
 M
E B

EFORE

ALL
IN

G

DUCT

 M
E B

EFORE

ALL
IN

G

DUCT

 M
E B

EFORE

ALL
IN

G

DUCT

Concurrent C/C++
Version 5.3 Release Notes (Linux)

July 2001

0898497-5.3
READ
IN

ST

THIS
 P

RO

READ
IN

ST

THIS
 P

RO

READ
IN

ST

THIS
 P

RO

be

o

Copyright
Copyright 2001 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is intended for use with
Concurrent Computer Corporation products by Concurrent Computer Corporation personnel, customers, and end–users. It may not
reproduced in any form without the written permission of the publisher.

Disclaimer
The information contained in this document is subject to change without notice. Concurrent Computer Corporation has taken efforts t
remove errors from this document, however, Concurrent Computer Corporation’s only liability regarding errors that may still exist is to
correct said errors upon their being made known to Concurrent Computer Corporation.

License
Duplication of this manual without the written consent of Concurrent Computer Corporation is prohibited. Any copy of this manual
reproduced with permission must include the Concurrent Computer Corporation copyright notice.

Trademark Acknowledgments
MAXAda, NightBench, PowerWorks, PowerMAXION, PowerMAX OS, TurboHawk, and Power Hawk are trademarks of Concurrent
Computer Corporation.

Night Hawk is a registered trademark of Concurrent Computer Corporation.

Motorola is a registered trademark of Motorola, Inc.

PowerStack is a trademark of Motorola, Inc.

Linux is a registered trademark of Linus Torvalds.

Red Hat is a registered trademark of Red Hat, Inc.

Intel is a registered trademark of Intel Corporation.

X Window System is a trademark of The Open Group.

Contents
1.0 Introduction . 1

2.0 Documentation . 2

3.0 Prerequisites . 3

3.1 Host System . 3

3.1.1 Software . 3
3.1.2 Hardware . 4

3.2 Target System . 4

3.2.1 Software . 4
3.2.2 Hardware . 4

4.0 System Installation . 5

4.1 Separate Host Installation . 5

4.2 Cross-Development Libraries . 7

5.0 Using Concurrent C/C++ with the PLDE 8

5.1 PATH Considerations . 8

5.2 Include Files and Libraries . 8

5.3 OS Versions and Target Architectures 9

5.4 Shared vs. Static Linking . 10

5.5 Makefile Considerations . 10

5.5.1 Explicit Modification Using ec/ec++ 11
5.5.2 Use of /usr/ccs/crossbin in PATH Environment Variable . . . 11
5.5.3 Use of CC Environment or Make Variables 11

6.0 Changes in This Release . 13

6.1 Documentation Updates . 13

6.2 Invoking The Compiler . 13

6.3 The --static_Cruntime Link Option 13

6.4 Function Try Blocks . 13

6.5 Compound Literals . 13

6.6 The --[no]_vector_safe_prologs Compile Option 13

6.7 Various Bug Fixes . 14

7.0 Cautions . 15

7.1 va_list Structure Format . 15

7.2 Retain Source . 15

7.3 curses.h and bool . 15

7.4 Structure Compares . 15

7.5 Known Problem with C/C++ Standard Library 16

7.6 Pragma min_align . 16

8.0 Direct Software Support . 18
Concurrent C/C++ Version 5.3 Release Notes (Linux) v

vi
 Concurrent C/C++ Version 5.3 Release Notes (Linux)

gy to

the

C++
++
ilers.

plex

lable
1.0. Introduction

Concurrent C/C++ is part of the PowerWorksTM Linux Development Environment (PLDE) and utilizes
Edison Design Group’s C++ front end and Concurrent’s Common Code Generator (CCG) technolo
produce highly optimized object code tailored to Concurrent systems running PowerMAX OSTM.

There are several compiler switches that provide a degree of compatibility with previous drafts of
ANSI C++ Standard, USL versions 2.1 and 3.0 C++ compilers (also known ascfront), Kernighan and
Ritchie C and SVR4 C, in addition to compatibility with the ANSI C++ and C languages.

This release combines into a single compiler what were, previous to release 5.1, separate C and
compilers. Release 5.1 was the “next” release after Concurrent C Compiler 4.3 and Concurrent C
Compiler 3.1. This release does not require un-installing previous versions of the C and C++ comp
It installs in its own unique location and provides a mechanism for supporting the use of multiple
releases.

