities

Development Environment

Concurrent C/C++ Program Development Environment consists of a number of utilities
that provide support for library management, compilation, program generation, and
debugging. Table 2 lists these tools and gives a brief description of each one.

Table 2-1. Concurrent C/C ** Utilities

Environment Utilities

(C.

e

ile's

c.mkenv Create an environment which is required for compilation, linking, &

c.path Display or change the Environment Search Path for an environme

c.options Set compilation options for the environment (or for units)

c.rmenv Destroy an environment; compilation, linking, etc. no longer possik

c.chmod Modify the UNIX file system permissions of an environment

c.release Display release installation information

c.script Generate a script that will recreate an environment

c.freeze Disallow changes to, and optimize uses of an environment

Unit Utilities

c.ls List units in the environment (state, source file, dependencies, etc

c.options Set compilation options for units (or the environment)

c.edit Edit the source of a unit, then update the environment

c.cat Output the source of a unit

c.touch Make the environment consider a unit consistent with its source
timestamp

c.invalid Force a unit to be inconsistent thus requiring it to be recompiled

c.instantiation

Control instantiation automation

c.fetch

Fetch the compiled form of a unit from another environment

c.expel

Expel fetched or naturalized units from the environment

2-1

C/C++ Reference Manual

Table 2-1. Concurrent C/C ** Utilities (Cont.)

2-2

Source File Utilities

c.intro Introduce source files (and units therein) to the environment
c.Issrc List sources files in the environment
c.rmsrc Remove knowledge of source files (and units therein) from the eny

ment

ron-

Debug Utilities

c.analyze

Optimize or analyze performance of fully-linked executables

c.report

Generate profile reports in conjunction with a.analyze -P

Compilation Utilities

c.build

Compile and link as necessary to build a unit, partition or environ

ent

c.partition

Define or display a partition for the linker

Internal Utilities

r tools

c.install Install, remove, or modify a release installation

c.compile Compile the specification and/or body of one or more units
c.prelink Resolve unit selection and template instantiation

c.error Process diagnostic messages generated by the compiler and othe
c.link Link a partition (an executable, archive or shared object file)

Help Utilities

c.help List usage and summary of each Concurrent C/(@ility

c.man Invoke/position interactive help system (requires an X terminal)

C/C** Core Utilities

Overview of Concurrent C/C++ Program Development

Of the C/C™ Utilities listed in Table 2-1, there are four tools that form the “core” of the
C/C** system. These tools will most likely be used quite heavily and therefore are given
special attention here. See Table 2-2.

Table 2-2. Predefined Macros

Core Utilities

c.mkenv

Create an environment which is required for compilation, linking, |etc.

c.intro

Introduce source files to the environment

c.partition

Define or display a patrtition for the linker

c.build

Compile and link as necessary to build a unit, partition or environment

2-3

C/C++ Reference Manual

2-4

3
Using Concurrent C/C++
Program Development Environment

HelloWorld - An Example e e e 3-1
Creating an enviroNMEeNt i i e e 3-1
INtroduCing UNitS.o e 3-2
Defining a partition. e 3-3
Building a partition e 3-4
SuCCeSSI . 3-4
Let'slook around.... i e 3-4

Listing the contents of your environment 3-4
Viewing the source for a particularunit 3-5
Looking at the Environment SearchPath 3-6
What are my optionsS? i e 3-6

Hello Galaxy - The Example Continues....t 3-11
Setting up another environment e 3-11
Modifying an existing unit. i e 3-11
Building a unit with references outside the local environment 3-12
Adding an environment to the Environment Search Path. 3-13
Making contact!!! e 3-13

PowerMAX OS Real-Time Guide

3
Using Concurrent C/C++
Program Development Environment

Hello World - An Example

To demonstrate the ease of use of Concurrent C/C++, a simple example will be given.
This example will traverse through the core functions needed to build an executable under
the Concurrent C/C++ system.

Building an executable under Concurrent C/C++ can be broken down into as few as four
steps:

¢ Creating an environment
* Introducing units

* Defining a partition

¢ Building the partition

This section will demonstrate each of these steps on a simple, but well-known example -
Hello World.

Before we begin...

You must make sure that the pdtksr/ccs/bin is added to
your PATHenvironment variable. This is the only path necessary
to access the Concurrent C/C++ utilities, regardless of the number
of releases of Concurrent C/C++ installed on the system.

Creating an environment

One of the first steps you must take in order to use Concurrent C/C++ is to creatgian
ronment Concurrent C/C++ uses environments as its basic structure of organization.
Environments contain all the information relevant to a particular project. All of the Con-
current C/C++ utilities work within the context of a particular environment.

The Concurrent C/C++ tool used to create an environmeantigenv . It requires a Unix
directory where this environment will reside.

For our example, we will create a new directory on our system and.rakenv from
within that directory.

3-1

C/C++ Reference Manual

Introducing units

3-2

$ mkdir /pathname/earth
$ cd /pathname/earth
$ c.mkenv

Screen 3-1. Creating an environment

This creates the Concurrent C/C++ internal directory structure that comprises the environ-
ment and that is essential before any other Concurrent C/C++ tools can be utilized. This
environment has the same name as the directory in which it was created. Our environment
in this example, therefore, figathname/earth

Compilation unitghenceforth referred to simply amits) are the basic building blocks of
Concurrent C/C++ environments. It is through units that Concurrent C/C++ performs
most all its library management and compilation activities. These units are, however,
introduced into the system in the formswfurce files

In our example, we have one uniigllo , that resides in a source filagllo.c . This
source file is just an ordinary text file. By default, the name of the unit is the file name of
the source file without any path prepended or extension postpended.

#include <stdio.h>
main() {

printf (“Hello World!!!");
}

Screen 3-2. Source file hello.c containing hello unit

Create this source file within the directory in which you created your environment. (It is
not necessary for the source file to reside in the same directory as the environment. You
may specify a relative or absolute path name of the source file.)

We introduce this unit to the environment by using thiatro utility. (See “Command
Line Options” on page 1-6 k.intro introduces a unit for source file into the current
environment.

$ c.intro hello.c

Screen 3-3. Introducing unit from a source file

Using Concurrent C/C++ Program Development Envi-

The unithello is now a part of the environmegdrth

From this point on, the unhello is considered to bewnedby the environmengarth .
Any functions performed on this unit must be managed by the environment through the
Concurrent C/C++ utilities.

Defining a partition

If we want to create an executable program to use our unit, we must dgfarétaon. We
will be creating arexecutable partitionvhich is the type that corresponds to executable
programs.

We must also name the partition. You can name your partition anything you want and then
add units to it, but since this is a simple example, we are taking the most direct route.

Hence, our partition will be nametello . We will use the Concurrent C/C++ utility
c.partition to do this.

$ c.partition -create executable hello

Screen 3-4. Defining a partition

Because it has the same name as the executable partition being created, leéaunits
automatically added to this partition.

NOTE

The command in Screen 3-4 could have been explicitly specified
as:

$ c.partition -create executable -add hello hello

This command creates an active partition nameitb and adds
thehello unitto it.

3-3

C/C++ Reference Manual

Building a partition

Successl!!!

The last step now is to build the executable. All the necessary steps have been done. Just
issuec.build . This will build an executable file that you can run.

$ c.build

Screen 3-5. Building a partition
Because no arguments were specifeedyild tries to build everything it can within this

environment. Since we've only defined one utigllo , contained in one partition,
hello , it will only build that.

Now all that’s left is to run the program as you would any other executable program. Enter
the name of the executable, in this clhsko

$./hello
Hello World!!!
$

Screen 3-6. Executing the program

And there you have it! Your program has successfully been built and run.

Let’s look around...

Now that we have some substance to our environment, let’'s take a look around and see
what things look like. We can use some of the Concurrent C/C++ utilities to investigate
the state of our environment and what's in it.

Listing the contents of your environment

3-4

Something you might want to do is to see what units and partitions are contained within
this environmentc.Is provides this list for youc.Is provides many different options,
allowing you to sort the list by some attribute or filter the units based on certain criteria.
We'll just take a look at a basic list of the contents of the environment. This is done by
issuing thec.Is command with no options from within your current environment.

Using Concurrent C/C++ Program Development Envi-

$cls

PROJECT /pathname/earth

frozen 1 no
language :C++
units:
hello
partitions:
hello

Screen 3-7. Listing the units in an environment

You may want to see more information. You can do this by specifyingther -I
options to thec.ls command which will give you a long listing. (Even more information
can be seen by specifying the option.)

$ cls-1

PROJECT /pathname/earth
frozen :no
language 1 CH+
UNIT LANGUAGE SOURCEFILE EFFECTIVE OPTIONS
hello C++ hello.c
PARTITION KIND PATH
hello executable hello

Screen 3-8. Listing the units in an environment (-| option)

Viewing the source for a particular unit

Once you know what units are in your environment, you may want to see the source for a
particular unit. The Concurrent C/C++ utilitycat outputs the source of a given pro-
gram unit. It outputs a filename header for the source file by default, but this can be sup-
pressed by specifying the optiem.

The following figure shows how to view the source for the loglio usingc.cat

3-5

C/C++ Reference Manual

$ c.cat hello
hello.c
#include <stdio.h>
main() {
printf("Hello World!!'\n");

$

Screen 3-9. Viewing the source for a particular unit

Looking at the Environment Search Path

Each Concurrent C/C++ environment has an Environment Search Path associated with it.
The Environment Search Path is your gateway to other environments. You can list your
Environment Search Path by using thgath utility.

$ c.path -v
Environment Search Path:
$

Screen 3-10. Viewing your Environment Search Path

Using the Environment Search Path, you can use units that exist in foreign environments.
All you need to do is add the environment’s path to your Environment Search Path. It's as
simple as that!

What are my options?

3-6

Concurrent C/C++ uses the concept of persistent compile options. These options are spec-
ified throughc.options and are “remembered” at compilation time. They can apply to
any of four areas: permanent environment-wide compile options (which apply to all units
within the environment), temporary environment-wide compile options (which tempo-
rarily override the permanent ones), permanent unit options and temporary unit options
(both of which apply and are unique to specific units).

Let's manipulate the options in our example to give an idea of how it all works.

First, we will consider the environment-wide compile options. These apply to all the units
within the environment. Since we only have one unit right now, it will apply to that. How-
ever, if we add any others later, they will “inherit” these options automatically.

The environment-wide compile optiorege referenced by thalefault flag to
c.options . We'll use thelist flag to display what they're set to now:

Using Concurrent C/C++ Program Development Envi-

$ c.options -list -default
permanent options:
temporary options:
effective options:

Screen 3-11. Listing the environment-wide compile options

You'll see that nothing is listed. That's because we haven't set anything yet. So let’s set
them to something and see what happens.

c.options provides theset option to initialize or reset an option group. Let’s set our
environment-wide compile option set to contain the optignsand-O2. (These turn on

the generation of debug information and set the optimization levelLUOBAL. respec-
tively. You can find out all about these options in “Command Line Options” on page 1-6)

$ c.options -set -default -- -g -O2

Screen 3-12. Setting the environment-wide compile options

The “-- " sets off the options t@.options itself from the options for the compiler.
Now let’s list them again to see if they've taken effect:

$ c.options -list -default
permanent options: -g -O2
temporary options:
effective options: -g -O2

Screen 3-13. Listing the environment-wide compile options (after -set)

We can see that the environment-wide compile option set now consisBoénd-g .
The effective options line shows what options are effective after the temporary options
have overridden some or all of the permanent options.

Remember, these options apply to all units in the environment and will be “inherited” by
any units we add to this environment.

If we'd like to set particular options for a specific unit, we can usepbhenanent unit
compile optiondor that unit. They’re set in much the same way as environment-wide
options, except that we need to specify the units to which they apply.

C/C++ Reference Manual

Let's set the permanent options for the umilo so it is compiled at MAXIMALopti-
mization level {O3). This is done with the following command:

$ c.options -set -- -O3 hello

$ c.options -list all

UNIT hello
permanent options: -O3
temporary options:
effective options: -g -O3

Screen 3-14. Setting the permanent unit options for hello unit
We may decide that in addition to the specified options, we may want to “try out” some

options or change particular options for a specific compilation but only “temporarily”.
Thetemporary environment-wide default and unit compile optaador this purpose.

Say we want to produce no debug information for bello unit for this particular com-
pilation. We can set a temporary compile option for that.

$ c.options -set -temp -- -Ig hello

Screen 3-15. Setting the temporary unit options for hello unit
In addition, we remember that we also want to limit the depth that function inlining is

done. We can “add” this to the temporary option set by using-thed flag to
c.options

$ c.options -mod -temp -- -Qinline_depth=1 hello

Screen 3-16. Modifying the temporary unit options for hello unit

If we list the temporary options for the uriello , we will see that we now hawyg and
-Qinline_depth=1 in the temporary option set:

$ c.options -list -temp hello
UNIT hello

temporary options: -!g -Qinline_depth=1
$

Screen 3-17. Listing the temporary options for hello unit

3-8

Using Concurrent C/C++ Program Development Envi-

These four option sets have a hierarchical relationship to one another which means that the
permanent environment-wide compile options are overridden by the temporary environ-
ment-wide options which are, in turn, overridden by the permanent unit options which are,
in turn, overridden by the temporary unit options. This relationship formetteetive
compile optiondor the unit, which the compiler will use during compilation. We can see
these in Table 3-1.

Table 3-1. Effective options for hello unit

Permanent environ- -g -02

ment-wide options

Temporary environ-

ment-wide options

Permanent unit options -0O3

Temporary unit options -lg -Qinline_d
epth=1

EFFECTIVE OPTIONS “03 | -Qiniine_d
epth=1

If we list the effective options for tHeello unit, we will see similar results:

$ c.options -eff hello
UNIT: hello
effective options: -O3 -Qinline_depth=1

Screen 3-18. Listing the effective options for hello unit
If, after we compile with these options, we find any particular option that we would like to

delete, we can do so by using theel flag. For example, let’'s delete the inline depth
option from the temporary options.

$ c.options -del -temp -- -Qinline_depth=1 hello

Screen 3-19. Deleting from the temporary options set for hello unit
And if we like the other temporary options so much that we'd like to make them perma-

nent, Concurrent C/C++ provides tHeeeptemp flag to propagate all the temporary
options for a particular unit to the permanent option set for that same unit. If we do this,

3-9

C/C++ Reference Manual

$ c.options -keeptemp hello

Screen 3-20. Propagating the temporary options to the permanent set

the temporary optiorlg will become a permanent unit option for the ungltio

The effective options will now resemble that of Table 3-2

Table 3-2. Effective options for hello unit (after -keeptemp)

Permanent environ- -g -02
ment-wide options

Temporary environ-
ment-wide options

Permanent unit options -lg -03

Temporary unit options
EFFECTIVE OPTIONS -03

If we list the effective options for theello unit, we will see similar results:

$ c.options -list hello

UNIT hello
permanent options: -Ig -O3
temporary options:
effective options: -O3

Screen 3-21. Listing the effective options for hello unit (after -keeptemp)

See “c.options” on page 5-40 for a complete description of the functionality of this Con-
current C/C++ utility.

3-10

Using Concurrent C/C++ Program Development Envi-

Hello Galaxy - The Example Continues...

Setting up another environment

Let's set up another environment with a function thathalilo unit can contact.

Let’s set up a new environmergalaxy , and introduce a source file very similar to
hello.c . We’'ll call this file alien.c and it will contain the following unitalien
The file is shown in Screen 3-22 .

#include <stdio.h>
void planet() {
printf (“Greetings from Outer Space!!\n");

}

Screen 3-22. Source file alien.c containing alien unit
Create a different directorfpathname/galaxy to contain our new environment and

place the source filglien.c init. From within that directory, the following commands
will create our environment and introduce the source file into it.

$ c.mkenv
$ c.intro alien.c

Screen 3-23. Setting up another environment

NOTE

We have not compiled this unit nor have we created a partition and
included the unit in the partition to be built. This was intentional
to demonstrate a point later in the example.

Modifying an existing unit
Now we must go back to our original environmegatrth that contains our original unit
hello

We will update the unihello so that it references the naalien unit. We do this by
using thec.edit utility. c.edit edits the source file that contains the unit specified. It
does this by using the editor referenced in BE2ITOR environment variable. It then

3-11

C/C++ Reference Manual

updates the environment so that the automatic compilation utilityild , knows that
this unit needs to be rebuilt.
NOTE
c.edit is the supported method for modifying units that have
been introduced into the environment. Any modifications to the

units other than through the tools provided is discouraged,
although the tools support it.

Specify the unit name to tleeedit command.

$ c.edit hello

Screen 3-24. Editing a unit

Add the following line to théello unit.

#include <stdio.h>
extern void planet();
main() {
printf("Hello World!!'\n");
planet();

Screen 3-25. Reference the alien unit withinthe hello unit

Save the changes to the file.

Building a unit with references outside the local environment

Now let’s try to build it.

Issue thec.build command as before.

3-12

Using Concurrent C/C++ Program Development Envi-

$ c.build

Undefinedfirst referenced

symbol in file

planet() .C++-units/hello.o

Id: hello: fatal error: Symbol referencing errors. No output written to hello
ec++: ERROR: Errors in the Id pass, status = 1

c.build: link failed

c.build: failed building partition hello

c.build: there was a failure building one or more partitions

$

Screen 3-26. Building the partition with reference to alien unit

Because thalien unit does not exist in the current environment AND because we have
not manually added it to our Environment Search Pathyild cannot find it and there-
fore complains.

Adding an environment to the Environment Search Path
This is easily remedied by adding the new environment'’s path to the Environment Search
Path for theearth environment using thepath utility.

You can see that it has been added to your Environment Search Path by issuing the
c.path command with no parameters again.

$ c.path -A /pathname/galaxy
$ c.partition -add alien hello
$ c.path -v

Environment Search Path:

S /pathname/galaxy

Screen 3-27. Adding to and Viewing the updated Environment Search Path

Making contact!!!

Now try to issuec.build again. This time it will be successful.

After it is successfully built, run thieello executable again.

3-13

C/C++ Reference Manual

$ c.build

$./hello

Hello World!!!

greetings from Outer Space!!!

Screen 3-28. Executing the new hello - contact is made!

Who resides here now?

Let’s take a look at who inhabits our environmeatrth now. Remember before when

we issued the.ls command, we saw that our environment contained the lone unit
hello . Let'sissue the command again and see what has happened since we made contact
with thealien.

$ cls

PROJECT /pathname/earth
frozen :no
language 1 C++
default permanent options : -g -O2
foreign environment path:
/pathname/galaxy

units:
alien
hello

partitions:
hello
$

Screen 3-29. Listing the units

You can now see that the urdtien has been added to the list of units in this environ-
ment.

Although they are both listelibcal to this environment, they each have a different means
of citizenship.

- The unithello was introduced directly into this environment. Therefore,
it is regarded as m@ativeunit.

- Thealien unit, however, was never formally introduced into the local
environment. It was found on the Environment Search Path.

Now, remember that thalien unit was not compiled in its original for-
eign environment. The.build command, when run in this local envi-
ronment, could not find a compiled form of takken unit on the Environ-
ment Search Path and had to do something in order to build the partition. It
therefore compiled thalien unit in the local environment.

3-14

Using Concurrent C/C++ Program Development Envi-

This compiled form of a foreign unit within the local environment is con-
siderednaturalizedby the system.

NOTE
If the alien unit had been compiled in its own foreign environ-
ment,c.build would have found that compiled form on the
Environment Search Path and would have used that when linking
thehello executable together.
FURTHER NOTE
The-noimport option will inhibit the automatic naturalization

behavior ofc.build . If it had been used in this example,
c.build would have reported an error.

3-15

C/C++ Reference Manual

3-16

4
Concurrent C/C++ Program
Development Environment Concepts

OV VB . o o ottt e e 4-1
ENVIFONMENTS . . . o 4-1
Local ENVIroNmentsSo e 4-2
Foreign ENvironments e e 4-2
Environment Search Path 4-2
Naturalization 4-3
Fetching. 4-3
Freezing EnVirONmMENtS.ot e e 4-3
Environment-wide Compile Options i i 4-3
UNitS. . e e 4-4
Unit Identification. 4-4
Nationalitieso 4-4
Local UNits . ..ot e 4-4
Foreign Units. e 4-5
Artificial Units 4-5
Unit Compile OptioNS.o e e 4-5
Partitions e e e B4
Types Of Partitions i e 4-6
Executable Partitions. 4-6
ATCNIVES. . o e 4-6
Shared ObjecCts. e 4-6
Lazy Versus Immediate Binding 4-7
Position IndependentCode i, 4-7
Share Path. 4-8
ISSUES tO CONSIAETot e 4-8
LinK OptioNS. . ..o e e 4-8
Compilation and Program Generation.t 4-10
Compilation 4-10
Automatic Compilation Utility 4-10
Compile OptioNs 4-10
Environment-wide Options 4-11
Permanent Unit Options.t 4-11
Temporary Unit Optionst e 4-11
Effective Options 4-11
Compilation States 4-12
CONSISIBNCY . . oot e e 4-13
Programming Hintsand Caveats. i, 4-14
Linking Executable Programs i 4-14
DEbUGOING . . o o e e e 4-15
Real-Time Debugging e e e e 4-15
Debug Information and Cprs. e 4-15
Source Control Integrationt 4-16

Makefile Integration. 4-17

PowerMAX OS Real-Time Guide

Overview

Environments

4
Concurrent C/C++ Program
Development Environment Concepts

Concurrent C/C++ uses the concepeokironmentsis its basic structure of organization.
These environments take advantage of various utilities provided by Concurrent C/C++ to
manipulatecompilation unit{referred to simply asnits) that may fornpartitions

Utilities for library management, compilation and program generation, and debugging are
provided by Concurrent C/C++.

This chapter will discuss in further detail the concepts of environments, units and parti-
tions and their relationship to library management, program generation, and debugging.

Concurrent C/C++ uses the concept of environments as its basic structure of organization.
Environments may include:

* units that have been introduced

* partitions that have been defined

* Environment Search Paths

* references to source files (which generally contain units)

* other information used internally by Concurrent C/C++

Environments collect and maintaseparate compilation informatiomhich is information
collected from previous compilations.

Concurrent C/C++ permits local environments to reference dtireign environments
thus providing visibility to the units and partitions therein. This feature allows program-
mers to work on local versions of individual program units while retrieving the remainder
of the program from previously developed environments.

A Concurrent C/C++ environment may be initialized or created in any desired location in
a filesystem using themkenv utility.

Concurrent C/C++ provides several other utilities to maintain, modify and report on the
contents of environments. Any modifications to the environment other than through the

4-1

C/C++ Reference Manual

tools provided by Concurrent C/C++ is discouraged, although the tools support it as well
as possible.

Local Environments

By default, Concurrent C/C++ uses the current working directory dsdtd environment
All Concurrent C/C++ utilities perform their actions within this local environment unless
the-env option is explicitly specified.

For example, if no environment is specified with thenkenv tool, Concurrent C/C++
will set up its internal directory structure for that environment within the current working
directory.

When used with any of the Concurrent C/C++ utilities, however-¢éme option allows

the user to specify a target environment other than the current working directory. The
actions of the Concurrent C/C++ utility using this option will be performed in the environ-
ment specified and not in the local environment. (See Chapter 5 (“*Concurrent C/C++
Utilities™) for more details on using this parameter with each of the tools.)

Foreign Environments

Concurrent C/C++ uses the Environment Search Path to reference units within foreign
environments. These units can be used as foreign units or can be brought into the local
environment through naturalization or fetching.

Environment Search Path

4-2

Concurrent C/C++ uses the concept offnvironment Search Patb allow users to spec-

ify that units from environments other than the current environment should be made avail-
able in the current environment. This Environment Search Path relates only to each par-
ticular environment and each environment has its own Environment Search Path.

By placing the location of another environment on &rvironment Search Patfor a

given environment, all the units from the other environment are conceptually added to the
given environment, unless that would involve replacing a unit which was either introduced
manually into the environment by a user, or would replace a unit which was introduced
from yet a third environment which precedes the other environment in the Environment
Search Path. In order to add or delete environments on your Environment Search Path,
you may use the.path tool. See “c.path” on page 48

In addition to accessing units in foreign environments, the user may also link with parti-
tions (archives, shared-object, and object partitions) that are located in foreign environ-
ments. Partition names have the same visibility rules that units do.

Naturalization

Fetching

Concurrent C/C++ Program Development Environment

At times, it is necessary for the compilation system to make local copies of units that exist
in foreign environments. For example, if a foreign unit is referenced within a local unit
and no compilation has been done on that foreign unit in that foreign environment, a local
copy of the foreign unit will be compiled within the current environment, using any
options that would apply to the foreign unit. This happens transparently to the user.
Should a naturalized unit subsequently be built within its native environment, then the
tools will automatically expel the naturalized copy and begin using the object file in the
foreign environment.

It may be desirable for users to force copies of specified units from other environments
into the current environment. This eliminates any requirement that the unit be compiled in
the foreign environment, so long as it is compiled locally. THetch tool is provided

for that purpose. Units that are fetched also take precedence over units that are in the
Environment Search Path. See “c.fetch” on page 5-20 . Units may even be fetched from
environments that are not on the Environment Search Path.

Freezing Environments

An environment may be frozen using tbdreeze utility. This changes an environment
so that it is unalterable.

A frozen environment is able to provide more information about its contents than one that
is not frozen. Therefore, accesses to frozen environments from other environments func-
tion much faster than accesses to unfrozen environments.

Any environment which will not be changed for a significant period of time and which
will be used by other environments is a good candidate to be frozen to improve compila-
tion performance.

See “c.freeze” on page 5-21 for information on this utility.

Environment-wide Compile Options

Environment-wide compile options apply to all units within an environment. See “Envi-
ronment-wide Options” on page 4-11.

4-3

C/C++ Reference Manual

Units

Compilation units (or simply units) are the basic building blocks of Concurrent C/C++
environments. Instead of dealing with source files for library management and compila-
tion activities, Concurrent C/C++ focuses on the concept of unitorpilation unitcan

be the routines and global data packaged in a primary source file, an extern inline function,
or an instantiatable template entity (in C++).

Unit Identification
For many of the Concurrent C/C++ utilities in Chapter 5 the following definition is
given:
unit-id is defined by the following syntax:

unit | all

Nationalities

Compilation units in Concurrent C/C++ have a nationality associated with them. Units
can be eithelocal or foreign

Local Units

Compilation units that adecal to a system can be one of three types:
native

Native compilation units are introduced into an environment by using the
c.intro function.

Once a unit is introduced into an environment, it is considered to be owned by
that environment and any functions performed on that unit should be managed
by the environment through the Concurrent C/C++ utilities.

naturalized

Sometimes, the compiled form of a foreign unit is not available when it is
needed locally for a build. In this case, the system automatically makes a
local compilation. This local compiled form is considered to be naturalized.

A naturalized unit retains the compile options from its original environment.
These options can only be altered by changing them in the original environ-
ment.

Naturalized units are automatically expelled from the local environment
should an up-to-date version be built in its native environment.

4-4

Foreign Units

Artificial Units

Concurrent C/C++ Program Development Environment

fetched

In some cases, it may be desirable for users to manually fetch unit from
another environment into the local environment.

A fetched unit retains the unit-specific options from the original unit but these

options may be changed in the local environment. However, it does not retain
the environment-wide options of its original environment. It uses those of the
current environment instead.

Fetched units must bexpelledfrom the environment by usingexpel if they are no
longer desired.

Foreign unitsare those units that exist in other environments which are on the Environ-
ment Search Path. The user is not required to do anything special in order to use these
units. They become automatically available once their environment is added to the Envi-
ronment Search Path. A foreign unit is markasiiting if it is actually used in the con-
struction of a local partition.

At times, the implementation may create units to fill internal roles such as instantiating
template entities or extern inline functions. These units are created, utilized, and some-
times discarded during the compilation phase. The user may usarthe option to

c.Is to display the artificial units in the environment. See “c.Is” on page 5-30 for more
information.

Unit Compile Options

Each unit has a set of permanent and temporary compile options associated with it. These
compile options are described in more detail in “Permanent Unit Options” on page 4-11.

4-5

C/C++ Reference Manual

Partitions

A partition is an executable, archive, shared object, or object file that can be invoked or
referenced outside of the Concurrent C/C++ Program Development Environment. Parti-
tions consist of one or more units that have been introduced into the environment. The
units included in a partition are those that the user explictly assigns and units which they
require. Concurrent C/C++ manages these units and their dependencies, as well as link
options and configuration information for each partition within the context afranron-

ment A partition definition must include one or more units in order to be built.

A partition within Concurrent C/C++ is created and maintained by using iberti-
tion function. This function provides tools to create a partition, add or delete units from
a partition, and various other utilities.

In much the same way that options and configuration information concerning compilation
are associated with units, linker options and configuration information for linking are
associated with partitions. Partitions are basically recipes to the linker which indicate how
to build a target file from units.

Types of Partitions

Concurrent C/C++ defines three types of partitions:
* Executable Programs
* Archives

¢ Shared Object Files

Executable Partitions

Archives

Shared Objects

4-6

Executable partitions describe how to build an executable program.

An archiveis a collection of routines and data that is associated with an application during
the link phase. Archives are useful for linking into other, potentially non*¢/@pplica-
tions. Archives are usually designated witla asuffix.

Archives differ from shared objects by the form of the object contained within it.
Archives contain statically-built (i.e. non-shared) objects within them. (See “Position
Independent Code” on page 4-7 for more details)

A shared objects a collection of routines and data that is associated with an application
during the link and execution phases. Shared objects are useful for linking into other C/
C** or non-C/C™* applications. Shared objects are usually designated with asuffix.

Concurrent C/C++ Program Development Environment

Shared objects differ from archives by the form of the object contained within it. Shared
objects are dynamically built (i.e. shared) objects that contain position independent code.
(See “Position Independent Code” on 4-7 for more details)

At link time, routines and data objects from a shared object may satisfy unresolved refer-
ences from an application, but they are not copied into the resultant application’s execut-
able image. The actual associations and memory allocations occur during the initial phase
of the application’s execution; this is termed thaamic linkingphase. Because of this, it

is possible for shared objects to be changed and these changes to affect the application that
has linked with them. However, due to this dynamic linking property of shared objects, it

is often not necessary to rebuild the calling application after the shared object has
changed.

During dynamic linking, all shared objects that the application requires are allocated and
linked into the application’s address space, sharing as many physical memory pages with
other concurrently executing applications as possible. Therefore, totally dissimilar appli-
cations may share the same physical pages for the same shared object. This applies to the
memory for the actual code or machine instructions in the shared object. The memory for
the data segments in a shared object is usually replicated for each application using that
shared object.

Lazy Versus Immediate Binding

After the dynamic linker successfully locates all of the shared objects required for the
application program, it maps their memory segments into the application program’s
address space.

The dynamic linker uses internal symbol tables to satisfy symbol references in the applica-
tion program. Entries in these tables describe the final location of symbols found in the
shared objects; this is termezlocation All data references are immediately relocated.

By default, the dynamic linker does not fully relocate all subprogram references in the
application program (or the shared objects themselves, because they can reference other
shared objects or routines in the application program). If an as-yet unrelocated reference
occurs, control passes once again to the dynamic linker which then relocates the reference.
This is termedazy binding

To force immediate binding of all references, the user may invoke the program with the
LD_BIND_NOWenvironment variable set. S&@mmpilation Systems Volume 1 (Todis)
more information.

Position Independent Code

In order to create a shared object, the compiler must generate code in a position-indepen-
dent manner.Position independenaefers to the fact that the generated code cannot rely
on labels, data, or routines being in known locations; these locations are not known until
dynamic linking occurs.Position independent cod®IC) requires additional indirections

at run-time; therefore, routines within shared objects are inherently slightly slower than
non-shared versions of those routines.

You control whether a unit is compiled as position independent code via a compilation
option,-ZPIC , set with thec.options ~ command.

C/C++ Reference Manual

Share Path

Issues to consider

Link Options

4-8

Because the actual association of a shared object with a user application does not occur
until execution time, the shared object must exist on the target system in a specific loca-
tion, configurable by the user. By default, the path name of the shared object is that
defined by the target of the partition.

When creating a partition, you may specify an alternative path nameh@oe path for

the shared object. The shared object will still be built at the pathname specified for the tar-
get, but it must be placed at the share path before any executables using it can be run.
This is set by thesp link option in thec.partition command. Alternatively, a soft

link can be created by using thel link option in thec.partition command when
defining the shared object.

While the use of shared objects almost always reduces disk space utilization on the target
architecture and often improves development productivity by minimizing application link
time, it may or may not actually improve run-time memory utilization. The following
issues should be considered.

1. Are the shared objects configured with an appropgaaaularity (i.e. the
number of C/C* units located in each shared object) with respect to the
particular client application programs that will be concurrently executing?

For example, it is possible that if only two application programs concurrently exe-
cute and use large granular shared objects, more memory may potentially be used
than in a non-shared object scenario. There is a trade-off between small granularity
and manageability.

2. Will the application make use of local memory, and if so, how many appli-
cations will be executing out of the same local memory pools using the
same shared object?

3. What disk storage capacity does the system have? The difference in size
between ordinary objects and PIC objects is negligible. However, if both a
shared and static version of a source file is built, then the disk storage
requirements for the object files in the environment is approximately dou-
bled.

4. What time constraints are there?

Concurrent C/C++ supports a set of link options for each partition. These link options are
persistent and can be specified using the following optioogastition

-oset opts Sets the link options as indicated dyts
-oappend opts Appends theptsargument to the link option listing
-oprepend opts Prepends theptsargument to the link option listing

Concurrent C/C++ Program Development Environment

-oclear Clears the link options

optsis a single parameter containing one or more link options; it
must be enclosed in double quotes.

A link option set is maintained for each Concurrent C/C++ partition and these options
remain effective throughout the life of the partition. Any changes to these options should
be done using.partition

For more information about setting link options withpartition , See “Link Options”
on page 5-46. Also, see “c.link” on page 5-29 for details about this internal utility.

A list of available link options can be found under “Link Options” on page 5-46

4-9

C/C++ Reference Manual

Compilation and Program Generation

Compilation

The compiler operates in several distinct phases, designed to satisfy the needs of the entire
software development process. These phases include:

¢ Syntax checking

* Semantic checking

* Code generation and optimization
¢ [nstruction scheduling

* Machine-code assembly

Various options can be specified with theptions command in order to control com-
pilation phases. For example, during preliminary software development, it is often useful
to limit the compilation phases to syntax and semantic checking. Errors from these phases
can be brought up into a text editor automatically for fast, iterative editing and compiling.

Concurrent C/C++ uses an CTCcompiler that supports the CI€language specification
as defined in the ISO/IEC 14882ogramming languages -- C++

Automatic Compilation Utility

Compile Options

4-10

Concurrent C/C++ providesbuild for automatic compilation and program generation.
c.build calls various internal tools to create an executable image of the program. See
“c.build” on page 5-8 for more information.

Unlike most compilation systems, Concurrent C/C++ uses the concqgperafstent
options These options do not need to be specified on the command line for each compila-
tion. Rather, they are stored as part of the environment or as part of an individual unit's
information. These options are “remembered” when the Concurrent C/C++ compilation
tools are used.

There are four “levels” of compilation options:
* Permanent environment-wide options
¢ Temporary environment-wide options
* Permanent unit options

* Temporary unit options

Concurrent C/C++ Program Development Environment

Environment-wide Options

Permanent Unit Options

Temporary Unit Options

Effective Options

Environment-wide optionapply to all units within that environment. All compilations
within this environment then observe these environment-wide options unless overridden.

Environment-wide options can be overridden by

* Temporary environment-wide options
¢ individual unit compile options (permanent or temporary - see below)
* command-line options (which change temporary options on a unit)

* pragmas in the source of the units themselves

Each unit has its own set of options permanently associated with it that override those
specified for the environment. They may be specified and later modified via the
c.options utility.

See the description of “c.options” on page 5-40 for more details.

Each unit also has a set of options that may be temporarily associated with it that override
those that are permanently associated with it.

- If aunitis manually compiled (usingcompile - see page 5-12) with
any specified options, these are added to its set of temporary options.

- The temporary options may also be set usingthjgtions tool.

