
 M
E B

EFORE

ALL
IN

G

DUCT

 M
E B

EFORE

ALL
IN

G

DUCT

 M
E B

EFORE

ALL
IN

G

DUCT

Concurrent C/C++
Version 5.2 Release Notes (Linux)

April 2001

0898497-5.2
READ
IN

ST

THIS
 P

RO

READ
IN

ST

THIS
 P

RO

READ
IN

ST

THIS
 P

RO

be

o

Copyright
Copyright 2001 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is intended for use with
Concurrent Computer Corporation products by Concurrent Computer Corporation personnel, customers, and end–users. It may not
reproduced in any form without the written permission of the publisher.

Disclaimer
The information contained in this document is subject to change without notice. Concurrent Computer Corporation has taken efforts t
remove errors from this document, however, Concurrent Computer Corporation’s only liability regarding errors that may still exist is to
correct said errors upon their being made known to Concurrent Computer Corporation.

License
Duplication of this manual without the written consent of Concurrent Computer Corporation is prohibited. Any copy of this manual
reproduced with permission must include the Concurrent Computer Corporation copyright notice.

Trademark Acknowledgments
MAXAda, NightBench, PowerWorks, PowerMAXION, PowerMAX OS, TurboHawk, and Power Hawk are trademarks of Concurrent
Computer Corporation.

Night Hawk is a registered trademark of Concurrent Computer Corporation.

Motorola is a registered trademark of Motorola, Inc.

PowerStack is a trademark of Motorola, Inc.

Linux is a registered trademark of Linus Torvalds.

Red Hat is a registered trademark of Red Hat, Inc.

Intel is a registered trademark of Intel Corporation.

X Window System is a trademark of The Open Group.

Contents
1.0 Introduction . 1

2.0 Documentation . 2

3.0 Prerequisites . 3

3.1 Host System . 3

3.1.1 Software . 3
3.1.2 Hardware . 4

3.2 Target System . 4

3.2.1 Software . 4
3.2.2 Hardware . 4

4.0 System Installation . 5

4.1 Separate Host Installation . 5

4.2 Cross-Development Libraries . 7

5.0 Using Concurrent C/C++ with the PLDE 8

5.1 Invoking the Compiler . 8

5.2 Include Files and Libraries . 8

5.3 OS Versions and Target Architectures 9

5.4 Shared vs. Static Linking . 10

5.5 Makefile Considerations . 10

5.5.1 Explicit Modification Using ec/ec++ 11
5.5.2 Use of /usr/ccs/crossbin in PATH Environment Variable . . . 11
5.5.3 Use of CC Environment or Make Variables 11

6.0 Changes in This Release . 13

6.1 Documentation Updates . 13

6.2 Program Development Environment 13

6.2.1 New in Release 5.1 . 13
6.2.2 New and Changed in Release 5.2 13
6.2.3 Automatic Template Instantiation 15
6.2.4 The Problem . 15
6.2.5 Solving the Problem with --prelink_objects 16
6.2.6 Solving the Problem with the PDE Tools 18
6.2.7 Solving the Problem with Makefiles and the PDE Tools 18
6.2.8 Miscellaneous Notes . 20

6.3 Previous Versions . 20

6.4 --preinclude . 20

6.5 -arch Link Option . 21

6.6 -osversion Link Option . 21

6.7 Environment-wide Link Options 22

6.8 Call of virtual function during subobject construction 22

6.9 Default arguments . 22

6.10 Class name injection . 23

6.11 Argument-dependent (Koenig) lookup on functioncalls with the standard
f(x,y,z) syntax . 23
Concurrent C/C++ Version 5.2 Release Notes (Linux) v

vi
6.12 Non-injection of friend declarations 23

6.13 String literals . 23

6.14 Return statement . 23

6.15 extern “C” . 23

6.16 Universal character names . 23

6.17 Include file suffixes . 23

6.18 Class layout . 24

6.19 C99 features . 24

6.20 Template template parameters 24

6.21 Members of unnamed namespaces 24

6.22 Pointers-to-members . 24

6.23 Function-like macros . 24

6.24 Additional Pragmas . 25

6.25 AltiVec Support . 25

6.25.1 New Keywords for AltiVec 25
6.25.2 New Intrinsic Functions for AltiVec 26
6.25.3 New Pragma for AltiVec 26
6.25.4 varargs/stdarg for AltiVec 26
6.25.5 Runtime for AltiVec . 26
6.25.6 Interoperability with Non-AltiVec for AltiVec 26

7.0 Cautions . 28

7.1 PowerMAX OS and Linux Compatibility 28

7.2 Retain Source . 28

7.3 <curses.h> and bool . 28

7.4 Structure Compares . 29

7.5 Known Problem with C/C++ Standard Library 29

7.6 Pragma min_align . 30

8.0 Direct Software Support . 31
Concurrent C/C++ Version 5.2 Release Notes (Linux)

gy to

the

C++
++
ilers.

plex

lable
1.0. Introduction

Concurrent C/C++ is part of the PowerWorksTM Linux Development Environment (PLDE) and utilizes
Edison Design Group’s C++ front end and Concurrent’s Common Code Generator (CCG) technolo
produce highly optimized object code tailored to Concurrent systems running PowerMAX OSTM.

There are several compiler switches that provide a degree of compatibility with previous drafts of
ANSI C++ Standard, USL versions 2.1 and 3.0 C++ compilers (also known ascfront), Kernighan and
Ritchie C and SVR4 C, in addition to compatibility with the ANSI C++ and C languages.

This release combines into a single compiler what were, previous to release 5.1, separate C and
compilers. Release 5.1 was the “next” release after Concurrent C Compiler 4.3 and Concurrent C
Compiler 3.1. This release does not require un-installing previous versions of the C and C++ comp
It installs in its own unique location and provides a mechanism for supporting the use of multiple
releases.

This release provides a command line-based program development environment for building com
projects. Alternatively, the user may use NightBenchTM to interface with this program development
environment.

As of release 5.1, C/C++ no longer ships with USL iostream and complex libraries. They are avai
separately.
Concurrent C/C++ Version 5.2 Release Notes (Linux) 1

2

upport
calls
2.0. Documentation

Table 2-1 lists the Concurrent C/C++ 5.2 documentation available from Concurrent.

Copies of the Concurrent documentation can be ordered by contacting the Concurrent Software S
Center. The toll-free number for calls within the continental United States is 1-800-245-6453. For
outside the continental United States, the number is 1-954-283-1822 or 1-305-931-2408.