This release provides a command-line-based program development environment for building com
projects. Alternatively, the user may use NightBenchTM to interface with this program development
environment.

As of release 5.1, C/C++ no longer ships with USL iostream and complex libraries. They are avai
separately.
Concurrent C/C++ Version 5.3 Release Notes (Linux) 1

2

upport
calls
2.0. Documentation

Table 2-1 lists the Concurrent C/C++ 5.3 documentation available from Concurrent.

Copies of the Concurrent documentation can be ordered by contacting the Concurrent Software S
Center. The toll-free number for calls within the continental United States is 1-800-245-6453. For
outside the continental United States, the number is 1-954-283-1822 or 1-305-931-2408.

Additionally, the manuals listed above are available:

- online using the PowerWorks Linux Development Environment utility,nhelp

- in PDF format in thedocumentation directory of the PLDE Installation CD

- on the Concurrent Computer Corporation web site at www.ccur.com

Table 2-1. Concurrent C/C++ Version 5.3 Documentation

Manual Name Pub. Number

Concurrent C/C++ Reference Manual 0890497-030

Concurrent C/C++ Version 5.3 Release Notes (Linux) 0898497-5.3
Concurrent C/C++ Version 5.3 Release Notes (Linux)

o-
d
-

of
3.0. Prerequisites

Prerequisites for Concurrent C/C++ Version 5.3 for both the host system and target system are as
follows:

3.1. Host System

3.1.1. Software
• Red Hat® Linux*

• Required capabilities

NOTE

The following capabilities are normally installed as part of the
standard installation of Red Hat Linux and the PowerWorks
Linux Development Environment. During installation of the
PLDE, the user will be notified if required capabilities do not
exist on the Linux system.

- PowerWorks Linux Development Environment

User applications built with Concurrent C/C++ may require other capabilities which are pr
vided by additional RPMs included on the PLDE Installation CD. Refer to the section title
“Cross-Development Libraries and Headers” in thePowerWorks Linux Development Environ
ment Release Notes(0898000) for more information.

* This product has been extensively tested on Red Hat Linux 6.1 and 6.2. However, this product has not been tested with versions
Linux supplied by other vendors.

Capabilities RPMs providing these capabilities

plde-HyperHelp
plde-HyperHelp-scripts
plde-nhelp
plde-pmax-crossdev

plde-x11progs-6.4.2-003
plde-HyperHelp-scripts-6.4.2-002

any or all of the following:
plde-pmax-crossdev-4.3-P7-1
plde-pmax-crossdev-5.0-SR1-4
plde-pmax-crossdev-5.1-SR0-1
Concurrent C/C++ Version 5.3 Release Notes (Linux) 3

4

- Red Hat Linux

3.1.2. Hardware
• an Intel®-based PC - 300Mhz or higher (recommended minimum configuration)

• 64MB physical memory (recommended minimum configuration)

3.2. Target System

3.2.1. Software
• PowerMAX OS 4.3 or later

3.2.2. Hardware
• Computer Systems:

Power HawkTM 620 and 640

Power Hawk 710, 720 and 740

PowerStackTM II and III

Night Hawk® Series 6000

TurboHawkTM

PowerMAXIONTM

• Board-Level Products:

Motorola® MVME2604

Motorola MVME4604

Capabilities RPMs providing these capabilities

/bin/sh
ld-linux.so.2
libc.so.6
libc.so.6(GLIBC_2.0)
libc.so.6(GLIBC_2.1)
libnsl.so.1
rpm >= 3.0.3

Red Hat 6.1:
bash-1.14.7-16

glibc-2.1.2-11

rpm-3.0.3-2

Red Hat 6.2:
bash-1.14.7-22

glibc-2.1.3-15

rpm-3.0.4-0.48
Concurrent C/C++ Version 5.3 Release Notes (Linux)

tion
r

e

4.0. System Installation

Installation of the host portion of Concurrent C/C++ is normally done as part of the general installa
of the PowerWorks Linux Development Environment software suite. A single command installs (o
uninstalls) all software components of the PLDE, as described in thePowerWorks Linux Development
Environment Release Notes(0898000).