Temporary options allow users to “try out” options under consideration. By designating
these options as “temporary”, the user can first see the effect these options have and then
decide if this is what is desired. If so, Concurrent C/C++ provides a way to add these tem-
porary options to the set of permanent options for that unit usiogtions . If these
options are not what the user desiregptions also provides a way to eliminate all
temporary options from a unit (or from all units in the environment).

Another case in which temporary options might also prove useful is one in which a unit
needs to be compiled with debug information. If this is not the manner in which the unit is
normally compiled, a temporary option can be set for that unit to be compiled with debug
information. When the debug information is no longer needed, the temporary option can
be removed and the unit can be recompiled in its usual manner.

See the description of “c.options” on page 5-40 for more details.

These levels have a hierarchical relationship to one another. Environment-wide options
can be overridden by permanent unit options which can be overridden by temporary unit
options. The set oéffective optiongor a unit are that unit's sum total of these three

option sets, with respect to this hierarchical relationship. Table 4-1 shows an example of a

4-11

C/C++ Reference Manual

unit’s effective options based on the relationship between its environment-wide options,
permanent unit options, and temporary unit options.

Table 4-1. Effective options based on hierarchical relationship

Permanent environment- -g -02 -Qinline

wide options _depth=2

Temporary environment- -Qinline

wide options _depth=1

Permanent unit options -IS -03

Temporary unit options -S -lg

EFFECTIVE OPTIONS S -03 |-Qinline
_depth=1

As shown in this example, compilation options can be negated by preceding the option
with the “1 " symbol. Therefore, the option!y ” means no debug information should be
generated for this unit. Because it is a temporary option for only this particular unit, all
other units in the environment will be compiled with debug information (due to-#pé “
environment-wide option listed in the example).

Option sets controlling a particular attribute of the compilation override each other. Thus
--no_anachronisms will override --anachronisms and--lanachronisms

will override any anachronism setting (i.e., betho_anachronisms and--anach-

ronisms).

See “Command Line Options” on page 1-6 for a list of available compilation options.

Compilation States

Units in the environment can be in any of several different compilation states:
¢ uncompiled

The state of a newly-introduced unit, or one that has been invalidated. The environ-
ment is aware of the unit and some basic dependency information but very little else.

* preprocessed

In this state, proprocessing is done, so the full set of include files is known, but no
parsing has been done.

* parsed

In this state, some semantic information about the unit has been generated. There is
a complete picture of the meaning of the unit, but none of the actual implementation.
Needed and available instantiatable entities have been determined.

* prereorder

In this state, source file has been compiled, and pseudo-assembly language has been
output, but the instruction scheduler has not been run.

4-12

Consistency

Concurrent C/C++ Program Development Environment

* assembly

In this state, The pseudo-assembly language output has been run through the
instruction scheduler, and an assembly file has been generated.

* compiled
Object files have been generated for the unit

The benefit of having this information generated at each of these states for each unit in the
environment is that it allows the compilation utility to use this information to produce bet-
ter code in the unit currently being compiled.

c.build allows the user to compile units to a specified state usingstage option,
howevercompiled is the only fully supported state allowed for this option in the current
release. See “c.build” on page 5-8 for more information.

NOTE

Only theuncompiled andcompiled states are available at
this time. These states are documented because they are visible in
such utilities ag.build , c.compile , andc.ls

Along with compilation states comes the ideacofsistency Each unit is considered con-
sistent up to a particular state. This means that it is vatido that state of compilation

Any recompilation of the unit can start from that state. It does not need to go through the
earlier stages of recompilation.

Modification of a unit may possibly change its consistency. Modifications include:
* changes to the source file itself
* changes to any of the options
¢ changes to any required units upon which this unit depends

For example, if the source of a unit has been modified since it was last compiled, the
semantics of the unit are potentially changed. New semantic information about the unit
must be generated. Therefore, it is considered “consistent up toiteenpiled state”.

This means that when it is recompiled, it must start at the inconsistent staiem-

piled

Not all changes to a unit make it “consistent up totsineompiled state”. Changing the

options on a unit may not affect the syntax or semantics of a unit and therefore do not
require a total recompilation.

4-13

C/C++ Reference Manual

Programming Hints and Caveats

In general, programs that are to be debugged with NightView should not be optimized.
Optimization levelsSSLOBAL, MAXIMAL, and ULTIMATE should be reserved for thor-
oughly tested code.

There is no misaligned handler. The hardware allows misaligned integer (fixed-point) data
accesses, but floats and long floats must be word-aligned. There is a performance penalty
for misaligned accesses.

Linking Executable Programs

4-14

Concurrent C/C++ provides a linker that verifies and creates an ELF executable image of
all component units required for a given main unit. The linker can be invoked directly but
should be called from the compilation utilitybuild

Concurrent C/C++ Program Development Environment

Debugging

Real-Time Debugging

In addition to the symbolic debugging capabilities providedsew , and the post-anal-
ysis debugging capabilities provided by the tracing mechanism, Concurrent C/C++ also
provides several ways to debug programs in real-time.

Debug Information and cprs

Thecprs utility (seecprs(1)), supplied with PowerMAX OS, reduces the size of an
application by removing duplicate type information. The E/@ompiler reduces the
value of this tool by already referencing the debug information for types defined in other
units from those other units. However, thgrs utility can still reduce the size of CIC
applications. Also, if debug code from other languages is included in an application, then
cprs can significantly reduce the size of those portions as well.

If users compile only certain units with full debug information, it is possible to produce
duplicate debug information for types in several units. Also, even if an entire application
is compiled with full debug information, anonymous types are frequently duplicated in
several units, as are types for certain compiler-generated constructs.

4-15

C/C++ Reference Manual

Source Control Integration

4-16

There are a number of software packages for managing versions of source code. The envi-
ronment provides a rudimentary way inter integrate with such packages. In the direc-
tory /usr/ccs/release/ releasésource , the system administrator can create a
directory for a particular source management system, that we’llscadfor illustrative
purposes. Inthat directory, the system administrator should place two scripts: pre-edit and
post-edit. These scripts are destined to run before and after a source file is edited.

Now, the user, when he creates his environment, would issue the c.mkenv command with
the -src option like this:

$ c.mkenv -src “ sms-v %f"
Now, whenevec.edit , or any command that invokes c.edit is run, the pre- and post-edit

scripts are run before and after the editor, passing the -v option and the name of the source
file, as if the user had invoked:

$ Jusr/ccsirelease/ releasésource/ smgpre-edit -v file.c

$ $EDITOR file.c

$ Jusr/ccsirelease/ releasésource/ smdpost-edit -v file.c
DISCLAIMER

Concurrent Computer Corporation does not support any particular
source management system. Fa mechanism may not pro-
vide the flexibility needed by any particular system.

Concurrent C/C++ Program Development Environment
Makefile Integration

The C/C++ Program Development Environment provides a mechanism to escape to Make-
files or any other arbitrary software to generate source files by means other than editing
them. Thec.intro command includes anake option that specifies an arbitrary shell
command line that will be used to construct the source file whenever it needs to determine
if it needs to rebuild the unit that is being introduced.

$ c.intro -make “make myfile.c” myfile.c
The contents of the makefile then might be something like this:

myfile.c: definition.txt
c.build builder
builder <definition.txt >myfile.c

Wheneverc.build needs to build the unit myfile, it will invoke the make command. If
the definition file formyfile.c is newer thammyfile.c , it will in turn, recursively
invokec.build to make sure the builder tool is there, then invoke it to build the source
file.

If invoking the make command changes the timestampngfile.c , then the unit
myfile will be rebuilt. Otherwise, the existing object for unit myfile will be used.

4-17

C/C++ Reference Manual

4-18

5
Concurrent C/C++ Utilities

OV VB . o o ottt e e
UtilitieS .« .o 5-1
CommOoN OPtiONSt e
C.ANAlYZE . .. 3.
Link-Time Optimizations with c.analyze.
Profilingwithc.analyze
C.hUIld .. 5-8.
Gl . .o 5-10
C.CNMOd . . . 11
C.Compile . .. e 12
Cdit. . 5-14
o3 =T 0] 5-15
CBXPEl . e 5-19.
ChetCh. . 5-20
CHrEezZe. . . 5:21.
Chelp .o 5-22
Canstall. . .o 5-23
CANStANtIAtioN.o 5.
o3 11 £ 5-27
cianvalid e 5-28
CIINK L e 5-29
CdS 5-30
Formatting the listing i e
SOMING . oo e e
CSSIC . o o 5-36
MM o 5:37
CMKENV . o e 39
C.OPHONS. e e 740,
OPtiON SEtS . . o
LiSting OptioNSo i e
SettiNg OPLIONS e
Modifying Options e
Clearing OptioNSo e
Deleting OptioNSo oo e
Keeping temporary Optionst e
Setting options onforeign units
G PAMIION. . .o -44.
LinK OptioNS. . ..o
CPath . . e e 5:48
C.PreliNK. . . -49.
ClElEASE . . . o -50. .
PO, o vttt e 5-52.
CIMBNV o e e 54.
C.SCIIP . oot 5-56
CroUCh . . 5:58.

LinK OptioNS e e

5-2

PowerMAX OS Real-Time Guide

5
Concurrent C/C++ Utilities

Overview

Concurrent C/C++ consists of a number of utilities that provide support for library man-
agement, compilation and program generation, and debugging. This section will go
through these tools and give an overview of their uses. The utilities appear in alphabetical
order. For easy reference, the command syntax and options available for each utility are
provided in table format. Available options for each tool are also provided by specifying
the-H (Help) option to any tool listed.

Utilities

Each section describes a command, shows the command’s syntax and discusses the
options that can be specified. For each option flag listed in the “Option” column, a mne-
monic and a short description are provided in the columns labeled “Meaning” and “Func-
tion,” respectively.

Common Options

There are a number of options that are the same for each utility. They are listed for each
tool but are also listed below.

Option Meaning Function

-env env environment Specify an environment pathname

-rel release release Specify a Concurrent C/C++ release (other than the default release)
-H help Display syntax and options for that particular function

5-1

C/C++ Reference Manual Utilities

Option Meaning Function

-V verify Show actions that would be executed without actually doing them. Not all
commands have-& option.

-V verbose Provide feedback as actions are performed. Not all commands have a
option.

-w very verbose Provide extra feedback as actions are performed. This usually includes

showing the exact command line used to invoke subordinate tools. Not all
commands have-av option.

unit-id is defined by the following syntax:
unit | all

See “Unit Identification” on page 4-4 for more information aboutitiieid.

5-2

c.analyze Concurrent C/C++ Utilities
c.analyze
Optimize or analyze performance of fully-linked executables
The syntax of the.analyze command is:
c.analyze[optiong executable-file
The following represents theanalyze options:
Option Meaning Function
-A all Include all the routines in the analysis (initial default)
-a routine add Add the specific nametbutineto the list of routines to analyze (implies
_N)
-C cache Gather cache activity statistics during profiling. Requires -P option.
-D flag debug Turn on the specified debug flag. Not of general user interest. Use
-Dhelp for list of options
-Dhelp debug help List of debug options
-d file disassemble = Generate a detailed disassembly listing of each routine included in the
analysis infile. The listing is done on a per basic block basis. By default
this only generates the assembiler listing, the clock cycle each instruction
executes at (relative to the beginning of each basic block), and the reason
any instruction is delayed. Use the option for more detail. Use -
Zstage_status for much more verbose status of each pipeline stage each
cycle. Use for file to direct output tetdout.
-env env environment Specify an environment pathname. Defaults to current directory.
-g file global Generate global program statisticdite. Use- for file to direct output to
stdout
-H help Display syntax and options for this function
-i information Display information only messages
-N null Set the list of routines to be analyzed to the empty set (no routines)
-n nesting level use nesting level to weight the count of lis instructions. This option is
used with the -O option.
-O file optimize Generate a new program filefife which has been optimized by replacing

many of the two-instruction sequences (which are required to reference
global memory locations) with single instructions which use the reserved
linker registers as base registers. This allows faster access to the four most
commonly referenced 64K data blocks. Certain library routines that are
known to access the linker registers (esetjimp andlongjmp) are
automatically excluded from the optimization process. Theption may

be used to specifically exclude others. (Normally any reference to a linker
register will cause an error)

5-3

C/C++ Reference Manual

c.analyze

Option Meaning Function

-P file profile Generate a new program file fite which has been patched to gather pro-
filing statistics on each basic block and dump thenfite . prof on
exit. Thec.report program can be used to generate various reports
from this information. TheX option may be useful with this option. See
also thec.report(1) manual page

-r file routine Print summary statistics for each routinefite. Use - forfile to direct out-
put tostdout

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-S section section Analyze the specifiedectionof the object file, rather than the default
text section

-s routine subtract Subtract theoutinefrom the list to be analyzed. Implies ti#e option.

-w very verbose Print invocations of sub-processes

-v verbose Show verbose timing info in disassembly listing

-Wroutine[=weight] weight Specify a weighting factor for counting lis instructions in specified rou-
tine. If weight is omitted, 5 is assumed. This option is used with the -O
option.

-w warnings Suppress the output of warning messages

-X routine exclude Declareroutineto be the name of a subroutine which causes the program
to exit. When theP option is used, this routine, when called, will append
the accumulated statistics to thgrof file. After writing the statistics
data set to theprof file, the statistics are reset to zero. When tfe
option is used, thexX option will exclude the named routine from the opti-
mization

-Zraw_names raw Print routine and source file names in raw form (i.e. do not filter)

-Z misc keyword Set various obscure keyword flags (t8leelp for list)

-Zhelp keyword help Displays list of obscure keyword flags

5-4

NOTE

Thec.analyze command is not normally invoked by the user,
except to do profiling; it is most often called bylink (which is
called in turn byc.build).

NOTE

The-a, -s,and-X options toc.analyze take a routine
name as a parameter. Th@nalyze processor recognizes C/
C** routines only by their link names. These names may not be
intuitive for C++ routines. Using them(1) utility may be help-

ful in order to determine C++ routine names.

c.analyze

Concurrent C/C++ Utilities

Thec.analyze tool is available for performing static performance analysis of 'C/C
object files.c.analyze reads the object, finds the routine entry points, breaks the rou-
tines into basic blocks, and analyzes each basic block for instruction tmaeslyze

can generate detailed basic block information or a flow graph picture showing the whole
program. By default, all routines are analyzed, but the above options can be used to con-
trol which routines are included or excluded.

With the-O option,c.analyze generates a new program file that optimizes many dou-
ble word memory reference instructions into single words by use of the linker registers.

With the-P option,c.analyze generates a new program file that will accumulate profil-
ing statistics. Running this program file generates profiling data that can be used with the
c.report command to provide profiling statistics.

Link-Time Optimizations with c.analyze

To enhance the optimization of C/€source, in addition to compiling the source code at
theMAXIMALIevel (-03), you can elect to invoke.analyze ~ when linking your C/C*
programs in order to perform additional optimizations at link time. For exampleQhe
option toc.analyze replaces many of the two-instruction sequences required for refer-
encing global memory locations with a single instruction.

You can invokec.analyze in two ways: either directly on executables or as an option to
the linker €.link).

To invoke thec.analyze optimizer directly on an executable fila.but), simply type
the following:

$ c.analyze -O na.out a.out

The original executable.out , remains the same and the resulting executable generated
by c.analyze is contained in a file callenh.out

Alternatively, you can invoka.analyze at link time by specifying theO link option
for a given partition:

$ c.partition -oappend -O main
$ c.build main

What results from this sequence of commands is that a single executabedil¢ () is
optimized at levelGLOBALfollowed by an additional link-time optimization performed
by thec.analyze optimizer.

Because of theO option,c.analyze performs the following link optimization. It
replaces the two-instruction sequences (which are required to reference global memory
locations) with single instructions which use the reserved linker regist28s &ndr30)

as base registers. This allows faster access to the two most commonly referenced 64K data
blocks.

(Certain library routines that are known to access the linker registersgetgnp and
longjmp) are automatically excluded from the optimization process.)

5-5

C/C++ Reference Manual c.analyze

Additional c.analyze options may be specified directly on tbeanalyze = command
line or indirectly by supplying an option string via tR&/Alink option for a given parti-
tion.

Profiling with c.analyze

5-6

In addition to performing link-time optimizations,analyze can be used in tandem
with thec.report tool in order to generate profiling statistics. See “c.report” on page
5-52.

To profile an executable C/C program withc.analyze , the-P (profiling) option must

be specified. With theP option set, a new executable file is created that has been patched
to gather profiling statistics. The original executable file remains intact. For example, the
following command line:

$ c.analyze -P profiled_a.out a.out

takes the executabteout as input, profiles it, and then produces the patched executable
file profiled_a.out . The original executable remains unchanged; however, invoking
the patched executable gathers profiling information and dumps this information to the
file profiled_a.out.prof . The.prof file can then be displayed in various formats
with the help of the.report program.

Many other options are available for profiling executables usiagalyze . Refer to the
online man pages for more information abcanalyze andc.report

c.analyze Concurrent C/C++ Utilities

a.out
(executable)

Invoke c.analyze -P

Y

profiled_a.out
(patched executable)

a.out
(original executable)

Invoke profiled_a.out

Y

profiled_a.out.prof

Invoke c.report

Figure 4-1. Profiling a Program

C/C++ Reference Manual

c.build

c.build

Compile and link as necessary to build a unit, partition or environment

The syntax of the.build command is:

c.build [

optiong [partition ...]

The following represents theebuild options:

Option Meaning Function

-allparts all partitions Build all partitions in the environment. This option is not allowed if the
-0 option is specified.

-C “compiler” compiler Usecompilerto compile units (may be used to pass options to the com-
piler, e.g.c.build -C “c.compile -v’

-e[e|l|v] error Pipe compiler output througherror
-e lists errors to stdout;
-ee embeds errors in the source file and invd{eBITOR;
-el lists errors with the source file $tdout ; and
-ev embeds errors in the source file and invokes

-env env environment Specify an environment pathname

-H help Display syntax and options for this function

-i infos Supprese.build information messages

-L “linker” linker Use “linker” to link partitions (may be used to pass options to the
clink)

-noimport no import Don't naturalize foreign units that are not up to date. Generates an error
instead.

-nomake no make Don't invoke make command to build source file. Use whatever version
of the source that is already built.

-nosource no source Skip checks of the source timestamps for out-of-date units (should only be
used if no source files have changed)

-P “prelinker” prelinker Use“prelinker” to prelink partitions (may be used to pass options to
c.prelink).

-part partition partition Build the givenpartition, all included units and all units upon which they
directly or indirectly depend

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-source file source file Build all units defined in the given sourdiée and all units upon which
they directly or indirectly depend

-state s state Build all specified units to compilation state

5-8

c.build Concurrent C/C++ Utilities

Option Meaning Function
-stop stop on errors If an error is encountered, stop building (normally, any units not depen-
dent upon the erroneous units would be built)
-u “unit list” unit Compile the unit. Thenit parameter can ball ”
-ufile file units from file Build the units listed iffile
-V verify List compilations that would occur, but do not actually perform them
-V verbose Display actions as they are done
-w very verbose Display commands as they are done
-w warnings Suppresg.build warnings
NOTE

Specified partitions are equivalent to partitions passed as argu-
ments to thepart option.

If no options are specified, then all units and partitions in the envi-
ronment are built.

Concurrent C/C++ provides thebuild utility to build partitions and units in an envi-
ronment. c.build determines which units must be compiled to build the given target,
builds them, and calls the linker to produce the desired partitilouild examines the
current environment (and the environments on the Environment Search Path), determines
and automatically executes the proper sequence of compilations and links necessary to
build the given partition.

Targets tac.build can be:

partitions which can be specified directly, with thgart option, or
with the-allparts option

units which can be specified the option
If the -u option is specified;.build ensures the namenhit is up-to-date.

Normally, c.build attempts to build all units in the current Concurrent C/C++ environ-
ment and all units on the Environment Search Path that are required-ndingport

option can be used to prevent automatic recompilation of out-of-date units from other
environments.

See “Compile Options” on page 4-10 and “Link Options” on page 4-8 for more informa-

tion.

5-9

C/C++ Reference Manual c.ca

c.cat
Output the source of a unit
The syntax of the.cat command is:
c.cat[optiong unit-id

The following represents treecat options:
Option Meaning Function
-env env environment Specify an environment pathname
-H help Display syntax and options for this function
-h no header Does not output filename header
-l line numbers Prepend each line of source with its line number
-rel release release Specify a Concurrent C/C++ release (other than the default release)

unit-id is defined by the following syntax:
unit
ie,all may not be specified as a unit name.

Thec.cat command is similar to the UNIXat(1) command in functionality. It
accepts as its argumentiait_id and prints tostdout the source file in which this unit is
found.

By default, it outputs a header containing the full path name of the source file. This can be
suppressed by specifying tHe option.

Also, line numbers can be prepended to each line of source by usihg dpéion.

5-10

c.chmod Concurrent C/C++ Utilities
c.chmod
Modify the UNIX file system permissions of an environment
The syntax of the.chmod command is:
c.chmod [option§ access_mode
The following represents tleechmod options:
Option Meaning Function
-env env environment Specify an environment pathname
-f force Force, if some environment components are missing
-H help Display syntax and options for this function
-i ignore Quietly ignore all non-fatal errors
-q query Display the permissions on the current environment
-rel release release Specify a Concurrent C/C++ release (other than the default release)

access_modis an octal digit parameter indicating the desired file system permission.

For details, see thehmod(1) manual page.

5-11

C/C++ Reference Manual

c.compile

c.compile
Compile one or more units
INTERNAL UTILITY

This tool is used internally by.build which is the recommended

utility for compilation and program generation.

c.compile is not intended for general usage.
The syntax of the.compile command is:

c.compile[optiond [--] [compile_options[unit-id ...]

The following represents thecompile options:

Option Meaning Function

-efell[v] error Pipe compiler output througherror
-e lists errors to stdout;

-ee embeds errors in the source file and invédlEBITOR,
-el lists errors with the source file stdout ; and
-ev embeds errors in the source file and invokes

-env env environment Specify an environment pathname, default is $PWD

-H help Display syntax and options for this function

-HC help compile Display list of compile options

-HQ help qualifier Display list of qualifier keywordsQ options)

-language lang language Select C or C++ as language to be used.

-partition part partition Let compiler know which partition is being built for template instantiation
purposes (not necessary, but it lets the compiler make better automatic
decisions)

-quiet quiet options Suppress display of effective options

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-state s state Compile the specified unit to compilation state

-v verbose Print header for each compilation

-w very verbose Print subordinate tool invocations

5-12

c.compile Concurrent C/C++ Utilities

unit-id is defined by the following syntax:
unit | all

If compile_optiongire specified to this command, they override the set of temporary unit
options. For instance, if the temporary compile options for thehgllb consist of-S
and the following command is issued

$ c.compile -g hello
the effective options will now consist ¢ and-g .

See “Link Options” on page 5-59” for list of compile options.

5-13

C/C++ Reference Manual

c.edt

c.edit
Edit the source of a unit
The syntax of the.edit command is:
c.edit [option§ unit-id
The following represents treeedit options:
Option Meaning Function
-e editor editor Useeditor instead offEDITOR
-env env environ- Specify an environment pathname
ment
-H help Display syntax and options for this function
-i inhibit Do not immediately notify the environment that the unit has changed
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-src“ dir [options] %f” source Run pre- and post-edit scripts for interfacing with source manage-
management ment.
-v verbose Generate verbose output.

5-14

unit-id is defined

unit | all

by the following syntax:

c.error Concurrent C/C++ Utilities
c.error
Process diagnostic messages generated by the compiler and other tools
INTERNAL UTILITY
This tool is used internally by.build which is the recommended
utility for compilation and program generation.
c.error is not intended for general usage.
The syntax of the.error command is:
c.error [optiong

The following represents theerror options:
Option Meaning Function
-e [editor] editor Embed error messages in the source file and invoke the spesified

tor. The default editor SEDITOR
-env env environment Specify an environment pathname
-f file source file Restrict errors to those in specified source file
-H help Display syntax and options for this function
-l listing Produce listing tetdout
-N no line #'s Do not display line numbers
-0 order Do not sort the order of the diagnostics by file and line number; pro-
cess each diagnostic in the order given
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-S suppress Suppress non-error lines
-src“ dir [options] %f’ source man- Run pre- and post-edit scripts for interfacing with source manage-
agement ment.

-Vi Vi Embed error messages in the source file and invoka tleelitor
-W warnings Ignore warnings

Compiler output may be redirected into a file and examined with the aid af éner
command or can be piped directly iterror via the-e c.build option.

c.error reads the specified file or the standard input, determining the source file(s) con-
taining errors and processing the errors according to the options given.

5-15

C/C++ Reference Manual c.error

5-16

Perhaps more generally useful are thec.build options {e , -ee , -el ,-ev), which
automatically calkc.error to process any compiler error messages resulting from the
current compilation.

Screen 5-1 shows the fileadtry.c . This file containing errors is used to illustrate vari-
ous ways Concurrent C/C++ tools can aggror to process error messages.

/csteam/vir/PDE/pde_gui_fixes/EXEC/bugppcpde/test/badtry.c

#include <stdio.h>

main() {

for (inst i=99; i>0; i--)
printf("%d bottles of soda on the wall\n"

" %d bottles of soda on the wall\n"
"if one of those bottles should happen to fall\n"
" ‘V)od bottles of soda on the wall\n",
i,i,i-1);

Screen 5-1. File badtry.c

Before it can be compiled, the file must be introduced into a Concurrent C/C++ environ-
ment, and a partition must be created for it:

$ c.mkenv
$ c.intro badtry.c
$ c.partition -create executable badtry

The file can be compiled and the output directed as follsstdout is redirected to the
file badtry.errors):

$ c.build 2> badtry.errors

Screen 5-2 shows the contents of figgltry.errors

"badtry.c", line 3: error: identifier "inst" is undefined
for (inst i=99; i>0; i--) {
N

1 error detected in the compilation of "badtry.c".

ec++: ERROR: Errors in the cxc++ pass, status = 2
c.compile: failed to compile unit badtry

c.build: failed building partition badtry

c.build: there was a failure building one or more partitions

Screen 5-2. File badtry.errors

c.error Concurrent C/C++ Utilities

This file can simply be listed, if desired, but it is more useful taeseor as follows.
$ c.error - badtry.errors

outputs the listing that appears in Screen 5-3..

Non-specific diagnostics:

ec++: ERROR: Errors in the cxc++ pass, status = 2
c.compile: failed to compile unit badtry

c.build: failed building partition badtry

c.build: there was a failure building one or more partitions

xxxxxxxxx b adtry .C kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

1:#include <stdio.h>
2:main() {
3: for (inst i=99; i>0; i--) {

N

>

A:error:identifier "inst" is undefined
4: printf("%d bottles of soda on the wall\n"

5: " %d bottles of soda on the wall\n"

6: "if one of those bottles should happen to fall\n"
7: " %d bottles of soda on the wall\n",

8: i,i,i-1);

9 }

103}

Screen 5-3. c.error -| Output Listing

With the-v option,c.error writes the error messages directly into the original source
file and calls thevi text editor. Line numbers are suppressed, and error messages marked
with the patterrt .

After the compilation,
$ c.error -v < badtry.errors

callsvi .

The### is provided so that error messages can be easily found and subsequently deleted.
For example, if invoked with thev (vi) option,c.error embeds error text in the
source file and then invokes tiwe editor. All error text can easily be found and removed
with simple editor commands by searching for th&# pattern and deleting. Iai , for
instance, the sequencgf##/d " deletes all lines matching thit# pattern.

It should also be noted that all error message lines are prefixed/wjtwhich denotes an

C++ comment. Thus, evendferror -v has been used to intersperse error messages
into a file, the compiler can still process that file without deleting the error messages.
Since-v places the error messages directly in the source filegifror -v is called

again before the messages are deleted and the error corrected, a second copy of the same
messages appears.

5-17

C/C++ Reference Manual c.error

5-18

The filebadtry.c can now be edited to repair the error and resubmitted to the compiler.
If those errors are fixed correctly, semantic analysis can proceed.

The preferred method for achieving the same results is to inedkald with a-e
option.

$ c.build -ev

Now, when errors are encountered during compilationytheditor will be automatically
opened to the source file with the error messages embedded in it. Also, upon leaving the
editor, the compiler offers to recompile the file.

This method is generally faster for rapid interactive program development because it does
not require any intermediate files.

For more information about compiler error messages, see “Error Messages” on page 1-12.

c.expel Concurrent C/C++ Utilities

c.expel
Expel fetched or naturalized units from the environment
The syntax of the.expel command is:
c.expel[option§ unit-id ...

The following represents theexpel options:
Option Meaning Function
-env env environment Specify an environment pathname
-H help Display syntax and options for this function
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-V verbose Print message for each expelled unit

unit-id is defined by the following syntax:
unit | all

Local versions of foreign units may be created viagtfetch tool (see “c.rmsrc” on
page 5-55). These versions are calfetthed (See “Nationalities” on page 4-4 for a
more detailed discussion.)

It may be desirable to later remove these local versions, thus making the foreign versions
once again visible. Theexpel tool is provided for this purpose.

NOTE

Other methods exist for removing native units. See Section
“c.rmsrc” on page 5-55 for more information.

5-19

C/C++ Reference Manual c.fetch

c.fetch
Fetch the compiled form of a unit from another environment
The syntax of the.fetch command is:
c.fetch [optiong unit-id ...

The following represents theefetch options:
Option Meaning Function
-env env environment Specify an environment pathname
-from env from env Specify an environment pathname from which to fetch the unit(s)
-H help Display syntax and options for this function
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-V verbose Display a message for each fetched unit

unit-id is defined by the following syntax:

unit | all

NOTE

If the -from option is not specifieds.fetch will try to “find”
the specified unit by searching the Environment Search Path.

At times, it may be desirable for users to be able to force copies of specified units from
other environments into the current environment. This command will cause the specified
foreign units to be built in the local environment as if they were introduced as local units.

Thec.expel toolis provided to allow a fetched unit to be removed from the local
environment, thus restoring visibility to the foreign version. See Section “c.expel” on
page 5-19 for more information.

5-20

c.freeze Concurrent C/C++ Utilities

c.freeze
Freeze an environment, preventing changes
The syntax of the.freeze command is:
c.freeze [optiong

The following represents thefreeze options:
Option Meaning Function
-env env environment Specify an environment pathname
-H help Display syntax and options for this function
-q query Displays an environment’s frozen status
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-t transitive Freeze whole Environment Search Path
-u unfreeze Thaw the environment, allowing changes
-V verbose Displays the environment(s) being frozen (or thawed)

An environment may be frozen using tbdreeze utility. This changes an environment
so that it is unalterable.

Any environment which will not be changed for a significant period of time and which
will be used by other environments is a good candidate to be frozen to improve compila-
tion performance.

5-21

C/C++ Reference Manual c.help
c.help

List usage and summary of each Concurrent C/C++ utility

The syntax of the.help command is:

c.help

5-22

c.install Concurrent C/C++ Utilities
c.install
Install, remove, or modify a release installation
The syntax of the.install command is:
c.install -rel releasq optiong
The following options are available with thénstall command:
Option Meaning Function
-d default Mark the selected release installation as the system-wide default
-env env environment Specify an environment pathname
-H help Display syntax and options for this function
- path install Install the release located pathinto the release database (the name is
determined from theel option)
-m path move Move the selected release installatiompéath
-p pre-5.1 Mark the selected release isntallation as the defaultdgihc, cc++, and
C++.
-r remove Remove the specified release installation from the release database
-rel release release Specify a Concurrent C/C++ release (REQUIRED)
-V verbose Report changes as they are made
NOTE
Only the System Administrator (or a super user) can invoke
c.install.
The-i ,-m, and-r options may never be used together.
Thec.install utility is the tool that allows users to register installations with the sys-

tem’s Concurrent C/C++ database. It may be used to install, move, and remove installa-
tions.

When the-i option is given, then the Concurrent C/C++ structure located at the specified
path name is registered with the database as a valid installation. The name of the installa-
tion is registered as the release given byieé option. Therefore, therel option is
required when using the option to install a Concurrent C/C++ installation.

For example, the following command:

5-23

C/C++ Reference Manual c.install

5-24

$ c.install -rel newc -d -i /somedir/c_dir

assumes thasomedir/c_dir contains a valid Concurrent C/C++ directory structure
and “installs” this version of Concurrent C/C++ in the databaseas.

When the-d option is used, then.install registers the installation with the database,
and also marks the installation as the system-wide default installation (as in the above
example).

To ease the transition to the new multiple release schemep tloption allows the system
administrator set set the default release forabehc, cc++, andc++ commands inde-

pendently ofec, ec++, and thec.* utilities. Typically this will be used to set them to
use the pre-5.1 releases:

c.install -rel pre5.1 -p

Note a subsequent invocationminstall with the-d option will override this setting.
This is because it is expected that normally tiee hc, cc++, andc++ commands will
invoke the latest release.

c.instantiation

c.instantiation

Concurrent C/C++ Utilities

Manipulate instantiation of templates and extern inlines.

The syntax of the.instantiation

c.instantiation [

The following represents thesinstantiation

command is:
optiong [unit-id]

options:

Option Meaning Function

-env env environment Specify an environment pathname

-F force Force unit-id to exist. Used to setup template resolutions before any files
are compiled, usually via thescript command.

-f force If the unit in the -r option is not in the potential associated units list, force
it to be added anyway (otherwise an error is generated)

-H help Display syntax and options for this function

-hide * unit-list’ hide Hide specified normal units from being considered for resolving instantia-
tion requests

-lhide “ unit-list’ unhide Unhide specified normal units so they may be considered for resolving
instantiation requests

-l list List the potential and actual associated units of unit-id

-magnet “ unit-list’ magnet Designate specified units as magnets. This means that instantiation auto-
mation will prefer them over other units for hosting artificial units for tem-
plate and extern inline instantiation.

-Imagnet” unit-list” unmagnet Remove magnet designation. Specified units will be consider for resolv-
ing instantiation only if no magnetic unit can perform the resolution.

-rel release release Specify a Concurrent C/C++ release (other than the default release)

-resolve “ unit-list” resolve Add specified units to the list of units that will host the instantiation of
unit-id.

-Iresolve “ unit-list” unresolve Remove specified units from the list of units that will host the instantiation
of unit-id.

-v verbose Display a message for each selected or hidden definition

5-25

C/C++ Reference Manual c.instantiation

unit-id is defined by the following syntax:
unit

unit-list is a comma or white space list ahit-ids. The list must be enclosed in quotes if
more than one unit is specified.

5-26

c.intro Concurrent C/C++ Utilities
c.intro
Introduce source files (and units therein) to the environment
The syntax of the.intro command is:
c.intro [optiong [source _file...]
The following represents theintro options:
Option Meaning Function
-env env environment Specify an environment pathname
-H help Display syntax and options for this function
-language [C|C++] language Specify whether the source file is written in C or C++
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-s file_list file list Readfile_list for a list of files to process
If - is specified, read file list frorstdin
-unit name unit name Override the default unit name for the source file. This allows the
same source file to be introduced multiple times (to be built in more
than one way), or to introduce two source files that share the same
basename, but have different paths.
-v verbose Echo files as they are processed

The-s option takes as its argumenfige_list containing the names of all the files to be
processed bg.intro . This is useful in order to introduce many files at once. Each file
must be on a separate line in fie list.

If - is specified fofile_list, c.intro uses input fronstdin . This is provided mainly so
that users can pipe output from another UNIX commardritro

Since the unit namall is reserved to mean all units in various commands, if a file called
all.c isintroduced, its default unit name igll , and if a file called all. c is intro-
duced, its default unit name_isall , etc.

To reference a foreign unit that hasn't actually be introduced into a foreign environment
on the environment search path yet, usértro -name nameé without specifying a
source file. This declares the name to the local environment so that you can refer to the
name without getting an error message. This isn't necessary if the foreign unit has already
been introduced into the foreign environment and that environment is on the environment
search path.

c.rmsrc can be used to eliminate the association of source files with the environment.
c.rmsrc removes all knowledge of source files (and units therein) from the environ-
ment. See “c.rmsrc” on page 5-55 for more information.