Additionally, the manuals listed above are available:

- online using the PowerWorks Linux Development Environment utility,nhelp

- in PDF format in thedocumentation directory of the PLDE Installation CD

- on the Concurrent Computer Corporation web site at www.ccur.com

Table 2-1. Concurrent C/C++ Version 5.2 Documentation

Manual Name Pub. Number

Concurrent C/C++ Reference Manual 0890497-020

Concurrent C/C++ Version 5.2 Release Notes (Linux) 0898497-5.2
Concurrent C/C++ Version 5.2 Release Notes (Linux)

o-
d
-

of
3.0. Prerequisites

Prerequisites for Concurrent C/C++ Version 5.2 for both the host system and target system are as
follows:

3.1. Host System

3.1.1. Software
• Red Hat® Linux*

• Required capabilities

NOTE

The following capabilities are normally installed as part of the
standard installation of Red Hat Linux and the PowerWorks
Linux Development Environment. During installation of the
PLDE, the user will be notified if required capabilities do not
exist on the Linux system.

- PowerWorks Linux Development Environment

User applications built with Concurrent C/C++ may require other capabilities which are pr
vided by additional RPMs included on the PLDE Installation CD. Refer to the section title
“Cross-Development Libraries and Headers” in thePowerWorks Linux Development Environ
ment Release Notes(0898000) for more information.

* This product has been extensively tested on Red Hat Linux 6.1 and 6.2. However, this product has not been tested with versions
Linux supplied by other vendors.

Capabilities RPMs providing these capabilities

plde-HyperHelp
plde-HyperHelp-scripts
plde-nhelp
plde-pmax-crossdev

plde-x11progs-6.4.2-000
plde-HyperHelp-scripts-6.4.2-000

any or all of the following:
plde-pmax-crossdev-4.3-P5-1
plde-pmax-crossdev-5.0-SR1-1
Concurrent C/C++ Version 5.2 Release Notes (Linux) 3

4

- Red Hat Linux

3.1.2. Hardware
• an Intel®-based PC - 300Mhz or higher (recommended minimum configuration)

• 64MB physical memory (recommended minimum configuration)

3.2. Target System

3.2.1. Software
• PowerMAX OS 4.3 or later

3.2.2. Hardware
• Computer Systems:

Power HawkTM 620 and 640

Power Hawk 710, 720 and 740

PowerStackTM II and III

Night Hawk® Series 6000

TurboHawkTM

PowerMAXIONTM

• Board-Level Products:

Motorola® MVME2604

Motorola MVME4604

Capabilities RPMs providing these capabilities

/bin/sh
ld-linux.so.2
libc.so.6
libc.so.6(GLIBC_2.0)
libc.so.6(GLIBC_2.1)
libnsl.so.1
rpm >= 3.0.3

Red Hat 6.1:
bash-1.14.7-16

glibc-2.1.2-11

rpm-3.0.3-2

Red Hat 6.2:
bash-1.14.7-22

glibc-2.1.3-15

rpm-3.0.4-0.48
Concurrent C/C++ Version 5.2 Release Notes (Linux)

tion
r

e

4.0. System Installation

Installation of the host portion of Concurrent C/C++ is normally done as part of the general installa
of the PowerWorks Linux Development Environment software suite. A single command installs (o
uninstalls) all software components of the PLDE, as described in thePowerWorks Linux Development
Environment Release Notes(0898000).

The following section describes how to install (or uninstall) Concurrent C/C++ separately from the
PLDE suite for those rare cases when this is necessary.

In addition, it is necessary to install the PowerMAX OS cross-development libraries on your Linux
system in order to cross-compile and cross-link on that system.

4.1. Separate Host Installation

In rare cases, it may be necessary to install (or uninstall) Concurrent C/C++ independent of the
installation of the PowerWorks Linux Development Environment software suite. This may be don
using the standard Linux product installation mechanism,rpm (seerpm(8)).

The names of the RPMs associated with Concurrent C/C++ 5.2 are:

plde-c++-5.2
plde-c++invoker
plde-c++help-5.2

and the files associated with these RPMs, respectively, are:

plde-c++-5.2-003-1.i386.rpm
plde-c++invoker-5.2-003.i386.rpm
plde-c++help-5.2-003-1.i386.rpm

which can be found in thelinux-i386 directory on the PowerWorks Linux Development
Environment Installation CD.

NOTE

The packageplde-c++help-5.2 contains the online manu-
a l s f o r t h e C / C + + co m p i l e r. T h e i n s t a l la t i o n o f
plde-c++help-5.2 is not necessary for the proper opera-
tion of the compiler.

NOTE

The user must be root in order to use therpm product installa-
tion mechanism on the Linux system.
Concurrent C/C++ Version 5.2 Release Notes (Linux) 5

6

To install the Concurrent C/C++ RPMs, issue the following commands on your Linux system:

1. Insert the PowerWorks Linux Development Environment Installation CD in the
CD-ROM drive

2. Mount the CD-ROM drive (assuming the standard mount entry for the CD-ROM
device exists in/etc/fstab)

mount /mnt/cdrom

3. Change the current working directory to the directory containing the Concurrent
C/C++ RPMs

cd /mnt/cdrom/linux-i386

4. Install the RPMs

rpm -i plde-c++invoker-5.2-000.i386.rpm \
plde-c++-5.2-000-1.i386.rpm \
plde-c++help-5.2-000-1.i386.rpm

By default, the product is installed in/usr/opt . To install in a different directory, issue the fol-
lowing commands instead:

rpm -i plde-c++invoker-5.2-000.i386.rpm
rpm -i --relocate /usr/opt= directory \

plde-c++-5.2-000-1.i386.rpm \
plde-c++help-5.2-000-1.i386.rpm

wheredirectory is the desired directory.

5. Change the current working directory outside the/mnt/cdrom hierarchy

cd /

6. Unmount the CD-ROM drive (otherwise, you will be unable to remove the Pow-
erWorks Linux Development Environment Installation CD from the CD-ROM
drive)

umount /mnt/cdrom

NOTE

The optionalplde-c++cfront package containing USL
iostream and complex libraries should be installed after the
plde-c++ package.

To uninstall the Concurrent C/C++ RPMs, use the following command:

rpm -e plde-c++help-5.2 \
plde-c++invoker \
plde-c++-5.2
Concurrent C/C++ Version 5.2 Release Notes (Linux)

MAX

g

ely.

y
ent
4.2. Cross-Development Libraries

In order to cross-compile and cross-link on the Linux system, it is necessary to have certain Power
OS libraries installed on that system.

The names of the RPMs containing the PowerMAX OS libraries minimally required for cross-linkin
are:

plde-pmax-crossdev-4.3
plde-pmax-crossdev-5.0

and are used when linking for a PowerMAX OS 4.3 or PowerMAX OS 5.0 target system, respectiv
The files associated with these RPMs are:

plde-pmax-crossdev-4.3-P5-1.i386.rpm
plde-pmax-crossdev-5.0-SR1-1.i386.rpm

NOTE

The version number is part of the name of the RPM. Because
of that, it is possible to install both RPMs on the Linux system
at the same time. This allows the user to generate executables
for multiple PowerMAX OS versions from the same Linux
system.