The following section describes how to install (or uninstall) Concurrent C/C++ separately from the
PLDE suite for those rare cases when this is necessary.

In addition, it is necessary to install the PowerMAX OS cross-development libraries on your Linux
system in order to cross-compile and cross-link on that system.

4.1. Separate Host Installation

In rare cases, it may be necessary to install (or uninstall) Concurrent C/C++ independent of the
installation of the PowerWorks Linux Development Environment software suite. This may be don
using the standard Linux product installation mechanism,rpm (seerpm(8)).

The names of the RPMs associated with Concurrent C/C++ 5.3 are:

plde-c++-5.3
plde-c++invoker
plde-c++help-5.3

and the files associated with these RPMs, respectively, are:

plde-c++-5.3-001-1.i386.rpm
plde-c++invoker-5.3-001.i386.rpm
plde-c++help-5.3-001-1.i386.rpm

which can be found in thelinux-i386 directory on the PowerWorks Linux Development
Environment Installation CD.

NOTE

The packageplde-c++help-5.3 contains the online manu-
a l s f o r t h e C / C + + co m p i l e r. T h e i n s t a l la t i o n o f
plde-c++help-5.3 is not necessary for the proper opera-
tion of the compiler.

NOTE

The user must be root in order to use therpm product installa-
tion mechanism on the Linux system.
Concurrent C/C++ Version 5.3 Release Notes (Linux) 5

6

To install the Concurrent C/C++ RPMs, issue the following commands on your Linux system:

1. Insert the PowerWorks Linux Development Environment Installation CD in the
CD-ROM drive

2. Mount the CD-ROM drive (assuming the standard mount entry for the CD-ROM
device exists in/etc/fstab)

mount /mnt/cdrom

3. Change the current working directory to the directory containing the Concurrent
C/C++ RPMs

cd /mnt/cdrom/linux-i386

4. Install the RPMs

rpm -i plde-c++invoker-5.3-001.i386.rpm \
plde-c++-5.3-001-1.i386.rpm \
plde-c++help-5.3-001-1.i386.rpm

By default, the product is installed in/usr/opt . To install in a different directory, issue the fol-
lowing commands instead:

rpm -i plde-c++invoker-5.3-001.i386.rpm
rpm -i --relocate /usr/opt= directory \

plde-c++-5.3-001-1.i386.rpm \
plde-c++help-5.3-001-1.i386.rpm

wheredirectory is the desired directory.

5. Change the current working directory outside the/mnt/cdrom hierarchy

cd /

6. Unmount the CD-ROM drive (otherwise, you will be unable to remove the Pow-
erWorks Linux Development Environment Installation CD from the CD-ROM
drive)

umount /mnt/cdrom

NOTE

The optionalplde-c++cfront package containing USL
iostream and complex libraries should be installed after the
plde-c++ package.

To uninstall the Concurrent C/C++ RPMs, use the following command:

rpm -e plde-c++help-5.3 \
plde-c++invoker \
plde-c++-5.3
Concurrent C/C++ Version 5.3 Release Notes (Linux)

MAX

g

rget

y
ent
4.2. Cross-Development Libraries

In order to cross-compile and cross-link on the Linux system, it is necessary to have certain Power
OS libraries installed on that system.

The names of the RPMs containing the PowerMAX OS libraries minimally required for cross-linkin
are:

plde-pmax-crossdev-4.3
plde-pmax-crossdev-5.0
plde-pmax-crossdev-5.1

and are used when linking for a PowerMAX OS 4.3, PowerMAX OS 5.0, and PowerMAX OS 5.1 ta
system, respectively. The files associated with these RPMs are:

plde-pmax-crossdev-4.3-P7-1.i386.rpm
plde-pmax-crossdev-5.0-SR1-4.i386.rpm
plde-pmax-crossdev-5.1-SR0-1.i386.rpm

NOTE

The version number is part of the name of the RPM. Because
of that, it is possible to install both RPMs on the Linux system
at the same time. This allows the user to generate executables
for multiple PowerMAX OS versions from the same Linux
system.