5-27

C/C++ Reference Manual c.invalid

c.invalid
Force a unit to be inconsistent thus requiring it to be recompiled
The syntax of the.invalid command is:
c.invalid [optiong[unit-id ...]
The following represents tresinvalid options:
Option Meaning Function
-env env environment Specify an environment pathname
-H help Display syntax and options for this function
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-source file source file Invalidate all units built from the specified file
-t template Erase template instantiation associations
-V verbose Display a message for each invalidated unit

unit-id is defined by the following syntax:
unit| all

Thec.invalid tool is used to force a unit to be considered inconsistent, usually to force
them to be rebuilt by.build . If the-t option is also specified, template instantiation
automation will forget the associates it made between the specified units and any instanti-
atable entities (such as templates or extern inlines) that it decided to build using this unit’s
source, but not those made explicitly by the user. See “Template Instantiation” on page
7-3 and “c.instantiation” on page 5-25°.

Thec.touch tool is provided to allow the opposite functionality. See “c.touch” on page
5-58

5-28

c.link Concurrent C/C++ Utilities
c.link
Link a partition (an executable, or shared object file)
INTERNAL UTILITY
This tool is used internally by.build which is the recommended
utility for compilation and program generation.
c.link is not intended for general usage.
The syntax of the.link command is:
clink [optiong [link-optiond partitions...
The following represents thelink options:
Option Meaning Function
-env env environment Specify an environment pathname
-H help Display syntax and options for this function
- information Suppress information messages
-0 file output Override the default output for the partition and place the outilg in
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-V verify Display the link commands, suppressing execution
-V verbose Display links as they are done
-w very verbose Display the link commands before execution
-w warnings Suppress warning messages

See “Link Options” on page 5-59 for list of link options.

5-29

C/C++ Reference Manual

c.ls

c.Is
List information about the environment
The syntax of the.ls command is:
cIs[optiong
The following represents theels options:
Option Meaning Function
-A all Dump information about everything information can be dumped:-sets
E -S,-U,-T, and-P.
-all all Include information from all environments on the Environment Search
Path.
-art artificial Include artificial units (those created by the environment to support
templates and extern inlines)
-E environment List attributes of the local environment
-e everything Provide an all-encompassing listing using the same format ad the
and-v options, but omitting nothing that may be known. Often gener-
ates an overwhelming amount of output.
-env env environment Specify an environment pathname
-format fmt format Format the information supplied for each unit based on the format
descriptorfmt. This option may not be used with any option that dis-
plays information about the environment other than units.
-format help format help Display list of format descriptors
-H help Display syntax and options for this function
-h headers Suppress headers on long and verbose listings
-instantiation instantiation Display instantiation information
-l long List the same information as the option, but use a long format.
-local local Filter candidate units and partitions to include only those found in the
local environment (default)
-N name Sort lists by name in ascending order
-n number Include a total count of the number of units, partitions, etc.
-P partition List information about all partitions. Usall or-local to include

partitions in all environments on the environment search path or restrict
to local partitions only.

5-30

c.ls

Concurrent C/C++ Utilities

Option

Meaning

Function

-plist “list”

-pfile filename

-r
-rel release

-S

-shadow

-slist “list”

-sfile filename

-t
-T
-templates

-tlist “list”

-tfile filename

partition

partition

reverse
release

source

shadow units
and partitions

source

source

time
unit
templates

unit

unit

List information about specific partitiondist is a list of partitions sepa-
rated by commas or spaces. lItis a single parameter, and so must be
enclosed in double-quotes if more than one partition is specified. Multi-
ple-plist options may be specified on the command line.

List information about specific partitions. The list of partitions is in the
specified filename. The partition names can be one per line, or multiple
partitions can be specified on a line, separated by commas and/or
spaces. Multiplepfile options may be specified on the command
line.

Reverse the sorting order
Specify a Concurrent C/C++ release (other than the default release)

List information about all source files. Usall or-local to
include source files in all environments on the environment search path
or restrict to local source files only.

When theall option is not specifiedc.Is does not scan the foreign
environments in the environment search path for all visible units and
partitions. The local environment does however contain some informa-
tion about those units and partitions if they are referenced locally.
These “shadows” of the foreign units and partitions are not listed unless
explicitly asked for with theshadow option.

List information about specific source filedist is a list of source files
separated by commas or spaces. Itis a single parameter, and so must be
enclosed in double-quotes if more than one source file is specified.
Multiple -slist ~ options may be specified on the command line.

List information about specific source files. The list of source files is in
the specified filename. The source file names can be one per line, or
multiple source files can be specified on a line, separated by commas
and/or spaces. Multiplesfile options may be specified on the com-
mand line.

Sort lists by timestamp.
List information about all symbols.
show units associated with template instantiation (sarreatas).

List information about specific symboldist is a list of symbols sepa-
rated by commas or spaces. lItis a single parameter, and so must be
enclosed in double-quotes if more than one symbol is specified. Multi-
ple -tlist options may be specified on the command line.

List information about specific symbols. The list of symbols is in the
specified flename. The symbol names can be one per line, or multiple
symbols can be specified on a line, separated by commas and/or spaces.
Multiple -tfile options may be specified on the command line.

5-31

C/C++ Reference Manual c.ls

Option Meaning Function

-U unit List information about all units. Usall or-local to include units
in all environments on the environment search path or restrict to local
units only.

-ulist “list” unit List information about specific unitslist is a list of units separated by

-ufile filename

commas or spaces. lItis a single parameter, and so must be enclosed in
double-quotes if more than one unit is specified. Multiplést
options may be specified on the command line.

unit List information about specific units. The list of units is in the specified
filename. The unit names can be one per line, or multiple units can be
specified on a line, separated by commas and/or spaces. Multiple
-ufile options may be specified on the command line.

verbose Provide a verbose listing, using the same format asltheption, but
providing more information. Empty values are not displayed.

one, single Display lists with one line per item

5-32

unit-id is defined by the following syntax:
unit | all

The behavior ot.Is with no options ownit-id specified is to display only some basic
information about the local environments, list the names of all the units within the local
environment (if no options are specifiethcal is assumed), and the names of partitions
within the local environment.

To see more information than is provided in a default listmtg provides a number of
options:

-1 Provides a brief listing of units, partititions, etc, with
one item per row and some additional information in
multiple columns.

- Provides a long listing consisting the same informa-
tion as thel option.

-v Provides a verbose listing.

-e Provides an all-encompassing listing.

-instantiation Provides a listing of just instantiation information.
This option can only be used to display information
about units.

-format Provides a method to display only the fields that are

desired. This option can only be used to display
information about units.

The options! ,-v, -e,-format , and-1 options are mutually exclusive.

c.ls Concurrent C/C++ Utilities

When displaying instantiation information, instantiations set explicitly by the user with
the c.instantiation -resolve command are marked witht . Instantiations set
explicitly by the user withpragma instantiation or by command line options are
marked with #”.

Formatting the listing
The-format option allows you to format the information listed for each unit based on a
format descriptorfmt, which takes the form:
“%[Modifier]Descriptor random_text %[Modifier]Descriptor...” ...

Characters encountered in the quoted format string which are not part of a descriptor are
echoed in the output. Any character other than ‘a’..’z’ and *_’ serve to terminate the cur-
rent descriptor; any such characters are echoed.

The descriptors and their potential modifiers are shown below.

Descriptor Modifier Meaning
consistent CcYy Is the unit up-to-date with the source:
consistent or not consistent , or

yes orno respectively ifY modifier is given.

date C Timestamp of the object file, oobject
file missing if the unit has never been
built.

environment CL The native environment of foreign and fetched

units. Empty string if the unit is local.

hidden CYy Is the unit hidden from being considered for
hosting an instantiation:
hidden ornot hidden , or
yes orno respectively ifY modifier is given.

incdate C Timestamp of the most recently modified
included file (including the source file itself),
or include file missing is the source
file or one of the include files is missing.

kind C Kind of unit: normal or artificial (aunit
created by the environment for templates and
extern inlines).

language C Language of the UniC or C++.

magnet CY Is the unit prefered over other units for assocti-
ating artificial units for instantiation automa-
tion: magnet ornot magnet , oryes or no
respectively ify modifier is used.

5-33

C/C++ Reference Manual c.ls

Descriptor Modifier Meaning

missing CYy Is the unit’s source file missingmissing or
not missing , oryes orno respectively ifY
modifier is used.

name CL Name of the unit

options PTEQ The Permanent,Temporary, orEffective
options of the unit, depending on the modifier.

scrdate C Timestamp of the source file (not including
any include files, osource file miss-
ing if the source file doesn't exist.

srcfile CL Name of the source file

state C Is the unit compiledcompiled or not
compiled

visa C Visa of a unit:native , fetched , natu-
ralized ,visiting , orforeign

The modifiers have the following meanings:

Modifier Meaning Description

C column Causes the current item to be padded with sufficient
trailing blanks to form a column; this modifier is
allowed for any descriptor

L long Causes the long-form of the item to be output: date
descriptors will include microseconds; path descriptors
will be forced into fully-rooted filename notation

Y yes Outputyes orno, instead oX ornot X respectively.
Q guote Quote or escape special shell characters.
E,P,T options Selects between the effective, permanent, or temporary

option sets; only legal for the option descriptor

For example, in an environment that contains the belto , the following-format
option toa.ls produces the following output:

$ c.Is -format “%name was built on %date\n”
hello was introduced on Mon Dec 6 15:49:58 1999

5-34

c.ls Concurrent C/C++ Utilities

Sorting

There are a few options with which to sort the output. They are:

-N Sort by name in ascending order
-t Sort by timestamp
-r Reverse the sorting order

5-35

C/C++ Reference Manual c.Issrc

c.Issrc
List source files associated with the environment
The syntax of the.Issrc ~ command is:
c.Issrc [optiong[source-filg

The following represents thelssrc options:
Option Meaning Function
-env env environment Specify an environment pathname
-H help Display syntax and options for this function
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-s file_list file_list Readfile_list for a list of files
-w very verbose Display command lines used to invoke subordinate tools

5-36

c.ssrc provides information about source files introduced to the environment. The
information available via this tool is specific only to the source file. For information about
units contained within the source file, thds tool should be used. See “c.Is” on page
4-39 for more information.

With no optionsc.Issrc provides a list of the names of all source files introduced to the
environment. If asource-filename is specified on the command line or tkeoption is

used with a file containing a list of source file names, only the mentioned source files will
be listed.

c.man Concurrent C/C++ Utilities
c.man
Invoke/position interactive help system (requires an X terminal)
The syntax of the.man command is:
c.man|[optiond[manual] topid]
The following represents tleeman options:
Option Meaning Function
-display disp X display Select an X terminal
-env env environment Specify an environment pathname

-|
-man manpage
-rel release

-H

list Lists available online manuals

man page Displayman page for specifiechanpage

release Specify a Concurrent C/C++ release (other than the default release)
help Display syntax and options for this function

c.man invokes the interactive HyperHelp system as directed by options and arguments.
If a HyperHelp session for the user is already activeyan will position the existing ses-
sion to the specified topic or manual.

To see a list of the names of each onlmanualavailable for viewing with HyperHelp,
issue:

$ c.man -l
To open a specifimanual issuec.man with the name of thahanual
$ c.man c++

If the manual is not recognized (and is not interpreted &xp&), then HyperHelp is
opened to the Bookshelf.

To view a particulatopic within a specificmanual issue either thatpic along with the
manualin which it is contained, or thepic alone.

$ c.man c++ c.build
or
$ c.man c.build
will position the HyperHelp system to the description ofdleeiild command.

Topics for the C/C++ Reference Manual include the names of all Concurrent C/C++ utili-
ties, all pragmas recognized by Concurrent C/C++, and various C/C++ bindings.

5-37

C/C++ Reference Manual c.man

NOTE

Thetopic argument is meant as a shortcut for positioning the
HyperHelp session. The list of topics recognizeddayan is
short and obviously not meant to be comprehensive. Direct use of
HyperHelp is intended for general manual browsing and selection.

If a topicis not recognized, but thmanualis, HyperHelp will be positioned at the
“Find” window for thatmanual

5-38

c.mkenv Concurrent C/C++ Utilities

c.mkenv
Create an environment which is required for compilation, linking, etc.
The syntax of the.mkenv command is:
c.mkenv [optiong[--] compile_optionls[environmentpathnamg
The following represents tleemkenv options:
Option Meaning Function
-env env environment Specify an environment pathname
-f force Force environment creation even if it or some portion of it already
exists
-H help Display syntax and options for this function
-language lang language Select C or ¢* as language to be used as the defauttintro
invocations.
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-src“ dir [options] %f” source Run pre- and post-edit scripts for interfacing with source manage-

management ment when ever file is edited withedit

The compile_optionspecified with this command become the permanent environment-
wide compile options and apply to all units introduced into this environment. They may
be changed by usingoptions . They may also be overridden by temporary environ-
ment-wide compile options, or for particular units by permanent or temporary unit options
or pragmas. See “Compile Options” on page 4-10 for a more detailed explanation of this
relationship.

The-f option forces creation of an environment even if one has already been created or if
only a portion of it already exists. If themkenv tool is interrupted or fails for some rea-

son (such as not enough disk space, power failure, etc.), the creation of the environment
may not have completed. Trying to recover from this failure by runningcthekenv

tool again may result in a message similar to the following:

c.mkenv: database file .C++ already exists
in environment /some_dir/env_dir.

The-f option will force this environment to be created, thereby overriding such error
messages.

Usec.options -HC for a list of compile_options Also, “Link Options” on page 5-59

provides a similar list An environment can be removed witinenv . See “c.rmenv” on
page 5-54 for details.

5-39

C/C++ Reference Manual

c.options

c.options
Set compilation options for units or the environment
The syntax of the.options ~ command is:
c.options [optiong [--] [compile_options[unit-id ...]

The following represents theoptions options:
Option Meaning Function
-clear clear Clear all designated options for the specified entities
-default default Operate on the default options for the entire environment
-del delete Delete the designated options from the specified entities
-eff effective Display the effective options (based on temporary, permanent, envi-

ronment defaults)
-env env environment Specify an environment pathname
-H help Display syntax and options for this function
-h header Remove the header from the option list output
-HC help compile Display list of compile options
-HQ help qualifier Display list of qualifier keywordsQ options)
-keeptemp keep temporar- Propagate the temporary options for the units into the set of perma-
ies nent options
-language lang language SelectCor C++ as language to be used
-list list List the option sets for the specified entities
-mod modify Modify the designated options for the specified entities
-perm permanent Operate on the permanent options (this is the default)
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-set set Set the designated options for the specified entities
-src“ dir [options] %f” source Specify pre- and post-edit scripts for interfacing with source man-
management agement when editing source files wéthdit

-temp temporary Operate on the temporary options
-v verbose Display a message for each change
- separator Separate options tmoptions from compiler options. Optional

if there is no ambiguity.

5-40

c.options

Option Sets

Listing options

Concurrent C/C++ Utilities

unit-id is defined by the following syntax:

unit| all

As discussed in “Compile Options” on page 4-10 , there are three different levels of
options in Concurrent C/C++. These three option sets are designated by the following
flags toc.options

Flag Designation Operates on
-default -perm environment-wide compile option all units
-default -temp temporary environment-wide con all units

pile options.
-perm permanent compile options specified units
-temp temporary compile options specified units

In addition, theeffective optionsare derived from these four and their hierarchical relation-
ship to one another. This set is discussed in greater detail in “Effective Options” on page
4-11.

The option sets may be viewed using thist option. When issued alondijst
shows the permanent, temporary, and effective option sets for the units specified. For
example, the following command lists those option sets for théneltat |

$ c.options -list hello

By combining thelist ~ option and the desired option set’s flag, only that option set is
displayed for the specified units. For instance, to view the permanent options for the unit
hello

$ c.options -list -perm hello

This only lists the permanent options for the units specified. You may specify multiple
unit names, or you may use the keywalld to specify all units in the environment.

To list the effective options for all units in the environment,
$ c.options -list -eff all
However, this particular option does the same thing when issued alone,

$ c.options -eff all

5-41

C/C++ Reference Manual c.options

Setting options

Note that since thedefault ~ flag operates on all the units in the environment by defini-
tion, there is no need to specify any unit names. To list the default options,

$ c.options -list -default

The option sets may be initialized or reset by using-#e¢ flag toc.options . This
sets the specified options for the units designated. Any previous options for the set desig-
nated are replaced. For example,

$ c.options -set -perm -g hello
turns on debug information in the permanent option set for théxeliot .
If the following command is issued,

$ c.options -set -perm -O1 hello

the permanent option set will only contain th@1 option (the previousg option will
have been replaced).

Modifying options

Clearing options

5-42

In order to modify an option set, thenod flag is used. This flag adds the specified
options to the designated set, while retaining any other options that existed in this group-
ing. For instance, after the following command,

$ c.options -set -temp -g hello
the temporary option set for the uhéllo consists ofg .
To add an optimization compile option to this set,

$ c.options -mod -temp -O2 hello

The temporary option set foello now consists ofg and-O2.

All of the options may be cleared from a designated option set by usinectbar
option. To clear all of the temporary options from all units in the environment,

$ c.options -clear -temp all

c.options Concurrent C/C++ Utilities

Deleting options
The-del flag is more specific than thelear option and allows specified options to be
deleted from a particular option set.

For example, if the environment-wide compile option s#fault) containsO2,
-lg and-S, the following command,

$ c.options -del -!g -default

will remove the-lg option from the set and leav®2 and-S to remain as the environ-
ment-wide compile options.

Some sets of options are mutually exclusive because they effectively set an attribute to a
particular value. For examplesearly_tiebreaker and--late_tiebreaker

Specifying one will remove the other from the effective option list. Similarly, specifying
--learly_tiebreaker will actually remove any tiebreaker setting from the effective
options list.

Keeping temporary options

Temporary options may be propagated into the permanent set by usidgéeemp
option. This moves the temporary options into the permanent option set and clears the
temporary set. The following command does this for all units in the environment,

$ c.options -keeptemp all
See “Link Options” on page 5-59 for more information.

Also, see the example of this in “What are my options?” on page 3-6 .

Setting options on foreign units

Options for units in foreign environments cannot be changed usigiions in the
local environment. In order to change the options on a foreign unit, it must first be
fetched.

5-43

C/C++ Reference Manual

c.partition

c.partition
Define or display a partition for the linker
The syntax of the.partition command is:
c.partition [optiong[partitions...]
The following represents treepartition options:
Option Meaning Function
-a all Display all partitions in the environment
(Normally, only those originating in the environment are displayed)
-add "units' add Add unitsto the partitions while retaining previously added units
unitsis a single parameter; the names of individual units should be
comma-separated and enclosed in double quotes
-addfile file add from file As-add , but reads units frorfile
-create kind create Create the new named partitionskaisd wherekind could beexecut-
able (exe) ,shared_object (so), archive (ar), orobject
(obj). See also discussion stiadow below.
-del "units' delete Deleteunitsfrom the partitions
unitsis a single parameter; the names of individual units should be
comma-separated and enclosed in double quotes
-delfile file delete from file As-del , but reads units froffile
-env env environment Specify an environment pathname
-f force Force creation of existing partitions and removal of nonexistent partitions
-H help Display syntax and options for this function
-HL help link Display link options
-List list all Display all partitions and information about them
-list list List all partition names
-0 file output Set the name of the corresponding partition output file to be created
-oappend opts append link Appends theptsargument to the link option listing
options optsis a single parameter; it must be enclosed in double quotes
-oclear clear link Clear the link options
options

5-44

c.partition Concurrent C/C++ Utilities
Option Meaning Function
-oprepend opts prepend link Prepends theptsargument to the link option listing
options
optsis a single parameter; it must be enclosed in double quotes
-oset opts set link options Set the link options as indicated bpts
optsis a single parameter; it must be enclosed in double quotes
-parts list partition list Set the dependent (comma-separated) partition list for each partition
-refs references Remove local references to a partition when it is removed. Otherwise, the
environment will attempt to find a foreign partition to satisfy any partition
dependent on the removed partition.
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-remove remove Remove the specified partitions
-set "units' set Add unitsto the partitions, and remove all others
unitsis a single parameter; the names of individual units should be
comma-separated and enclosed in double quotes (see below)
-setfile file set from file As -set , but reads units frorfile
-V verbose verbose
-w veri verbose Display command lines invoking subordinate tools

unitsis defined by the following syntax:

([unit_namé@][,[+-]

unit_namg]]... (comma-separated list)

+ indicates an included unit (the default)

all

You may specify multipleartitionsto c.partition

indicates an excluded unit
indicates all units directly or indirectly required by the given unit
as theunit_namds special. It means all units, not at the time the
command is issued, but at the tirm@relink isdone.c.Is will show
all as a included unit before all explicitly specified units if it is present.

NOTES

and all

optionsspecified will apply to every one of thopartitions Each
option, however, may only be specified once. If a particajption
is repeated on the command line, the last occurrence obhiain
overrides all others.

I only can pull in native and fetched units. Use!oforces all
units in the environment to get built because their symbol tables
must be used to determine dependencies.

5-45

C/C++ Reference Manual c.partition

The idiom “+unit!,-unit " means to include all units that
unit directly or indirectly requires, but not includait itself.

If no action is requested, thenpartition will list informa-
tion about the named partitions (the equivalentd§ -v
-plist).

To reference a foreign partition before the foreign environment
has defined it or before the foreign environment as been added to
the environment search path, it is necessary to declare it to the
local environment with the ¢.partition -create

shadow namé command. Otherwise, referencing an unknown
partition name results in an error

Link Options
Link options are specified for a particular partition by using the following options to
c.partition
-oset opts Sets the link options as indicated dyyts
-oappend opts Appends the@ptsargument to the link option listing
-oprepend opts Prepends theptsargument to the link option listing
-oclear Clears the link options

optsis a single parameter containing one or more link options; it must be enclosed in dou-
ble quotes.

NOTE

Be sure to specify the link options within the double quotes and
ensure that they are specified as listed on page 5-59. For example,
if the link option-bound is desired, the leading-"" must be
specified as well.

For example, to set the link options for the partitietio to include the link options
--strip and-udump:

$ c.partition -oset “--strip -udump” hello
Issuingc.ls will show the link options for this partition:

$ c.Is -plist hello -v
PARTITION: hello

nationality : native
kind : executable
output file : hello

5-46

c.partition Concurrent C/C++ Utilities

link options : --strip -udump
included units (+) :
hello
To append a link option to this set, use-theppend option:
$ c.partition -oappend “-Im” hello

The link options now will be:

$ c.ls -plist hello -v
PARTITION: hello

nationality : native

kind : executable

output file : hello

link options : --strip -udump -Im
included units (+) :

hello

To clear all link options for this partition, use thelear option:
$ c.partition -oclear hello
See “Link Options” on page 5-59 for a list of link options.

Also, “Link Options” on page 4-8 provides further discussion of this topic.

5-47

C/C++ Reference Manual c.path

c.path
Display or change the Environment Search Path for an environment
The syntax of the.path command is:
c.path[optiong
The following represents treepath options:
Option Meaning Function
-A path append Appendpathto the end of the Environment Search Path
-a pathl] path] append Appendpathlafterpath2 If path2is not specified, this option is identical
to the-A option
-env env environment Specify an environment pathname
-f full path Display full environment pathnames
-H help Display syntax and options for this function
-l path insert Insertpathat the beginning of the Environment Search Path
- pathl[pathg insert Insertpathlbeforepath2 If path2is not specified, this option is identical
to the-l option
-P purge Remove all paths in the Environment Search Path
-R pathl path2 replace Replacepathlwith path2
-r path remove Removepathfrom the Environment Search Path
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-t transitive Display transitive closure of environments in the Environment Search Path
-v verbose If combined with any othec.path option, display the Environment
Search Path after the operation is complete
-w warnings Suppress warning messages
-X path exclude Remove all bupathfrom the Environment Search Path

Concurrent C/C++ uses the concept of an Environment Search Path to allow users to spec-
ify that units and partitions from environments other than the current environment should
be made available in the current environment. See “Environment Search Path” on page
4-2 for a more complete discussion.

5-48

c.prelink Concurrent C/C++ Utilities
c.prelink
Resolve transitive closure of included units and template instantiation
before linking.
INTERNAL UTILITY
This tool is used internally bg.build ~ which is the recommended
utility for compilation and program generation.
c.prelink is not intended for general usage.
The syntax of the.prelink command is:
c.prelink [optiong[partitiong
The following represents theeprelink options:
Option Meaning Function
-C “compiler” compiler Specify alternate compiler when compiling template instantiations
-env env environment Specify an environment pathname
-H help Display syntax and options for this function
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-V verbose Print header for each compilation
-w very verbose Print subordinate tool command lines

This tool takes care of template instantiation automation, selection of units that are going
to be included in the final link, and other bookkeeping activities that must be performed
before actually linking a partition.

5-49

C/C++ Reference Manual c.release

c.release
Display release installation information
The syntax of the.release = command is:
c.release [optiong

The following represents therelease options:
Option Meaning Function
-e env Display the path of the selected environment
-env env environment Specify an environment pathname
-H help Display syntax and options for this function
-n name Display the name of the selected release
-p path Display the path to the selected release
-q query Display the selected environment and release
-r remove Remove the default release currently set for the invoking user
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-u user Set the default release for the invoking user

If invoked without optionsc.release lists all available release installations on the cur-
rent host. For example,

$ c.release

provides output similar to the following:

The following releases are available on this machine:

Name Path

*jgj /csteam/vir/PDE/pde_gui_fixes/TOOLS/pde
stef /csteam/londo/stef/debug_info_in_pde/
TOOLS/pde

alpha5.0 /usr/ccs/alpha5.0

script /csteam/vir/PDE/pde_to_do_2/TOOLS/pde

Screen 5-4. c.release output

5-50

c.release Concurrent C/C++ Utilities

The-q option displays the release for the specified environment (or the local environment
if no environment is specified). For example,

$ c.release -q

in a Concurrent C/C++ environment nantest provides the following output:

environment path: /csteam/vir/PDE/pde_gui_fixes/EXEC/bugppcpde/test
release name: jgj
release path: /csteam/vir/PDE/pde_gui_fixes/TOOLS/pde

Screen 5-5. c.release -q output
c.release may be invoked with any combination el and/or-env options. All

remaining options are mutually exclusive, and may not be combined in a single invocation
of c.release

5-51

C/C++ Reference Manual

c.repot

c.report
Generate profile reports in conjunction withc.analyze -P
The syntax of the.report command is:
c.report [optiong executable_file[executable_filgrof]

The following represents thereport options:
Option Meaning Function
-env env environment Specify an environment pathname
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-V verbose Print invocations of subprocesses
-H help Display syntax and options for this function
-a all List information from all individual runs even-f option is on
-b basic List basic block statistics
-B num expensive List only thenummost expensive basic blocks

basic
-B nunto % time basic List only the basic blocks where the finstmgsof time was spent
-C calls For each routine, list calls it makes
-d rng data range Restrict range of data sets examined
-f for each For each routine, list who calls it
-i info List summary information for the whole run
-l max Use max time instead of min time of basic block
-M hz Mhz Specify assumed megahertz clock rate for computing wall time
-m milliseconds Print milliseconds rather than cycles for most reports
-n miss List data access cache miss statistics
-N num data acc miss List only thenummost numerous data access secondary cache misses
-0 cache miss List instruction cache miss statistics
-O num secondary miss List only thenummost numerous instruction secondary cache misses
-r routine List routine statistics
-R num expensive rou- List only thenummost expensive routines
tine

-R nunto % time routine List only the routines that use the finstmdoof time

5-52

c.report Concurrent C/C++ Utilities
Option Meaning Function
-S summary List header summarizing data set from each run
-t total Total all data sets and list cumulative times
-T file dump Dump sum of all data sets into speciffiéal
-w readable Just dump the raw profile data in human readable form
-Z zero List routines and basic blocks with zero time

executable_fil@rof is the name of the profile data file generated by running the program.
The default is the program name with the suffivof

See “c.analyze” on page 5-3 for more information.

5-53

C/C++ Reference Manual c.rmenv

c.rmenv
Destroy an environment; compilation, linking, etc. no longer possible
The syntax of the.rmenv command is:
c.rmenv [option§ environment_pathname
The following represents tleermenv options:
Option Meaning Function
-env env environment Specify an environment pathname
-f force Force an environment destruction, even if it or some portion of it does not
exist
-H help Display syntax and options for this function
-rel release release Specify a Concurrent C/C++ release (other than the default release)

5-54

Removes an environment, including all units, their state information, and any partition
definitions. The source files and any built partitions are left intact after this operation.

The-f option can be used to force an environment’s destruction, even if some portion of
it does not exist. For example, if thremkenv utility was interrupted during its execution

(due to not enough disk space, power failure, etc.), the environment may not have been
successfully created. If the environment cannot be recognized as valid, Concurrent C/C++
will fail with a message similar to the following:

c.rmenv: database file .c++/.database doesn't exist
in environment earth.

The-f option will force this environment to be removed, thereby overriding such error
messages.

The environment can be re-created witimkenv (see page 5-39), but it will be empty
and any state will have to be reconstructed by the user.

c.rmsrc Concurrent C/C++ Utilities
c.rmsrc
Remove knowledge of source files (and units therein) from the environ-
ment
The syntax of the.rmsrc command is:
carmsrc|[optiong[source file..]
The following represents tleermsrc options:
Option Meaning Function
-all remove all Remove all units in the current environment
-env env environment Specify an environment pathname
-H help Display syntax and options for this function
-r remove Remove the actual source files
-refs references Remove references to removed units. Otherwise, the environment will
attempt to satisfy those references by searching the environment search
path for a unit of the same name.
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-s file_list file list file_listis assumed to be a list of files. When this option is given,
c.rmsrc readdile_list and removes each file in the list
If - is given,c.rmsrc readsstdin instead
-v verbose Display a message for each removed source file
-w very verbose Echo removed units tstdout

Thec.intro

tool can be used to re-associate the source files (and units therein) with the

environment, but those units will be re-created inutheompiled state.

5-55

C/C++ Reference Manual c.script

c.script
Produce a script of c.* commands to reproduce the current environ-
ment
The syntax of the.script command is:
c.script
The following represents treescript options:
Option Meaning Function
-allparts Restrict script to recreating partitions; units are not recreated
-echo echo Include echo commands in generated script to indicate progress
-env env environment Specify an environment pathname

-executables

-H

-no_mkenv

-no_shadow

-pfile

-plist

-rel

file

“partition-list”

release

Restrict script to recreating executable partitions; units are not recre-
ated

help Display syntax and options for this function

Restrict script from creating a new environment and setting environ-
ment wide options

Restrict script from declaring referenced units and partitions that are
not being recreated. Only useful with tkelparts, -pfile ,or
-plist options

Restrict script to recreating those partitions specifiefilén units are
not recreated

Restrict script to recreating specified partitions; units are not recre-
ated

release Specify a Concurrent C/C++ release (other than the default release)

5-56

Thec.script tool can be used to reconstruct an environment at a later time. For exam-
ple, a future release of the tools may not use a compatible database format, so it will be
necessary to use c.script in the old release, then run the script using the new release’s com-
mands.

The-no_mkenv option suppresses the generatation of commands that create the environ-
ment and that set environment-wide options. This would be used to merge all or part of
one environment into another, for example.

The -allparts ,-plist , -pfile , and-executables options restrict the script to

just recreating some or all partitions. Referenced units and unspecified partitions are
declared so that they can be found on the environment search path, unless the
no_shadow option is specified.

c.script Concurrent C/C++ Utilities

Consider the following senario: environmehts a huge environment with hundreds of
units, dozens of archives, and scores of executable programs. It is frozen. A developer
wishes to test a small change to one program without modifying enviornfnamd with-

out rebuilding everything. The developer could do the following, starting in environment
As directory:

$ c.script -plist program_1 > ../B/doit.sh
$cd./B

$ sh ./doit.sh

$ c.path -A ../A

Now, environmenB can see all the units and partitions of environm&ats Foreign units
and partitions, exceprogram_1 , which is Native. Buildingprogram_1 in environ-
mentB will use the units and libraries from environmant

Now, to actually try the change, the developer could:

$cp../Alunit_1.c.

$ c.intro unit_1.c

$ c.editunit_1

$ c.partition -add unit_1 program_1
$ c.build program_1

This forcesprogram_1 to link with environmentB’s local copy ofunit_1 rather than
picking up the un-fixed copy in an archive in environméatNow, let’s say that because

of link order issues, it turns out thahit_1 must be picked up form the archive. So now

the developer wants to export the definition of the archive in environghtit doesn’t

need, or want, to re-create the environment or re-declare the other units and partitions. So
the developer could:

$cd . /A

$ c.script -no_mkenv -no_shadow -plist archive_1 > ../B/
doit.sh

$cd./B

$ sh ./doit.sh

$ c.partition -del unit_1 program_1

$ c.build program_1

Now whenprogram_1 is built, the program development environment finds the depen-
dant partitionarchive_1 to be a local partition that isn’t built yet, so it recursively
builds it. All the units that go intarchive_1 come from environmenA, except
unit_ 1 , which is built locally.

5-57

C/C++ Reference Manual c.touch

c.touch
Make the environment consider a unit consistent with its source file's
timestamp
The syntax of the.touch command is:
ctouch[optiong[unit-id ..]
The following represents theetouch options:
Option Meaning Function
-env env environment Specify an environment pathname
-H help Display syntax and options for this function
-rel release release Specify a Concurrent C/C++ release (other than the default release)
-source file source file Touch all units in the specified file
-v verbose Display a message for each invalidated unit

5-58

unit-id is defined by the following syntax:
unit| all

Thec.touch tool is used to force a unit to be considered consistent with its source file,
usually to keep it from being rebuilt by.build . Note that it may still be considered
inconsistent for other reasons.

Thec.invalid tool is provided to allow the opposite functionality. See “c.invalid” on
page 5-28 for details.

Link Options

Concurrent C/C++ Utilities

Link Options

Many link options have more than one spelling.
Option Function
--C Force linking as C or C++ program.
--C++
-e sym Set the entry point address for the output file to be that of the symbol
--entry_point= sym sym
-h name Recordnamein the object’sdynamic section. namewill be used by
--dynamic_link_name= name the dynamic linker as the pathname of the shared object to search for
-Sp name at run time.
-L dir Add dir to the library search directories. This will effect subsequent
--library_directory= dir -I link options.
-l lib Search the library search path for dilibso or lidib.a file to link with.
--library= lib
-Mmapfile Read mapfile as a text files of directives to Id. Use of this option is

--mapfile= mapfile

-m
--memory_map

-Oflevel,[no_]post_linker]
-O[no_]analyze
--optimization_level= level
--post_linker

--no_post_linker

-P partition

-Qfpexcept= precision
--fpexcept= precision

-Qno_vendor_reloc

-Qreentrant_library

-S
--strip

-sl

strongly discouraged.

Produce a memory map of the input/output sections on stdout.

Invoke the post-link optimizationaphalyze(1)), select faster
libraries by default, etc. See “Optimization” @ompailtaion Systems
Volume 2 (Conceptdpr detailed discussion of link-time and post-
link-time optimizations.

Link with the named partition. This is the same as specifying a parti-
tion with the-parts option of c.partition , except that using
the-P link option allows the user to control the order that partitions
are loaded with respect to each other and to other object files and link
options.

Initialize the machine state register to indicate the kind of floating-
point exceptions that can be takgorecisioncan bemprecise (the
default),precise , ordisabled

Do not output relocation information in the vendor section of the
object file for use by thanalyze(1) tool. Post-link optimization
will not be possible if this option is used.

Disallow the implied use of the nonreentrant C library libnc.

Strip symbolic information from the output file.

Create a symbolic link from the output file of the partition to the path
specified by thesp link option.

5-59

C/C++ Reference Manual

Link Options

Option Function

-Uunit Link with the named unit. This is the same as specifying a unit with
the -add option of c.partition, except using the -U link option allows
the user to control the order that units are loaded with respect to each
other and other link options.

-u sym Treatsymas an undefined symbol that must be resolved.

--undefined_linker_symbol=
-V

-Wa, option

--pass_to_analyze= option

-WI, option

--pass_to_linker= option

-X

-X
--reduce_symbols

-Zlibs= mode

--library_linkage= mode

-Zlink=" mode

--link_mode= mode

-Zsymbolic
--symbolic

-zdefs
--linker_z=defs

-zlowzeros
-zlowzeroes
--linker_z=lowzeros
--linker_z=lowzeroes

-znodefs
--linker_z=nodefs

-ztext
--linker_z=text

sym

Verbose output frorfd(1)

Pass an option directory émalyze(1)

Pass an option directly tol(1)
couraged.

. Use of this option is strongly dis-

Do not look in alternative search paths for libraries.