User applications built with Concurrent C/C++ may require other capabilities which are provided b
additional RPMs included on the PLDE Installation CD. Refer to the section titled “Cross-Developm
Libraries and Headers” in thePowerWorks Linux Development Environment Release Notes(0898000)
for more information.
Concurrent C/C++ Version 5.2 Release Notes (Linux) 7

8

e
nt

d

ee

se
5.0. Using Concurrent C/C++ with the PLDE
The following should be taken into consideration in order to use Concurrent C/C++ with the
PowerWorks Linux Development Environment.

5.1. Invoking the Compiler

On Linux systems, thecc , c++ , gcc , andg++ commands invoke the native Linux compilers, which ar
completely unrelated (and incompatible at the object level) with PowerMAX OS and the Concurre
C/C++ cross-compiler.

To utilize the Concurrent C/C++ compiler, specify the following in yourPATHenvironment variable:

PATH=$PATH:/usr/ccs/bin

The compiler should then be invoked with eitherec or ec++ .

However, if you wish to be able to invoke the Concurrent C/C++ compiler ascc or c++ , insert the
following at the head of yourPATHenvironment variable:

PATH=/usr/ccs/crossbin:$PATH

The /usr/ccs/crossbin directory contains commands namedcc andc++ which invoke the
Concurrent C/C++ compiler as opposed to the Linux compilers.

See “Makefile Considerations” on page 10 below for more information.

5.2. Include Files and Libraries

By default, the Concurrent C/C++ compiler automatically looks for PowerMAX OS include files an
libraries in the tree rooted as:

/pmax/os/ version/ arch

whereversionandarch indicate the PowerMAX OS version and target architecture of your choice (s
“OS Versions and Target Architectures” on page 9 for more details).

Files located under/usr/include and/usr/lib are native Linux files and are unrelated and
incompatible with the corresponding files for PowerMAX OS. Do not attempt to utilize files from tho
directories when building PowerMAX OS programs.

Remove any explicit references to these directories in:

- source files (e.g.#include "/usr/include/unistd.h")

- Makefiles (e.g.cc -I/usr/include)

- build scripts
Concurrent C/C++ Version 5.2 Release Notes (Linux)

r

Include file references of the form:

#include <unistd.h>

or

#include "unistd.h"

need not be changed. These forms are supported, as the appropriate/pmax/os/ version/ arch trees are
searched.

5.3. OS Versions and Target Architectures

The PowerWorks Linux Development Environment supports building PowerMAX OS programs fo
various versions of PowerMAX OS and various systems.

The current versions of PowerMAX OS (osversion) that are supported are:

- 4.3

- 5.0

The current architectures (arch) that are supported are:

- nh

- moto

- synergy

which correspond to the following systems:

System type architecture

PowerMAXION-4 nh

PowerMAXION nh

Night Hawk 6800 nh

Night Hawk 6800 Plus nh

TurboHawk nh

Power Hawk 610 moto

Power Hawk 620 moto

Power Hawk 640 moto

PowerStack moto

PowerStack II moto

Power Hawk 710 synergy

Power Hawk 720 synergy

Power Hawk 740 synergy
Concurrent C/C++ Version 5.2 Release Notes (Linux) 9

10
NOTE

The default OS version is currently4.3 and the default target
architecture isnh .

You can change theosversion andarch settings in several ways:

- Specify the options on theec or ec++ command line:

ec -o main main.c --arch= arch --osversion= os

- Change the default for your user on a specific Linux system using the Concurrent
C/C++ command line utilityc.release :

c.release -arch arch -osversion os

- When using the Concurrent C/C++ PDE utilities (c.build , etc.), you can:

- Set thearch andosversion for an environment usingc.mkenv :

c.mkenv -arch arch -osversion os

- Set thearch andosversion for a specific partition usingc.partition :

c.partition -oset "--arch= arch --osversion= os" main

5.4. Shared vs. Static Linking

By default, the Concurrent C/C++ compiler links with shared libraries.

Thus, if you attempt to execute your C++ program on a PowerMAX OS system it will require, at a
minimum, the shared librarylibCruntime.so .

If your PowerMAX OS system doesn't have either the Concurrent C/C++ product or thec++runtime
package installed, your program will fail to execute.

You can install the full PowerMAX OS version of the Concurrent C/C++ compiler, install just the
c++runtime package, or relink your program using static libraries.

The PowerMAX OSc++runtime package is included on the PowerWorks Linux Development
Environment Installation CD. See the section titled “Target Installation” in thePowerWorks Linux
Development Environment Release Notes(0898000) for installation instructions.

To link your program using static libraries, append the-Zlink=static option to your command line:

ec++ -o main main.c -Zlink=static

5.5. Makefile Considerations

Makefiles may already contain references tocc or c++ commands explicitly within them. Additionally,
if default rules for compilation, such as

.c.o:

or

.cc.o:

are not explicitly mentioned, themake processor will also attempt to invokecc , c++ , or eveng++.
Concurrent C/C++ Version 5.2 Release Notes (Linux)

e

g

es
By default, unless you have/usr/ccs/crossbin early in yourPATHvariable, these situations will
result in the Linux native compilers being invoked instead of the Concurrent C/C++ compiler.

To resolve these problems you can take any of the following approaches.

5.5.1. Explicit Modification Using ec/ec++

Ensure that/usr/ccs/bin is in yourPATHenvironment variable.

Modify all occurrences ofcc andc++ to utilize ec andec++ , respectively.

Supply default.c.o rules (and the like) to explicitly utilize theec andec++ commands.

5.5.2. Use of /usr/ccs/crossbin in PATH Environment Variable

Put /usr/ccs/crossbin at the head of yourPATHenvironment variable.

This will cause references tocc andc++ to invoke the Concurrent C/C++ compiler as opposed to th
Linux compilers.

5.5.3. Use of CC Environment or Make Variables

If you don't want/usr/ccs/crossbin early on yourPATH(perhaps because you plan to build for
Linux and/or PowerMAX OS at various times), then you'll want to just use theec andec++ when you
want to compile for PowerMAX OS (it is still necessary to add/usr/ccs/bin to yourPATH).

One approach to usingec andec++ that requires minimal changes to Makefiles, etc., is to use
environment variables ormake variables to control which C/C++ compiler you're using. The followin
commands will all build using the PLDE cross-compilers:

Short-lived environment variables:

CC=ec CXX=ec++ make arguments

make variables:

make argumentsCC=ec CXX=ec++

Long-lived environment variables:

export CC=ec
export CXX=ec++
make arguments

You can also use the long-lived environment variable approach if you intend to always build for
PowerMAX OS, by adding the following to your login script (e.g..profile or .login depending on
your shell):

export CC=ec
export CXX=ec++

Or, if you prefer finer-grained control, you can add lines like the following to the top of any Makefil
that should use the Concurrent C/C++ cross-compiler:

CC=ec
CXX=ec++

The changes will then only affect the modified Makefiles. Note that this solution only works for
Makefiles that use the default.c.o and.cpp.o , etc. rules. If they contain hard-coded references tocc
or cc++ , then either/usr/ccs/crossbin must be used, or the Makefiles must be changed to use
$(CC) and$(CXX) instead. If the Makefile references anything likeg++ (Linux's GNU C++
compiler), then it will need to be changed, regardless.
Concurrent C/C++ Version 5.2 Release Notes (Linux) 11

12

ten

mpile
Here are two more complete and robust sets of variables which will work equally well with well-writ
Makefiles.