User applications built with Concurrent C/C++ may require other capabilities which are provided b
additional RPMs included on the PLDE Installation CD. Refer to the section titled “Cross-Developm
Libraries and Headers” in thePowerWorks Linux Development Environment Release Notes(0898000)
for more information.
Concurrent C/C++ Version 5.3 Release Notes (Linux) 7

8

e
nt

d

ee

se
5.0. Using Concurrent C/C++ with the PLDE
The following should be taken into consideration in order to use Concurrent C/C++ with the
PowerWorks Linux Development Environment.

5.1. PATH Considerations

On Linux systems, thecc , c++ , gcc , andg++ commands invoke the native Linux compilers, which ar
completely unrelated (and incompatible at the object level) with PowerMAX OS and the Concurre
C/C++ cross-compiler.

To utilize the Concurrent C/C++ compiler, specify the following in yourPATHenvironment variable:

PATH=$PATH:/usr/ccs/bin

The compiler should then be invoked with eitherec or ec++ .

However, if you wish to be able to invoke the Concurrent C/C++ compiler ascc or c++ , insert the
following at the head of yourPATHenvironment variable:

PATH=/usr/ccs/crossbin:$PATH

The /usr/ccs/crossbin directory contains commands namedcc andc++ which invoke the
Concurrent C/C++ compiler as opposed to the Linux compilers.

See “Makefile Considerations” on page 10 below for more information.

5.2. Include Files and Libraries

By default, the Concurrent C/C++ compiler automatically looks for PowerMAX OS include files an
libraries in the tree rooted as:

/pmax/os/ version/ arch

whereversionandarch indicate the PowerMAX OS version and target architecture of your choice (s
“OS Versions and Target Architectures” on page 9 for more details).

Files located under/usr/include and/usr/lib are native Linux files and are unrelated and
incompatible with the corresponding files for PowerMAX OS. Do not attempt to utilize files from tho
directories when building PowerMAX OS programs.

Remove any explicit references to these directories in:

- source files (e.g.#include "/usr/include/unistd.h")

- Makefiles (e.g.cc -I/usr/include)

- build scripts
Concurrent C/C++ Version 5.3 Release Notes (Linux)

r

Include file references of the form:

#include <unistd.h>

or

#include "unistd.h"

need not be changed. These forms are supported, as the appropriate/pmax/os/ version/ arch trees are
searched.

5.3. OS Versions and Target Architectures

The PowerWorks Linux Development Environment supports building PowerMAX OS programs fo
various versions of PowerMAX OS and various systems.

The current versions of PowerMAX OS (osversion) that are supported are:

- 4.3

- 5.0

- 5.1

The current architectures (arch) that are supported are:

- nh

- moto

- synergy

which correspond to the following systems:

System type architecture

PowerMAXION-4 nh

PowerMAXION nh

Night Hawk 6800 nh

Night Hawk 6800 Plus nh

TurboHawk nh

Power Hawk 610 moto

Power Hawk 620 moto

Power Hawk 640 moto

PowerStack moto

PowerStack II moto

Power Hawk 710 synergy

Power Hawk 720 synergy

Power Hawk 740 synergy
Concurrent C/C++ Version 5.3 Release Notes (Linux) 9

10
NOTE

The default OS version is currently4.3 and the default target
architecture isnh .

You can change theosversion andarch settings in several ways:

- Specify the options on theec or ec++ command line:

ec -o main main.c --arch= arch --osversion= os

- Change the default for your user on a specific Linux system using the Concurrent
C/C++ command line utilityc.release :

c.release -arch arch -osversion os

- When using the Concurrent C/C++ PDE utilities (c.build , etc.), you can:

- Set thearch andosversion for an environment usingc.mkenv :

c.mkenv -arch arch -osversion os

- Set thearch andosversion for a specific partition usingc.partition :

c.partition -oset "--arch= arch --osversion= os" main

5.4. Shared vs. Static Linking

By default, the Concurrent C/C++ compiler links with shared libraries.

Thus, if you attempt to execute your C++ program on a PowerMAX OS system it will require, at a
minimum, the shared librarylibCruntime.so .

If your PowerMAX OS system doesn't have either the Concurrent C/C++ product or thec++runtime
package installed, your program will fail to execute.

You can install the full PowerMAX OS version of the Concurrent C/C++ compiler, install just the
c++runtime package, or relink your program using static libraries.

The PowerMAX OSc++runtime package is included on the PowerWorks Linux Development
Environment Installation CD. See the section titled “Target Installation” in thePowerWorks Linux
Development Environment Release Notes(0898000) for installation instructions.