Do not preserve local symbols with tyf&T_NOTYPE

Govern library inclusion.modemay bedynamic , to direct subse-
qguent-l link options to search for shared objects before trying static
libraries, orstatic , to direct subsequent options to search only
for static libraries

Select whether to linktatic ~ or dynamic .

In shared object, bind references to global symbols to their definitions
when in the object, if definitions are available. Normally, references
to global symbols within shared objects are not bound until run time,
even if definitions are available, so that definitions of the same sym-
bol in an executable or other shared objects can overed the object’s
own definition.

Force a fatal error if any undefined symbols remain at the end of the
link. This is the default for executable partitions.

Support dereferencing of NULL pointers. Sa)

Allow undefined symbols. This is the default for shared object par-
tititions.

Force a fatal error if any relocations against non-writable, allocatable
sections remain.

5-60

6
C++ and C Dialects

OV VB . o o ottt e e 6-1

C++Dialect Accepted i 6-1
New Language Features Accepted.ottt 6-2
New Language Features Not Accepted 6-4
Anachronisms Accepted. i e 6-5
Extensions Accepted in Normal C++Mode. 6-6
Extensions Accepted in Cfront 2.1 Compatibility Mode 6-8
Extensions Accepted in Cfront 2.1 and 3.0 Compatibility Mode. 6-9

CDialect Accepted 6-14
COX EXIBNSIONS . oottt 6-14
ANSI C EXIENSIONS. . .\ttt e e 6-16
K&R/pCC Mode 6-19

Extensions Accepted in SVR4 Compatibility Mode 6-24

PowerMAX OS Real-Time Guide

6
C++ and C Dialects

Overview

This chapter discusses the various dialects of C++ and C that are supported by the Concur-
rent C++ compiler. The following topics are covered:

* New Language Features Accepted
* New Language Features Not Accepted
* Anachronisms Accepted
* Extensions Accepted in Normal C++ Mode
* Extensions Accepted igcfront 2.1 Compatibility Mode
¢ Extensions Accepted iifront 2.1 and 3.0 Compatibility Mode
* C Dialects Accepted
- ANSI C Extensions
- K&R/pcc Mode

- Extensions Accepted in SVR4 C Compatibility Mode

See Chapter 8 (“Compilation Modes”) for information on options to select these modes.

C++ Dialect Accepted

The front end accepts the C++ language as defined by the ISO/IEC 14882:1998 standard,
with the exceptions listed below.

The front end also has a cfront compatibility mode, which duplicates a number of “fea-
tures” and bugs of cfront 2.1 and 3.0.x. Complete compatibility is not guaranteed or
intended—the mode is there to allow programmers who have unwittingly used cfront fea-
tures to continue to compile their existing code. In particular, if a program gets an error
when compiled by cfront, the EDG front end may produce a different error or no error at
all.

Command-line options are also available to enable and disable anachronisms and strict
standard-conformance checking.

6-1

C/C++ Reference Manual

New Language Features Accepted

The following features not in traditional Chbut in the standard are implemented:

The dependent statement ofi&n, while , do-while , orfor is consid-
ered to be a scope, and the restriction on having such a dependent statement
be a declaration is removed.

The expression tested in an , while , do-while , orfor , as the first

operand of a?” operator, or as an operand of the&’, “|| ", or“! " oper-

ators may have a pointer-to-member type or a class type that can be con-
verted to a pointer-to-member type in addition to the scalar cases permitted
by the ARM.

Qualified names are allowed in elaborated type specifiers.

A global-scope qualifier is allowed in member references of the form
x..:AlB andp->::A::B

The precedence of the third operand of thedperator is changed.

If control reaches the end of timeain() routine, andnain() has an inte-
gral return type, it is treated as ifeturn O; statement were executed.

Pointers to arrays with unknown bounds as parameter types are diagnosed
as errors.

A functional-notation cast of the for#a() can be used even Kis a class
without a (nontrivial) constructor. The temporary created gets the same
default initialization to zero as a static object of the class type.

A cast can be used to select one out of a set of overloaded functions when
taking the address of a function.

Template friend declarations and definitions are permitted in class defini-
tions and class template definitions.

Type template parameters are permitted to have default arguments.
Function templates may have nontype template parameters.
A reference taonst volatile cannot be bound to an rvalue.

Qualification conversions such as conversion frofh to T const *
const* are allowed.

Digraphs are recognized.

Operator keywords (e.cand, bitand , etc.) are recognized.

Static data member declarations can be used to declare member constants.
wchar_t is recognized as a keyword and a distinct type.

bool is recognized.

1. The C++ language offhe Annotated C++ Reference Manuby Ellis and Stroustrup.

6-2

C++ and C Dialects

RTTI (runtime type identification), includinglynamic_cast and the
typeid operator, is implemented.

Declarations in tested conditions {in , switch , for , andwhile state-
ments) are supported.

Array new anddelete are implemented.

New-style casts gtatic_cast , reinterpret_cast , and
const_cast) are implemented.

Definition of a nested class outside its enclosing class is allowed.
mutable is accepted on nonstatic data member declarations.

Namespaces are implemented, includiging declarations and direc-
tives. Access declarations are broadened to match the corresponding
using declarations.

Explicit instantiation of templates is implemented.
Thetypename keyword is recognized.
explicit is accepted to declare non-converting constructors.

The scope of a variable declared in tfeg-init-statement of a
for loop is the scope of the loop (hot the surrounding scope).

Member templates are implemented.
The new specialization syntax (usirtgrhplate <>) is implemented.

Cv-qualifiers are retained on rvalues (in particular, on function return val-
ues).

The distinction between trivial and nontrivial constructors has been imple-
mented, as has the distinction between PODs and non-PODs with trivial
constructors.

The linkage specification is treated as part of the function type (affecting
function overloading and implicit conversions).

extern inline functions are supported, and the default linkage for
inline functions is external.

A typedef name may be used in an explicit destructor call.

Placement delete is implemented.

An array allocated via a placement new can be deallocated via delete.
Covariant return types on overriding virtual functions are supported.
enum types are considered to be non-integral types.

Partial specialization of class templates is implemented.

Partial ordering of function templates is implemented.

Function declarations that match a function template are regarded as inde-
pendent functions, not as “guiding declarations” that are instances of the
template.

6-3

C/C++ Reference Manual

It is possible to overload operators using functions that take enum types
and no class types.

Explicit specification of function template arguments is supported.
Unnamed template parameters are supported.

The new lookup rules for member references of the for#::B and
p->A::B are supported.

The notation: template (and->template , etc.) is supported.

In a reference of the forrf()->g() , with g a static member function,
f() is evaluated, and likewise for a similar reference to a static data mem-
ber. The ARM specifies that the left operand is not evaluated in such cases.

enum types can contain values larger than can be containednh an

Default arguments of function templates and member functions of class
templates are instantiated only when the default argument is used in a call.

String literals and wide string literals hasenst type.
Class name injection is implemented.
Argument-dependent (Koenig) lookup of function names is implemented.

Class and function names declared only in unqualified friend declarations
are not visible except for functions found by argument-dependent lookup.

A void expression can be specified on a return statemenvaica func-
tion.

Universal character set escapes (&ugbcd) are implemented.

On a call in which the expression to the left of the opening parenthesis has
class type, overload resolution looks for conversion functions that can con-
vert the class object to pointer-to-function types, and each such pointed-to
“surrogate function” type is evaluated alongside any other candidate func-
tions.

New Language Features Not Accepted

6-4

The following features of the C++ standard are not implemented yet:

reinterpret_cast does not allow casting a pointer to member of one
class to a pointer to member of another class if the classes are unrelated.

Two-phase name binding in templates, as described in [temp.res] and
[temp.dep] of the standard, is not implemented.

Template template parameters are not implemented.
Theexport keyword for templates is not implemented.

A typedef of a function type cannot include member function cv-qualifi-
ers.

C++ and C Dialects

A partial specialization of a class member template cannot be added out-
side of the class definition.

Anachronisms Accepted

The following anachronisms are accepted when anachronisms are enabled:

overload is allowed in function declarations. It is accepted and ignored.

Definitions are not required for static data members that can be initialized
using default initialization. The anachronism does not apply to static data
members of template classes; they must always be defined.

The number of elements in an array may be specified in an deteye
operation. The value is ignored.

A single operator++() andoperator--() function can be used to
overload both prefix and postfix operations.

The base class name may be omitted in a base class initializer if there is
only one immediate base class.

A bound function pointer (a pointer to a member function for a given
object) can be cast to a pointer to a function.

A nested class name may be used as a nonnested class name provided no
other class of that name has been declared. The anachronism is not applied
to template classes.

A reference to a non-const type may be initialized from a value of a differ-
ent type. A temporary is created, it is initialized from the (converted) initial
value, and the reference is set to the temporary.

A reference to a non-const class type may be initialized from an rvalue of
the class type or a derived class thereof. No (additional) temporary is used.

A function with old-style parameter declarations is allowed and may partic-
ipate in function overloading as though it were prototyped. Default argu-
ment promotion is not applied to parameter types of such functions when
the check for compatibility is done, so that the following declares the over-
loading of two functions namdd

int f(int);
int f(x) char x; { return x; }

It will be noted that in C this code is legal but has a different meaning: a
tentative declaration df is followed by its definition.

When --nonconst_ref_anachronism is enabled, a reference to a
nonconst class can be bound to a class rvalue of the same type or a derived
type thereof.

struct A {
A(int);
A operator=(A&);
A operator+(const A&);

6-5

C/C++ Reference Manual

h
main () {

Ab(1);

b=A(@) + A(2); /I Allowed as anachronism
}

Extensions Accepted in Normal C++ Mode

The following extensions are accepted in all modes (except when strict ANSI violations
are diagnosed as errors):

* Afriend declaration for a class may omit ttlass keyword:

class B;
class A{
friend B; // Should be "friend class B"

3

* Constants of scalar type may be defined within classes (this is an old form;
the modern form uses an initialized static data member):

class A {
const int size = 10;
int a[size];

I3

* |n the declaration of a class member, a qualified name may be used:

struct A {
int Azf(); // Should be int f();

%

* The preprocessing symbol plusplus is defined in addition to the stan-
dard__ cplusplus

* An extension is supported to allow an anonymous union to be introduced
into a containing class by typedef name — it needn’t be declared
directly, as with a true anonymous union. For example:

typedef union {

inti, j;
}U; /U identifies a reusable anonymous union.
class A {

U; /I Okay -- references to A::i and

/I A:;j are allowed.

3

In addition, the extension also permits “anonymous classes” and “anonymous
structs,” as long as they have no C++ features (e.g., no static data members or mem-
ber functions and no nonpublic members) and have no nested types other than other
anonymous classes, structs, or unions. For instance,

struct A {
struct {
inti, j;

6-6

C++ and C Dialects

h /I Okay -- references to A:i and
/I A:;j are allowed.

3

* The NCEG proposed extension for C (see below) is itself extended to allow
restrict as a type qualifier for reference and pointer-to-member types
and for nonstatic member functions. The set of C++ extensions is described
in J16/92-0057.

* An assignment operator declared in a derived class with a parameter type
matching one of its base classes is treated as a “default” assignment opera-
tor — that is, such a declaration blocks the implicit generation of a copy
assignment operator. (This is cfront behavior that is known to be relied
upon in at least one widely used library.) Here's an example:

struct A { };

struct B : public A {
B& operator=(A&);
h

By default, as well as in cfront-compatibility mode, there will be no implicit decla-
ration of B::operator=(const B&) , whereas in strict-ANSI mode
B::operator=(A&) is nota copy assignment operator aBd.opera-
tor=(const B&) is implicitly declared.

* Implicit type conversion between a pointer to extern "C" function
and a pointer to aextern "C++" function is permitted. Here's an
example:

extern "C" void f(); // f's type has extern "C"
linkage
void (*pf)() /I pf points to an extern
"C++" function

= &f; /I error unless implicit
conversion is allowed

It is disabled in strict-ANSI mode, unless you specify the option
--implicit_extern_c_type_conversion

* A“?” operator whose second and third operands are string literals or wide
string literals can be implicitly converted taliar * " or “wchar_t * ”~
(Recall that in C++ string literals areonst . There is a deprecated
implicit conversion that allows conversion of a string literal thar * 7,
dropping theconst . That conversion, however, applies only to simple
string literals. Allowing it for the result of a?” operation is an extension.)

char *p = x ? "abc" : "def";

* Except in strict-ANSI mode, default arguments may be specified for func-
tion parameters other than those of a top-level function declaration (e.g.,
they are accepted dppedef declarations and on pointer-to-function and
pointer-to-member-function declarations).

Except where noted, all of the extensions described in the C dialect section are also
allowed in C++ mode.

C/C++ Reference Manual

Extensions Accepted in Cfront 2.1 Compatibility Mode

The following extensions are accepted in cfront 2.1 compatibility mode in addition to the
extensions listed in the 2.1/3.0 section following (i.e., these are things that were corrected
in the 3.0 release of cfront):

* The dependent statement ofiéin, while , do-while , orfor is not con-
sidered to define a scope. The dependent statement may not be a declara-
tion. Any objects constructed within the dependent statement are destroyed
at exit from the dependent statement.

* Implicit conversion from integral types to enumeration types is allowed.

* A non-const member function may be called for @nst object. A
warning is issued.

* Aconst void * value may be implicitly converted towid * value,
e.g., when passed as an argument.

* When, in determining the level of argument match for overloading, a refer-
ence parameter is initialized from an argument that requires a non-class
standard conversion, the conversion counts as a user-defined conversion.
(This is an outright bug, which unfortunately happens to be exploited in the
NIH class libraries.)

* When a builtin operator is considered alongside overloaded operators in
overload resolution, the match of an operand of a builtin type against the
builtin type required by the builtin operator is considered a standard con-
version in all cases (e.g., even when the type is exactly right without con-
version).

* Areference to a nogonst type may be initialized from a value that is a
const -qualified version of the same type, but only if the value is the result
of selecting a member fromaonst class object or a pointer to such an
object.

* A castto an array type is allowed; it is treated like a cast to a pointer to the
array element type. A warning is issued.

* When an array is selected from a class, the type qualifiers on the class
object (if any) are not preserved in the selected array. (In the normal mode,
any type qualifiers on the object are preserved in the element type of the
resultant array.)

* An identifier in a function is allowed to have the same name as a parameter
of the function. A warning is issued.

* An expression of typ@oid may be supplied on the return statement in a
function with avoid return type. A warning is issued.

* A parameter of type ¢onst void *
delete ;itis treated as equivalent tedid *

is allowed on operator

”

* A period (“. ") may be used for qualification where:*“” should be used.
Only “:: " may be used as a global qualifier. Except for the global quali-
fier, the two kinds of qualifier operators may not be mixed in a given name
(i.e., you may sayi::B::C orA.B.C butnotA:B.C orA.B:C). A

6-8

C++ and C Dialects

period may not be used in a vacuous destructor reference nor in a qualifier
that follows a template reference sucthagd>::B .

* Cfront 2.1 does not correctly look up names in friend functions that are
inside class definitions. In this example function f should refer to the func-
tions and variables (e.g1 andal) from the class declaration. Instead,
the global definitions are used.

intal;
intel;
void f1();
class A{
intal;
void f1();
friend void f()
{
intil =al; // cfront uses global al
f1(); /I cfront uses global f1

}
h

Only the innermost class scope is (incorrectly) skipped by cfront as illustrated in the
following example.

intal;
int bl;
struct A {
static int al;
class B {
static int bl;
friend void f()
{
intil =al; // cfront uses A::al
intj1 = bl; // cfront uses global b1

}
I3
I3
* operator= may be declared as a nonmember function. (This is flagged
as an anachronism by cfront 2.1)

* Atype qualifier is allowed (but ignored) on the declaration of a constructor
or destructor. For example:

class A {
A() const; /I No error in cfront 2.1 mode

%
Extensions Accepted in Cfront 2.1 and 3.0 Compatibility Mode

The following extensions are accepted in both cfront 2.1 and cfront 3.0 compatibility
mode (i.e., these are features or problems that exist in both cfront 2.1 and 3.0):

6-9

C/C++ Reference Manual

* Type qualifiers on théhis parameter may to be dropped in contexts such
as this example:

struct A {
void f() const;

I
void (A:*fp)() = &A:;

This is actually a safe operation. A pointer te@nst function may be put into a
pointer to noneonst , because a call using the pointer is permitted to modify the
object and the function pointed to will actually not modify the object. The opposite
assignment would not be safe.

¢ Conversion operators specifying conversiondi are allowed.

* A nonstandard friend declaration may introduce a new type. A friend dec-
laration that omits the elaborated type specifier is allowed in default mode,
but in cfront mode the declaration is also allowed to introduce a new type
name.

struct A {
friend B;
h

* The third operand of th@ operator is a conditional expression instead of
an assignment expression as it is in the modern language.

* A reference to a pointer type may be initialized from a pointer value with-
out use of a temporary even when the reference pointer type has additional
type qualifiers above those present in the pointer value. For example,

int *p;
const int *&r = p; // No temporary used

* A reference may be initialized with a null.

* Because cfront does not check the accessibility of types, access errors for
types are issued as warnings instead of errors.

* When matching arguments of an overloaded functionp@ast variable
with value zero is not considered to be a null pointer constant. In general,
in overload resolution a null pointer constant must be spel®Ed6 be
considered a null pointer constant (e.§0; is not considered a null
pointer constant).

* |nside the definition of a class type, the qualifier in the declarator for a
member declaration is dropped if that qualifier names the class being
defined.

struct S {
void S::f(); // No warning with --microsoft_bugs

%

* An alternate form of declaring pointer-to-member-function variables is
supported, namely:

struct A {
void f(int);

6-10

C++ and C Dialects

static void sf(int);
typedef void A::T3(int); // nonstd typedef decl
typedef void T2(int); // std typedef

g
typedef void A::T(int); // nonstd typedef decl
T* pmf = &A:f; /l nonstd ptr-to-member decl

A:T2* pf = Az:sf; // std ptr to static mem decl
A:T3* pmf2 = &A::f, /I nonstd ptr-to-member
decl

whereT is construed to name a routine type for a nonstatic member function of class
Athat takes aint argument and returngid ; the use of such types is restricted

to nonstandard pointer-to-member declarations. The declaratiohgafipmf in
combination are equivalent to a single standard pointer-to-member declaration:

void (A:* pmf)(int) = &A:f;

A nonstandard pointer-to-member declaration that appears outside of a class decla-
ration, such as the declarationfis normally invalid and would cause an error to

be issued. However, for declarations that appear within a class declaration, such as
A::T3 , this feature changes the meaning of a valid declaration. cfront version 2.1
accepts declarations, suchBsven wherA is an incomplete type; so this case is
also excepted.

* Protected member access checking is not done when the address of a pro-
tected member is taken. For example:

class B { protected: int i; };

class D : public B { void mf(); };

void D::mf() {
int B::* pmil = &B::i; // error, OK in cfront mode
int D::* pmi2 = &D::i; // OK

}

Note that protected member access checking for other operations (i.e., everything
except taking a pointer-to-member address) is done in the normal manner.

* The destructor of a derived class may implicitly call the private destructor
of a base class. In default mode this is an error but in cfront mode it is
reduced to a warning. For example:

class A{
~A();
h
class B : public A {
} ~B0);

B:~B(){} // Error except in cfront mode

* When disambiguation requires deciding whether something is a parameter
declaration or an argument expression, the pattgpe-name-or-key-
word(identifier..) is treated as an argument. For example:

class A{A(); };
double d;

6-11

C/C++ Reference Manual

A x(int(d));
A(x2);

By defaultint(d) s interpreted as a parameter declaration (with redundant paren-
theses), and sois a function; but in cfront-compatibility modat(d) is an argu-
ment andX is a variable.

The declaratioA\(x2); is also misinterpreted by cfront. It should be interpreted as
the declaration of an object namg#, but in cfront mode is interpreted as a func-
tion style cast 0k2 to the typeA.

Similarly, the declaration
int xyz(int());

declares a function namegz , that takes a parameter of type “function taking no
arguments and returning @mt .” In cfront mode this is interpreted as a declaration
of an object that is initialized with the valirg() (which evaluates to zero).

* A named bit-field may have a size of zero. The declaration is treated as
though no name had been declared.

* Plain bit fields (i.e., bit fields declared with a type iot) are always
unsigned.

* The name given in an elaborated type specifier is permitted tayyeea
def name that is the synonym for a class name, e.g.,

typedef class A T;
class T *pa; /I No error in cfront mode

* No warning is issued on duplicate size and sign specifiers.
short short int i; /I No warning in cfront mode

* Virtual function table pointer update code is not generated in destructors
for base classes of classes without virtual functions, even if the base class
virtual functions might be overridden in a further-derived class. For exam-
ple:

struct A {
virtual void f() {}
AQ &
[A00
s,truct B : public A {
B0 {
~B() {f();} // Should call A::f according to ARM
12.7
I
struct C : public B {
void f() {}
e

In cfront compatibility modeB::~B callsC::f

6-12

C++ and C Dialects

* An extra comma is allowed after the last argument in an argument list, as
for example in

(1, 2,);

* A constant pointer-to-member-function may be cast to a pointer-to-func-
tion. A warning is issued.

struct A {int f();};
main () {

int (*p)();

p = (int (*)())A::f; // Okay, with warning
}

* Arguments of class types that allow bitwise copy construction but also have
destructors are passed by value (i.e., like C structures), and the destructor is
not called on the “copy.” In normal mode, the class object is copied into a
temporary, the address of the temporary is passed as the argument, and the
destructor is called on the temporary after the call returns. Note that
because the argument is passed differently (by value instead of by address),
code like this compiled in cfront mode is not calling-sequence compatible
with the same code compiled in normal mode. In practice, this is not much
of a problem, since classes that allow bitwise copying usually do not have
destructors.

* A union member may be declared to have the type of a class for which the
user has defined an assignment operator (as long as the class has no con-
structor or destructor). A warning is issued.

* When an unnamed class appears tpypedef declaration, théypedef
name may appear as the class name in an elaborated type specifier.

typedef struct { inti, j;} S;
struct S x; /I No error in cfront mode

* Two member functions may be declared with the same parameter types
when one is static and the other is nonstatic with a function qualifier.

class A {
void f(int) const;
static void f(int); /I No error in cfront
mode
h
* The scope of a variable declared in thee-init-statement is the
scope to which théor statement belongs.
int f(int i) {
for (intj=0;j<i;++){/*..*}
return j; /I No error in cfront
mode
}
* Function types differing only in that one is declarextern "C" and

the othemrextern "C++" can be treated as identical:

typedef void (*PF)();
extern "C" typedef void (*PCF)();

6-13

C/C++ Reference Manual

void f(PF);
void f(PCF);

Functions declarehline have internal linkage.
enumtypes are regarded as integral types.

An uninitializedconst object of non-POD class type is allowed even if its
default constructor is implicitly declared:

struct A { virtual void f(); inti; };
const A a;

A function parameter type is allowed to involve a pointer or reference to
array of unknown bounds.

If the user declares asperator= function in a class, but not one that can
serve as the defaubiperator= , and bitwise assignment could be done on
the class, a defautiperator= is not generated; only the user-written
operator= functions are considered for assignments (and therefore bit-
wise assignment is not done).

A member function declaration whose return type is omitted (and thus
implicitly int) and whose name is found to be that of a type is accepted if
it takes no parameters:

typedefint I;
struct S {
1(); // Accepted in Cfront mode (declares "int
S:10"
I(int); // Not accepted
h

C Dialect Accepted

The front end accepts the ANSI C language as defined by X3.159-1989.

The special comments recognized by the UNilx
[*VARARGS*/ (with or without a count of non-varying arguments), and

NOTREACHED/ — are also recognized by the front end.

C9X Extensions

Certain C language extensions that have been approved for inclusion in the forthcoming
C9X language definition can be enabled selectively. Sometimes these extensions had been
available in existing compilers under slightly different guises: options to enable some of
these C9X-like extensions are also provided. Not all of the C9X extensions are available in

C++ mode.

6-14

* Whennot compiling in strict ANSI C mode, end-of-line comments (using

/I as delimiter) are supported.

program —/*ARGSUSED?*/ ,

C++ and C Dialects

* The options --variadic_macros , --no_variadic_macros ,
--extended_variadic_macros and--no_extended_variadic_macros
control whether macros taking a variable number of arguments are recog-
nized. These are also available in C++ mode. The current default is to dis-
allow them.

Ordinary variadic macros (as included in the proposed C9X definition) are illus-
trated by the following example:

#define OVM(X, ...) X(__VA_ARGS_)

void f() { OVM(printf, "%s %d\n", "Three args for ",
1);}

/* Expands to: printf("%s %d\n", "Three args for ",
1)/

During expansion the special identifier VA_ARGS__ will be replaced by the
trailing arguments of the macro invocation. If variadic macros are enabled, this spe-
cial identifier can appear only in the replacement list of variadic macros.

Extended variadic macros (as implemented by certain pre-C9X compiler) use a
slightly different syntax and allow the name of the variadic parameter to be chosen
(instead of.. / VA ARGS):

#define EVM(x, args...) x(args)
void f() { EVM(printf, "%s %d\n", "Three args for ",
1)}

[* Same expansion as previous example. */

In addition, enabling extended variadic macros adds a special behavior to the token
pasting operator ## when it is followed by an empty or omitted macro argument: the
macro parameter or continuous sequence of non-whitespace characters (not part of a
macro parameter) preceding the operator is erased. Hence,

EVM("Hello World\n")
expands tgrintf("Hello World\n") and the extraneous comma is erased.

Enabling either kind of variadic macros also allows trailing macro arguments to be
omitted:

#define M(a, b)
void M(f); /* Becomes: void f(); No error or warning.
*/

¢ |f the --long_long option is specified,
¢ thelonglong andunsigned long long types are accepted,;

* integer constants suffixed . are given the typtong long , and
those suffixed byJLL are given the typensigned long long
(any of the suffix letters may be written in lower case);

* the specifiesolld is recognized iprintf andscanf formatting
strings; and

* thelong long types are accommodated in the usual arithmetic
conversions.

6-15

C/C++ Reference Manual

* An extension is supported to allovestrict as a type qualifier for
object pointer types and function parameter arrays that decay to pointers.
Its presence is recorded in the IL so that back ends can perform optimiza-
tions that would otherwise be prevented because of possible aliasing. This
extension follows the NCEG proposal for incorporatiegtrict into C
(see X3J11.1 Technical Report 2).

* Designators may be accepted in initializers for aggregates. Designators are
notallowed in C++ mode however. See also command line optioesg-

nators , --no_designators , --extended_designators and
--no_extended_designators . Currently, they are disabled by default.
When--designators is specified, designators of the forms and[k] are
accepted. They can be concatenated to reach nested aggregate elements. For exam-
ple:

struct X { double a; int b[10] } x
{b={1,[5]=2}, .b[3]=1,.a=420};

In addition, when-extended_designators is used, designators of the form
x: and[m ... n] are accepted and the assignmenttbken becomes optional
after array element designators. Field designators of the formannot immedi-
ately be followed by an assignment tokeh ¢r another designator. Examples:

struct X { double a; int b[10] } x
{b:{1,[5...9]=2}, .b[7]1,a:42.0};
struct Y 'y = { b:[3] /* Error */ = 7,
a: =/*Error */ 42.0 };

Designators permit multiple initializations of the same subobject: only the last value
is retained, but side-effects of prior initializing expressions do occur.

A future release will enable these options by default.

ANSI C Extensions

The following extensions are accepted:

¢ A translation unit (input file) can contain no declarations.
* Comment text can appear at the ends of preprocessing directives.

* _ ALIGNOF__ is similar tosizeof , but returns the alignment require-
ment value for a type, at if there is no alignment requirement. It may be
followed by a type or expression in parentheses:

__ALIGNOF_ (type)
__ALIGNOF_ (expression)

The expression in the second form is not evaluated.

* _INTADDR__(expressioh scans the enclosed expression as a constant
expression, and converts it to an integer constant (it is used infthe
setof macro).

6-16

C++ and C Dialects

Bit fields may have base types that ameums or integral types besides
int andunsigned int . This matches A.6.5.8 in the ANSI Common
Extensions appendix.

The last member of atruct may have an incomplete array type. It may
not be the only member of the struct (otherwise, the struct would have zero
size). (Allowed also in C++, but only when the structure is C-like.)

A file-scope array may have an incompletieuct , union , or enum

type as its element type. The type must be completed before the array is
subscripted (if it is), and by the end of the compilation if the array is not
extern .In C++, an incompletelass is also allowed.

Static functions may be declared in function and block scopes. Their decla-
rations are moved to the file scope.

enumtags may be incomplete: one may define the tag name and resolve it
(by specifying the brace-enclosed list) later.

The values of enumeration constants may be given by expressions that
evaluate to unsigned quantities that fit in timesigned int range but
not in theint range. A warning is issued for suspicious cases.

/* When ints are 32 bits: */

enum a {w =-2147483648}; /* No warning */
enum b {x = 0x80000000}; /* No warning */

enum c {y = 0x80000001}; /* No warning */

enum d {z = 2147483649}; /* Warning */

An extra comma is allowed at the end of amum list. A remark is issued
except inpcc mode.

The final semicolon preceding the closipgof a struct or union specifier
may be omitted. A warning is issued excepgpée mode.

A label definition may be immediately followed by a right brace. (Nor-
mally, a statement must follow a label definition.) A warning is issued.

An empty declaration (a semicolon with nothing before it) is allowed. A
remark is issued.

An initializer expression that is a single value and is used to initialize an
entire static array, struct, or union need not be enclosed in braces. ANSI C
requires the braces.

In an initializer, a pointer constant value may be cast to an integral type if
the integral type is big enough to contain it.

The address of a variable witlegister ~ storage class may be taken. A
warning is issued.

In an integral constant expression, an integer constant may be cast to a
pointer type and then back to an integral type.

In duplicate size and sign specifiers (eshort short or unsigned
unsigned) the redundancy is ignored. A warning is issued.

long float is accepted as a synonym @muble .

6-17

C/C++ Reference Manual

* Benign redeclarations dfpedef names are allowed. That is, a typedef
name may be redeclared in the same scope as the same type. A warning is
issued.

* Dollar signs can be accepted in identifiers.

* Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. ThusPx123e+1 is scanned as three tokens instead
of one invalid token.

* Assignment and pointer difference are allowed between pointers to types
that are interchangeable but not identical, for examyhsjgned char
* andchar * . This includes pointers to same-sized integral types (e.g.,
typically,int * andlong *). A warning is issued except jocc mode.
Assignment of a string constant to a pointer to any kind of character is
allowed without a warning.

* Assignment of pointer types is allowed in cases where the destination type
has added type qualifiers that are not at the top level (:ng.}* to
const int **). Comparisons and pointer difference of such pairs of
pointer types are also allowed. A warning is issued.

* |n operations on pointers, a pointenttoid is always implicitly converted
to another type if necessary, and a null pointer constant is always implicitly
converted to a null pointer of the right type if necessary. In ANSI C, some
operators allow such things, and others (generally, where it does not make
sense) do not allow them.

* Pointers to different function types may be assigned or compared for equal-
ity (==) or inequality (=) without an explicit type cast. A warning is
issued. This extension is not allowed in C++ mode.

* A pointer tovoid may be implicitly converted to or from a pointer to a
function type.

* The#assert preprocessing extensions of AT&T System V release 4 are
allowed. These allow definition and testing of predicate names. Such
names are in a name space distinct from all other names, including macro
names. A predicate name is given a definition by a preprocessing directive
of the form

#assert name
#assert namd token-sequenge

which defines the predicateame In the first form, the predicate is not given a
value. In the second form, it is given the vatioleen-sequence

Such a predicate can be tested #ifa expression, as follows
#name token-sequenge

which has the value 1 if #assert of thatnamewith thattoken-sequencleas
appeared, and 0 otherwise. A given predicate may be given more than one value at a
given time.

A predicate may be deleted by a preprocessing directive of the form

#unassert name

6-18

K&R/pcc Mode

C++ and C Dialects

#unassert naméd token-sequenge

The first form removes all definitions of the indicated predicate name; the second
form removes just the indicated definition, leaving any others there may be.

An extension is supported to allow constructs similar to C++ anonymous
unions, including the following:

* not only anonymous unions but also anonymous structs are allowed
— that is, their members are promoted to the scope of the containing
struct and looked up like ordinary members;

e they can be introduced into the containing struct byypedef
name — they needn’t be declared directly, as with true anonymous
unions; and

¢ atag may be declared (C mode only).
Among the restrictions: the extension only applies to constructs within structs.

External entities declared in other scopes are visible. A warning is issued.

void f1(void) { extern void f(); }
void f2() { f(); /* Using out of scope declaration */

}

A non-lvalue array expression is converted to a pointer to the first element
of the array when it is subscripted or similarly used.

In the following areas considered “undefined behavior” by the ANSI C standard, the front
end does the following:

* Adjacent wide and non-wide string literals are not concatenated unless

wchar_t andchar are the same type. (In C++ mode, whechar_t is
a keyword, adjacent wide and non-wide string literals are never concate-
nated.)

In character and string escapes, if the character following timas no spe-
cial meaning, the value of the escape is the character itself. " T$lus=
"s" . A warning is issued.

A struct that has no named fields but at least one unnamed field is
accepted by default, but a diagnostic (a warning or error) is issued in strict
ANSI C mode.

Whenpcc mode is specified, the front end accepts the traditional C language defined by
The C Programming Languagérst edition, by Kernighan and Ritchie (K&R), Pren-
tice-Hall, 1978. In addition, it provides almost complete compatibility with the Reiser
cpp and Johnsopcc widely used as part of UNIX systems; since there is no documenta-
tion of the exact behavior of those programs, complete compatibility cannot be guaran-

6-19

C/C++ Reference Manual

In general, when compiling ipcc mode, the front end attempts to interpret a source pro-
gram that is valid tgcc in the same way thgicc would. However, ANSI features that
do not conflict with this behavior are not disabled.

In some cases whepec allows a highly questionable construct, the front end will accept
it but give a warning, wherpcc would be silent (for exampléx, a degenerate hexadec-
imal number, is accepted as zero).

The known cases where the front end is not compatiblepeithare the following:

* Token pasting is not done outside of macro expansions (i.e., in the primary

source line) when two tokens are separated only by a comment. That is,
a/**/b is not considered to bab. Thepcc behavior in that case can be
gotten by preprocessing to a text file and then compiling that file.

The textual output from preprocessing is also equivalent but not identical: the blank
lines and white space will not be exactly the same.

pcc will consider the result of &: operator to be an Ivalue if the first
operand is constant and the second and third operands are compatible Ival-
ues. This front end will not.

pcc mis-parses the third operand oPa operator in a way that some pro-
grams exploit:

i?j:k+=1
is parsed bycc as
i?j:(k+=1)

which is not correct, since the precedencesfis lower than the precedence?f .
This front end will generate an error for that case.

lint recognizes the keywords for its special comments anywhere in a
comment, regardless of whether or not they are preceded by other text in
the comment. The front end only recognizes the keywords when they are
the first identifier following an optional initial series of blanks and/or hori-
zontal tabslint also recognizes only a single digit of tMARARGS
count; the front end will accumulate as many digits as appear.

The differences ipcc mode relative to the default ANSI mode are as follows:

6-20

* The keywordssigned , const , andvolatile are disabled, to avoid

problems with items declared with those names in old-style code. Those
keywords were ANSI C inventions. The other non-K&R keyworelsym
andvoid) are judged to have existed already in code and are not disabled.

Declarations of the form

typedef some-typeoid,;

are ignored.

* Assignment is allowed between pointers and integers, and between incom-

patible pointer types, without an explicit cast. A warning is issued.

C++ and C Dialects

A field selection of the fornp-> field is allowed even i does not point to
astruct orunion that containdield. p must be a pointer or an integer.
Likewise,x. fieldis allowed even ik is not astruct orunion that con-
tainsfield. x must be an Ivalue. For both cases, all definitiondi@fl as a
field must have the same offset within thehuct orunion .

Overflows detected while folding signed integer operations on constants
will cause warnings rather than errors. Usually this should be set to match
the desired target machine behavior on integer operations in C.

Integral types with the same representation (size, signedness, and align-
ment) will be considered identical and may be used interchangeably. For
example, this means thatt andlong will be interchangeable if they
have the same size.

A warning will be issued for & applied to an array. The type of such an
operation is “address of array element” rather than “address of array”.