CC=/usr/ccs/crossbin/cc
CXX=/usr/ccs/crossbin/c++
AS=/usr/ccs/crossbin/as
AR=/usr/ccs/crossbin/ar
LD=/usr/ccs/crossbin/ld

Or, alternatively:

CC=/usr/ccs/bin/ec
CXX=/usr/ccs/bin/ec++
AS=/usr/ccs/bin/as.pmax
AR=/usr/ccs/bin/ar.pmax
LD=/usr/ccs/bin/ld.pmax

These two sets are mentioned in order to provide very easy support for those users that want to co
only for PowerMAX OS (/usr/ccs/crossbin) and for those users that may want to compile for
either Linux or PowerMAX OS, depending on the application (/usr/ccs/bin).
Concurrent C/C++ Version 5.2 Release Notes (Linux)

ide

epts,
6.0. Changes in This Release

6.1. Documentation Updates

TheConcurrent C/C++ Reference Manualhas been greatly expanded and now is available online
through thenhelp andc.man tools. The traditional man pages have been abbreviated to only prov
brief descriptions of the options, and the user is directed to the Reference Manual for complete
documentation.

6.2. Program Development Environment

6.2.1. New in Release 5.1

Release 5.1 began providing a set of tools (beginning with the prefix “c. ”) for managing the building of
complex programs. These tools are analogous to the “a. ” tools in the MAXAdaTM Program
Development Environment. Although there isn’t an exact one-to-one correspondence in the conc
users already familiar with the “a. ” tools will find the transition to using “c. ” tools for C/C++
programming nearly effortless.

Release 2 and later of NightBench provides a graphical interface to the program development
environments for both C/C++ and Ada.

6.2.2. New and Changed in Release 5.2

The following new commands and options have been added. Refer toConcurrent C/C++ Reference
Manual for details.

c.build -o New option for temporarily specifying a different output file
for linking or archiving a partition.

c.build Sets the environment variablePDE_BUILD_OPTIONSso
thatmake(1) commands invoked byc.build can recur-
sively invokec.build with appropriate options such as
verbosity options and internal options that interact with
NightBench.

Creates backups of the internal PDE database. Maintains
three such backups. Use thec.restore command to
restore the environment to a backed-up state.

c.chmod Extended to support any access mode syntax supported by
chmod(1) and options added to further control what files
are modified.

c.demangle New tool to transform “mangled” symbol names to
non-“mangled” C++ names.

c.grep New tool to search the source behind specified compilation
units, archives, executables, etc.
Concurrent C/C++ Version 5.2 Release Notes (Linux) 13

14
c.install New options to set system wide defaults for cross compiler
targets:

-osversion osversion
-arch architecture
-target microprocessor

See thec.release command to see whatosversionsand
architectures are available for cross-targeting. See the
--target compile option documentation for the list of
available microprocessor targets. These options should
only be used with the PowerWorks Linux Development
Environment currently. A future PowerMAX OS release
may also support cross compiling to other versions and
architectures. On PowerMAX OS, the compiler will target
the host systemsosversion, architectureandmicroprocessor.

c.intro -o New option for specifying the path to the object file of a
compilation unit.

c.make New tool to generate aMakefile from a program devel-
opment environment.

c.options Bug fixed for compile options which take filename argu-
ments. Paths are normalized to be relative to the environ-
ment.

The --auto_instantiation compile option is no
longer implicitly set. The user must explicitly request auto-
matic template instantiation, usually by setting this option in
the permanent default option list.

c.options -make
New option to specifyMakefile to be run before compil-
ing the unit’s source file.

c.options -source
New option to make it easier to specify options associated
with source files, such as-make .

c.partition Object file partitions may specify multiple object files now.
These are linked together using the-r option in ld(1) .
Many link options may now be used on object partitions.

Additional link options (-c , -f , -v , and --14) are sup-
ported on archive partitions.

c.release Now sorts the release names when they are listed. If cross
compilation is available (see thec.install command
above),c.release will also list availableosversionsand
architectures, and indicate the defaults. The-osversion ,
-arch , and-target options are provided to set user spe-
cific defaults. These options should only be used where
cross compiling is available, currently only under the Pow-
erWorks Linux Development Environment.
Concurrent C/C++ Version 5.2 Release Notes (Linux)

te
and 5.2

n is
an be

e link

e

bject

mplate
that
c.restore New tool to recover a backed-up database in a program
development environment.

c.script Generated script is much more efficient. Several options
added to control format of generated script. The generated
script now accepts several options:-env , -f , -H , and
-rel .

6.2.3. Automatic Template Instantiation

Template instantiation is a complex issue. We have been improving support for it, but it remains
intrinsically confusing. This section will attempt to explain some of the issues surrounding templa
instantiation and its automation. It also documents enhancements that have been made in the 5.1
releases to better automate template instantiation.

The compiler can't know which templates will need to be instantiated in a program until link time.
Therefore, when first compiling source files, no templates are instantiated unless their instantiatio
explicitly requested in the source (or via command line options). The template instantiations that c
provided and that are needed by each compilation are recorded in a.ti file that is placed in the same
directory as the generated object file if the file is compiled with the--auto_instantiation option.
Before actually linking, a tool calledprelink collects a list of all the template instantiations that are
needed to link successfully, and assigns each to a compilation that can provide the instantiation if th
is performed with the--auto_instantiation option. These assignments are recorded in.ii files
in the same directory as the.ti and object files. It then recompiles those compilations and finally th
linker is invoked.

6.2.4. The Problem

There is one obvious, huge, problem with this scheme. That is, if the build procedure moves the o
file elsewhere, such as into an archive, then the prelinker has no way of finding the.ti and.ii files.
The 5.1 release improved this situationif you use the program development environment tools (PDE
tools). This is because the PDE’s database knows how the archives were built, so it can assign a te
instantiation to an compilation unit in an archive and update the archive before linking the program
uses the archive.