To link your program using static libraries, append the-Zlink=static option to your command line:

ec++ -o main main.c -Zlink=static

5.5. Makefile Considerations

Makefiles may already contain references tocc or c++ commands explicitly within them. Additionally,
if default rules for compilation, such as

.c.o:

or

.cc.o:

are not explicitly mentioned, themake processor will also attempt to invokecc , c++ , or eveng++.
Concurrent C/C++ Version 5.3 Release Notes (Linux)

e

g

es
By default, unless you have/usr/ccs/crossbin early in yourPATHvariable, these situations will
result in the Linux native compilers being invoked instead of the Concurrent C/C++ compiler.

To resolve these problems you can take any of the following approaches.

5.5.1. Explicit Modification Using ec/ec++

Ensure that/usr/ccs/bin is in yourPATHenvironment variable.

Modify all occurrences ofcc andc++ to utilize ec andec++ , respectively.

Supply default.c.o rules (and the like) to explicitly utilize theec andec++ commands.

5.5.2. Use of /usr/ccs/crossbin in PATH Environment Variable

Put /usr/ccs/crossbin at the head of yourPATHenvironment variable.

This will cause references tocc andc++ to invoke the Concurrent C/C++ compiler as opposed to th
Linux compilers.

5.5.3. Use of CC Environment or Make Variables

If you don't want/usr/ccs/crossbin early on yourPATH(perhaps because you plan to build for
Linux and/or PowerMAX OS at various times), then you'll want to just use theec andec++ when you
want to compile for PowerMAX OS (it is still necessary to add/usr/ccs/bin to yourPATH).

One approach to usingec andec++ that requires minimal changes to Makefiles, etc., is to use
environment variables ormake variables to control which C/C++ compiler you're using. The followin
commands will all build using the PLDE cross-compilers:

Short-lived environment variables:

CC=ec CXX=ec++ make arguments

make variables:

make argumentsCC=ec CXX=ec++

Long-lived environment variables:

export CC=ec
export CXX=ec++
make arguments

You can also use the long-lived environment variable approach if you intend to always build for
PowerMAX OS, by adding the following to your login script (e.g..profile or .login depending on
your shell):

export CC=ec
export CXX=ec++

Or, if you prefer finer-grained control, you can add lines like the following to the top of any Makefil
that should use the Concurrent C/C++ cross-compiler:

CC=ec
CXX=ec++

The changes will then only affect the modified Makefiles. Note that this solution only works for
Makefiles that use the default.c.o and.cpp.o , etc. rules. If they contain hard-coded references tocc
or cc++ , then either/usr/ccs/crossbin must be used, or the Makefiles must be changed to use
$(CC) and$(CXX) instead. If the Makefile references anything likeg++ (Linux's GNU C++
compiler), then it will need to be changed, regardless.
Concurrent C/C++ Version 5.3 Release Notes (Linux) 11

12

ten

mpile
Here are two more complete and robust sets of variables which will work equally well with well-writ
Makefiles.

CC=/usr/ccs/crossbin/cc
CXX=/usr/ccs/crossbin/c++
AS=/usr/ccs/crossbin/as
AR=/usr/ccs/crossbin/ar
LD=/usr/ccs/crossbin/ld

Or, alternatively:

CC=/usr/ccs/bin/ec
CXX=/usr/ccs/bin/ec++
AS=/usr/ccs/bin/as.pmax
AR=/usr/ccs/bin/ar.pmax
LD=/usr/ccs/bin/ld.pmax

These two sets are mentioned in order to provide very easy support for those users that want to co
only for PowerMAX OS (/usr/ccs/crossbin) and for those users that may want to compile for
either Linux or PowerMAX OS, depending on the application (/usr/ccs/bin).
Concurrent C/C++ Version 5.3 Release Notes (Linux)

nly

e to

efault

e
se

his,

led

tion
6.0. Changes in This Release

6.1. Documentation Updates

TheConcurrent C/C++ Reference Manualhas been greatly expanded and is now available online
through thenhelp andc.man tools. The traditional man pages have been abbreviated to provide o
brief descriptions of the options, and the user is directed to the Reference Manual for complete
documentation.