For the shift operators< and >>, the usual arithmetic conversions are
done, the right operand is convertednb , and the result type is the type

of the left operand. In ANSI C, the integral promotions are done on the two
operands, and the result type is the type of the left operand. The effect of
this difference is that, ipcc mode, dong shift count will force the shift

to be done abng .

When preprocessing output is generated, the line-identifying directives will
have thepcc form instead of the ANSI form.

String literals will not be shared. Identical string literals will cause multiple
copies of the string to be allocated.

sizeof may be applied to bit fields; the size is that of the underlying type
(e.g.,unsignedint).

Ivalues cast to a type of the same size remain Ivalues, except when they
involve a floating-point conversion.

When a function parameter list begins withtypedef identifier, the
parameter list is considered prototyped only if tipedef identifier is
followed by something other than a comma or right parenthesis:

typedef int t;

intf(t) /> Old-style list */

intg(tx){} /*Prototyped list, parameter x of
type t */

That is, function parameters are allowed to have the same nangsealef s. In
the normal ANSI mode, of course, any parameter list that begins withedef
identifier is considered prototyped, so the first example above would give an error.

The names of functions and of external variables are always entered at the
file scope.

A function declaredstatic , used, and never defined is treated as if its
storage class weextern

A file-scope array that has an unspecified storage class and remains incom-
plete at the end of the compilation will be treated as if its storage class is

6-21

C/C++ Reference Manual

6-22

extern (in ANSI mode, the number of elements is changed to 1, and the
storage class remains unspecified).

The empty declaration

struct x;
will not hide an outer-scope declaration of the same tag.

In a declaration of a member ofsruct or union , no diagnostic is
issued for omitting the declarator list; nevertheless, such a declaration has
no effect on the layout. For example,

struct s {char a; int; char b[2];} v;
[* sizeof(v) is 3 */

enums are always given typmt . In ANSI mode, smaller integral types
will be used if possible.

No warning is generated for a storage specifier appearing in other than the
first position in a list of specifiers (asiit static).

short ,long , andunsigned are treated as “adjectives” in type specifi-
ers, and they may be used to moditygedef type.

A “plain” char is considered to be the same assigned char unless
modified by command-line options. In ANSI C, “plairchar is a third
type distinct from botlsigned char andunsigned char

Free-standing tag declarations are allowed in the parameter declaration list
for a function with old-style parameters.

float function parameters are promoteddmuble function parameters.
float functions are promoted tiouble functions.

Declaration specifiers are allowed to be completely omitted in declarations
(ANSI C allows this only for function declarations). Thus

I
declares as annt variable. A warning is issued.
All float operations are done dsuble .
__STDC__is left undefined.

Extra spaces to prevent pasting of adjacent confusable tokens are not gen-
erated in textual preprocessing output.

The first directory searched for include files is the directory containing the
file containing thettinclude instead of the directory containing the pri-
mary source file.

Trigraphs are not recognized.

Comments are deleted entirely (instead of being replaced by one space) in
preprocessing output.

Ox is accepted as a hexadecifalvith a warning.

C++ and C Dialects

1E+ is accepted as a floating-point constant with an expone@t wfith a
warning.

The compound assignment operators may be written as two tokens (e.g.,
+= may be writtenr =).

The digits8 and9 are allowed in octal constants.

A warning rather than an error is issued for integer constants that are larger
than can be accommodated in amsigned long . The value is trun-
cated to an acceptable number of low-order bits.

The types of large integer constants are determined according to the K&R
rules (they won't baunsigned in some cases where ANSI C would
define them that way). Integer constants with apparent values larger than
LONG_MAXre typed asong and are also marked as “non-arithmetic”,
which suppresses some warnings when using them.

The escapka (alert) is not recognized in character and string constants.

Macro expansion is done differently. Arguments to macros are not
macro-expanded before being inserted into the expansion of the macro.
Any macro invocations in the argument text are expanded when the macro
expansion is rescanned. With this method, macro recursion is possible and
is checked for.

Token pasting inside macro expansions is done differently. End-of-token
markers are not maintained, so tokens that abut after macro substitution
may be parsed as a single token.

Macro parameter names inside character and string constants are recog-
nized and substituted for.

Macro invocations having too many arguments are flagged with a warning
rather than an error. The extra arguments are ignored.

Macro invocations having too few arguments are flagged with a warning
rather than an error. A null string is used as the value of the missing param-
eters.

Extra#else s (after the first has appeared in#ifi block) are ignored,
with a warning.

Expressions in awitch statement are cast tnt ; this differs from the
ANSI C definition in that dong expression is (possibly) truncated.

The promotion rules for integers are differennsigned char and
unsigned short are promoted tansigned int

An identifier in a function is allowed to have the same name as a parameter
of the function. A warning is issued.

6-23

C/C++ Reference Manual

Extensions Accepted in SVR4 Compatibility Mode

6-24

The following extensions are accepted in SVR4 C compatibility mode:

Macro invocations having too many arguments are flagged with a warning
rather than an error. The extra arguments are ignored.

Macro invocations having too few arguments are flagged with a warning
rather than an error. A null string is used as the value of the missing param-
eters.

The sequencé&*/ in a macro definition is treated as equivalent to the
token-pasting operatai .

Ivalues cast to a type of the same size remain Ivalues, except when they
involve a floating-point conversion.

Assignment is allowed between pointers and integers, and between incom-
patible pointer types, without an explicit cast. A warning is issued.

A field selection of the fornp-> field is allowed even i does not point to
astruct orunion that containdield. p must be a pointer. Likewise,
x. fieldis allowed even ik is not astruct orunion that containdield. x
must be an Ivalue. For both cases, all definitiondield as a field must
have the same offset within theiruct orunion .

In an integral constant expression, an integer constant may be cast to a
pointer type and then back to an integral type.

Incompatible external object declarations are allowed if the object types
share the same underlying representation.

Certain incompatible function declarations are allowed. A warning is
issued.

typedef unsigned int size_t;
extern size_t strlen(const char *);
extern int strlen(); /* Warning */

7
Special Features of C++

OV VB . o o ottt e e 7-1
NameSPaCe SUPPOIt. . . ot e 7-1
Template Instantiation e 7-3
Automatic Instantiation 7-4
Instantiation MOAESt 7-7
Instantiation #pragma Directives i 7-8
Implicit InClusion e 7-9
Automatic Instantiation in the Program Development Environment. 7-10
Predefined MacCros. oo e 7-10
Pragmas . . . 12, 7-
Edison Defined Pragmas. e 7-12
Concurrent Defined Pragmasot e 7-13
Source Listing Controls. 7-14
Optimization DireCtives.o e e e 7-15
Data Alignment Control Directives.t 7-16
Data AlignmentRules i 7-16
#pragma align. e 7-17
#pragmamin_align 7-17
Miscellaneous DIreCtives.ot 7-18
BPragma ONCE . . o ot ettt e e 7-18
#pragmaident. 7-18
#pragmaweak e 7-19
Template Instantiation Pragmast .. 7-19
Precompiled Headers. i e 7-19
Automatic Precompiled Header Processing., 7-19
Manual Precompiled Header Processing i, 7-22
Other Ways for Users to Control Precompiled Headers. 7-23
Performance ISSUES. 7-23
INtriNSIC FUNCHIONSo e e e e 7-24
Environment Variables. 7-25
DIagNoStiC MESSAgES . . . o o vt ittt 7-26
Termination MESSaAgES v v ittt ettt 7-27
Response to Signals. e 7-28
EXit Status . . .o 28. 7-

Finding Include Files

PowerMAX OS Real-Time Guide

7
Special Features of C++

Overview

C++ provides powerful programming constructs. This chapter discusses the Concurrent
C++ compiler’s support of the following features:

* Namespace

* Templates
- Automatic Instantiation
- Instantiation Modes
- Instantiation #pragma Directives
- Implicit Inclusion

* Predefined Macros

* Pragmas

* Precompiled Headers

* |Intrinsic Functions

* Environment Variables

* Diagnostic Messages

* Termination Messages

* Response to Signals

¢ Exit Status

* Finding Include Files

Namespace Support

Namespaces are enabled by default except in the cfront modes. The command-line op ions
--namespaces and--no_namespaces can be used to enable or disable the fea
tures.

Name lookup during template instantiations now does something that approximates the
two-phase lookup rule of the standard. When a name is looked up as part of a template

7-1

C/C++ Reference Manual

instantiation but is not found in the local context of the instantiation, it is looked up in a
synthesized instantiation context. The front end follows the new instantiation lookup rules
for namespaces as closely as possible in the absence of a complete implementation of the
new template name binding rules. Here’s an example:

namespace N {

int g(int);

intx =0;

template <class T> struct A {
T (T t) { return g(t); }
Tf() {return x; }
h
}
namespace M {

int x = 99;

double g(double);

N::A<int> ai;

inti = ai.f(0); /I N:z:A<int>::f(int) calls N::g(int)

inti2 = ai.f(); /I N::A<int>::f() returns O (= N::x)

N::A<double> ad,;

double d = ad.f(0); // N::A<double>::f(double) calls
M::g(double)

double d2 = ad.f(); // N::A<double>::f() also returns 0 (=
N::x)
}

The lookup of names in template instantiations does not conform to the rules in the stan-

dard in the following respects:

* Although only names from the template definition context are considered
for names that are not functions, the lookup is not limited to those names
visible at the point at which the template was defined.

¢ Functions from the context in which the template was referenced are con-
sidered for all function calls in the template. Functions from the referenc-
ing context should only be visible for “dependent” function calls.

For details of the algorithm implemented, see the Symbol Table chapter (in particular the
section entitled “Instantiation Context Lookup”).

The lookup rules for overloaded operators are implemented as specified by the standard,
which means that the operator functions in the global scope overload with the operator
functions declared extern inside a function, instead of being hidden by them. The old oper-
ator function lookup rules are used when namespaces are turned off. This means a pro-
gram can have different behavior, depending on whether it is compiled with namespace

7-2

support enabled or disabled:

struct A{};
A operator+(A, double);
void f() {

Aal,

A operator+(A, int);

al +1.0; /I calls operator+(A, double)
with
} /I namespaces enabled but
otherwise

/I calls operator+(A, int);

Special Features of C++
Template Instantiation

The C++ language includes the concepteshplatesA template is a description of a class

or function that is a model for a family of related classes or functiofar example, one

can write a template for §tack class, and then use a stack of integers, a stack of floats,
and a stack of some user-defined type. In the source, these might be written
Stack<int> , Stack<float> , andStack<X> . From a single source description of
the template for a stack, the compiler can créastantiationsof the template for each of

the types required.

The instantiation of a class template is always done as soon as it is needed in a compila-
tion. However, the instantiations of template functions, member functions of template
classes, and static data members of template classes (hereafter referred to as template enti-
ties) are not necessarily done immediately, for several reasons:

* One would like to end up with only one copy of each instantiated entity
across all the object files that make up a program. (This of course applies to
entities with external linkage.)

* The language allows one to writespecializatiorof a template entity, i.e.,
a specific version to be used in place of a version generated from the tem-
plate for a specific data type. (One could, for example, write a version of
Stack<int> , or of justStack<int>::push , that replaces the tem-
plate-generated version; often, such a specialization provides a more effi-
cient representation for a particular data type.) Since the compiler cannot
know, when compiling a reference to a template entity, if a specialization
for that entity will be provided in another compilation, it cannot do the
instantiation automatically in any source file that references it. (The mod-
ern C++ language requires that a specialization be declared in every compi-
lation in which it is used, but for compatibility with existing code and older
compilers the Concurrent compiler does not require that in some modes.
See the command-line option
--no_distinct_template_signatures)

* The language also dictates that template functions that are not referenced
should not be compiled, that, in fact, such functions might contain semantic
errors that would prevent them from being compiled. Therefore, a refer-
ence to a template class should not automatically instantiate all the member
functions of that class.

(It should be noted that certain template entities are always instantiated when used, e.g.,
inline functions.)

From these requirements, one can see that if the compiler is responsible for doing all the
instantiations automatically, it can only do so on a program-wide basis. That is, the com-
piler cannot make decisions about instantiation of template entities until it has seen all the
source files that make up a complete program.

The C++ front end provides an instantiation mechanism that does automatic instantiation
at link time. For cases where the programmer wants more explicit control over instantia-

1. Since templates are descriptions of entities (typically, classes) that are parameterizable according to the types they operate upon,
they are sometimes callpdrameterized types

7-3

C/C++ Reference Manual

tion, the front end also provides instantiation modes and instantiation pragmas, which can
be used to exert fine-grained control over the instantiation process. The Program Develop-
ment Environment (PDE) tools handle template instantiation automatically, but provide
tools for manipulating how the instantiation happens.

Automatic Instantiation

The goal of an automatic instantiation mode is to provide painless instantiation. The pro-

grammer should be able to compile source files to object code, then link them and run the
resulting program, and never have to worry about how the necessary instantiations get
done.

In practice, this is hard for a compiler to do, and different compilers use different auto-
matic instantiation schemes with different strengths and weaknesses:

* AT&T/USL/Novell/SCO’scfront product saves information about each file

it compiles in a special directory callgitrepository . It instantiates
nothing during normal compilations. At link time, it looks for entities that
are referenced but not defined, and whose mangled names indicate that
they are template entities. For each such entity, it consultstteposi-

tory information to find the file containing the source for the entity, and it
does a compilation of the source to generate an object file containing object
code for that entity. This object code for instantiated objects is then com-
bined with the “normal” object code in the link step.

The programmer usingfront must follow a particular coding convention: all tem-
plates must be declared irh*” files, and for each such file there must be a corre-
sponding “C " file containing the associated definitions. The compiler is never told
about the ‘C " files explicitly; one does not, for example, compile them in the nor-
mal way. The link step looks for them when and if it needs them, and does so by tak-
ing the “h " file name and replacing its suffix.

This scheme has the disadvantage that it does a separate compilation for each instan-
tiated function (or, at best, one compilation for all the member functions of one
class). Even though the function itself is often quite small, it must be compiled along
with the declarations for the types on which the instantiation is based, and those dec-
larations can easily run into many thousands of lines. For large systems, these com-
pilations can take a very long time. The link step tries to be smart about recompiling
instantiations only when necessary, but because it keeps no fine-grained dependency
information, it is often forced to “recompile the world” for a minor change infa™

file. In addition,cfront has no way of ensuring that preprocessing symbols are set
correctly when it does these instantiation compilations, if preprocessing symbols are
set other than on the command line.

Borland’s C++ compiler instantiates everything referenced in a compila-
tion, then uses a special linker to remove duplicate definitions of instanti-
ated functions.

2. The actual implementation allows for several different suffixes and provides a command-line option to change the suffixes

sought.

7-4

Special Features of C++

The programmer using Borland’s compiler must make sure that every compilation
sees all the source code it needs to instantiate all the template entities referenced in
that compilation. That is, one cannot refer to a template entity in a source file if a
definition for that entity is not included by that source file. In practice, this means
that either all the definition code is put directly in thé ™ files, or that each ‘h ”

file includes an associatedC” (actually, “.CPP”) file.

This scheme is straightforward, and works well for small programs. For large sys-

tems, however, it tends to produce very large object files, because each object file
must contain object code (and symbolic debugging information) for each template

entity it references.

Concurrent’s approach is a little different. It requires that, for each instantiation, there is
some (normal, top-level, explicitly-compiled) source file that contains the definition of the
template entity, a reference that causes the instantiation, and the declarations of any types
required for the instantiatioh. This requirement can be met in various ways:

* The Borland convention: eachit'” file that declares a template entity also
contains either the definition of the entity or includes another file contain-
ing the definition.

¢ Implicit inclusion: when the compiler sees a template declaration in & “
file and discovers a need to instantiate that entity, it is given permission to
go off looking for an associated definition file having the same base name
and a different suffix, and it implicitly includes that file at the end of the
compilation. This method allows most programs written usingdfinent
convention to be compiled with Concurrent’s approach. See the section on
implicit inclusion.

* The ad hoc approach: the programmer makes sure that the files that define
template entities also have the definitions of all the available types, and
adds code or pragmas in those files to request instantiation of the entities
there.

The EDG automatic instantiation method works as folldws:

1. The first time the source files of a program are compiled, no template enti-
ties are instantiated. However, template information files (with, by default,
a “ti " suffix) are generated and contain information about things that
could have been instantiated in each compilation. When compilation is
done through the PDE tools or NightBench, the template information is
placed in the environment’s database.

2. When the object files are linked together, a program callegrdenkeris
run. It examines the object files, looking for references and definitions of
template entities, and for the added information about entities that could be
instantiated.

3. Isn't this always the case? No. Suppose that file A contains a definition of eladsa reference ®tack<X>::push , and
that file B contains the definition for the member functmrsh . There would be no file containing both the definitiorpoih
and the definition oX.

4. It should be noted that automatic instantiation, more than most aspects of the C++ language, requires environmental support
outside of the compiler. This is likely to be operating-system and object-format dependent.

7-5

C/C++ Reference Manual

7-6

3. If the prelinker finds a reference to a template entity for which there is no
definition anywhere in the set of object files, it looks for a file that indicates
that it could instantiate that template entity. When it finds such a file, it
assigns the instantiation to it. The set of instantiations assigned to a given
file is recorded in an associated instantiation request file (with, by default, a
“ii " suffix). When compilation is done through the PDE tools or Night-
Bench, the instantiation requests are recorded in the environment’s data-
base.

4. The prelinker then executes the compiler again to recompile each file for
which the instantiation request file was changed. The original compilation
command-line options (saved in the template information file) are used for
the recompilation.

5. When the compiler compiles a file, it reads the instantiation request file or
consults the PDE's database for that file and obeys the requests therein. It
produces a new object file containing the requested template entities (and
all the other things that were already in the object file). The compiler also
receives a definition list file, which lists all the instantiations for which def-
initions already exist in the set of object files. If during the compilation the
compiler has the opportunity to instantiate a referenced entity that is not on
that list, it goes ahead and does the instantiation. It passes back to the
prelinker (in the definition list file) a list of the instantiations that it has
“adopted” in this way, so the prelinker can assign them to the file. This
adoption process allows rapid instantiation and assignment of instantiations
referenced from new instantiations, and reduces the need to recompile a
given file more than once during the prelinking process.

6. The prelinker repeats steps 3-5 until there are no more instantiations to be
adjusted.

7. The object files are linked together.

Once the program has been linked correctly, the instantiation request files contain a com-
plete set of instantiation assignments. From then on, whenever source files are recompiled,
the compiler will consult the instantiation request files and do the indicated instantiations
as it does the normal compilations. That means that, except in cases where the set of
required instantiations changes, the prelink step from then on will find that all the neces-
sary instantiations are present in the object files and no instantiation assignment adjust-
ments need be done. That’s true even if the entire program is recompiled.

If the programmer provides a specialization of a template entity somewhere in the pro-
gram, the specialization will be seen as a definition by the prelinker. Since that definition
satisfies whatever references there might be to that entity, the prelinker will see no need to
request an instantiation of the entity. If the programmer adds a specialization to a program
that has previously been compiled, the prelinker will notice that too and remove the
assignment of the instantiation from the proper instantiation request file.

The instantiation request files should not, in general, require any manual intervention. One
exception: if a definition is changed in such a way that some instantiation no longer com-
piles (it gets errors), and at the same time a specialization is added in another file, and the
first file is being recompiled before the specialization file and is getting errors, the instanti-
ation request file for the file getting the errors must be deleted manually to allow the
prelinker to regenerate it. Should such a situation arise in the PDE, usedbelve

with the-u option to manually remove the association between a template instantiation
and a compilation unit.

Special Features of C++

If the prelinker changes an instantiation assignment, it will issue a message like

C++ prelinker: A<int>::f() assigned to file test.o
C++ prelinker: executing: /edg/bin/eccp -c test.c

The automatic instantiation scheme can coexist with partial explicit control of instantia-
tion by the programmer through the use of pragmas or command-line specification of the
instantiation mode. See the following sections.

Instantiations are normally generated as part of the object file of the translation unit in
which the instantiations are performed. But when “one instantiation per object” mode is
specified, each instantiation is placed in its own object file. One-instantiation-per-object
mode is useful when generating libraries that need to include copies of the instances refer-
enced from the library. If each instance is not placed in its own object file, it may be
impossible to link the library with another library containing some of the same instances.
Without this feature it is necessary to create each individual instantiation object file using
the manual instantiation mechanism.

The automatic instantiation mode can be turned on or off using the

--auto_instantiation and--no_auto_instantiation command-line
options. If automatic instantiation is turned off, the template information file is not gener-
ated.

Instantiation Modes

Normally, when a file is compiled, no template entities are instantiated (except those
assigned to the file by automatic instantiation). The overall instantiation mode can, how-
ever, be changed by a command line option:

-tnone
Do not automatically create instantiations of any template entities.
This is the default. It is also the usually appropriate mode when auto-
matic instantiation is done.

-tused
Instantiate those template entities that were used in the compilation.
This will include all static data members for which there are template
definitions.

-tall
Instantiate all template entities declared or referenced in the compila-
tion unit. For each fully instantiated template class, all of its member
functions and static data members will be instantiated whether or not
they were used. Nonmember template functions will be instantiated
even if the only reference was a declaration.

-tlocal
Similar to-tused except that the functions are given internal link-
age. This is intended to provide a very simple mechanism for those
getting started with templates. The compiler will instantiate the func-
tions that are used in each compilation unit as local functions, and the
program will link and run correctly (barring problems due to multiple
copies of local static variables.) However, one may end up with many

C/C++ Reference Manual

copies of the instantiated functions, so this is not suitable for produc-
tion use.-tlocal can not be used in conjunction with automatic
template instantiation. If automatic instantiation is enabled by

default, it will be disabled by thetlocal option. If automatic
instantiation is not enabled by default, usettdcal and-T isan
error.

In the case where theecp script is given a single file to compile and link, e.g.,

eccp t.c

the compiler knows that all instantiations will have to be done in the single source file.

Therefore, it uses thtused mode and suppresses automatic instantiation.

Instantiation #pragma Directives

Instantiation pragmas can be used to control the instantiation of specific template entities

or sets of template entities. There are three instantiation pragmas:

* Theinstantiate pragma causes a specified entity to be instantiated.

* The do_not_instantiate pragma suppresses the instantiation of a
specified entity. It is typically used to suppress the instantiation of an entity
for which a specific definition will be supplied.

* Thecan_instantiate pragma indicates that a specified entity can be
instantiated in the current compilation, but need not be; it is used in con-
junction with automatic instantiation, to indicate potential sites for instanti-
ation if the template entity turns out to be requﬁed.

The argument to the instantiation pragma may be:
a template class namsint>
a template class declaratdass A<int>
a member function name&int>:.f
a static data member nafw@nt>::i
a static data declaration A<int>::i
a member function declaratiooid A<int>::f(int, char)
a template function declaraticimar* f(int, float)

A pragma in which the argument is a template class name (&gnt> or class

A<int>) is equivalent to repeating the pragma for each member function and static data
member declared in the class. When instantiating an entire class a given member function

or static data member may be excluded usingdhenot_instantiate pragma. For
example,
5. At the moment, thean_instantiate pragma ends up forcing the instantiation of the template instance even if it isn't refer-

enced somewhere else in the program; that's a weakness of the initial implementation which we expect to address.

7-8

Implicit Inclusion

Special Features of C++

#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

The template definition of a template entity must be present in the compilation for an
instantiation to occur. If an instantiation is explicitly requested by use ahttanti-

ate pragma and no template definition is available or a specific definition is provided, an
error is issued.

template <class T> void f1(T); // No body provided
template <class T> void g1(T); // No body provided
void fi(int) {} // Specific definition
void main()
{

int i

double d;

f1(i);

fi(d);

91();

g1(d);
}

#pragma instantiate void f1(int) // error - specific definition
#pragma instantiate void g1(int) // error - no body provided

fl(double) andgl(double) will not be instantiated (because no bodies were sup-
plied) but no errors will be produced during the compilation (if no bodies are supplied at
link time, a linker error will be produced).

A member function name (e.cA<int>::f) can only be used as a pragma argument if it
refers to a single user defined member function (i.e., not an overloaded function). Com-
piler-generated functions are not considered, so a name may refer to a user defined con-
structor even if a compiler-generated copy constructor of the same name exists. Over-
loaded member functions can be instantiated by providing the complete member function
declaration, as in

#pragma instantiate char* A<int>::f(int, char*)

The argument to an instantiation pragma may not be a compiler-generated function, an
inline function, or a pure virtual function.

When implicit inclusion is enabled, the front end is given permission to assume that if it
needs a definition to instantiate a template entity declared ih & file it can implicitly
include the correspondingC " file to get the source code for the definition. For example,

if a template entityABC::f is declared in filxyz.h , and an instantiation &BC::f is
required in a compilation but no definition &BC::f appears in the source code pro-
cessed by the compilation, the compiler will look to see if aXije.C exists, and if so it

will process it as if it were included at the end of the main source file.

To find the template definition file for a given template entity the front end needs to know
the full path name of the file in which the template was declared and whether the file was
included using the system include syntax (efinclude <file.h>). This informa-

tion is not available for preprocessed source contaifilime directives. Consequently,

the front end will not attempt implicit inclusion for source code contairfitige direc-

tives.

7-9

C/C++ Reference Manual

The set of definition-file suffixes tried is.t 7, “.C”, “.cpp ", “.CPP", ".cxx 7,
“.CXX", and “cc ".

Implicit inclusion works well alongside automatic instantiation, but the two are indepen-
dent. They can be enabled or disabled independently, and implicit inclusion is still useful
when automatic instantiation is not done.

The implicit inclusion mode can be on or off using thamplicit_include and
--no_implicit_include command-line optias.

Implicit inclusions are only performed during the normal compilation of a file, (i.e., not
when doing only preprocessing). A common means of investigating certain kinds of prob-
lems is to produce a preprocessed source file that can be inspected. When using implicit
inclusion it is sometimes desirable for the preprocessed source file to include any implic-
itly included files. This may be done using th@o_preproc_only command line

option. This causes the preprocessed output to be generated as part of a normal compila-
tion. When implicit inclusion is being used, the implicitly included files will appear as part

of the preprocessed output in the precise location at which they were included in the com-
pilation.

Automatic Instantiation in the Program Development Environment

See “c.instantiation” on page 5-25 for details about controlling instantiation under the
program development environment.

Predefined Macros

The front end defines a number of preprocessing macros. Many of them are only defined
under certain circumstances. This section describes the macros that are provided and the
circumstances under which they are defined.

__STDC__ Defined in ANSI C mode and in C++ mode. In C++ mode the
value may be redefined.cplusplus Defined in C++ mode.

c_plusplus Defined in default C++ mode, but not in strict mode.

___STDC_VERSION__ Defined in ANSI C mode with the valuE99409L . The name
of this macro, and its value, are specified in Normative Adden-
dum 1 of the ISO C Standard.

__SIGNED_CHARS__ Defined when plaichar is signed. This is used in thdim-
its.h> header file to get the proper definitions of
CHAR_MAXndCHAR_MIN

_WCHAR_T Defined in C++ mode whewchar_t is a keyword. The name
of this predefined macro is specified by a configuration flag.
_WCHAR_Ts the default.

7-10

Special Features of C++

_BOOL Defined in C++ mode whehool is a keyword. The name of
this predefined macro is specified by a configuration flag.
_BOOlLis the default.

__ARRAY_OPERATORS

Defined in C++ mode when array new and delete are enabled.
The name of this predefined macro is specified by a configura-
tion flag._ ARRAY_OPERATORS the default.

___EXCEPTIONS Defined in C++ mode when exception handling is enabled.
__RTTI Defined in C++ mode when RTTI is enabled.
_ PLACEMENT_DELETE

Defined in C++ mode when placement delete is enabled.
__EDG_RUNTIME_USES_NAMESPACES

Defined in C++ mode
__EDG_IMPLICIT_USING_STD

Defined in C++ mode when theusing_std command line
option is set indicating that the standard header files should
implicitly do a using-directive on th&d namespace.

__EDG__ Always defined.

__EDG_VERSION__ Defined to an integral value that represents the version number
of the front end. For example. version 2.42 is represented as
242.

__embedded_cplusplus

Defined as 1 in Embedded C++ mode.

_ELF Defined for compiling for an ELF object file

_IBM Defined for compiling to an IBM PowerPC based architecture

_PPC Defined when compiling with th&target=ppc option.

_PPC604 Defined when compiling with the-Qtarget=ppc604
option.

_PPC604E Defined when compiling with the-Qtarget=ppc604e
option.

_PPC750 Defined when compiling with the-Qtarget=ppc750
option.

_FAST_MATH_INTRINSICS

Defined when compiling wiht thé option

7-11

C/C++ Reference Manual

Pragmas

unix Traditionally defined for all UNIX systems. Thisi®tdefined
when compiling with the-strict option.

_unix Alternate spelling founix . This is not defined when compil-
ing with the--strict option.

_PowerMAXOS Defined to indicate the target operating system is Power-
MAXOS.

__HC__ Defined to indicate that this is a Concurrent C/C++ compiler.

__STDC__ Defined in ANSI C mode and in C++ mode. The default value
is 1 when compiling with the-strict option; O, otherwise.

__cplusplus Defined when compiling C++ code.

c_plusplus Defined when compiling C++ code, but not when the

--strict option is used.

_STDC_VERSION_ Defined in ANSI C mode with the valuE99409L . The name
of this macro and its value are specified in the Normative
Addendum 1 of the ISO C Standard.

__SIGNED_CHARS__ Defined when the-signed_chars option is used.

#pragma directives are used within the source program to request certain kinds of special
processing. Thépragma directive is part of the standard C and C++ languages, but the
meaning of any pragma is implementation-defined. The front end recognizes several prag-
mas.

Edison Defined Pragmas

7-12

The following are described in detail in the template instantiation section of this chapter:

#pragma instantiate
#pragma do_not_instantiate
#pragma can_instantiate

and two others are described in the section on precompiled header processing:

#pragma hdrstop
#pragma no_pch

The front end also recognizépragma once , which, when placed at the beginning of a
header file, indicates that the file is written in such a way that including it several times has
the same effect as including it once. Thus, if the front end ¢$pesgma once at the

start of a header file, it will skip over it if the file#iinclude d again.

Special Features of C++

A typical idiom is to place anrtifndef guard around the body of the file, with a
#define of the guard variable after tigndef

#pragma once // optional
#ifndef FILE_H
#define FILE_H

body of the header file.
#endif

The#pragma once is marked as optional in this example, because the front end recog-
nizes thetifndef idiom and does the optimization even in its absenrf@agma

once is accepted for compatibility with other compilers and to allow the programmer to
use other guard-code idioms.

#pragmaident is recognized, as ifdent

#pragma ident " string’
#ident" string'

Both are implemented by recording the string in a pragma entry and passing it to the back
end.

#pragma weak is recognized. Its form is
#pragmaweak namel [= name2]
wherenamelis the name to be given “weak binding” and is a synonymnfame2if the

latter is specified. The entire argument string is recorded in the pragma entry and passed to
the back end.

Concurrent Defined Pragmas

The directivetpragma communicates implementation defined directives to the compiler.
Syntax.

#pragma directive_string
directive_string:=

directive_w_poss_args
directive_w_poss_args=

directive_nam¢ argumen{, argument..]]

The Concurrent implementation defined directives for use#pitagma appear below

Table 7-1. Implementation Defined Directives Used with #pragma

align ident optimize_for_space
cautions min_align optimize_for_time
error once warnings

7-13

C/C++ Reference Manual

Table 7-1. Implementation Defined Directives Used with #pragma (Cont.)

errcount opt_class weak
opt_level
do_not_instantiate can_instantiate instantiate

Source Listing Controls

The following message classes are supported by the C++ compiler.

inform Advisory, issues such as generated code quality

caution Advisory, like runnindint(1)

warning Probably error in program, compilation not aborted

fatal Error in program, compilation will continue, no object produced
abort Error in program, cannot continue compilation

The following directives control the format of the source listing, including error messages,
produced by the C compiler.

#pragma cautions {on | off}

Enables or suppresses the printing of caution messages. The
default isoff . The same effect can be obtained by invoking
cc++ with the-n option.

#pragma error errnum[errnum..]

Controls the printing of certain error messagesnumis

the number displayed when the -display_error_number
option is on, or the number 0, and must be preceded by a
plus or minus sign« or -). A minus sign suppresses print-
ing of the message, while a plus sign enables printing. For
example, the directive

#pragma error +25-36

enables error message 25 (“Uninitialized
item”) but disables number 36 (“Undefined
function”). An errnumof 0 refers to all
selectable messages. For example,

#pragma error -0
suppresses the printing of all selectable error

messages. The default ferror is +0 (all
messages are printed). Tegor directive

7-14

Special Features of C++

does not affect fatal error messages; they are
always printed.

#pragma errcount {on | off}

Specifies whether error messages disabled byetiner
directive should be included in the error totals at the end of
the compilation. The default sn (all errors are included in
the count).

#pragma warnings {on | off}

Enables or suppresses the printing of warning messages.
Most warnings indicate that an error exists that prevents
proper execution of the program. The defautiris

Listing control directives should occur immediately prior to the definition of the first
function they affect.

Optimization Directives

Thesetpragma directives should be placed immediately before a function definition in
the source code.

The directives that permit the programmer to control the amount and type of optimization
the compiler uses are:

opt_level

opt_class
optimize_for_space
optimize_for_time

Theopt_level directive controls the level of optimization. The syntax is:

#pragma opt_level { NONE | MINIMAL | GLOBAL | MAXIMAL

|
ULTIMATE}

The default iIMINIMAL.
Theopt_class directive controls the class of optimization. The syntax is:
#pragma opt_class { UNSAFE | SAFE | STANDARD }

UNSAFEis the default. If theopt_class is UNSAFE then the compiler makes
assumptions as to how the program was written in order to produce more efficient code.
Currently, the only optimization affected by tkENSAFEclass is algebraic simplification

of expressions. Thept_class may be setto SAFE to disable unsafe optimizations. The
opt_class may be set t&TANDARDo provide unsafe optimizations allowed by the
C++ language.

If the optimize_for_space directive is used, a smaller object file is created. A faster
object file is created if theptimize_for_time directive is used. These directives are
mutually exclusivepptimize_for_time is the default.

7-15

C/C++ Reference Manual

All optimization directives must occur outside function definitions. They remain in effect
until explicitly altered. Optimization directives should occur immediately prior to the
definition of the first function they should affect. See the “Program Optimization” chapter
of the Compilation Systems Volume(€oncept¥ manual for more information on
optimizations.

Optimization directives should occur immediately prior to the definition of the first
function they affect.

Data Alignment Control Directives

Data Alignment Rules

7-16

The compiler supports pragmas that override the compiler’s default choice of data
alignment. This gives you some control over the size of structures and unions and control
over the location of a structure’s members. These pragmas do not cause the compiler to
generate extra code for accessing data that is incorrectly aligned for the target machine;
therefore, it is possible for you to specify alignments that will cause run-time errors.

Data alignment rules have been chosen to meet the hardware requirements of the target
machine, to provide for fast access to data items, and to be as consistent as possible for all
target machines supported by the Concurrent C++ compiler. Table 7-2 lists the current
default alignments used by the compiler.

Table 7-2. Alignments by Data Type

Type Alignment (bytes)

[unsigned] char
signed char

bool

unsigned short [int]
[signed] short [int]
unsigned [int]
[signed] int

unsigned long [int]
[signed] long [int]
wchar_t

unsigned long long [int]
[signed] long long [int]
float

double

long double

A © ©® A ©® ©® A A DA BN BANN R R R

pointer

#pragma align

#pragma min_align

Special Features of C++

Pointerindicates all pointer types. Array types have the alignment of their element type.
The alignment of classes, structures, and unions is the maximum of the alignments of their
members. In addition, the sizes of classes, structures, and unions are rounded up to the
nearest multiple of the alignment size. See Appendix B (“Architecture Dependencies”)
for more information on alignments.

Thealign pragma can be used to change the default minimum alignment of a given
data type. It takes effect when it first appears in a file and remains in effect until changed
by anothe#pragma align . The syntax for thalign directive is:

#pragma align type n

wheren is an integer constant that represents the minimum byte-alignment to use for the
type,type The type should be one of the following:

{char | short | int | long | pointer |
float | double | struct | union}

The typepointer represents all pointer types.