Consider the followingMakefile :

pgm: main.o fg.a
ec++ --auto_instantiation -o pgm main.o fg.a

main.o: main.c
ec++ -c --auto_instantiation main.c

fg.a: f.o g.o
ar r fg.a f.o g.o

f.o: f.c
ec++ -c --auto_instantiation f.c

g.o: g.c
ec++ -c --auto_instantiation g.c

If f.o andg.o require templates to be instantiated andmain.o cannot provide the instantiations, then
this program cannot be built becauseprelink does not know where to find thef.ti , f.ii , g.ti ,
andg.ii files.
Concurrent C/C++ Version 5.2 Release Notes (Linux) 15

16

ed

re
link
6.2.5. Solving the Problem with --prelink_objects

The--prelink_objects option ofec++ can be used to resolve the template instantiations need
by a subset of the object files. To use this in the above example, one would change thefg.a target to
read:

fg.a: f.o g.o
ec++ --prelink_objects f.o g.o
ar r fg.a f.o g.o

This will direct the compiler to determine what templates are needed byf.o andg.o , assign
instantiations of them to one or the other of them, if possible, and recompile them with those
instantiations. There is a drawback however. Consider the following more complexMakefile :

pgm: main.o fg.a hi.a
ec++ --auto_instantiation -o pgm main.o fg.a hi.a

main.o: main.c
ec++ -c --auto_instantiation main.c

fg.a: f.o g.o
ec++ --prelink_objects f.o g.o
ar r fg.a f.o g.o

f.o: f.c
ec++ -c --auto_instantiation f.c

g.o: g.c
ec++ -c --auto_instantiation g.c

hi.a: h.o i.o
ec++ --prelink_objects h.o i.o
ar r hi.a h.o i.o

h.o: h.c
ec++ -c --auto_instantiation h.c

i.o: i.c
ec++ -c --auto_instantiation i.c

What happens iff.o andh.o both require the same template instantiation? When both archives a
prelinked, they will both instantiate that same template, and a duplicate symbol error will occur at
time.
Concurrent C/C++ Version 5.2 Release Notes (Linux)

using

s,

static
been
The solution for this is to arrange for the template instantiations to be placed in separate object files
the --one_instantiation_per_object option on both the compilation, prelinking and linking
commands. This way, only one of the instantiations get loaded. The followingMakefile demonstrates
how this could be set up. This example also uses the--instantiation_dir option to specify where
the instantiations are to be placed.

CFLAGS=--auto_instantiation --one_instantiation_per_object

pgm: main.o fg.a hi.a
ec++ $(CFLAGS) -o pgm main.o fg.a hi.a

main.o: main.c
ec++ -c $(CFLAGS) main.c

fg.a: f.o g.o
ec++ --prelink_objects $(CFLAGS) f.o g.o
ar r fg.a f.o g.o fg/*.o

f.o: f.c
ec++ -c $(CFLAGS) --instantiation_dir=fg f.c

g.o: g.c
ec++ -c $(CFLAGS) --instantiation_dir=fg g.c

hi.a: h.o i.o
ec++ --prelink_objects $(CFLAGS) h.o i.o
ar r hi.a h.o i.o hi/*.o

h.o: h.c
ec++ -c $(CFLAGS) --instantiation_dir=hi h.c

i.o: i.c
ec++ -c $(CFLAGS) --instantiation_dir=hi i.c

This will place the instantiation assigned tof.o in the directoryfg , which then gets archived into the
archivefg.a . Similarly, the instantiation assigned toh.o is placed in the directoryhi and is archived
into the archivehi.a . When we link, the linker will pick up the instantiation from one of the archive
and not from the other, so we link without multiply defined symbols.

There is, of course, a caveat even with this scheme. Consider the situation wheremain.o does not
referencef.o , g.o also requires the template to be instantiated, and the template uses a file scoped
variable (bad programming practice to be sure, but perfectly legal). The template instantiation has
assigned tof.o , so it is going to referencef.o ’s file scoped static variable. To do this, a “mangled”
external name is created for it. Now when we link, should the instance of the template assigned tof.o
be linked withg.o , then to resolve the reference to the file scoped static variable,f.o will also be linked
in, even thoughf.o is not otherwise needed. This will generally be harmless, except that it inflates
program size.
Concurrent C/C++ Version 5.2 Release Notes (Linux) 17

18

ne

its
the

ation
third
g the

ds

hese

E

6.2.6. Solving the Problem with the PDE Tools

Using the PDE tools, one would set up this environment like this (the equivalent actions can be do
through NightBench graphical user interface):

c.mkenv
c.options -set -default -- --auto_instantiation
c.intro main.c f.c g.c h.c i.c
c.partition -create archive -add "f g" fg.a
c.partition -create archive -add “h i” hi.a
c.partition -create exe -add main -parts “fg.a hi.a” pgm

The environment's database knows all about thefg.a andhi.a archives and how to build them. When
pgm is built using thec.build command,f.c , g.c , h.c , i.c , andmain.c will all be compiled, the
archives will be created, then during the prelinking stage, template instantiations will be assigned tof.c
or one of the other compilation units, they will be recompiled, the archive updated, and finallypgmwill
link without incident.

There is a caveat with not using the--one_instantiation_per_object option (this applies to
using aMakefile too). If you have three executables that each use a pair of three compilation un
and all three compilation units require the same template to be instantiated, there is no way to link
three programs without using--one_instantiation_per_object . If to link one program, the
instantiation is assigned to one compilation unit, then the program that links in the other two compil
unit must force the instantiation to be assigned to one of them. This will cause either the first or the
program to get a multiply defined symbol on the template. This problem can be avoided by issuin
following command:

c.options -add -default -- --one_instantiation_per_object

6.2.7. Solving the Problem with Makefiles and the PDE Tools

Now, it is realized that for portability reasons, customers may not be willing to abandon their
Makefile s. The 5.2 release has two enhancements to deal with this. The first is thec.make tool. This
tool generates aMakefile from a PDE environment, making it possible to take a program that buil
under the PDE on a Concurrent machine, and compile it elsewhere.

The second enhancement is in the invokers forec , ec++ , andar that allow an existingMakefile (or
any other program building mechanism) to build a program in the context of a PDE environment. T
new invokers are activated by setting thePDE_ENVIRONMENTenvironment variable, or, instead, by
placing a file called.pde_environment containing a single line of text specifying the path to the PD
environment to use in the directory where the compiler will be run.
Concurrent C/C++ Version 5.2 Release Notes (Linux)

’s

n

The following is a slightly modified version of the aboveMakefile :

CFLAGS=--auto_instantiation --one_instantiation_per_object

pgm: main.o fg.a hi.a
ec++ $(CFLAGS) -o pgm main.o fg.a hi.a

main.o: main.c
ec++ -c $(CFLAGS) main.c

fg.a: f.o g.o
ar r fg.a f.o g.o

f.o: f.c
ec++ -c $(CFLAGS) f.c

g.o: g.c
ec++ -c $(CFLAGS) g.c

hi.a: h.o i.o
ar r hi.a h.o i.o

h.o: h.c
ec++ -c $(CFLAGS) h.c

i.o: i.c
ec++ -c $(CFLAGS) i.c

The explicit handling of the template instantiation object files has been removed because the PDE
database will handle all that for us automatically. The user may do the following:

mkdir pgm_env
mkenv -env pgm_env
export PDE_ENVIRONMENT=‘pwd‘/pgm_env
make

Now, when theMakefile invokesec++ on f.c , the ec++ invoker, rather than directly invoking
the 5.2 version of the compiler, will instead invoke the following commands:

c.intro -env pgm_env -language C++ -o f.o f.c
c.options -env pgm_env -set -- --auto_instantiation \