6.2. Invoking The Compiler

To use the C/C++ compiler in releases 5.1 and later, it is necessary to add the path/usr/ccs/bin to
yourPATHenvironment variable. The C compiler is invoked by theec command, and the C++ compiler
is invoked by theec++ command.

If an earlier C or C++ compiler is still installed on the system, the system administrator may choos
configure the previous compiler commands (cc , hc , cc++ , c++ , analyze , andreport) to invoke the
pre-5.1 release. However, by default, they will invoke the 5.3 release. The user may override this d
behavior by setting thePDE_RELEASEenvironment variable to eitherpre5.1 , 5.2 , or another release
name, or by using thec.release command to select the user-specific default release.

6.3. The --static_Cruntime Link Option

The--static_Cruntime option directs theec++ driver program to use the archive rather than th
shared object form of the C++ runtime library when creating a dynamically-linked program. Becau
the C++ runtime library is implicitly included in links, there had been no supported way to achieve t
although there were some kludge techniques that are not guaranteed to work in the future.

6.4. Function Try Blocks

Function Try Blocks are now implemented. Note, there is a known problem when inlining is disab
(such as at optimization levelNONE). This will be fixed in a patch.

6.5. Compound Literals

Compound literals are now implemented.

6.6. The --[no]_vector_safe_prologs Compile Option

The--vector_safe_prologs compile option places a runtime test in function prologs to avoid
executing AltiVec instructions in the prolog. This makes it possible for the user to write a single func
that uses AltiVec instructions if available, or non-vector operations otherwise.
Concurrent C/C++ Version 5.3 Release Notes (Linux) 13

14
6.7. Various Bug Fixes

Several bugs were fixed. This list includes, but is not limited to, the following:

• Certain runtime calls failed to generate PIC code;

• Typechecking was wrong on some AltiVec intrinsic functions;

• Strict standard conforming mode permitted AltiVec enhancements;

• Debug information for PIC was incorrect;

• Themin_align program did not work for predeclaring struct/union/class;

• Some intrinsics were not properly enabled for ppc750/ppc7400 targets;

• The-Qquick_alias option sometimes did not work;

• Analyze with the-Zlive_out option did not deal with exception handlers correctly;

• AltiVec intrinsics generated inefficient code for indirecting through a register.
Concurrent C/C++ Version 5.3 Release Notes (Linux)

r

ll

s in the

me

the

are a
7.0. Cautions

7.1. va_list Structure Format

When using PowerMAX OS 5.1 headers,varargs andstdarg use a different format for the
va_list structure. Because of this, the user should avoid passingva_list structures to routines that
are built with previous versions of the PowerMAX OS headers.

Code build with PowerMAX OS 5.1 headers can handle both the old and the new format ofva_list .
There should therefore be no problem with old code, compiled with PowerMAX OS 5.0 and earlie
headers, passingva_list to code compiled with PowerMAX OS 5.1 headers.

For example, a dynamically-linked program that callsvfprintf and that is compiled under
PowerMAX OS 4.3 will have no problem running on a PowerMAX OS 5.1 system, calling the
vfprintf in the 5.1 version oflibc.so . That same program compiled under PowerMAX OS 5.1 wi
not work if run on a PowerMAX OS 4.3 system. Thevfprintf in the 4.3 version oflibc.so will
not know how to handle the newva_list format.

7.2. Retain Source

Users are encouraged to retain the source for their applications. Major releases may have change
object-file format which will require the recompilation of their programs. This release is one such
release. In the process of implementing additional ANSI/ISO C++ features, some changes to “na
mangling” and interfaces to runtime routines were necessary.

7.3. curses.h and bool

The<curses.h> header file contains abool type definition. In compilation modes wherebool is
a keyword, this results in a compilation error. There are two workarounds. The user may turn off
bool keyword with the--no_bool option, or he may use the following sequence when using the
header file:

#define bool _curses_bool
#include <curses.h>
#undef bool

When using this second workaround, if the user makes reference to curses’bool type definition, the user
must use the name_curses_bool instead.