Whenstruct or union is used, the pragma specifies a minimum alignment to use for
all structures or unions, respectively. The alignment of classes, structures, and unions is
then the maximum of that value and of the alignments of the members.

This pragma also affects class, structure, and union bit-fields. When bit-fields are
allocated for structures, they do not cross the alignment boundaries of the data type to
which they were declared; therefore, changing the alignment of a bit-field’'s type may
change its location in a structure.

The byte alignment valu@, must be between 0 and 31, inclusive. A value of O causes the
compiler to reset the value to the default. If a byte value is chosen that can cause run-time
exceptions (i.enis not a multiple of the minimum required alignment for the machine) a
compiler warning message is produced, but the requested alignment is used. See
“Bit-Field” on page B-1 for more information on bit-fields.

Due to the order in which the C++->C translator generates declarationpragtha
directives, repeatedly modifying the alignment of a type may have unpredictable results.

Most C++ compilation units contain multiple structure definitions, some of which may
represent interfaces to library routines that expect the default alignment rules. The
min_align directive provides a way of limiting alignment changes to named structure
and union types.

The syntax of thenin_align directive is:
#pragma min_align {struct | union} tag n

wheretagis the class, structure, or union tag to use atisithe minimum byte alignment
to use for the structure. The alignment valagmust be between 0 and 3Rragma
min_align must be used before the class, structure, or union definition begins, although

7-17

C/C++ Reference Manual

it may be used after a forward reference of the class, structure. or union tag. As a side
effect, the pragma introduces a forward reference to the named class, structure, or union.

This pragma specifies the minimum alignment to use. If the class, structure, or union
contains a member that requires a larger alignment, then that larger alignment is used, and
a warning message is issued.

Pragmamin_align overrides anyfpragma align that may be in effect, unlessis O;
in that case thenin_align does not have an effect and the default alignment rules are
used.

Example:

/* Force a set of alignment rules for
* a particular struct, where doubles are

* aligned to a 4-byte boundary.
*
#pragma min_align struct old 4
#pragma align int 2
struct old { [*fields*/ };
#pragma align double 0 /* reset to
default */

Miscellaneous Directives

#pragma once

#pragma ident

7-18

The compiler recognizegpragma once , which, when placed at the beginning of a
header file, indicates that the file is written in such a way that including it several times has
the same effect as including it once. Thus, if the compiler ¢igegsgma once at the

start of a header file, it will skip over the header file if that header fil¢irxlude d
again.

A typical idiom is to place atifndef guard around the body of the file, with a
#define of the guard variable after thgndef

#pragma once // optional
#ifndef FILE_H

#define FILE_H

... body of the header file ...

#endif

The #pragma once is marked as optional in this example, because the compiler
recognizes théifndef idiom and does the optimization even in its abse#peagma

once is accepted for compatibility with other compilers and to allow the programmer to
use other guard-code idioms.

#pragmaident is recognized, in the same fashiortment

#pragma weak

Special Features of C++

#pragma ident string
#ident string

The compiler ignores these directives.

Theweak pragma’s form is
#pragmaweak namel[= nameZ

wherenamelis the name to be given “weak binding” and is a synonymriame2if the
latter is specified. See the “Executable and Linking Format (ELF)” chapter of the
Compilation Systems Volume(€oncept$ manual for more information on weak
symbols.

Template Instantiation Pragmas

These pragmas provide explicit control over template instantiation. See Section “Instantia-
tion #pragma Directives” on page 7-8 for more information.

Precompiled Headers

It is often desirable to avoid recompiling a set of header files, especially when they intro-
duce many lines of code and the primary source files#iratlude them are relatively
small. The EDG front end provides a mechanism for, in effect, taking a snapshot of the
state of the compilation at a particular point and writing it to a disk file before completing
the compilation; then, when recompiling the same source file or compiling another file
with the same set of header files, it can recognize the “snapshot point,” verify that the cor-
responding precompiled header (“PCH") file is reusable, and read it back in. Under the
right circumstances, this can produce a dramatic improvement in compilation time; the
trade-off is that PCH files can take a lot of disk space.

Automatic Precompiled Header Processing

When--pch appears on the command line, automatic precompiled header processing is
enabled. This means the front end will automatically look for a qualifying precompiled
header file to read in and/or will create one for use on a subsequent compilation.

The PCH file will contain a snapshot of all the code preceding the “header stop” point.
The header stop point is typically the first token in the primary source file that does not
belong to a preprocessing directive, but it can also be specified directyptagma
hdrstop (see below) if that comes first. For example:

#include "xxx.h"
#include "yyy.h"
inti;

7-19

C/C++ Reference Manual

7-20

The header stop pointiat (the first non-preprocessor token) and the PCH file will con-
tain a snapshot reflecting the inclusiorxak.h andyyy.h . If the first non-preprocessor
token or thetfpragma hdrstop appears within &if block, the header stop point is
the outermost enclosingf . To illustrate, here’s a more complicated example:

#include "xxx.h"
#ifndef YYY_H
#define YYY_H 1
#include "yyy.h"
#endif

#if TEST

int i

#endif

Here, the first token that does not belong to a preprocessing directive isiestyaibut the
header stop point is the start of th# block containing it. The PCH file will reflect the
inclusion ofxxx.h and conditionally the definition of YY_Hand inclusion ofyyy.h ; it
will not contain the state produced #if TEST

A PCH file will be produced only if the header stop point and the code preceding it
(mainly, the header files themselves) meet certain requirements:

* The header stop point must appear at file scope — it may not be within an
unclosed scope established by a header file. For example, a PCH file will
not be created in this case:

/I xxx.h

class A {

/I xxx.C
#include "xxx.h"
inti; };

* The header stop point may not be inside a declaration started within a
header file, nor (in C++) may it be part of a declaration list of a linkage
specification. For example, in the following case the header stop point is
int , but since it is not the start of a new declaration, no PCH file will be
created:

/l'yyy.h
static
Il'yyy.C
#include "yyy.h"
inti;
* Similarly, the header stop point may not be insidetib block or a
#define started within a header file.

* The processing preceding the header stop must not have produced any
errors. (Note: warnings and other diagnostics will not be reproduced when
the PCH file is reused.)

* No references to predefined macrodDATE___or _ TIME__ may have
appeared.

* No use of thefline preprocessing directive may have appeared.

* #pragma no_pch (see below) must not have appeared.

Special Features of C++

* The code preceding the header stop point must have introduced a sufficient
number of declarations to justify the overhead associated with precompiled
headers. The threshold is currently set to 1.

When a precompiled header file is produced, it contains, in addition to the snapshot of the
compiler state, some information that can be checked to determine under what circum-
stances it can be reused. This includes:

* The compiler version, including the date and time the compiler was built.

* The current directory (i.e., the directory in which the compilation is occur-
ring).

* The command line options.

* The initial sequence of preprocessing directives from the primary source
file, including#include directives.

* The date and time of the header files specifigdnolude directives.

This information comprises the PCH “prefix.” The prefix information of a given source
file can be compared to the prefix information of a PCH file to determine whether the latter
is applicable to the current compilation.

As an illustration, consider two source files:

/la.C
#include "xxx.h"
// Start of code
/lb.C
#include "xxx.h"
// Start of code

Whena.C is compiled with--pch , a precompiled header file namagbch is created.
Then, wherb.C is compiled (or whema.C is recompiled), the prefix section afpch is

read in for comparison with the current source file. If the command line options are identi-
cal, if xxx.h has not been modified, and so forth, then, instead of openirdr and
processing it line by line, the front end reads in the rest.pth and thereby establishes
the state for the rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation. If so, the larg-
est (i.e., the one representing the most preprocessing directives from the primary source
file) is used. For instance, Consider a primary source file that begins with

#include "xxx.h"
#include "yyy.h"
#include "zzz.h"

If there is one PCH file foxxx.h and a second fotxx.h andyyy.h , the latter will be
selected (assuming both are applicable to the current compilation). Moreover, after the
PCH file for the first two headers is read in and the third is compiled, a new PCH file for
all three headers may be created.

When a precompiled header file is created, it takes the name of the primary source file,
with the suffix replaced by a suffiy¢h by default). Unless-pch_dir s specified (see
below), it is created in the directory of the primary source file.

7-21

C/C++ Reference Manual

When a precompiled header file is created or used, a message such as
"test.C": creating precompiled header file "test.pch"

is issued. The user may suppress the message by using the command-line option
--no_pch_messages

When the--pch_verbose option is used the front end will display a message for each
precompiled header file that is considered that cannot be used giving the reason that it can-
not be used.

In automatic mode (i.e., whenpch is used) the front end will deem a precompiled
header file obsolete and delete it under the following circumstances:

* if the precompiled header file is based on at least one out-of-date header
file but is otherwise applicable for the current compilation; or

¢ if the precompiled header file has the same base name as the source file
being compiled (e.gxxx.pch andxxx.C) but is not applicable for the
current compilation (e.g., because of different command-line options).

This handles some common cases; other PCH file clean-up must be dealt with by other
means (e.g., by the user).

Support for precompiled header processing is not available when multiple source files are
specified in a single compilation: an error will be issued and the compilation aborted if the
command line includes a request for precompiled header processing and specifies more
than one primary source file.

Manual Precompiled Header Processing

7-22

Command-line optior-create_pch file-namespecifies that a precompiled header file
of the specified name should be created.

Command-line option-use_pch file-namespecifies that the indicated precompiled
header file should be used for this compilation; if it is invalid (i.e., if its prefix does not
match the prefix for the current primary source file), a warning will be issued and the PCH
file will not be used.

When either of these options is used in conjunction wigith_dir , the indicated file
name (which may be a path name) is tacked on to the directory name, unless the file name
is an absolute path name.

The--create_pch ,--use_pch , and--pch options may not be used together. If
more than one of these options is specified, only the last one will apply. Nevertheless,
most of the description of automatic PCH processing applies to one or the other of these
modes — header stop points are determined the same way, PCH file applicability is deter-
mined the same way, and so forth.

Special Features of C++

Other Ways for Users to Control Precompiled Headers

There are several ways in which the user can control and/or tune how precompiled headers
are created and used.

* #pragma hdrstop may be inserted in the primary source file at a point
prior to the first token that does not belong to a preprocessing directive. It
enables the user to specify where the set of header files subject to precom-
pilation ends. For example,

#include "xxx.h"
#include "yyy.h"
#pragma hdrstop
#include "zzz.h"

Here, the precompiled header file will include processing stateckarh and
yyy.h butnotzzz.h . (Thisis useful if the user decides that the information added
by what follows the#tpragma hdrstop does not justify the creation of another
PCH file.)

* #pragma no_pch may be used to suppress precompiled header process-
ing for a given source file.

* Command-line option-pch_dir directory-namds used to specify the
directory in which to search for and/or create a PCH file.

Performance Issues

The relative overhead incurred in writing out and reading back in a precompiled header
file is quite small for reasonably large header files.

In general, it doesn’t cost much to write a precompiled header file out even if it does not
end up being used, and ifig used it almost always produces a significant speedup in com-
pilation. The problem is that the precompiled header files can be quite large (from a mini-
mum of about 250K bytes to several megabytes or more), and so one probably doesn't
want many of them sitting around.

Thus, despite the faster recompilation, precompiled header processing is not likely to be
justified for an arbitrary set of files with nonuniform initial sequences of preprocessing
directives. Rather, the greatest benefit occurs when a number of source files can share the
same PCH file. The more sharing, the less disk space is consumed. With sharing, the dis-
advantage of large precompiled header files can be minimized, without giving up the
advantage of a significant speedup in compilation times.

Consequently, to take full advantage of header file precompilation, users should expect to
reorder thetinclude sections of their source files and/or to grotipclude direc-
tives within a commonly used header file.

The front end source provides an example of how this can be done. A common idiom is
this:

7-23

C/C++ Reference Manual

#include "fe_common.h"
#pragma hdrstop
#include ...

wherefe_common.h pulls in, directly and indirectly, a few dozen header files; the
#pragma hdrstop is inserted to get better sharing with fewer PCH files. The PCH file
produced foffe_common.h is a bit over a megabyte in size. Another idiom, used by the
source files involved in declaration processing, is this:

#include "fe_common.h"
#include "decl_hdrs.h"
#pragma hdrstop
#include ...

decl_hdrs.h pulls in another dozen header files, and a second, somewhat larger, PCH
file is created. In all, the fifty-odd source files of the front end share just six precompiled
header files. If disk space were at a premium, one could decide to feakemmon.h

pull in all the header files used — then, a single PCH file could be used in building the
EDG front end.

Different environments and different projects will have different needs, but in general,
users should be aware that making the best use of the precompiled header support will
require some experimentation and probably some minor changes to source code.

Intrinsic Functions

7-24

Most intrinsic functions(intrinsics) provide access to hardware-related machine
instructions. Others provide inline substitutes for some time-critical functions.When the
-F option is used, the compiler recognizes certain function names as being intrinsic
functions To override this on any given use, enclose the name in parentheses. Intrinsic
functions are used in the same manner as normal functions; however, rather than calling a
subroutine, the compiler generates code directly. To use an intrinsic, it must be prototyped
and marked as an intrinsic witlpeagma . For example:

extern “C” int abs(int);
#pragma intrinsic abs

Any calls to a function declared like this will refer to the intrinsic.

For example, the following code, when compiled with tReoption, uses thabs intrin-
sic function:

extern “C” int abs(int);
#pragma intrinsic abs
sub(int arg)

return abs(arg);

}

However, the following code do@st use the intrinsic function:

Special Features of C++

extern int abs(int);
sub(int arg)

{

return abs(arg);

}

Theabs andfabs intrinsics return the absolute value of their argument. The syntax of
these intrinsics follows:

intabs(x)
int x

float fabs(X)
float x;

double fabs(x)
double x;

The pow andpowf intrinsics handle certain common cases with inline code where the
second operand is a small integral constant. Otherwise, they generate qails to
powf , as appropriate. Sexp(3M) . The syntax of thgow andpowf intrinsics follows:

double pow(X, V)
double X, v,

float powf(X Y)
float X v,

The _Test and_Set intrinsic can be used to generate an atomic test and set operation
using machine-specific instructions that are not normally available for C++ programs.

int_Test and_Set(pointer)
int *pointer;

Generates inline code to atomically 3pbinter to some unspecified non-zero
value and returns the previous contentépafinter, under the assumption that
_Test_and_Set is the only means by whictpointer acquires a non-zero
value.

The__rot intrinsic is used to rotate a word to the right.

unsigned int __rot(word, couny
unsigned int word;
int count

Returns wordyvord, rotated to the right byountbits.

Environment Variables

The environment variabldSR_INCLUDEcan be set to a directory to be used instead of
/usrf/include on the standard include file search list. (Of course, this has no effect if
the front end has been configured to have an empty “standard list” of include files.)

7-25

C/C++ Reference Manual

Diagnostic Messages

7-26

Diagnostic messages have an assoctedrity as follows:

¢ Catastrophic errors indicate problems of such severity that the compilation
cannot continue. For example: command-line errors, internal errors, and
missing include files. If multiple source files are being compiled, any
source files after the current one will not be compiled.

* Errors indicate violations of the syntax or semantic rules of the C or C++
language. Compilation continues, but object code is not generated.

* Warnings indicate something valid but questionable. Compilation contin-
ues and object code is generated (if no errors are detected).

* Remarks indicate something that is valid and probably intended, but which
a careful programmer may want to check. These diagnostics are not issued
by default. Compilation continues and object code is generated (if no errors
are detected).

Diagnostics are written tstderr with a form like the following:

"test.c", line 5: a break statement may only be used within a
loop
or switch

break;
N

Note that the message identifies the file and line involved, and that the source line itself
(with position indicated by thé) follows the message. If there are several diagnostics in
one source line, each diagnostic will have the form above, with the result that the text of
the source line will be displayed several times, with an appropriate position each time.

Long messages are wrapped to additional lines when necessary.

The--display_error_number may be used to request that the error number be
included in the diagnostic message. When displayed, the error number also indicates
whether the error may have its severity overridden on the command line. If the severity
may be overridden, the error number will include the suffi® " (for “discretionary”);
otherwise no suffix will be present.

"Test_name.c", line 7: error #64-D: declaration does not
declare anything

struct {};

N

"Test_name.c", line 9: error #77: this declaration has no
storage class or
type specifier

XXXXX]
n

Because an error is determined to be discretionary based on the error severity associated
with a specific context, a given error may be discretionary in some cases and not in others.

Special Features of C++

For some messages, a list of entities is useful; they are listed following the initial error
message:

"test.c", line 4: error: more than one instance of overloaded
function "f"
matches the argument list:
function "f(int)"
function "f(float)"
argument types are: (double)
f(1.5);
N

In some cases, some additional context information is provided; specifically, such context
information is useful when the front end issues a diagnostic while doing a template instan-
tiation or while generating a constructor, destructor, or assignment operator function. For
example:

"test.c”, line 7: error: "A::A()" is inaccessible
B x;

AN

detected during implicit generation of "B::B()" at
line 7

Without the context information, it is very hard to figure out what the error refers to.

It is possible to change the severity level of certain messages by using an appropriate

option.
--diag_suppress tag,tag,... suppress the message
--diag_remark tag,tag,... issue a Remark
--diag_warning tag,tag,... issue a Warning
--diag_error tag,tag,... issue an Error

wheretag is the message number (€.6001) or the message mnemonic name (e.g.,
last_line_incomplete).

For some messages, a list of entities is useful; they are listed following the initial error
message:

“test.c”, line 4: error: more than one instance of overloaded function “f”
matches the argument list:
function “f(int)”
function “f(float)”
argument types are: (double)
f(1.5);
N

Termination Messages

n errors detected in the compilation of " ifile".
1 catastrophic error detected in the compilation of " ifile".

7-27

C/C++ Reference Manual

n errors and 1 catastrophic error detected in the compilation
of " ifile™.

is written to indicate the detection of errors in the compilation. No message is written if no
errors were detected. The following message

Error limit reached.

is written when the count of errors reaches the error limit (seegtheption, above); com-
pilation is then terminated. The message

Compilation terminated.

is written at the end of a compilation that was prematurely terminated because of a cata-
strophic error. The message

Compilation aborted.

is written at the end of a compilation that was prematurely terminated because of an inter-
nal error. Such an error indicates an internal problem in the compiler and should be
reported to those responsible for its maintenance.

Response to Signals

Exit Status

The signalsSIGINT (caused by a user interrupt, lik€) andSIGTERM(caused by a
kil command) are trapped by the front end and cause abnormal termination.

On completion, the front end returns with a code indicating the highest-severity diagnostic
detected: 4 if there was a catastrophic error, 2 if there were any errors, or 0O if there were
any warnings or remarks or if there were no diagnostics of any kind.

If multiple source files are compiled, the exit status indicates the highest-severity diagnos-
tic detected in the entire compilation.

Finding Include Files

7-28

A file name specified in &include directive is searched for in a set of directories spec-
ified by command-line options and environment variables. If the file name specified does
not include a suffix, a set of suffixes is used when searching for the file.

Files whose names are not absolute pathnames and that are enclbséd in will be
searched for in the following directories, in the order listed:

Special Features of C++

1. The directory containing the current input file (the primary source file or
the file containing thé&include);®

2. any directories specified irinclude_directory options (in the
order in which they were listed on the command line);

3. any directories on the standard lisis¢/include).

For file names enclosed in...> , only the directories that are specified using the
--include_directory option and those on the standard list are searched. If the
directory name is specified as™; e.g., “-I- ", the option indicates the point in the list of
--include_directory options at which the search for file names enclosed in
<..> should begin. That is, the search far.> names should only consider directo-
ries named in-include_directory options following the-l- , and the directories

of item 3 above:-l- also removes the directory containing the current input file (item 1
above) from the search path for file names enclos&d'in

An include directory specified with thesys_include option is considered a “sys-
tem” include directory. Warnings are suppressed when processing files found in system
include directories. If a default include directory has been specified using the environment
variable, it is considered a system include directory.

If the file name has no suffix it will be searched for by appending each of a set of include
file suffixes. When searching in a given directory all of the suffixes are tried in that direc-
tory before moving on to the next search directory. The default set of suffixes is.hone,
and.hpp . The default can be overridden using thiecl_suffixes command-line
option. A null file suffix cannot be used unless it is present in the suffix list (i.e., the front
end will always attempt to add a suffix from the suffix list when the file name has no suf-
fix).

6. However, ifSTACK_REFERENCED_INCLUDE_DIRECTORIEBS RUE, the directories of all the source input files currently
in use are searched, in reverse ordéfinélude nesting.

7-29

C/C++ Reference Manual

7-30

8
Compilation Modes

OV VB . o o ottt e e 8-1
Compilation Modes i 8-1
ANSIC MOde. . ..o 8-2
Normal CH+ MOdeo 8-2
Strictly-Conforming Mode. 8-3
cfront 2.1 Compatibility Mode 8-4
cfront 3.0 Compatibility Mode 8-4
Transition Mode 8-4
Old Mode . ..o 8-5
Mode FeatUreSo e 8-6
CommON FEAtUIES. 8-6
Differentiating Features i e 8-7
Preprocessingo 8-7
Type-Promotion Rules. 8-10
Binary Operator EXpressionst 8-13
Escape Characters e e 8-14
Redeclaration of Typedefs. i i 8-14
Scope of Parameters e 8-15
Header File Featureso e e e e e 8-15
Function Prototypes 8-15
Name-Space RestriCtions i e e e 8-16
Library Enhancements i 8-16
Locale-Support Enhancements i i 8-18

Anachronism Mode 8-18

PowerMAX OS Real-Time Guide

8
Compilation Modes

Overview

This chapter describes the compilation modes of the Concurrent C++ corapiter,and
the Concurrent C compilegc. Compiler options let you select a compilation mode; the
modes are differentiated by their support for various dialects of C and C++.

Compilation Modes

Compilation modes are selected via compiler options. They are distinguished by their
level of conformance to the ANSI C++ and ANSI C standards and dialects of C and C++.
Table 8-1 depicts these modes and their command-line options.

Table 8-1. C++ Compilation Modes

cc++ Options Mode Description
(none) Normal C++ mode Accept normal ANSI C++ code.
--strict ANSI C++ strictly-conforming Compile any ANSI C++ strictly-conforming
mode program.
--strict_warning ANSI C++ stricting-conforming Like --strict , but generates warning instead
mode (warn on non-conforming of error.
usage)
--cfront_2.1 cfront 2.1 compatibility mode Support compatibility with cfront 2.1.
--cfront_3.0 cfront 3.0 compatibility mode Support compatibility with cfront 3.0.
--anachronisms Anachronism mode Support various anachronisms (“Anachronisms

Accepted” on page 6-5)

8-1

C/C++ Reference Manual

From least to most conforming, these compilation modes for C are: Old, Transition, ANSI
C, and ANSI C Conforming. Table 8-1 depicts these modes and their command-line
options.

Table 8-2. C Compilation Modes

CC++
Options

Mode Name Description

-Xo Old mode

Compatibility mode for pre-ANSI C code.

-Xt Transition mode Use ANSI C semantics, but provide additional warning messages
where those semantics conflict with previous practice.

-Xa ANSI C mode Silently use ANSI C features. This is the default compilation mode.

-Xc (ANSI C) Conforming mode Enforce ANSI C name-space restrictions and compile any strictly-

conforming program.

ANSI C Mode

See thecc++(1) man page for a brief description of these options and compilation
modes. See Chapter 1 (“Compilation”) for more information on compilation.

When it is unimportant to distinguish among the Transition, ANSI C, and ANSI C
Conforming compilation modes, the text refers to them collectively as the ANSI C
compilation modes. Later sections describe each compilation mode and the features that
characterize it. Table 8-2 summarizes the features that characterize the compilation
modes.

ANSI C mode provides a nearly standard ANSI C compilation environment. All ANSI C
language syntax and semantics are obeyed. This mode differs from an ANSI C-
conforming compilation environment because it supports the full system name-space in
the header files; this allows access to all system macros and library routines even where
forbidden for a strictly conforming ANSI implementation.

* All violations of ANSI C constraints on pointer type usage are diagnosed
with warning messages.

* All system macros and library routines are available even where forbidden
for a strictly conforming ANSI C implementation. For more information on
name-space restrictions, see “Name-Space Restriction” on page 8-16.

Normal C++ Mode

8-2

This mode provides compatibility with the dialect of C++ described in the ARM. See Sec-
tion “Extensions Accepted in Normal C++ Mode” on page 6-6 for more information.

Compilation Modes

Strictly-Conforming Mode

Strictly-conforming mode provides a compilation environment conforming to the
emerging ANSI C++ standard. All ANSI C name-space restrictions are enforced, and all
violations of ANSI C++ constraints and syntax rules produce warnings. This means that
many variable names, function names, and macro names are not defined in this mode. To
compile in strictly-conforming mode, invokec++ with the --strict option. Strictly-
conforming mode has the following characteristics:

Conforming mode is one of the three ANSI C compilation modes. This mode provides a
compilation environment conforming to ANSI C. It is identical to ANSI C mode except
that all ANSI C name-space restrictions are enforced, and all violations of ANSI C
constraints and syntax rules produce warnings. This means that many variable names,
function names, and macro names are not defined in this mode. To compile in Conforming
mode, invokehc with the-Xc option. Aside from those features listed in Table 8-2,
Conforming mode has the following characteristics:

* The compiler does not predefine macros that violate the ANSI C++ and
ANSI C name-space restrictions. Specifically, the predefined macros
shown below ar@ot available:

unix
_unix

* The following additional compiler error messages are generated for minor
violations of ANSI C++ and ANSI C syntax semantic constraints:

- Warnings for the use of an extra comma at the enérafm type
declaration lists.

- Warnings for missing declaration specifiers in external definitions.

- Warnings for missing semicolons for the last itemstnuct and
union declaration list.

- Warnings for emptgtruct orunion field declarations.
- Warnings for anonymous bit fields with empty type specifiers.
- Warnings for named bit fields with a size of zero.

- Warning messages for empty (no tokens after preprocessing) source
files.

- Fatal errors for the use of ttecharacter in identifier names. (A fatal
error message is one for whigt++ stops the compilation before
producing an object file and returns an error code to its parent
process.)

- Fatal errors for the use of tleizeof on a bit-field. Normallycc++
returns the size of the type of the bit-field.

- Fatal error messages for using tReon variables declared with the
register storage class. Normalée++ just produces a warning
message.

8-3

C/C++ Reference Manual

cfront 2.1 Compatibility Mode

This mode provides compatibility with thefront 2.1 dialect of C++. See Section
“Extensions Accepted in Cfront 2.1 Compatibility Mode” on page 6-8 for more informa-
tion.

cfront 3.0 Compatibility Mode

This mode provides compatibility with thefront 3.0 dialect of C++. See “Extensions
Accepted in Cfront 2.1 and 3.0 Compatibility Mode” on page 6-9

Transition Mode

Transition mode is one of the three ANSI C compilation modes. It is intended to help
customers convert their existing C code so it makes use of ANSI C semantics. This mode
provides all the features of ANSI C mode, but the compiler issues additional diagnostic
messages where ANSI C semantics conflict with the traditional semantics used in Old
mode. To compile in Transition mode, invat@-+ with the-Xt option.

There are some cases where Transition mode cannot provide good diagnostics.

* In Transition mode, the ANSI C preprocessor attempts to produce
diagnostics messages fopp(1) preprocessing tricks but is unable to
splice tokens at the beginning or end of macros. For more information on
token-splicing, see “Preprocessing” on page 8-7 .

¢ Other undocumented features opp(l) may also fail to receive
diagnostic messages.

The illegal uses of type specifiers with typedefs generates syntax errors,
instead of cleaner diagnostic messages. For example,

foo()
{
typedef int integer ;
{
short integer local ;
}

}

generates the error messages

"file.c", line 5: syntax: deleting, ' local '
"file.c", line 5: syntax: inserting, ', IDENTIFIER'
priorto ;"

when compiled in any of the ANSI C compilation modes.

* Transition mode attempts to generate warning messages for code whose
behavior may have changed because of changes in the default type-
promotion rules or because of changes in the default types of literals. These

8-4

Compilation Modes

messages do not always indicate a problem with the source code. Changes
in default type-promotion may offset a change in the type of a literal or vice
versa. The compiler only detects that at some point in an expression at least
one difference in type-promotion occurred. For example, given the code

#define FLAG OXxffffffff
extern unsigned short us ;
foo()

{
if (us+1 <FLAG)
return 1 ; /* always does this */
return O ;

}

Transition mode generates the warning message

"file.c", line 4: warning: ANSI: Possibly
different type-promotion around "<"
operation

because under the value-preserving rules the expression
us+1

has typent instead olnsigned int and because the literal
Oxffffffff

has typeunsigned int instead ofint . Note, however, that the
relational operatok is always performing an unsigned comparison under
either set of type-promotion rules.

Old Mode

Old mode provides maximal support for existing customer codenzaickfiles . How-
ever, there have been some compiler changes that may require source changes even in Old
mode. These changes are discussed in “Library Enhancements” on page 8-16 .

In addition to the information provided in Table 8-1 , Old mode has the following feature:

* Some instances of illegal pointer usage receive caution messages rather
than warning messages. The printing of caution messages must be
explicitly enabled by using then option or the#pragma cautions
directive.

8-5

C/C++ Reference Manual

Mode Features

Each compilation mode has features that characterize it. These features are described in
the following sections.

Common Features

The following ANSI C features are availableaithcompilation modes.

* The function prototype syntax is always available. The PowerMAX OS
header files, however, only use function prototype declarations if one of the
ANSI C compilation modes (see “Compilation Modes” on page 8-1) is
used. Please refer to Chapter 9fA Reference Manuddy Harbison and
Steele and “Function Prototypes” on page 8-15 in this manual for more
information about function prototypes.

¢ |nitializers for automatic aggregate data objects such as structures and
arrays are accepted in all compilation modes.

* Unions may be initialized. ANSI C defines the initializer for a union to
initialize its first element.

* File-scoped declarations that use tbgtern storage class may be
initialized, thus producing a definition.

* Thelong double data type is supported. As currently implemented,
long double objects are of the same size and data format as objects of
typedouble , however, future releases may use an extended-precision
implementation fotong double

* Integer constants are permitted to use the “unsigned” suffixes and
‘U . For example, an integer literal of the form 123u or 123U has the type
unsigned int rather than typént . Note: theu andU suffixes did not
exist before ANSI C.

* Floating-point constants accept the suffifes or'F' , and'l' or'l
toindicatefloat type orlong double type constants, respectively. For
example, 3.1415f and 3.1415F both produce constants withflyae ,
while 3.1415I and 3.1415L produce constants with tgpg double

¢ String constants that are separated by only white space are automatically
concatenated. For example:

"hello" " world\n"
is treated as
"hello world\n"

rather than as a syntax error.

* Thesigned , const , andvolatile keywords are always recognized by
the compiler in Old mode.

8-6

Compilation Modes

* The syntax and library routine support for wide and multi-byte character
constants and strings is available. Currently no wide or multi-byte locales
are supported.

Differentiating Features

Preprocessing

The C language defined by the ANSI C standard has a number of incompatibilities with
older dialects of the language. This section attempts to explain the major areas of
incompatibility introduced by the ANSI C standard that are likely to have significant
impact on existing source code.

Older releases of the C compiler used an internal preprocessor. Now, in Old mode the
compiler uses the traditional UNIX preprocesspp(1) . In either case, ANSI C-
specific preprocessing features are not available.

The ANSI C compilation modes use thesr/ccs/lib/acpp preprocessor. This is a
separate standalone preprocessor written to the ANSI C standard. (This processor is not
considered to be a separately supported tool, but rather as a part of the compiler. A man
page is not provided, and future releases of the C compiler may not provide it as a separate
tool. Customers should not introduce any dependencies on its existence or undocumented
aspects of its behavior.)

Providing the first complete specification of the C preprocessor is the ANSI C standard’s
most significant change. This change introduced a number of incompatibilities with the
preprocessing supported by the traditional UNIX preprocespp(l) and with the
internal preprocessor used by older releases of the C compiler. These incompatibilities
are:

* Trigraphs are sequences of three adjacent characters that are mapped into
single characters during the first translation phase (before string constants
and comments have been recognized). These sequences are provided to
support non-ASCII hardware environments where certain common C
characters are not available. The trigraphs are shown in Table 8-1 .

The trigraph sequences are seldom encountered in non-ANSI C source;
however, they do introduce a potential incompatibility for some uses in
string constants, character constants, dfinclude header file names.

For example, the following statement appears differently in Old mode and
in ANSI C mode after trigraph substitutions:

Old mode:
printf("warning: very strange error condition??\n");
ANSI C mode:

printf("warning: very strange error condition|\n");

C/C++ Reference Manual

Table 8-1. Trigraph Mapping

Trigraph Corresponding Character
?27= #
72 [
??)]
??/ \
?? A
?7< {
??7> }
27! |
?7?- ~

* ANSI C introduced an explicit token splicing operaté#, that causes
adjacent tokens in macro#defines) to be spliced into a single token.
ANSI C also reinforces the original Kernighan and Ritchie rule that
specifies that comments are replaced with white space. This makes the
traditionalcpp(1) trick of using comment deletion in macros to perform
token splicing illegal. For example, given a macro of the form

#define declare_stack(name, type) \
type *name/**/_STACK ;

cpp interprets it as being equivalent to

#define declare_stack(name, type) \

type *name_STACK;

[* there is no space between the e and the _ */
ANSI C interprets it as being equivalent to

#define declare_stack(name, type) \

type *name _STACK;

[* there is a space between the e and the _ */

To get the intended token splicing behavior, use instead

#define declare_stack(name, type) \
type *name ## _STACK

Other examples ofpp(1) token splicing that rely on splicing tokens at

the beginning or end of macro expansions do not work under ANSI C
preprocessing rules. For example, given

8-8

Compilation Modes
#define DIGIT 5
#define EPSILON 1.0e-DIGIT
an ANSI C preprocessor expands EPSILON to
1.0e-DIGIT

However, because of the ANSI C definition pfeprocessing tokens,
cpp(l) expands EPSILON to

1.0e-5

The ANSI C specification also disallows the common practice of
substituting macro parameters into string and character constants. For
example, given

#define str(x) "x\n"

#define CNTRL(X) (‘X' & 0x80)

char *string = str(hello) ;

char character = CNTRL(a) ;
an ANSI C preprocessor would produce

char *string = "x\n";
char character = ('x' & 0x80) ;

Howevercpp(l) would produce

char *string = "hello\n";
char character = (‘a' & 0x80) ;

To allow the creation of string constants from macro parameters ANSI C
added a new preprocessing operatofsometimes called thstringizeor
stringizationoperator). It, together with the automatic concatenation of
adjacent string constants, can be used to define the str() macro as:
#define str(x)#x "\n"
The following macro call
char *string = str(hello) ;
expands as follows, producing a valid ANSI C initializer

char *string = "hello" "\n";

Two approaches may be taken to handle macros that substitute parameters
into character constants, like CNTRL() above.

The first method is to define the macro so that the argument must be

contained within quotes. This requires that all uses of the macro be
changed to put quotes around the arguments. For example,

8-9

C/C++ Reference Manual

#define CNTRL(X) (x & 0x80)
char character = CNTRL(Q) ;

This definition works with either ANSI C or olgpp(1) style
preprocessors, but requires you to change all references to the macro in
guestion.

The second method is to use the stringization operator and reference the
first element of the string (recall that string constants are defined to be
arrays of characters). For example, define the CNTRL macro as

#define CNTRL(X) (#x[0] & 0x80)
The following macro call

CNTRL(a)
expands to

("a"[0] & 0x80)

This expression has the same value as (‘a’' & 0x80). The principal advantage
of this method is that it does not require you to chaaljeeferences to the
macro, but note that this form of the macro does not expand to a constant
expression and so may not be used in data initializers or in case label
expressions. This method also depends on the use of an ANSI C
preprocessor.

Type-Promotion Rules

The ANSI C standard’s most significant change to the semantics of the language is the
introduction of new rules for type-promotion in expressions and changes in the default
types of integer constants. This change can introduce undiagnosed changes in the behavior
of programs that rely on the old type-promotion rules.

* Information about the handling of type-promotion in expressions follows:

In Old mode,cc++ (like many other C compilers) uses unsigned-
preserving rules for type promotion in expressions. Under the unsigned-
preserving rules, any expression that involves an unsigned type
(unsigned char , unsigned short ,unsignedint , orunsigned

long) always promotes to an unsigned data typesigned int or
unsigned long , as appropriate).