--one_instantiation_per_object f
c.compile -env pgm_env f

Subsequent invocations ofmake will result in c.options being invoked only if the options have
changed. Normally, onlyc.compile needs to be invoked. Similar actions occur for the compilatio
of g.c andmain.c . When thear invoker gets invoked onfg.a for the first time, it will do the
following:

c.partition -env pgm_env -create archive -add "f g" \
-o fg.a fg.a

ar r fg.a f.o g.o

Finally, whenpgm is linked for the first time, theec++ invoker will do this:

c.partition -env pgm_env -create executable \
-add "main" -parts "fg.a hi.a" -o pgm pgm

c.build -env pgm_env pgm
Concurrent C/C++ Version 5.2 Release Notes (Linux) 19

20

ions,
d
hem.
be

ate

t

g the

reset

cific

e to

efault

e

Sincec.build knows all about how the archives were constructed, it can do the template instantiat
update the archives if needed, and linkpgmwithout a problem. Note that we have not explicitly place
the template instantiation objects into the archives. The environment is handling management of t
If it was desired for thefg.a to be prelinked and have the object files placed in it, the target would
constructed like this:

fg.a: f.o g.o
ar r fg.a f.o g.o
c.partition -oset “--prelink_objects” fg.a

6.2.8. Miscellaneous Notes

Once the program has been made with theMakefile once, the user may either continue using the
Makefile , switch to usingc.build , or switch to using NightBench (the graphical interface to the
PDE). Note however, that if theMakefile does other actions, such as generate source files, or cre
object using other compilers or the assembler, or invokeld directly, these actions are not known by the
environment, and thus won't be performed ifc.build or NightBench is used, unless the environmen
is manually modified to use the-make option ofc.intro andc.options to escape to aMakefile
to perform arbitrary actions before building a source file.

Another advantage of using this scheme is that the user can set temporary options without modifyin
Makefile . For example, if the user wants to turn on the debug option for justf.c temporarily, then
he can do the following:

c.options -temp -set -- -g f
rm f.o
make

When thec.compile tool gets invoked, it will use this temporary setting. Ifc.build is used instead
of make to build the program, then removingf.o isn't necessary since the PDE tools know thatf.o is
out of date when an option gets changed (themake command doesn’t know this). Also the PDE tools
know about all header file dependencies. When done with all the temporary settings, things can be
to normal by issuing the command:

c.options -temp -clear all

Another advantage of the PDE environment is that NightBench can be used to examine what spe
template instantiations were done and who did them. It also provides a way to manually override
individual automatic decisions.

6.3. Previous Versions

If an earlier C or C++ compiler is still installed on the system, the system administrator may choos
configure the previous compiler commands (cc , hc , cc++ , c++ , analyze , andreport) to invoke the
pre-5.1 release. However, by default, they will invoke the 5.2 release. The user may override this d
behavior by setting thePDE_RELEASEenvironment variable to eitherpre5.1 , 5.2 , or another release
name, or by using thec.release command to select the user-specific default release.

6.4. --preinclude

The--preinclude command-line option can be used to cause inclusion of a specified source fil
before the primary source file is read.
Concurrent C/C++ Version 5.2 Release Notes (Linux)

ing

it

e
2).

nt
e

en
6.5. -arch Link Option

The-arch link option partially determines which libraries are included and/or referenced when link
partitions. Its syntax is:

-arch architecture

wherearchitectureis the target architecture, and can be one of:nh, moto , or synergy .

If specified for a particular partition or for its containing environment, the partition is linked so that
will execute properly on the specified architecture.

NOTE

If building on a Linux system withplde-pmax-crossdev
versions capable of supporting multiple architectures, the
-arch option isrequiredto be able to link.

To avoid having to specify the architecture for every partition, it is possible to specify it for an entir
environment via the environment-wide link options (see “Environment-wide Link Options” on page 2
This can be done when creating the environment via:

c.mkenv ... -arch arch ...

which is a shorthand for:

c.mkenv ... -oset "-arch arch" ...

The PowerMAX OS cross-development libraries (e.g.plde-pmax-crossdev-4.3 and/or
plde-pmax-crossdev-5.0) must be installed on the Linux system. Refer to “Cross-Developme
Libraries” on page 7 as well as the section titled “Cross-Development Libraries and Headers” in th
PowerWorks Linux Development Environment Release Notes(0898000) for more information about
installing the PowerMAX OS cross-development libraries on your Linux system.

6.6. -osversion Link Option

The-osversion link option partially determines which libraries are included and/or referenced wh
linking partitions. Its syntax is:

-osversion ver

wherever is the target PowerMAX OS version (e.g. 4.3 or 5.0).

NOTE

I f b u i l d i n g o n a L in u x sy s te m w i t h mu l t i p le
plde-pmax-crossdev versions, the-osversion option
is requiredto be able to link.
Concurrent C/C++ Version 5.2 Release Notes (Linux) 21

22

2).

nt
e

link

lways
To avoid having to specify the OS version for every partition, it is possible to specify it for an entire
environment via the environment-wide link options (see “Environment-wide Link Options” on page 2
This can be done when creating the environment via:

c.mkenv ... -osversion ver ...

which is a shorthand for:

c.mkenv ... -oset "-osversion ver" ...

The PowerMAX OS cross-development libraries (e.g.plde-pmax-crossdev-4.3 and/or
plde-pmax-crossdev-5.0) must be installed on the Linux system. Refer to “Cross-Developme
Libraries” on page 7 as well as the section titled “Cross-Development Libraries and Headers” in th
PowerWorks Linux Development Environment Release Notes(0898000) for more information about
installing the PowerMAX OS cross-development libraries on your Linux system.

6.7. Environment-wide Link Options

Concurrent C/C++ 5.2 introduces the concept of environment-wide link options. Environment-wide
options affect all partitions within an environment.

Environment-wide link options may be specified when the environment is created using the-oset opts
option toc.mkenv .

Link options that affect all the partitions in the entire environment may also be specified using the
-default option toc.partition in combination with the-o commands(-oset , -oappend ,
-oprepend , -oclear).

For example:

c.partition -default -oset -s

sets the environment-wide link options to-s .

To list the environment-wide link options, issue:

c.partition -default

by itself.

6.8. Call of virtual function during subobject construction

Calls of virtual functions during subobject construction in the presence of virtual base classes now a
get to the correct functions.