7.4. Structure Compares

The C 4.3 and earlier releases supported an enhancement that allowed the user to implicitly comp
structure to zero (meaning all bytes of the structure are zero) in an if or while statement:

struct S {int a,b,c,d,e,f;} s;
...
if (s) {
...
Concurrent C/C++ Version 5.3 Release Notes (Linux) 15

16

urrent
a

d

hat
annot

le
As this enhancement is not present in any other major C compiler and is undocumented in the Conc
C compiler, it is no longer present in C/C++ 5.1. The user can easily write a small function to test
structure for being zero should any code actually use this feature.

7.5. Known Problem with C/C++ Standard Library

The Concurrent software workaround provided below addresses a problem detected by the C++
standards committee Library Working Group. Concurrent will continue to monitor the situation an
evaluate the group’s final recommendation for any further action that might be necessary.

If a function is explicitly instantiated and its type is supplied, the compiler looks up all functions of t
name and tries to instantiate in an attempt to determine what the closest match is. If one of these c
be instantiated for the given type, the compiler will then issues an error.

The workaround is to omitthe explicit type, but let the compiler determine it from context. An examp
is provided below:

namespace std {
template <class Iterator> struct iterator_traits {

typedef typename Iterator::difference_type difference_type;
};

template <class T> class reverse_iterator;

template <class T>
void operator+(typename iterator_traits<T>::difference_type,

const reverse_iterator<T>&);

template <class T> struct complex;

template <class T> void operator+(const T& lhs, const complex<T>& rhs){;}

}

// Explicit instantiation which gives the error:
template void std::operator+<float>(const float&, const std::complex<float>&);

// Workaround which does not:
template void std::operator+<>(const float&, const std::complex<float>&);

7.6. Pragma min_align

Using a pragmamin_align of the form:

#pragma min_align [struct | union | class] name align
[struct | union | class] name {

declaration
};

will result in a front end assertion violation.

The workaround is to declare the[struct | union | class] name previous to the#pragma
statement.
Concurrent C/C++ Version 5.3 Release Notes (Linux)

Specifically:

struct foo_tag;
#pragma min_align foo_tag 16
struct foo_tag {

double b1;
double b2;
double b3;

} foo;

will work while:

#pragma min_align foo_tag 16
struct foo_tag {

double b1;
double b2;
double b3;

} foo;

will give an assertion violation.
Concurrent C/C++ Version 5.3 Release Notes (Linux) 17

18

our
ers
. The
d time.

nnel
a
e for
8.0. Direct Software Support

Software support is available from a central source. If you need assistance or information about y
system, please contact the Concurrent Software Support Center at 1-800-245-6453. Our custom
outside the continental United States can contact us directly at 1-954-283-1822 or 1-305-931-2408
Software Support Center operates Monday through Friday from 8 a.m. to 7 p.m., Eastern Standar

Calling the Software Support Center gives you immediate access to a broad range of skilled perso
and guarantees you a prompt response from the person most qualified to assist you. If you have
question requiring on-site assistance or consultation, the Software Support Center staff will arrang
a field analyst to return your call and schedule a visit.
Concurrent C/C++ Version 5.3 Release Notes (Linux)

	1.0. Introduction
	2.0. Documentation
	3.0. Prerequisites
	3.1. Host System
	3.1.1. Software
	3.1.2. Hardware

	3.2. Target System
	3.2.1. Software
	3.2.2. Hardware

	4.0. System Installation
	4.1. Separate Host Installation
	4.2. Cross-Development Libraries

	5.0. Using Concurrent C/C++ with the PLDE
	5.1. PATH Considerations
	5.2. Include Files and Libraries
	5.3. OS Versions and Target Architectures
	5.4. Shared vs. Static Linking
	5.5. Makefile Considerations
	5.5.1. Explicit Modification Using ec/ec++
	5.5.2. Use of /usr/ccs/crossbin in PATH Environment Variable
	5.5.3. Use of CC Environment or Make Variables

	6.0. Changes in This Release
	6.1. Documentation Updates
	6.2. Invoking The Compiler
	6.3. The --static_Cruntime Link Option
	6.4. Function Try Blocks
	6.5. Compound Literals
	6.6. The --[no]_vector_safe_prologs Compile Option
	6.7. Various Bug Fixes

	7.0. Cautions
	7.1. va_list Structure Format
	7.2. Retain Source
	7.3. curses.h and bool
	7.4. Structure Compares
	7.5. Known Problem with C/C++ Standard Library
	7.6. Pragma min_align

	8.0. Direct Software Support