ANSI C standardized the default type-promotion rules to follow what are
called value-preserving semantics. Under the value-preserving rules, the
smaller unsigned typesifsigned char andunsigned short)
promote to the next larger type that can still represent all of the values of
the unsigned data type. Note that this makes C’s type-promotion rules
dependent on the size of the data types in any particular implementation.

For example, if a compiler’s implementation of tm¢ data type is large
enough to represent all of the values representable inrsigned

8-10

Compilation Modes

short (i.e., sizeof(unsigned short) < sizeof(int)), then

an expression that mixes ansigned short with anint promotes to

int type under the value-preserving rules, bosigned int ~ type under

the unsigned-preserving rules. A different compiler that implemented
short andint types with the same representation would promote that
same expression tmsigned int type under the value-preserving rules.

For the current implementation of the cc++ compiler, the following
relationships are true for all target machines:

- sizeof(unsigned char) < sizeof(unsigned short)
- sizeof(unsigned short) < sizeof(int)

- sizeof (int) == sizeof(long)

This means that under the value-preserving rules, expressions
involving unsigned char andunsigned short types promote

to signedint type, instead ofinsigned int as they would under

the unsigned-preserving rules. Expressions promotmsigned

int types only if anunsigned int appeared explicitly in the
expression. Likewise, expressions mixingsigned int types

with long types still promote tainsigned long under the value-
preserving rules (becausieof(int) == sizeof(long) ,0n

all current targets).

Information about the implicit data-typing of integer constants follows:

ANSI C introduced new rules for determining the data types of integer
constants (decimal, hex, and octal constants). In Old mode, these constants
are always treated as having sigrietd or signedong (if the L suffix is

used) type. You may apply the ANSI or'U' unsigned suffix and force

the literals to haveinsigned int or unsigned long type (if theL

suffix is also used).

The ANSI C standard specifies that the data types of integer constants are
chosen by picking the smallest type that can represent the constant value in
the list below. Like the value-preserving type-promotion rules (discussed
before), this rule depends on a particular implementation’s representation
of theint andlong data types. In Table 8-1 parenthesized data types are
valid for ANSI C but are redundant for cc++ because cc++ implements the
int andlong data types with the same 32-bit two’s complement
representation.

Table 8-1. Constants and Type Lists

Constant Type List
unsuffixed decimal: int, (long), unsigned long
unsuffixed hex or octal: int, unsigned int, (long), (unsigned long)

8-11

C/C++ Reference Manual

Table 8-1. Constants and Type Lists (Cont.)

Constant Type List

U suffixed: unsigned int, (unsigned long)
L suffixed: long, unsigned long

UL suffixed: unsigned long

The information in Table 8-1 translates to the following facts. The net effect of
applying the ANSI rules to the current target machines (whizeof (int) ==

sizeof (long)) is that “unsuffixed” decimal literals that cannot be represented
as a signedéht have typeunsigned long , and octal and hex literals that cannot
be represented as a signiatl have typeunsigned int . Similarly, literals that
use thel' or'L' long suffixes automatically promote tmsigned long if
they cannot be represented as a sigoad . Literals thatus&' or'U" unsigned
suffixes haveunsigned int orunsigned long type (if thel suffix is also
used).

Table 8-2 shows the difference in type rules for the numbers 1 and 4294967295. For
cc++'s current target machines, the value 1 can be represented as a 32-bit, signed,
sstwo’s complement integer constant but 4294967295 cannot be.

In the cases marked as overflowing, the old type-promotion rules force the
constant’s value to overflow the representation. The result on current machines is
that the constant receives a different numeric value (-1 instead of 4294967295). This
can be the source of silent changes in behavior.

Table 8-2. Constant Representations

Constant Non-ANSI C Type ANSI C Type
1 int int
4294967295 int (overflows) unsigned long
0x1 int int

Oxffffffff int (overflows) unsigned int
1L long long

OXxffffffffL long (overflows) unsigned long
1U unsigned int unsigned int
OxffffffffU unsigned int unsigned int
Ox1UL unsigned long unsigned long
OxfffffffUL unsigned long nsigned long

8-12

Compilation Modes

Binary Operator Expressions

An expression that involves a binary operator is a binary expression. Before a binary
expression is evaluated, the two operands may be converted. C is especially lenient in
allowing mixed operands in expressions. Before evaluating most binary expressions, C
converts all operands to a common data type. In Old mode, the exact sequence of
conversion the compiler takes before evaluating an arithmetic expression is as follows:

* Any signed char,short orsigned short operand is converted to
int ;

* Any char, unsigned char orunsigned short operand is converted
to unsigned int ;

If one operand islouble , the other is converted touble and the result
type isdouble ;

Otherwise, if one operand float , the other is converted titoat and
the result type ifloat ;

Otherwise, if one operand imsigned long , the other is converted to
unsigned long and the result type imnsigned long

* Otherwise, if one operand Isng and the other isinsigned int |, then
they are both converted tonsigned long and the result type is
unsigned long ;

Otherwise, if one operand leng , the other is converted fong and the
result type idong ;

Otherwise, if one operand isnsigned int , the other is converted to
unsigned int and the result type imsigned int

¢ Otherwise, both operands ané and the result type iat .

For example, in the following program, the same value is assigned to a
char ,int , andfloat variable:

main()
{
float f;
inti;
char c;
/* assign 'A'to ¢, 65to i, 65.0 to f*/
f=i=c="A";

printf("c=%c i=%5d f=%5.1f \n",c,i,f);
}

The output is:
c=A i=65 f=65.0

The character 'A' is converted to an integer when assigned to i, then
converted to a real number when assigned to f.

The following list is the subset of the ANSI C type-promotion scheme that is applicable in
the ANSI C compilation modes of the Concurrent C compiler.

8-13

C/C++ Reference Manual

Escape Characters

* Any unsigned char , char, signed char , unsigned short,
short , orsigned short is converted tant .

* If one operand is annsigned int orunsigned long , anyint (or
value converted tmt) is converted tainsigned int

¢ |f one operand islouble , the other is converted touble and the result
type isdouble .

* Otherwise, if one operand fibat |, the other is converted titoat and
the result type ifloat

ANSI C allows new escape characters in string and character literals. In older releases of
the C compiler and in Old mode;++ doesnot recognize these escape characters.

In the ANSI C compilation modes, the sequehaeis interpreted as the alert character
and the sequendg introduces a hexadecimal escape sequence (similar to octal escape
sequences). (The actual encoding of the alert character is defined by ANSI C as being
implementation-dependent. Tlee++ compiler implements it as the ASCII BEL
character, so in this example, the equivalent octal escape code for BEL is shown.)

Prior to ANSI C the following two strings
"\al is nothing special" "\x2 is nothing special"

would have been treated by the compiler as equivalent to the strings
"al is nothing special" "x2 is nothing special"

However, under the ANSI C standard, they are treated as being equivalent to
"\0071 is nothing special" "\02 is nothing special”

This can cause changes in programs that inadvertently make use\af threx escape
sequences.

Redeclaration of Typedefs

8-14

ANSI C decided that type identifiertypedefs) may be redeclared as normal identifiers
(or other type identifiers) in inner scopes. At the same time, ANSI C made the common
practice of allowing the unsigned and signed type specifiers to be mixed with integer type
identifiers illegal. For example, the following code:

typedef int integer ;
unsigned integer local ;

is considered to be illegal in ANSI C; however, older releases of the C compiler and Old
mode accept it as declaring local to belwarsigned int . On the other hand, ANSI C
treats

typedef int integer
int foo()

Compilation Modes

{
}

as redeclaring integer as an identifier with typesigned int . Older releases of the C
compiler consider this to be a syntax error. Current releasestsf (in Old mode) accept
this as an extension.

unsigned integer ;

Scope of Parameters

In Old mode, the formal parameters of a function definition are given a different scope
than the variables declared in the first block of a function. This makes it legal to redeclare
the name of a formal parameter as a variable in the first block of a function.

In the ANSI C compilation modes, function parameters have the same scope as variables
declared in the first block of the function. This makes code like

function (parameter)
int parameter ;

{
}

illegal in ANSI C since there are multiple definitions prameter in the same scope.
Names of formal parameters may still be redeclared in subsequent nested blocks. In Old
mode, this is legal but probably not intentional.

short parameter ;/* redeclare a parameter */

Header File Features

The header files undéirsr/include provide the following support for ANSI C:

* Meet ANSI C requirements on their contents

* Allow you to take advantage of the additional compile-time error checking
available with function prototypes

Function Prototypes

Function prototypes are available for functions declared in most system header files. This
has two advantages:

* The compiler can do better error-checking on the type and number of
arguments to library routine calls.

* The single-precision math library routines can be used (assuming
#include <math.h> appears) without resorting to thisingle2
command-line option toc++ .

8-15

C/C++ Reference Manual

Name-Space Restrictions

The system header files contain conditional compilation céidéef STDC) that
controls the enforcement of ANSI C restrictions on their contents. In Old mode, the
__STDC__macro is undefined; this means that ANSI C syntax, semantics, and nhame-
space restrictions are not enforced. In ANSI C conforming mede (option), the
__STDC__macro is defined to be 1, causing enforcement of the ANSI C syntax,
semantics, and name-space restrictions. In Transition mode and ANSI C mode, the
__STDC__macro is defined to be 0 (zero), indicating use of ANSI C syntax and
semantics but not the enforcement of ANSI C name-space restrictions.

A POSIX™-conforming name-space may be achieved in any compilation mode by
defining the macro POSIX_SOURCHBefore any header files are included (the POSIX
1003.1 name-space is a superset of ANSI C name-space).

In Figure 7-1, the User Name-Space represents the universe of identifiers, the ANSI C

and C++ Name-Space represents the identifiers defined by the ANSI C and C++ standards,
and the shaded region represents identifiers that are defined in ANSI C and C++ header
files but that are not defined by the ANSI C and C++ standards. The shaded region is given
to the user in Conforming mode but is given to the system in all other modes.

User Name-Space

ANSI C/C++
Name-Space

Figure 7-1. Name-Space Restriction

Library Enhancements

8-16

ANSI C specified a number of minor changes in the run-time behavior of several C library
routines. Where ANSI changes conflict with existing practice, the library behavior is
determined by the compilation mode specified on the command line when the final
executable idinked. Care must be taken witmakefiles (or other ad hoaenake
procedures) that do not automatically include compilation options with the link command
or which create the final executable by udoh@) directly.

Compilation Modes

Thecc++ driver program controls run-time behavior by linking special object files into
the executable depending on the compilation mode. By default, executables are linked in
the ANSI C mode. In the ANSI C-Ka) and Transition {Xt) modes, the object file
/usr/ccsl/lib/ansi.o is linked in to force ANSI C behavior. In the ANSI C
conforming mode+Xc), the object file/usr/ccs/lib/strict.o is used. In Old
mode, no special object file is required.

For example, to compile and link a C program using the ANSI C compilation mode and
run-time library behavior, use a command line like the one supplied here

$ ec -o prog file.c

To compile a C program using the ANSI C compilation mode but to link in Old mode, use
a command line like the one supplied here

$ ec -cfile.c; ec -Xo -0 prog file.o

This might cause unexpected behavior if the cod#@lérc ~ depends on ANSI C library
behavior that conflicts with Old mode behavior. For more information on compilation, see
Chapter 1 (“Compilation”) and thec++(1) man page.

Note thatld(1) does not support the compilation mode options, so to force ANSI C
behavior, eithefusr/ccs/lib/ansi.o or /usr/ccs/lib/strict.o must be
added to the link command. Thee command line to link an executable and force ANSI C
behavior from the run-time library would be

$ Id -0 prog /usr/ccs/lib/crt0.0 /usr/ccs/lib/ansi.o foo.o -lc

The actual differences in library routine behavior are discussed in detail in the man pages
for the modified routines. These are:

¢ ctime(3C)
* exp(3M)

¢ frexp(3C)

* matherr(3M)
* printf(3S)

* scanf(3S)

¢ setbuf(3S)
¢ sinh(3M)

¢ strtol(3C)

¢ trig(3M)

The major differences are in error-detection and handling. For example, in ANSI C mode
the strtol() routine only accepts input in the rang®NG_MINto LONG_MAXnd

math library routines do not call theatherr routine if linked in ANSI C conforming
mode (since ANSI C forbids this).

8-17

C/C++ Reference Manual

Locale-Support Enhancements

The following additional support is now provided o+ :

TheLC_COLLATHocale category is now supported:

A new tool, colltbl(1M) , is provided to define locale-dependent
collating sequences.

setlocale(3C) has been enhanced to support th€ COLLATE
category.

Two new library routines,strxfrm(3C) and strcoll(3C) , are
provided to support programs that wish to make use of locale-dependent
collating sequence information.

The following enhancements have been maanitthbl(1M)

= chrtbl now supports definition of theLC_NUMERIC (non-
monetary numeric formatting information) locale data file.
Previously, this data file had to be created manually. See
localeconv(3C)

- chrtbl now contains preliminary support for the definition of
multi-byte and wide-character locale definitions. This is done with
the cswidth chrtbl specifier.

Multi-byte locales are not currently supported, and these features are unused.

Anachronism Mode

8-18

This mode supports various anachronisms frdfront dialects of C++. See Section
“Anachronisms Accepted” on page 6-5 for more information.

Overview
Runtime Library

Generalo

9
Runtime Libraries

Language Support Library e

Linking

Template In
Cfront Libraries

stantiation

9-1
9-1

9-2
9-2
9-3

PowerMAX OS Real-Time Guide

Overview

9
Runtime Libraries

This chapter identifies the libraries provided with the Concurrent C++ compilation sys-
tem. This release of the compilation system includes runtime libraries that nearly in full
compliance withThe ISO/IEC 14882:1998(E) C++ Standard

Previous releases included specialized C++ class libraries from another vendor. The core,
standardized functionality in those libraries is now supported by the runtime library, and
third-party libraries have been removed from the general release. They are available sepa-
rately, however, for customers who rely heavily on the specialized functionality therein.

The set of C-compatible system runtime libraries provided in Concurrent’s PowerMAX
operating system, such as the math library and the networking libraries, may be included
in programs compiled with the Concurrent C++ compilation system. éidie- driver

always includes the standard C library among the libraries whose names are passed to the
link editor.

The runtime library provided with the Concurrent C++ compilation system is:
* Runtime LibrarylibCruntime
In addition, the following third-party libraries are available from Concurrent separately:
¢ Cfront Libraries
* |/O Library: libCio

¢ Complex LibrarylibCcomplex

Runtime Library

General

The runtime library lfbCruntime) includes Concurrent’s implementation of the C++
Standard Library and the Language Support Library. A description of the Standard
Library is beyond the scope of this manual, but there are many good references available
at bookstores.

9-1

C/C++ Reference Manual

Language Support Library

Linking

The Language Support Library provides the following support:

¢ characteristics of predefined types
* program start and termination

¢ dynamic memory management

* dynamic type identification

* exception handling

The runtime library is provided in 4 forms: statiibCruntime.a), shared Ifb-
Cruntime.so), thread-safe statidibCruntime_mt.a), and thread-safe shared
(libCruntime_mt.so). The appropriate library is chosen based on the command line
options used when invoking the compiler. These are summarized in Table 9-1.

Table 9-1. Choice of Runtime Library

s -Zlink=dynamic
-Zlink=static (default)
-lthread libCruntime_mt.a libCruntime_mt.so
threads (thread-safe static) (thread-safe shared)
(default) libCruntime.a libCruntime.so
(static) (shared)

Note that any sources that use #iestream> header, and whose object files are to be
linked with the -Ithread option, should be compiled with tiie REENTRANToption to
specify thread safety.

Template Instantiation

9-2

A common source of confusion when using the runtime library is template instantiation.
Certain templates, are instantiated in the library, either because they are required by the
standard, they are needed by other parts of the library, or for convenience. Notably, many
I/0 template routines are instantiated for the typkar andwchar_t . This is nice
because simple programs can often be compiled without using any special command-line
options or explicit instantiation in the source code. However, it can oversimplify the situ-
ation for user programs including template code.

When using template code with the C++ compiler, it is important to be familiar with the
template instantiation command-line options. See “C++ Specific Features” on page 1-10,
“Template Instantiation” on page 7-3, and “Template Instantiation Pragmas” on page 7-19.

Runtime Libraries

Cfront Libraries

In previous releases of the C++ compiler, Concurrent supplied a version of AT&T'’s cfront
libraries. These libraries are no longer shipped with the compiler. They are available sep-
arately, but their use is discouraged. It is recommended that code using the older cfront
libraries be migrated to the C++ Standard Library instead. Support for the cfront libraries
will be dropped entirely in a future release.

I/O Library The cfront 1/O library §bCio) has been replaced by the 1/O
support in the Standard Library.

Complex Library The cfront complex libranjifCcomplex) has been replaced
by the complex template class in the Standard Library.

If you insist on using the cfront libraries, you will need thefront_io command-line
option which tells the compiler to use the old cfront I/O and which makes the compilation
link with libCio

When using the cfront complex library, you must explicitly tell the compiler to link with
thelibCcomplex by using thelCcomplex option.

9-3

C/C++ Reference Manual

9-4

Overview

A
ANSI C++ Implementation

Although the ANSI C++ Working Paper defines many details of the C++ language, it
leaves some areas to be defined by the implementation. This appendix explains how the
Concurrent ANSI C++ implementation defines those areas. The appendix identifies each
portion of the April 28, 1995, Working Paper which specifies an implementation-defined
characteristic, along with the definition used in the Concurrent implementation.

Lexical Conventions (Chapter 2)

Phases of Translation (2.1)

Nonempty sequences of white-space characters are retained by the compiler.

Character Literals (2.9.2)

The value of a multicharacter literal that does not begin with the letieencoded into an
integer character constant as follows:

'y — iy
‘ab’ ='a<<8|'d’
‘abc’ ='a'k<16|'b'<< 8| 'c

‘abcd’” ='a'<<24|'b'<<16|'c'<<8|'d'

Wide-character literals are only supported for single-character sequences. The value of a
wide-character literal is the value of the right-most character enclosed in the single quotes.

If the value of the selected character in a character literal exceeds that of the tuayest
orwchar_t , the right-most byte of the selected character is regarded as the value of the

character literal.

A-1

C/C++ Reference Manual

String Literals (2.9.4)

All string literals are distinct (that is, are stored in non-overlapping objects). The compiler
-R option may be used, however, to pool string literals.

Basic Concepts (Chapter 3)

Types (3.9)

See Table 7-2, “Alignments by Data Type” for the alignment requirements of the various
object types.

Main Function (3.6.1)

The type and the parameters of thain function are:
int main (int argc, char *argv([], char *envpl[]);

Themain function has external linkage.

Fundamental Types (3.9.1)

Table A-1 shows the sizes and value ranges of floating—point types. (The epsilon of a type
is the difference between one and the next largest number that can be represented.)
Table A-2 shows the sizes and value ranges of integer types

Table A-1. Floating-Point Types

Designation Size (bits) Range (decimal)

float 1.175494350822287e-38 through
32 3.4028234663852888540e+38
(The epsilon is 1.19209290e-07.)

double 2.22507385850720140e-308 through
64 1.79769313486231470e+308
(The epsilon is 2.77555756156289%e-17|)

long double 2.22507385850720140e-308 through
64 1.79769313486231470e+308
(The epsilon is 2.77555756156289%e-17|)

A-2

Table A-2. Integer Types

ANSI C++ Implementation

Designation Size (bits) Range (decimal)
char 2 8 0 through 255
(any 8-bit unsigned integer)
signed char 8 -128 through 127
(ASCII characters plus negative bytes)
unsigned char 8 0 through 255
(any 8-bit unsigned integer)
bool 8 0 through 255
(any 8-bit unsigned integer)
short 16 -32768 through 32767
signed short 16 -32768 through 32767
unsigned short 16 0 through 65535
int 32 -2147483648 through 2147483647
signed int 32 -2147483648 through 2147483647
unsigned int 32 0 through 4294967295
long 32 -2147483648 through 2147483647
signed long 32 -2147483648 through 2147483647
unsigned long 32 0 through 4294967295
wchar_t 32 -2147483648 through 2147483647
long long 64 -9223372036854775808 through
9223372036854775807
signed long long 64 -9223372036854775808 though
9223372036854775807
unsigned long long 64 0 through 18446744073709551815

a. A plainchar object can take on the same values asgaed char
option is used, or it can take on the same values asnaigned
s option is used. In the absence of either option, a

signed_chars

char if the --unsigned_char

if the --

plainchar object takes on the same values asraigned char

b. 18 quintillion, 446 quadrillion, 744 trillion, 73 billion, 709 million, 551 thousand,

615!

See Appendix B (“Architecture Dependencies”) for the value representations of floating-
point and integer types

A-3

C/C++ Reference Manual

Standard Conversions (Chapter 4)

Integral Conversions (4.7)

When an integer type value is converted to a shorter integer type value, the original value
is truncated, discarding the high-order bits which do not fit in the new type.

Expressions (Chapter 5)

Reinterpret Cast (5.2)

When a pointer is converted to an integral type, the mapping function is a conversion of
the value of that pointer to the integral type, as if an explicit cast had been done to that
integral type.

When an integral type is converted to a pointer, the mapping function is a conversion from
the integral type to a value that can be represented agasigned int , as if an explicit

cast had been done tmsigned int . The programmer must ensure that the value of the
pointer represents a correct alignment of the type pointed to.

Sizeof (5.3.3)

sizeof(bool) is 1.
sizeof(wchar _t) is 4.

The result of thesizeof operator is a constant of typasigned int

Multiplicative Operators (5.6)

In the operatiofEl % E2 , the sign of the remainder is the sigrEdf

Additive Operators (5.7)

The result of subtraction of two pointers to elements of the same array object is of type
signed int

A4

ANSI C++ Implementation

Shift Operators (5.8)

In the operatioicl >> E2 , if E1 is negative, the vacated bitsif are one-filled.

Relational Operators (5.9)

Other pointer comparisons produce a result equivalent to that produced by a comparison
of the pointer values each cast to tymsigned in t.

Declarations (Chapter 7)

The asm declaration (7.4)

asm() is regarded as an ordinary function declaration. It is not used to provide inline
assembly language code in a C program.

Linkage Specifications (7.5)

Only the linkage specifications “C” and “C++" are valid.

Linkage from C++ to objects defined in other languages, or from other languages to
objects defined in C++, can be achieved by specifying

extern “C" {

}

around the declarations of the objects in the C++ code. Note that the objects’ link-level
names, when used in languages other than C++, must be the same as the names specified
in the linkage specification declaration. Linkage can also be achieved without use of the C
linkage specification, provided that the objects’ link-level names, when used in languages
other than C++, match the “mangled” names produced by the Concurrent C++ compiler.

Declarators (Chapter 8)

Default Arguments (8.3.6)

The order of evaluation of function arguments varies according to such factors as the
context of the function call, the level of optimization used in compilation, etc.

A-5

C/C++ Reference Manual

Classes (Chapter 9)

Class Members (9.2)

Bit-fields (9.7)

Non-static data members separated by an access specifier are allocated within a class
object in order of declaration. If membgris declared after membear, membelry has a
higher address than does menmber

Bit-fields are allocated from left to right (most to least significant bits). Bit-fields never
cross over an alignment boundary for their type. However, multiple bit-fields which are
sufficiently small may occupy the same allocation unit. For example,imivo bit-fields
whose total size is less than 32 bits may share a single 32—bit word.

However, if the firsint bit-field is 17 bits and the second is 16 bits, there are 15 padding
bits between them. Bit-fields may also share their allocation unit with attrect
members. For example, a 16-bit bit-field followed by ashort occupies one 32-bit
word.

A plainint bit-field is unsigned.

Special Member Functions (Chapter 12)

Temporary Objects (12.2)

The creation of temporaries by the compiler varies according to such factors as the context
of the function call, the level of optimization used in compilation, etc.

Preprocessing Directives (Chapter 16)

Conditional Inclusion (16.1)

A-6

Since the source and destination character sets are identical, character constants have the
same value whether they are in a preprocessing conditional statement or are in source code
which is passed by the preprocessor to the compiler.

The above holds for the 7-bit ASCII characters. 8-bit characters are treated as unsigned by
the preprocessor.

ANSI C++ Implementation

Source File Inclusion (16.2)
Includable source files whose names do not begin withd&re searched for in the
following manner:

If the name is enclosed in double-quot&s), the file is searched for in the directory of
the file containing thé&tinclude statement. If that search fails, or if the name is enclosed

between a and a>, the file is searched for undarsr/include . This behavior can be
modified by using thel command-line option. Refer to tlee++(1) man page for
more details.

The name of the file to be included is the full name by which the file is known to the
operation system. This may include an absolute or relative path. For example:

<stdio.h> Refers tdusr/include/stdio.h
<sys/time.h> Refers tdusr/include/sys/time.h

"lusr/include/sys/time.h
Also refers to
/usr/include/sys/time.h

"fleas.h " Searches fofleas.h first in the directory
where the including file is located, then in
Jusr/include

"sys/fleas.h " Searches for fleas.h in the sys
subdirectory (if any) of the directory in
which the including file is located, then in
Jusr/include/sys.

Predefined Macro Names (16.8)

The date and time are always provided by the operating system. Therefore, no defaults
exist for situations where the date and time of translation are not available.

See “Predefined Macros” on page 7-10 for the definitidheof STDC__ macro.

Headers (Chapter 17)

Freestanding Implementations (17.3.1.3)

The implementation provided in the Concurrent C++ compilation system is hosted. A
freestanding implementation is not provided.

A-7

C/C++ Reference Manual

Library Introduction (Chapter 17)

Reentrancy (17.3.4.5)

The following libraries are included:

e C system library: lusr/ccsllib/libc.a and
fusr/ccs/lib/libc.so provide reentrancy;
{usr/ccsllib/libnc.a does not.

* C++ runtime support libraryfusr/ccs/lib/libCruntime.a does
not provide reentrancy.

* C++ 1/O support library: /usr/ccs/lib/libCio_mt.a provides
reentrancyjusr/ccs/lib/libCio.a does not.

Language Support Library

Class bad_alloc (18.4.2.1)

what() returns the empty character strifig).

Class bad_cast (18.5.2)

what() returns the empty character strifi§).

Class bad_typeid (18.5.3)

what() returns the empty character strifig J.

Class bad_exception (18.6.2.1)

what() returns the empty character strifig).

Class exception (18.6.1)

what() returns the empty character strifi§).

A-8

ANSI C++ Implementation

Input/Output Library (Chapter 27)

Types (27.4.1)

The typestreamoff is of typelong .

The typewstreamoff is not currently supported in the Concurrent C++ compilation
system.

The typestreampos is of typelong .

The typewstreampos is not currently supported in the Concurrent C++ compilation
system.

basic_ios iostate flags functions (27.4.4.3)

The classhasic_ios::failure is not currently supported in the Concurrent C++
compilation system.

Standard Manipulators (27.6.3)

The typesmanip is not currently supported in the Concurrent C++ compilation system.
The clasSMANIPis supported. Semanip(3c++) for more information.

Compatibility (Appendix C)

Predefined Names (16.8)

See “Predefined Macros” on page 7-10 for the definitidheof STDC__ macro.

A-9

C/C++ Reference Manual

A-10

Overview

Bit-Field

B
Architecture Dependencies

The PowerPC-based systems targeted by the Concurrent C/C++ compilation system are
32-bit word, two’s complement computers. These systems support the following major
data types: bit, byte, half-word, word, double-word, and floating-point.

A bit-fieldis a structure member or union member that consists of 1 through 31 contiguous
bits. Bit-fields may be of typansigned int , int , andsigned int . The compiler

also allows them to be of typamsigned , signed , char , andshort . Fields that are
declared to bensigned int are zero-extended tmsigned int type when used in

an expression. Similarly, fields declared to be of tgfgmed int are sign-extended to

int type. Fields that are not explicitly declared to be signed or unsigned are zero-
extended tainsigned int type. The use of bit-fields is often not portable.

The C/C++ compiler determines how bit-fields and structure members that take up less
than a word are stored. Each of the following rules is applied before a member is stored.

* Members are packed in the order in which they were declared.
* Members are packed as tightly as possible.
* Members’ data-alignment rules are followed.

* Members do not cross their storage unit boundaries; for example, if a field
does not fit into the remaining space left in a word, it is placed into the next
word. Fields declared ashar orshort behave just like int fields except
that instead of word boundaries, they do not croBar andshort
boundaries, respectively.

* Unused space in storage units is padded.

Figure B-1 shows how the system stores sequentially defined bit-fields.

B-1

C/C++ Reference Manual

Byte

Defined
Bit-Fields Bit-Fields in Word

unsigned a:4;
unsigned b:7;
unsigned d:6;

unsigned c:15; 0 34 10 11 25 26 31

a b c d

Figure B-1. Bit-Field Example

Structures may contain fields and members of other types and sizes. The s&triof a
may not be equal to the sum of its members’ sizes. This is because the alignment
constraints of the individual members may force pad bits or bytes to be inserted between
members, padding them to the next boundary appropriate for their declared type.

See “Data Alignment Rules” on page 7-16 for alignment constraints.

A bytecontains eight bits starting on an addressable byte boundary. The most significant
bit (MSB) designates the byte’s address. Figure B-2 shows the address and MSB of a byte
in the system.

0 7

"

Address MSB

Figure B-2. Address and MSB of a Byte

If the byte is an unsigned integer, then its value is in the decimale@ng255 (binary
00000000 - 11111111).

If the byte is a signed numeric integer, then it contains a two’s complement value. As a
two’s complement number, a byte represents a decimal ranging from -128 to +127.

The following C/C++ data types take up one bytesigned char , char , signed
char . The default for the Concurrent C/C++ compiler is to treat ptdiar variables as
being unsigned.

Half-Word

Word

Architecture Dependencies

A 16-bit half-word contains two bytes and starts on an addressable 16-bit word boundary.
Figure B-3 shows that the MSB of the most significant byte is the half-word’s address.

Byte O Byte 1

0 7 8 15

A

Address MSB

Figure B-3. Address and MSB of a Half-Word

If the half-word is an unsigned integer, then its decimal value ranges from 0 to 64K-1. If
the half-word contains a signed numeric integer, then its two’s complement value ranges
from decimal -32K to +32K-1.

The following C/C++ data types take up one half-woutsigned short , short,
signed short

A word contains four bytes (32 contiguous bits). The word’s address may be a word
boundary or a CPU register. The MSB is the word’s address. See Figure B-4. .

Byte 0 Byte 1 Byte 2 Byte 3

Address MSB

Figure B-4. Address and MSB of a Word

If the word is an unsigned integer, then its value ranges from decimal 0 to 2**32-1. Asa
signed numeric value, a word represents an integer from -2**31 to +2**31-1.

B-3

C/C++ Reference Manual

Double Word

Shift Operations

B-4

The following C/C++ data types take up one woudsigned int ,int , signedint
unsigned long , long , signed long . Enumerations are implemented as signed
ints , and pointers are implementedwassigned ints , so they also take up one word.

Conceptually, $igned] int and [signed] long represent different data types, where
the size of dong is the same or larger than the size ofiah . However, currently the
PowerPC-based systems store both andlongs in one 32-bit word of memory.

A double wordcontains eight bytes (64 contiguous bits). The word’s address may be a
double word boundary or a CPU register. The MSB is the word’s address. See Figure B-5 .

Byte 1 Byte 3 Byte 5 Byte 7
Byte O Byte 2 Byte 4 Byte 6

Word 0 Word 1
Address MSB

Figure B-5. Address and MSB of a Double Word

If the word is an unsigned integer, then its value ranges from decimal 0 to 2**64-1. As a
signed numeric value, a word represents an integer from -2**63 to +2**63-1.

The following C/C++ data types take up two wordsisigned long long int ,
long long int , Signed long long int , anddouble .

The shift operatorsshift an integer by 0 through 31 bit positions to the lef) or to the
right (>>).

shift-expression ::= el << e2
el>>e2

The operands are the integer to be shifted (el) and the number of bit positions by which it
is to be shifted (e2). Both must be an integral type. The right operand, e2, must be within
the range 0 through 31.

In a left shift, all 32 bits, including the sign bit, are shifted to the left, with zeros replacing
the vacated rightmost bits.

Architecture Dependencies

A right shift has different effects depending on whether or not el is signed. If el is
unsigned, then it is shifted e2 bits to the right, with zeros replacing the leftmost bits. If el
is signed, however, then the sign bit replaces the vacated bits on the left.

Figure B-6 and Figure B-7 illustrate left and right shifts for both signed and unsigned
guantities, where MSB is most significant bit and LSB is least significant bit.

D N e

MSB LSB MSB LSB

Shift Left Logical Shift Right Logical

Figure B-6. Left/Right Shift of Unsigned Integer

-4—| S |=-— 4— Zeroes S +—p —
MSB LSB MSB LSB
Shift Left Shift Right

Figure B-7. Left/Right Shift of Signed Integer

Floating-Point

Figure B-8 shows the format of a 32-bit single-precision floating-point number.

S E F

01 89 31
Address

Figure B-8. Single-Precision Floating-Point Format

B-5

C/C++ Reference Manual

S is an unsigned single-bit sign field, E is an unsigned 8-bit exponent, and F is the
unsigned fraction (mantissa).

If E=0andF =0, the value is 0.

If E = 255 and F not = 0, the value is NaNNéN is IEEE’s abbreviation for Not-a-
Number.)

If E = 255 and F = 0, the value is G

If E =0 and F not = 0, the value is €2}2%0.F)
[denormalized].

Otherwise, the value is (2 1271.F).

The 64-bit double-precision floating-point format is shown in Figure B-9.

s | E ;
0 1 1112

Address

Figure B-9. Double-Precision Floating-Point Format

S is an unsigned single-bit sign field, E is an unsigned 11-bit exponent, and F is the
unsigned fraction (mantissa).

If E=0and Sis 0, the value of the number equals 0.
If E =2047 and F not = 0, the value is NaN.
If E = 2047 and F = 0, the value is €&

If E is 0 and F not = 0, the value is €°240.F)
[denormalized].

Otherwise, the value is (%2 10%{1.F).