6.9. Default arguments

Default arguments on template functions and on member functions of template classes are now
instantiated only when needed.
Concurrent C/C++ Version 5.2 Release Notes (Linux)

f the

osing
ible
nd by
break
6.10. Class name injection

The name of a class is injected as a member of the class. Controlled by
--[no_]class_name_injection .

6.11. Argument-dependent (Koenig) lookup on function
calls with the standard f(x,y,z) syntax

The name of the function is looked up in the namespaces and classes associated with the types o
arguments. Controlled by--[no_]arg_dep_lookup .

6.12. Non-injection of friend declarations

Functions declared in friend declarations in classes are no longer entered into the innermost encl
namespace scope. They are after a fashion still declared in those scopes, but the name is not vis
unless it is actually declared by some other (non-friend) declaration. Such friend functions are fou
argument-dependent lookup. This feature is off by default in the release, because it has shown to
some real-world code. Controlled by--[no_]friend_injection .

6.13. String literals

String literals haveconst type. Controlled by--[no_]const_string_literals .

6.14. Return statement

A return statement in avoid function can now return avoid expression.

6.15. extern “C”

Support forextern “C” and its interaction with namespaces has been improved.

6.16. Universal character names

Universal character names (e.g.,\u0401) are now accepted in C++ mode in identifiers, characters
literals, and string literals.

6.17. Include file suffixes

There is now a mechanism that will automatically add a suffix on a#include of a name without a suffix
(e.g.,#include <string>). The list of suffixes to be tried may be specified with the
--incl_suffixes option. The default setting causes the compiler to look first for a file without a
suffix, then with a “.h ” suffix, then with a “.hpp ” suffix.
Concurrent C/C++ Version 5.2 Release Notes (Linux) 23

24

e

6.18. Class layout

Class layout is not optimized to avoid allocating space for empty base classes.

6.19. C99 features

Designated initializers and variadic macros from the C99 standard have been implemented. Thes
features are disabled by default.

6.20. Template template parameters

Template template parameters are not implemented. For example

template <template <class X> class T> struct A {
T<int> ti;

};
template <class T> struct B {};
template <template <class X> class T,

class T2> void f(T<T2>);
template <template <class X> class T>

void g(A<T>);
int main() {

A ab;
g(ab);
B<int> bi;
f(bi);

}

6.21. Members of unnamed namespaces

The members of unnamed namespaces now have external linkage.

6.22. Pointers-to-members

Casts between unrelated pointers-to-members are now accepted.

6.23. Function-like macros

It is now possible to define function-like macros on the command line, e.g. “-Df(x)=x ”.
Concurrent C/C++ Version 5.2 Release Notes (Linux)

erPC
time

ecific

ions
6.24. Additional Pragmas

The following pragmas have been added:

• align

• cautions

• errcount

• error

• min_align

• opt_class

• opt_level

• optimize_for_space

• optimize_for_time

• pack

• warnings

6.25. AltiVec Support

Motorola defined several extensions to C and C++ for accessing the AltiVec instructions of the Pow
7400 family of microprocessors. These extensions include new keywords, intrinsic functions, run
functions, and a pragma. See the Motorola documentAltiVec Technology Programming Interface
Manualfor detailed documentation of these extensions. This document will only discuss issues sp
to Concurrent’s implementation.

Currently the only microprocessor supported by Concurrent’s C/C++ compiler that has AltiVec
instruction is the MPC7400. It may be selected by the--target=ppc7400 (or
--target=mpc7400) option. See discussion ofc.install andc.release commands for ways
of setting the default target microprocessor if none is specified.

6.25.1. New Keywords for AltiVec

The following table shows the keywords that were added for AltiVec support and the compiler opt
to enable and disable them (note thatbool is present in standard C++).

Keyword Option to Enable Option to Disable

vector --vectors --no_vectors

pixel --vectors --no_vectors

bool --bool --no_bool

__vector N/A

__pixel N/A
Concurrent C/C++ Version 5.2 Release Notes (Linux) 25

26

to

pport

m
Vec

the
The following table documents the default settings for those compiler options:

6.25.2. New Intrinsic Functions for AltiVec

To access the intrinsic functions for AltiVec, include the header file<altivec.h> .

6.25.3. New Pragma for AltiVec

#pragma altivec_vrsave { on | off | allon | allzero }

The allzero option will set the VRSAVE register to zero in the procedure in which it is used. Refer
Motorola documentation for the other options.

6.25.4. varargs/stdarg for AltiVec

The base 5.2 release of Concurrent C/C++ does not supportvarargs /stdarg for vector types. A
future release or patch of the header files and of the compiler (both require changes) will provide su
for this feature.

6.25.5. Runtime for AltiVec

The Motorola definedvec_malloc() , vec_calloc() , vec_realloc() , andvec_free() are
not implemented. The standard system allocation routines --malloc() , calloc() , realloc() , and
free() respectively -- return quadword aligned memory (except forfree() obviously), and should
be used instead.

6.25.6. Interoperability with Non-AltiVec for AltiVec

The global variable__vectors_present allows the user to determine at runtime whether the syste
on which the program is running supports the AltiVec instruction set. Attempting to execute an Alti
instruction on a system that does not support it will result in an Illegal Instruction exception. Any
procedure that contains AltiVec instructions may have additional AltiVec instructions generated in
routines prolog and epilog.

C & target microprocessor
has AltiVec instructions

C & target microprocessor
does no t have Al t i Vec
instructions

C++

--vectors --no_vectors --no_vectors

--bool --no_bool --bool
Concurrent C/C++ Version 5.2 Release Notes (Linux)

m
that
In order to provide both normal and AltiVec accelerated versions of a routine, the following code
sequence is recommended:

extern int __vectors_present;

type vector_function(arguments) {
// Vector implementation of function
...

}

type function(arguments) {
if (__vectors_present) {

return vector_function(arguments);
}

// Non-vector implementation of function
...

}

Now, by callingfunction() , if the program is running an an AltiVec-supporting system, the progra
will execute the AltiVec accelerated version of the function. But if the program is run on a system
doesn’t support AltiVec instructions, the program will not execute any AltiVec instructions.
Concurrent C/C++ Version 5.2 Release Notes (Linux) 27

28

th

nd

rrent
e

s in the

me

the
7.0. Cautions

7.1. PowerMAX OS and Linux Compatibility

The Concurrent C/C++ component of the PowerWorks Linux Development Environment is a
cross-compilation system. The object files, archives, and shared libraries produced by it are not
compatible with Linux and will not run in that environment. In general, Linux binary utilities (e.g.
binutils) will be unable to interpret them.

Object files, archives, and shared libraries produced by Concurrent C/C++ are fully compatible wi
similar objects produced on PowerMAX OS systems.

However, the compilation environments themselves cannot be shared between PowerMAX OS a
Linux systems, due to their internal representations (byte ordering).

For example, if two environments were created using PowerMAX OS and Linux versions of Concu
C/C++, attempts to share the environments (such as adding the PowerMAX OS environment to th
Environment Search Path of the Linux environment usingc.path -i command) would result in an
internal error.

7.2. Retain Source

Users are encouraged to retain the source for their applications. Major releases may have change
object-file format which will require the recompilation of their programs. This release is one such
release. In the process of implementing additional ANSI/ISO C++ features, some changes to “na
mangling” and interfaces to runtime routines were necessary.

7.3. <curses.h> and bool

The<curses.h> header file contains abool type definition. In compilation modes wherebool is
a keyword, this results in a compilation error. There are two workarounds. The user may turn off
bool keyword with the--no_bool option, or he may use the following sequence when using the
header file:

#define bool _curses_bool
#include <curses.h>
#undef bool

When using this second workaround, if the user makes reference to curses’bool type definition, the user
must use the name_curses_bool instead.
Concurrent C/C++ Version 5.2 Release Notes (Linux)

are a

urrent
a

d

hat
annot

le
7.4. Structure Compares

The C 4.3 and earlier releases supported an enhancement that allowed the user to implicitly comp
structure to zero (meaning all bytes of the structure are zero) in an if or while statement:

struct S {int a,b,c,d,e,f;} s;
...
if (s) {
...

As this enhancement is not present in any other major C compiler and is undocumented in the Conc
C compiler, it is no longer present in C/C++ 5.1. The user can easily write a small function to test
structure for being zero should any code actually use this feature.

7.5. Known Problem with C/C++ Standard Library

The Concurrent software workaround provided below addresses a problem detected by the C++
standards committee Library Working Group. Concurrent will continue to monitor the situation an
evaluate the group’s final recommendation for any further action that might be necessary.

If a function is explicitly instantiated and its type is supplied, the compiler looks up all functions of t
name and tries to instantiate in an attempt to determine what the closest match is. If one of these c
be instantiated for the given type, the compiler will then issues an error.

The workaround is to omitthe explicit type, but let the compiler determine it from context. An examp
is provided below:

namespace std {
template <class Iterator> struct iterator_traits {

typedef typename Iterator::difference_type difference_type;
};

template <class T> class reverse_iterator;

template <class T>
void operator+(typename iterator_traits<T>::difference_type,

const reverse_iterator<T>&);

template <class T> struct complex;

template <class T> void operator+(const T& lhs, const complex<T>& rhs){;}

}

// Explicit instantiation which gives the error:
template void std::operator+<float>(const float&, const std::complex<float>&);

// Workaround which does not:
template void std::operator+<>(const float&, const std::complex<float>&);
Concurrent C/C++ Version 5.2 Release Notes (Linux) 29

30
7.6. Pragma min_align

Using a pragmamin_align of the form:

#pragma min_align [struct | union | class] name align
[struct | union | class] name {

declaration
};

will result in a front end assertion violation.

The workaround is to declare the[struct | union | class] name previous to the#pragma
statement.

Specifically:

struct foo_tag;
#pragma min_align foo_tag 16
struct foo_tag {

double b1;
double b2;
double b3;

} foo;

will work while:

#pragma min_align foo_tag 16
struct foo_tag {

double b1;
double b2;
double b3;

} foo;

will give an assertion violation.
Concurrent C/C++ Version 5.2 Release Notes (Linux)

our
ers
. The
d time.

nnel
a
e for
8.0. Direct Software Support

Software support is available from a central source. If you need assistance or information about y
system, please contact the Concurrent Software Support Center at 1-800-245-6453. Our custom
outside the continental United States can contact us directly at 1-954-283-1822 or 1-305-931-2408
Software Support Center operates Monday through Friday from 8 a.m. to 7 p.m., Eastern Standar

Calling the Software Support Center gives you immediate access to a broad range of skilled perso
and guarantees you a prompt response from the person most qualified to assist you. If you have
question requiring on-site assistance or consultation, the Software Support Center staff will arrang
a field analyst to return your call and schedule a visit.
Concurrent C/C++ Version 5.2 Release Notes (Linux) 31

32
 Concurrent C/C++ Version 5.2 Release Notes (Linux)

	1.0. Introduction
	2.0. Documentation
	3.0. Prerequisites
	3.1. Host System
	3.1.1. Software
	3.1.2. Hardware

	3.2. Target System
	3.2.1. Software
	3.2.2. Hardware

	4.0. System Installation
	4.1. Separate Host Installation
	4.2. Cross-Development Libraries

	5.0. Using Concurrent C/C++ with the PLDE
	5.1. Invoking the Compiler
	5.2. Include Files and Libraries
	5.3. OS Versions and Target Architectures
	5.4. Shared vs. Static Linking
	5.5. Makefile Considerations
	5.5.1. Explicit Modification Using ec/ec++
	5.5.2. Use of /usr/ccs/crossbin in PATH Environment Variable
	5.5.3. Use of CC Environment or Make Variables

	6.0. Changes in This Release
	6.1. Documentation Updates
	6.2. Program Development Environment
	6.2.1. New in Release 5.1
	6.2.2. New and Changed in Release 5.2
	6.2.3. Automatic Template Instantiation
	6.2.4. The Problem
	6.2.5. Solving the Problem with --prelink_objects
	6.2.6. Solving the Problem with the PDE Tools
	6.2.7. Solving the Problem with Makefiles and the PDE Tools
	6.2.8. Miscellaneous Notes

	6.3. Previous Versions
	6.4. --preinclude
	6.5. -arch Link Option
	6.6. -osversion Link Option
	6.7. Environment-wide Link Options
	6.8. Call of virtual function during subobject construction
	6.9. Default arguments
	6.10. Class name injection
	6.11. Argument-dependent (Koenig) lookup on function calls with the standard f(x,y,z) syntax
	6.12. Non-injection of friend declarations
	6.13. String literals
	6.14. Return statement
	6.15. extern “C”
	6.16. Universal character names
	6.17. Include file suffixes
	6.18. Class layout
	6.19. C99 features
	6.20. Template template parameters
	6.21. Members of unnamed namespaces
	6.22. Pointers-to-members
	6.23. Function-like macros
	6.24. Additional Pragmas
	6.25. AltiVec Support
	6.25.1. New Keywords for AltiVec
	6.25.2. New Intrinsic Functions for AltiVec
	6.25.3. New Pragma for AltiVec
	6.25.4. varargs/stdarg for AltiVec
	6.25.5. Runtime for AltiVec
	6.25.6. Interoperability with Non-AltiVec for AltiVec

	7.0. Cautions
	7.1. PowerMAX OS and Linux Compatibility
	7.2. Retain Source
	7.3. <curses.h> and bool
	7.4. Structure Compares
	7.5. Known Problem with C/C++ Standard Library
	7.6. Pragma min_align

	8.0. Direct Software Support