The following C/C++ data types take up a 32-bit single-precision floating-point word:
float . The following C/C++ data types take up a 64-bit double-precision floating-point
word: double , long double

C/C++ Data Types

For a summary of the sizes and value ranges of the C/C++ data types, see Table A-1 and
Table A-2

Symbols

I 6-2

I= 6-18

8-9

6-15, 6-24, 8-8

5-17

#assert 6-18

#else 6-23

#if 6-23

#include 6-22, 7-19

#line 7-9, 7-20

#pragma 7-1

#pragma align 7-17
#pragma cautions 7-14
#pragma do_not_instantiate 7-8
#pragma errcount 7-15
#pragma error 7-14
#pragma hdrstop 7-19, 7-20, 7-23
#pragma ident 7-18
#pragma instantiate 7-8
#pragma min_align 7-17
#pragma no_pch 7-20, 7-23
#pragma once 7-18
#pragma opt_class 7-15
#pragma opt_level 7-15
#pragma optimize_for_space 7-15
#pragma optimize_for_time 7-15
#pragma warnings 7-15
#pragma weak 7-19

$ 8-3

%lld 6-15

& 8-3

&& 6-2

. 6-8

ti 7-5

/**/ 6-20, 6-24
ARGSUSED/ 6-14
NOTREACHED 6-14
VARARGS 6-14

 6-8

i template 6-4

<< 6-21

== 6-18

-> 6-24

>> 6-21

->template 6-4

? 6-2, 6-7, 6-10, 6-20
6-20

\a 6-23

__ALIGNOF__ 6-16

__ARRAY_OPERATORS 7-11

__cplusplus 6-6

_ DATE__ 7-20

__EDG__ 7-11

__EDG_IMPLICIT_USING_STD 7-11

Index

_ EDG_RUNTIME_USES_NAMESPACES 7-11

_ EDG_VERSION__ 7-11
__embedded_cplusplus 7-11

_ EXCEPTIONS 7-11
__INTADDR__ 6-16

__LINE__ 1-7

_ PLACEMENT_DELETE 7-11
__RTTI 7-11

_ SIGNED_CHARS__ 1-17,7-10
__STDC__ 6-22,7-10, A-7, A-9
_ STDC_VERSION__ 7-10
__TIME__ 7-20

__ VA_ARGS__ 6-15

_BOOL 7-11
_FAST_MATH_INTRINSICS 1-25
_unix 8-3

_WCHAR_T 7-10

Il 6-2

A

acpp 8-7

Address space 4-7

Ambiguous units 3-15

anachronism 1-22, 6-1, 8-1

analyze 1-15, 1-16, 1-28

and 6-2

anonymous struct 6-19

anonymous union 6-6, 6-19

ANSI C 6-1, 8-2
compilation modes 8-2

Index-1

C++ Reference Manual

conforming mode 8-2, 8-16, 8-17
incompatible features 8-7
escape characters 8-14
preprocessing 8-7
redeclaration of type identifiers 8-14
scope of parameters 8-15
type promotion 8-10
mode 8-2, 8-3, 8-4, 8-7, 8-16, 8-17
standard 8-2, 8-7, 8-10, 8-11, 8-14
ANSI C mode 8-17
ANSI C++ 8-1
ansi.o 8-17
Archive 4-6
ARGSUSED 6-14
argument promotion 6-5
Array 6-3
array 6-5, 6-8
as 1-4,1-16
asm A-5
assembler 1-14, 1-15
assignment 6-7
Automatic Instantiation 7-1, 7-4

base class initializer 6-5
basic_ios::failure A-9
Binary operator expressions 8-13
Binding

immediate 4-7

lazy 4-7
Bit field 7-17
bit field 6-12, 8-3
bitand 6-2
Bit-Field B-1
Bit-field A-6
bit-field 6-12
bitnot 6-2
bitor 6-2
bool 1-21, 6-2, A-3, A-4
Borland C++ 7-4
botxor 6-2
bound function pointer 6-5
builtin operator 6-8
Byte B-2

C

C43 1-5
C++3.1 15

Index-2

c++decode 1-16
c++prelink 1-4
c.analyze 2-2%-3, 5-5, 5-6

c.build 2-2, 2-3, 3-4, 3-12, 3-13, 3-14, 3-15, 488,

5-16

c.cat 2-15-10
c.chmod 2-15-11
c.compile 2-2,4-115-12
c.edit 2-1, 3-125-14
c.error 2-25-15 5-17
c.expel 2-1, 4-55-19
c.fetch 2-1, 4-35-20
c.freeze 2-15-21
c.help 2-25-22
c.hide 5-23
c.install 2-2
c.instantiation 2-15-25
c.intro 2-2, 2-3, 3-2, 3-11, 5-16;27
c.invalid 2-1,5-28
c.link 2-2,5-55-29
cls 2-1, 3-4, 3-14-30
c.Issrc 5-36
c.man 2-25-37
c.mkenv 2-1, 2-3, 3-1, 3-2, 3-11, 4-1, 5-5639
c.options 2-1, 3-6, 4-10, 4-13540
c.out 1-4
c.partition 2-2, 2-3, 3-3, 4-6, 4-8, 5-1%43
c.path 2-1, 3-6, 4-5-48
c.prelink 2-2
c.release 1-6, 2-1
c.report 2-2, 5-65-52
c.resolve 7-6
c.rmenv 2-15-54
c.rmsrc 2-25-55
c.script 2-1
c.touch 2-15-58
C/C++ 5.0 1-5
c_plusplus 6-6, 7-10
CI9X 1-24, 6-14
cast 6-5, 6-8, 6-13, 6-17, A-4
CCG 1-2,1-28
cfront 1-1, 1-17, 6-1, 6-7, 7-4
Cfront 2.1 6-8
cfront 2.1 8-1, 8-4
cfront 3.0 6-9, 8-1
char 6-19, A-3, B-2
char* 6-7
Character

escape 8-14
character constant 1-22
character set escape 6-4
class 6-6
class definition 6-2
class template 6-3, 6-4

Index

class template definition 6-2 --cfront_io 1-16
Classes A-6 --check_long_long 1-26
comma 6-13, 6-17 --class_name_injection 1-23
Comment 5-17, 6-16, 6-22 --combine_relocatable_objects 1-36
comment 1-22 --comments 1-7
Common Code Generator 1-2 --complete_unroll_debugging 1-29
Compatibility A-9 --const_constant_is_constant 1-26
Compatibility problems 8-16 --const_object_in_nonconst_member 1-26
Compilation --const_string_literals 1-22
separate 4-10 --create_pch 1-9, 7-22
states 4-10 -D 1-7
Compilation modes --debug 1-14
ANSI C 8-2, 8-3, 8-4, 8-7, 8-16, 8-17 --define_macro 1-7, 1-8
ANSI C conforming 8-2, 8-16, 8-17 --dependencies 1-7
Old 8-2, 8-4, 8-5, 8-7, 8-10, 8-11, 8-13, 8-14, 8-15, --designators 1-24, 6-16
8-16, 8-17 --diag_error 1-12
Transition 8-2, 8-4, 8-16, 8-17 --diag_remark 1-12
Compilation states --diag_suppress 1-12
compiled 4-13 --diag_warning 1-12
parsed 4-12 --display_error_number 1-12
uncompiled 4-12 --distinct_template_signatures 1-17
Compiler --dont_peel_var 1-29
automatic compilation 4-10 --dynamic_link_name 1-34
deleting options 3-9 -E 1-7
effective options 3-9, 4-11 -e 1-12
environment-wide options 3-6, 4-3, 4-11, 5-41 --early_tiebreaker 1-23
invocation 1-4 --embedded_c+ 1-22
listing options 3-7 --enable_intrinsics 1-25
modifying options 3-8 --entry_point 1-36
setting options 3-7 --enum_overloading 1-22
Compiler option --error_limit number 1-12
-# 1-16 --error_output 1-12
--alias_array_elements_limit 1-28 --exceptions 1-18
--alias_ignore_const 1-29 --explicit 1-18
--alias_object_limit 1-29 --extended_designators 1-24, 6-16
--alias_structure_fields_limit 1-29 --extended_variadic_macros 1-24, 6-15
--alternative_tokens 1-21 --extern_inline 1-20
--anachronisms 1-17, 8-1 -F 1-25,7-24
--ansi_cplusplus_headers 1-25 -f 1-25
--arg_dep_lookup 1-23 --float_mode 1-25
--array_new_and_delete 1-18 --float_single 1-24
--auto_instantiation 1-10, 7-7 --float_single2 1-24
-B 1-15 -flttrap 1-29
-b 1-14 --for_init_diff_warning 1-19
--base_assign_op_is_default 1-24 --force_vtbl 1-11
--bin_path 1-14 --fpexcept 1-30
--bool 1-21 --friend_injection 1-23
--brief_diagnostics 1-13 -fsingle 1-24
-C 1-7 -fsingle2 1-24, 8-15
--c 1-16 --full_debug_info 1-14
-c 1-14, 8-17 --full_debug_line_info 1-30
--c++ 1-16 -g 1-14
--cfront_2.1 1-17, 8-1 --growth_limit 1-30
--cfront_3.0 1-17, 8-1 --guiding_decls 1-19

Index-3

C++ Reference Manual

-H 1-14

-h 1-34

--help 1-14

--help_screen 1-14
--huge_heuristic 1-30

-1 1-8, A-7

-i 1-8
--implicit_extern_c_type_conversion 1-19, 6-7
--implicit_include 1-10, 7-10
--implicit_typename 1-21
--incl_suffixes 1-8
--include_directory 1-8
--inline 1-30

--inline_depth 1-30

--inlining 1-22

--instantiate 1-11
--int_div_exception 1-31
--invert_divides 1-31

-K 1-26

-k 1-13

-L 1-35

-l 1-34

--late_tiebreaker 1-23
--leave_temp_files 1-14
--lib_path 1-15

--library 1-34
--library_directory 1-35
--library_linkage 1-35
--limit_search_paths 1-16
--link_mode 1-35

--linker_z 1-36

--list 1-8

--list_macros 1-10

-Inc 1-35
--long_lifetime_temps 1-20
--long_long 1-26, 6-15
--long_preserving_rules 1-20
--loops 1-31

-M 1-36

-m 1-36

--mapfile 1-36
--memory_map 1-36
--multibyte_chars 1-22

-n 1-12, 7-14, 8-5
--namespace_in_headers 1-25
--namespaces 1-18, 7-1
negating 4-12
--new_for_init 1-18

--nitpick 1-12
--no_alternative_tokens 1-21
--no_anachronisms 1-17
--no_ansi_cplusplus_headers 1-25
--no_arg_dep_lookup 1-23
--no_array_new_and_delete 1-18

Index-4

--no_auto_instantiation 1-10, 7-7
--no_base_assign_op_is_default 1-24
--no_bool 1-21
--no_brief_diagnostics 1-13
--no_cfront_io 1-16
--no_class_name_injection 1-23
--no_code_gen 1-13
--no_const_string_literals 1-22
--no_designators 1-24, 6-16
--no_distinct_template_signatures 1-17, 7-3
--no_enum_overloading 1-22
--no_exceptions 1-18

--no_explicit 1-18
--no_extended_designators 1-24, 6-16
--no_extended_variadic_macros 1-24, 6-15
--no_extern_inline 1-20
--no_float_reg_agg_move 1-31
--no_float_varargs 1-31
--no_for_init_diff_warning 1-19
--no_friend_injection 1-23
--no_guiding_decls 1-19
--no_implicit_extern_c_type_conversion 1-19
--no_implicit_include 1-10, 7-10
--no_implicit_typename 1-21
--no_inlining 1-22
--no_invert_divides 1-32
--no_line_commands 1-7
--no_long_long 1-26
--no_long_preserving_rules 1-20
--no_multibyte_chars 1-22
--no_multiply_add 1-32
--n0_namespace_in_headers 1-25
--no_namespaces 1-18, 7-1
--no_nonconst_ref _anachronism 1-22
--no_nonstd_qualifier_deduction 1-18
--no_nonstd_using_decl 1-23
--no_old_specializations 1-19
--no_pch_messages 1-10, 7-22
--no_post_linker 1-28
--no_preproc_only 1-7
--no_remove_unneeded_entities 1-14
--no_reorder 1-28

--no_restrict 1-20

--no_rtti 1-18
--no_special_subscript_cost 1-21
--no_svr4 1-22

--no_typename 1-21
--no_use_before_set warnings 1-12
--no_variadic_macros 1-24, 6-15
--no_warnings 1-12
--no_wechar_t_keyword 1-20
--no_wrap_diagnostics 1-13
--nonconst_ref anachronism 1-22, 6-5
--nonstd_qualifier_deduction 1-18

--nonstd_using_decl 1-23
-0 1-26

-0 1-5, 1-13, 8-17

-00 1-26

-01 1-27

-02 1-27

-03 1-27

-04 1-27

-Oanalyze 1-28

--objects 1-32

-Oglobal 1-27

--old_c 1-16
--old_for_init 1-18
--old_specializations 1-19
-Omaximal 1-27
-Ominimal 1-27
-Ono_post_linker 1-28
-Ono_reorder 1-28
-Onone 1-26
-Onoreorder 1-28
-Opost_linker 1-28
--optimization_level 1-26
--optimize_for_space 1-32
-Oreorder 1-28

-Osafe 1-27

-Ostandard 1-27
-Ounsafe 1-28

--output 1-13

-P 1-7
--pass_to_analyze 1-15
--pass_to_assembler 1-15
--pass_to_code_generator 1-15
--pass_to_front_end 1-15
--pass_to_linker 1-15
--pass_to_prelink 1-15
--pass_to_prelinker 1-15
--pass_to_reorder 1-15
--pch 1-9, 7-22

--pch_dir 1-10, 7-21, 7-22, 7-23
--pch_messages 1-10
--pch_verbose 7-22
--peel_limit_const 1-32
--pending_instantiations 1-10
persistent 4-10

--pic 1-35

-pic 1-35

--plt 1-33

--post_linker 1-28
--precise_alias 1-33
--preinclude 1-8
--preprocess 1-7
--preprocess_to_file 1-7
--processors 1-15

-Q 1-28

-Qalias_array_elements_limit 1-28

-Qalias_ignore_const 1-29
-Qalias_object_limit 1-29

-Qalias_structure_fields_limit 1-29

-Qbenchmark 1-27
-Qchars_signed 1-17
-Qcheck_long_long 1-26

-Qcomplete_unroll_debugging 1-29

-Qdont_peel_var 1-29
-Qflttrap 1-29

-Qfpexcept 1-30
-Qfpexecpt 1-30
-Qfull_debug_info 1-14
-Qfull_debug_line_info 1-30
-Qgrowth_Ilimit 1-30
-Qhuge_heuristic 1-30
-Qinline 1-30
-Qinline_depth 1-30
-Qint_div_exception 1-31
-Qinvert_divides 1-31
-Qleave_temp_files 1-14
-Qlong_long 1-26

-Qloops 1-31
-Qno_float_reg_agg_move 1-31
-Qno_float_varargs 1-31
-Qno_invert_divides 1-32
-Qno_long_long 1-26
-Qno_multiply_add 1-32
-Qno_vendor_reloc 1-36
-Qobjects 1-32
-Qopt_class 1-32
-Qoptimize_for_space 1-32
-Qpeel_limit_const 1-32
-Qpeel_var 1-33

-Qplt 1-33

-Qprecise_alias 1-29, 1-33
-Qquick_alias 1-33
-Qreentrant_library 1-32
-Qreport_optimizations 1-32
-Qretain_out_of line_copy 1-11
-Qsigned_char 1-17
-Qsparse_debug_line_info 1-33

-Qspill_register_if_address_taken 1-33

-Qtarget 1-34
--quick_alias 1-33
-Qunroll_limit_const 1-34
-Qunroll_limit_var 1-34
-R 1-25

-r 1-36
--read_only_literals 1-25
--reduced_symbols 1-36
--rel 1-16

--remarks 1-12
--remove_unneeded_entities 1-14

Index

Index-5

C++ Reference Manual

--reorder 1-28 -x 1-36
--report_optimizations 1-32 -Xa 1-16, 8-2
--restrict 1-20 -Xc 1-16, 8-2
--retain_out_of_line_copy 1-11 -Xo 1-16, 8-2

--rtti 1-18 --xref 1-13

-S 1-14 -Xt 8-2

-s 1-37 -Z 1-35

--safe 1-27 -z 1-36
--short_lifetime_temps 1-20 -zdefs 1-36
--signed_chars 1-17, A-3 -Zlibs 1-35
--sparse_debug_line_info 1-33 -Zlink 1-35
--special_subscript_cost 1-21 -Zpic 1-33, 1-35
--spill_register_if_address_taken 1-33 -Zsymbolic 1-36
--standard 1-27 compiler option

--strict 1-5, 1-16, 8-1 -Ono_analyze 1-28
--strict_warning 8-1 concatenate 8-6
--strict_warnings 1-16 Consistency 4-13
--strip 1-37 const 6-2, 6-4, 6-8, 6-10, 6-14, 6-20
--suppress_vtbl 1-11 const_cast 6-3

--svr4 1-22 Constant 6-6
--symbolic 1-36 constructor 6-3, 6-9
--symtab_size 1-14 conversion 6-4, A-4
--sys_include 1-8 copy assignment operator 6-7
-T 1-14 Covariant return type 6-3
-t 1-15 cpp 8-7, 8-8, 8-9

-tall 7-7 cprs 4-15

--target 1-34 cxc++ 1-4,1-16
--testing 1-16

--timing 1-13

-tlocal 7-7 D

-thone 7-7

--trace_includes 1-7

-tused 7-7 Data alignment
--typename 1-21 defaults 7-16

-U 1-8 pragmas 7-16

-u 1-37 Data types A-3
ultimate 1-27 implicit 8-11
--undefine_macro 1-8 Debugging 1-2, 1-14
--undefined_linker_symbol 1-37 NightView 4-15
--unroll_limit_const 1-34 tools 4-15
--unroll_limit_var 1-34 Declarations A-5
--unsafe 1-28 Declarators A-5
--unsigned_char A-3 Default argument 6-4
--unsigned_chars 1-17 default arguments 6-2
--use_pch 1-10, 7-22 delete 6-3, 6-5

-v 1-14 deprecated 6-7
--variadic_macros 1-24, 6-15 derived class 6-7, 6-11
--verbose 1-14 Designator 6-16
--version 1-13 designator 1-24

-W 1-15 destructor 6-3, 6-9, 6-11
-w 1-12 Diagnostics Library A-8
--wchar_t_keyword 1-20 Digraph 6-2
--wrap_diagnostics 1-13 disambiguation 6-11
-X 1-16, 8-2 division 1-31

Index-6

Dollar sign 6-18
double 6-22, B-4
do-while 6-2, 6-8
Dynamic linker 4-7
Dynamic linking 4-7
dynamic mode 1-36
dynamic_cast 6-3
dynamically-link 1-35

Edison Design Group Inc 1-2
EDITOR 3-11
Effective compile options 3-9, 4-11
elaborated type specifier 6-12
elaborated type specifiers 6-2
Embedded C++ 1-22
Enhancement
header file 8-15
library 8-16
locale—support 8-18
enum 1-22, 6-3, 6-4, 6-8, 6-14, 6-17, 6-20, 6-22, 8-3
Environment 4-1
creating 3-1, 3-11
environment-wide compile options 4-3
environment-wide options 4-11
foreign 4-2
local 4-2
Environment Search Path 3-6, 3-13, 4-2, 4-5
adding environments to 3-13
viewing 3-13
Environment variable
EDITOR 3-11
LD_BIND_NOW 4-7
PATH 3-1
PATH_TO_ANALYZE 1-16
PATH_TO_ANSI 1-16
PATH_TO_AS 1-16
PATH_TO_CRTO 1-16
PATH_TO_CXCPP 1-16
PATH_TO_DECODE 1-16
PATH_TO_LD 1-16
PATH_TO_MCRTO 1-16
PATH_TO_REORDER 1-16
PATH_TO_STRICT 1-16
STATIC_LINK 1-35
TARGET_ARCH 1-34
Environments
restoring 4-3
Environment-wide compile options 5-41
Error messages 7-14, 8-3
Errors

Index

redirecting to a file 5-16
escape 6-4, 6-19, 6-23
Escape characters 8-14
exception 1-31
Exceptions

misaligned accesd-14
Executable partition 3-3
explicit 6-3
export 6-4
Expressions A-4

binary operator 8-13
extended variadic macro 1-24
extern 1-19, 6-3, 6-17, 6-21, 8-6
extern "C" 6-7, 6-13
extern "C++" 6-7, 6-13
extra comma 6-13

Fetched unit 4-3, 4-5
field selection 6-21, 6-24
File
header 8-15
file scope 6-17
float 6-22, B-3
Floating point B-5
for 1-18, 6-2, 6-3, 6-8, 6-13
Foreign unit 4-5
friend 1-23, 6-2, 6-4, 6-6, 6-10
Function
intrinsic 7-24
prototype 8-15
function template 6-2, 6-3, 6-4
functional-notation cast 6-2

G

global 1-27

GLOBAL optimization 4-14, 7-15
global symbol 1-36

guiding declaration 6-3

Half-word B-3

Header file 8-15, A-7
enhancements 8-15
function prototypes 8-15

Index~

C++ Reference Manual

help 1-14

ieee 1-25

ieeecom 1-25

ieeenear 1-25

ieeeneg 1-25

ieeepos 1-25

ieeezero 1-25

if 6-2, 6-3, 6-8

Immediate binding 4-7
implicit conversion 6-3, 6-8
implicit inclusion 7-1
incomplete array type 6-17
initialization 6-5

initialized variable 1-25
initializer 6-17

initializing 8-6

injection 6-4

inline 1-20, 1-22, 6-3, 6-14
Input/Output Library A-9
Instantiation 7-1, 7-3
instantiation 1-11, 6-3
Instantiation Modes 7-7

instruction scheduler 1-15, 1-28

int 6-4, A-3, B-3
Intrinsic functions 7-24
test and set 7-25

Johnson pcc 6-19

K

K&RC 6-19, 8-5
pcc 6-1

Kernighan 6-19

Koenig 6-4

label 6-17

Language Support Library A-8

Lazy binding 4-7

Index-8

Id 1-4,1-16, 1-34, 1-36, 8-16
LD_BIND_NOW 4-7
Level
optimization 5-5
Lexical Conventions A-1
libnc 1-32
Library
enhancements 8-16
library 1-32, 1-34, 1-35
Library Introduction A-8
Link
name 5-4
optimization 5-5, 5-6
Link editor 1-4
link editor 1-14, 1-15
Link option 4-8
Link options 5-59
c.partition 5-46
linkage 6-3
linkage specification A-5
Linker
dynamic 4-7
lint 6-14, 6-20
Listing
compiler options 3-7
effective options 3-9

environment search path 3-13

units 3-4
Local unit 4-4
Locale 8-7

support enhancements 8-18

long 6-22, A-3

long double 8-6, B-6
long float 6-17

long int B-3

long long 6-15, A-3
long long int B-4
LONG_MAX 6-23

M

macro 1-24, 6-23, 6-24
macro recursion 6-23
Macros

predefined 8-3, 8-15
main 6-2, A-2
MaxADA 1-2
maximal 1-27

MAXIMAL optimization 4-14, 5-5, 7-15

member function 6-4
Member templates 6-3
Memory

segment 4-7

minimal 1-27

MINIMAL optimization 7-15

Misaligned acces%-14

Miscellaneous Directives 7-18

Mode
ANSI C 8-2, 8-3, 8-4, 8-7, 8-16, 8-17
ANSI C conforming 8-2, 8-16, 8-17

Old 8-2, 8-4, 8-5, 8-7, 8-10, 8-11, 8-13, 8-14, 8-15,

8-16, 8-17
Transition 8-2, 8-4, 8-16, 8-17
modulo A-4
multibyte character 1-22
mutable 6-3

N

Namespace 6-3, 7-1
Name—space restrictions 8-16
Native unit 4-4
Naturalization 3-14, 4-3
Naturalized unit 4-4
NCEG 6-7, 6-16

near 1-25

neg 1-25

nested class name 6-5
new 6-3

NightBench 1-2
NightView 1-14, 4-15
NightView debugger 1-2
NIH class libraries 6-8
nm 5-4

none 1-26

Normal C++ Mode 8-2
not 6-2

NOTREACHED 6-14
Number 6-18

O

octal 6-23

Old Mode 8-5

Old mode 8-2, 8-4, 8-5, 8-7, 8-10, 8-11, 8-13, 8-14,
8-15, 8-16, 8-17

old-style parameter declaration 6-5

Operator 6-2

operator-- 6-5

operator++ 6-5

operator= 6-7, 6-9, 6-14

opt_class pragma 7-15

Index

opt_level pragma 7-15
Optimization 1-28

levels 5-5

pragmas 7-15
optimization class 1-27
optimize_for_space pragma 7-15
optimize_for_time pragma 7-15
Options

link 5-59
or 6-2
Overflow 6-21
overload 1-22, 6-4, 6-5
overloaded function 6-2
overloaded operator 6-8
overloading 6-3, 6-8

parameter 6-4
Parameters
scope of 8-15
parenthesis 6-4
Partial ordering 6-3
Partial specialization 6-3
partial specialization 6-5
Partition
archive 4-6
building 3-4
defining 3-3
executable 3-3
shared object 4-6
types 4-6
PATH 3-1
pcc 1-20, 6-19
PDE 1-5
Performance
analysis 5-6
Phases
compilation 1-2
Placement delete 6-3
placement new 6-3
plain bit field 6-12
POD 6-3, 6-14
Pointer 7-16, 7-17
pointer B-3
pos 1-25
Position independent code (PIC) 4-7
position-independent code 1-35
POSIX 8-16
post link optimizer 1-15
postfix 6-5
post-link optimizer 1-14

Index-9

C++ Reference Manual

post-linker 1-28

ppc 1-34

ppc604 1-34

ppc604e 1-34

ppc750 1-34

Pragmas 7-13
data-alignment 7-16
opt_class 7-15
opt_level 7-15
optimization 7-15
optimize_for_space 7-15
optimize_for_time 7-15

precedence 6-2

precompiled header 1-9, 7-19

Predefined macro 8-3, 8-15
__LINE__ 1-7
__SIGNED_CHARS__ 1-17
__STDC__ A-7,A-9
_FAST_MATH_INTRINSICS 1-25
_unix 8-3
unix 8-3

prefix 6-5

prelinker 1-15, 7-6

prelinking 1-4

preprocessing directive 6-16

preprocessing directives A-6

Preprocessor 8-7

printf 6-15

Profiling 5-6

Program Development Environment 1-5

Programming
caveats 4-14
hints 4-14

promotion 6-5

promotion rule 6-23

Protected member 6-11

Prototype
function 8-15

ptrdiff_t 1-21

ptrepository 7-4

Q

Qualified names 6-2

R

read-only 1-25
Real-time
debugging 4-15

Index-10

reentrant 1-32

reference 6-5

register 6-17

Reinterpret Cast A-4
reinterpret_cast 6-3, 6-4
Reiser cpp 6-19

Relocation 4-7

remainder A-4

reorder 1-4, 1-15, 1-16, 1-28
restrict 1-20, 6-7, 6-16
Ritchie 6-19

RTTI 6-3, 7-11

runtime type identification 6-3
rvalue 6-2

safe 1-27,1-32

scalar type 6-6

scanf 6-15

scope 6-2, 6-3, 6-13, 6-17, 6-21

Search path 5-48

semicolon 6-17

Share path 4-8

Shared object 1-35, 4-6
issues to consider 4-8
share path 4-8

Shift B-4

short 6-17, 6-22, A-3

short int B-3

signed 6-20, 8-6

signed char A-3

signed int A-3

signed long A-3

signed long long A-3

signed short A-3

sizeof 6-16, 6-21, 8-3, A-4

smanip A-9

Soft link 4-8

Source listing controls 7-14

Special Member Functions A-6

specialization 6-3, 6-5

standard 1-27, 1-32

STANDARD optimization 7-15

startup routines 1-15

static 6-21

static data member 6-4, 6-5

static member function 6-4

static_cast 6-3

STATIC_LINK 1-35

statically-link 1-35

stdin 5-27, 5-55

Index

stdout 5-3, 5-4, 5-15, 5-16, 5-55 signed short A-3
streamoff A-9 smanip A-9
streampos A-9 streamoff A-9
strict.o 8-17 streampos A-9
Strictly-Conforming Mode 8-3 struct 8-3
String literal 6-4, 6-21 union 8-3
string literal 1-22, 1-23, 6-7 unsigned char A-3
Stringization 8-9 unsigned int A-3
struct 6-17, 6-19, 7-17, 8-3, B-1 unsigned long A-3
subscript 1-21 unsigned long long A-3
Suffix unsigned short A-3
Forf 8-6 volatile 8-6
Lorl 8-6, 8-12 wchar_t A-3, A-4
Uoru 8-6, 8-11, 8-12 type specifiers 6-2
SVR4 C 1-22, 6-1 Type template parameter 6-2
switch 6-3, 6-23 typedef 6-3, 6-4, 6-6, 6-7, 6-12, 6-13, 6-18, 6-19, 6-21
Symbolic debugging 1-2 redeclaration of 8-14
typeid 6-3

typename 1-21, 6-3

T Type—promotion rules 8-10

Template 6-2, 7-1, 7-3

template 1-11, 6-3, 6-4 U
Template Instantatin
Implicit inclusion 7-5 ultimate 1-27
Template Instantiation 7-3 union 6-13, 6-17, 6-19, 7-17, 8-3
Implicit Inclusion 7-9 Unit
Instantiation Modes 7-7 ambiguous 3-15
template parameter 6-4 compile options 4-5
template parameters 6-2 consistency 4-13
Template template parameter 6-4 fetched 4-3, 4-5
temporary 6-2, 6-5 foreign 4-5
Test and set function 7-25 introducing 3-2
Token pasting 6-20 listing 3-4
Token splicing 8-4, 8-8 local 4-4
Transition mode 8-2, 8-4, 8-16, 8-17 modifying 3-11
Trigraph 6-22, 8-7 native 4-4
Two-phase name binding in templates 6-4 naturalized 4-3, 4-4
type viewing source 3-5
basic_ios::failure A-9 Universal character set escapes 6-4
bool A-3, A-4 unix 8-3
char A-3 unnamed class 6-13
enum 8-3 Unnamed template parameter 6-4
int A-3 unsafe 1-28, 1-32
long A-3 UNSAFE optimization 7-15
long double 8-6 unsigned 6-22
long long A-3 unsigned char A-3
short A-3 unsigned int A-3
signed 8-6 unsigned long A-3
signed char A-3 unsigned long long 6-15, A-3
signed int A-3 unsigned short A-3
signed long A-3 Unsigned—preserving 8-10
signed long long A-3 using 1-23, 6-3

Index-11

C++ Reference Manual

\Y,

Value—preserving 8-10
VARARGS 6-14, 6-20
variadic macro 1-24, 6-15
vi 5-15,5-17, 5-18

virtual function 6-3
Virtual function table 6-12
void 6-4, 6-8, 6-10, 6-20
volatile 6-2, 6-20, 8-6

w

warnings 1-12

wchar_t 1-20, 6-2, 6-19, A-3, A-4
wchar_t* 6-7

what A-8

while 6-2, 6-3, 6-8

wide string literal 6-4

Word B-3, B-4

xor 6-2

zero 1-25

Index-12

	C/C++ Reference Manual
	Preface
	Contents
	Compilation
	Overview
	Compilation Phases
	Compiler Invocation
	Program Development Environment
	Multiple Release Support
	Command Line Options
	Controlling Compilation Process
	Preprocessing
	C++ Specific Features
	Error Messages
	Other

	Language Dialect
	Optimization
	Linking

	Overview of Concurrent C/C++ Program Development Environment
	C/C++ Utilities
	C/C++ Core Utilities

	Using Concurrent C/C++ Program Development Environment
	Hello World - An Example
	Before we begin...
	Creating an environment
	Introducing units
	Defining a partition
	NOTE

	Building a partition
	Success!!!
	Let’s look around...
	Listing the contents of your environment
	Viewing the source for a particular unit
	Looking at the Environment Search Path
	What are my options?

	Hello Galaxy - The Example Continues...
	Setting up another environment
	NOTE

	Modifying an existing unit
	NOTE

	Building a unit with references outside the local environment
	Adding an environment to the Environment Search Path
	Making contact!!!
	Who resides here now?
	NOTE
	FURTHER NOTE

	Concurrent C/C++ Program Development Environment Concepts
	Overview
	Environments
	Local Environments
	Foreign Environments
	Environment Search Path
	Naturalization
	Fetching

	Freezing Environments
	Environment-wide Compile Options

	Units
	Unit Identification
	Nationalities
	Local Units
	Foreign Units

	Artificial Units
	Unit Compile Options

	Partitions
	Types of Partitions
	Executable Partitions
	Archives
	Shared Objects
	Lazy Versus Immediate Binding
	Position Independent Code
	Share Path
	Issues to consider

	Link Options

	Compilation and Program Generation
	Compilation
	Automatic Compilation Utility
	Compile Options
	Environment-wide Options
	Permanent Unit Options
	Temporary Unit Options
	Effective Options

	Compilation States
	NOTE

	Consistency
	Programming Hints and Caveats

	Linking Executable Programs

	Debugging
	Real-Time Debugging
	Debug Information and cprs

	Source Control Integration
	DISCLAIMER

	Makefile Integration

	Concurrent C/C++ Utilities
	Overview
	Utilities
	Common Options

	c.analyze
	NOTE
	NOTE
	Link-Time Optimizations with c.analyze
	Profiling with c.analyze

	c.build
	NOTE

	c.cat
	c.chmod
	c.compile
	c.edit
	c.error
	c.expel
	NOTE

	c.fetch
	NOTE

	c.freeze
	c.help
	c.install
	NOTE

	c.instantiation
	c.intro
	c.invalid
	c.link
	c.ls
	Formatting the listing
	Sorting

	c.lssrc
	c.man
	NOTE

	c.mkenv
	c.options
	Option Sets
	Listing options
	Setting options
	Modifying options
	Clearing options
	Deleting options
	Keeping temporary options
	Setting options on foreign units

	c.partition
	NOTES
	Link Options
	NOTE

	c.path
	c.prelink
	c.release
	c.report
	c.rmenv
	c.rmsrc
	c.script
	c.touch
	Link Options

	C++ and C Dialects
	Overview
	C++ Dialect Accepted
	New Language Features Accepted
	New Language Features Not Accepted
	Anachronisms Accepted
	Extensions Accepted in Normal C++ Mode
	Extensions Accepted in Cfront 2.1 Compatibility Mode
	Extensions Accepted in Cfront 2.1 and 3.0 Compatibility Mode

	C Dialect Accepted
	C9X Extensions
	ANSI C Extensions
	K&R/pcc Mode
	Extensions Accepted in SVR4 Compatibility Mode

	Special Features of C++
	Overview
	Namespace Support
	Template Instantiation
	Automatic Instantiation
	Instantiation Modes
	Instantiation #pragma Directives
	Implicit Inclusion
	Automatic Instantiation in the Program Development Environment

	Predefined Macros
	Pragmas
	Edison Defined Pragmas
	Concurrent Defined Pragmas
	Source Listing Controls
	Optimization Directives
	Data Alignment Control Directives
	Data Alignment Rules
	#pragma align
	#pragma min_align

	Miscellaneous Directives
	#pragma once
	#pragma ident
	#pragma weak

	Template Instantiation Pragmas

	Precompiled Headers
	Automatic Precompiled Header Processing
	Manual Precompiled Header Processing
	Other Ways for Users to Control Precompiled Headers
	Performance Issues

	Intrinsic Functions
	Environment Variables
	Diagnostic Messages
	Termination Messages
	Response to Signals
	Exit Status
	Finding Include Files

	Compilation Modes
	Overview
	Compilation Modes
	ANSI C Mode
	Normal C++ Mode
	Strictly-Conforming Mode
	cfront 2.1 Compatibility Mode
	cfront 3.0 Compatibility Mode
	Transition Mode

	Old Mode

	Mode Features
	Common Features
	Differentiating Features
	Preprocessing
	Type-Promotion Rules
	Binary Operator Expressions
	Escape Characters
	Redeclaration of Typedefs
	Scope of Parameters

	Header File Features
	Function Prototypes
	Name-Space Restrictions
	Library Enhancements

	Locale-Support Enhancements
	Anachronism Mode

	Runtime Libraries
	Overview
	Runtime Library
	General
	Language Support Library
	Linking
	Template Instantiation

	Cfront Libraries

	ANSI C++ Implementation
	Overview
	Lexical Conventions (Chapter 2)
	Phases of Translation (2.1)
	Character Literals (2.9.2)
	String Literals (2.9.4)

	Basic Concepts (Chapter 3)
	Types (3.9)
	Main Function (3.6.1)
	Fundamental Types (3.9.1)

	Standard Conversions (Chapter 4)
	Integral Conversions (4.7)

	Expressions (Chapter 5)
	Reinterpret Cast (5.2)
	Sizeof (5.3.3)
	Multiplicative Operators (5.6)
	Additive Operators (5.7)
	Shift Operators (5.8)
	Relational Operators (5.9)

	Declarations (Chapter 7)
	The asm declaration (7.4)
	Linkage Specifications (7.5)

	Declarators (Chapter 8)
	Default Arguments (8.3.6)

	Classes (Chapter 9)
	Class Members (9.2)
	Bit-fields (9.7)

	Special Member Functions (Chapter 12)
	Temporary Objects (12.2)

	Preprocessing Directives (Chapter 16)
	Conditional Inclusion (16.1)
	Source File Inclusion (16.2)
	Predefined Macro Names (16.8)

	Headers (Chapter 17)
	Freestanding Implementations (17.3.1.3)

	Library Introduction (Chapter 17)
	Reentrancy (17.3.4.5)

	Language Support Library
	Class bad_alloc (18.4.2.1)
	Class bad_cast (18.5.2)
	Class bad_typeid (18.5.3)
	Class bad_exception (18.6.2.1)
	Class exception (18.6.1)

	Input/Output Library (Chapter 27)
	Types (27.4.1)
	basic_ios iostate flags functions (27.4.4.3)
	Standard Manipulators (27.6.3)

	Compatibility (Appendix C)
	Predefined Names (16.8)

	Architecture Dependencies
	Overview
	Bit-Field
	Byte
	Half-Word
	Word
	Double Word
	Shift Operations

	Floating-Point
	C/C++ Data Types

	Index

