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Preface

Scope of Manual

This manual provides a programming guide for the PowerMAX OS STREAMS facility. It
contains reference information and procedures for developing operating system communi-
cation services.

Structure of Manual

This manual consists of eleven chapters, a glossary, and an index. A brief description of
the chapters is presented as follows:

¢ Chapter 1 provides an introduction to the manual and an overview of the
STREAMS facility. It describes STREAMS components and highlights the
main benefits of STREAMS.

* Chapter 2 explains the STREAMS-related system call interface.

* Chapter 3 provides additional information on the STREAMS I/O structure
and data flow and contrasts it with the conventional character I/O mecha-
nism.

* Chapter 4 describes tipeit andservice procedures and provides an
asynchronous protocol Stream example.

* Chapter 5 describes the STREAMS message structure and message queues
and priorities. It explains the procedures and interfaces for sending mes-
sages.

¢ Chapter 6 provides an overview of STREAMS modules and drivers,
explains theoctl mechanism, and describes the device driver/driver-ker-
nel interfaces (DDI/DKI) and the STREAMS interface. It also explains
how to configure the system for STREAMS modules and drivers.

¢ Chapter 7 explains how to develop STREAMS modules.
* Chapter 8 explains how to develop STREAMS drivers.

* Chapter 9 explains how STREAMS multiplexing configurations are cre-
ated and discusses multiplexing drivers.

* Chapter 10 describes the STREAMS-based Transport Provider Interface
(TPI).

* Chapter 11 describes the STREAMS-based Data Link Provider Interface
(DLPI).

The glossary contains definitions of technical terms that are important to understanding
the concepts presented in this book.
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The index contains an alphabetical reference to key terms and concepts and numbers of
pages where they occur in text.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear intalic type. Special terms may also appedtatic.

list bold User input appears ilist bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appekstibold type.

list Operating system and program output such as prompts and mes-

sages and listings of files and programs appedist in type.
1] Brackets enclose command options and arguments that are

optional. You do not type the brackets if you choose to specify
such option or arguments

Referenced Publications

The following publications are referenced in this document:

0890425 Device Driver Programming

On line Command Reference

On line Operating System API Reference
On line System Files and Devices Reference
On line Device Driver Reference



Contents

Chapter 1 Introduction to STREAMS

INtrodUCtiON . . . .. 11
References .. ... .. 1-1
Notation ConNVeNtioNS. . . . . ... 1-2

Overview of STREAMS . . ... . 1-3

Basic Stream Operations . . . . ...t 1-5

STREAMS COMPONENTS. . . . o oo e 1-7
QUEBUES . .ot e 1-7
MESSagES. . . . oo 1-8

MeSsage TYPES . . . 1-8
Message Queuing Priority. . . .. ... 1-9
ModUleS . . .. 1-10
DIIVEIS o 1-12

MUIIPIEXING . . o o o e 1-12

Benefits of STREAMS . . .. .. e 1-17
Standardized Service Interfaces . . .. ... ... 1-17
Manipulating Modules . . . . .. ... . 1-17

Protocol Portability . . .. ... ... 1-18
Protocol Substitution. . . ... .. 1-18
Protocol Migration . .. ... .. 1-18
Module Reusability . . . ... ... 1-19

Chapter 2 STREAMS System Calls

INtrOdUCHION . . . .o 2-1
STREAMS System Calls . .. ... ... e 2-1
getmsg and puUtMSy . . . ..o oo e 2-2

POIL. . e 2-2
STREAM CONSIIUCHION . . . .ottt e e e e e 2-2
Openinga STREAMS Device File. . . ... ... . .. 2-4
Creating a STREAMS-based Pipe . ... ... .o e 2-7
Adding and Removing Modules. . . ........ ... .. . . e 2-8
Closing the Stream . . ... ... e e e e e 2-9
Stream Construction Example . ... 2-9
Inserting Modules . . ... ... 2-10

Module and Driver Control . . .. ... 2-11

Chapter 3 STREAMS Input/Output

INtrOdUCHION . . . oo 3-1
The STREAMS Subsystem . .. ... e 3-1
Modularity. . . ... 3-2
MESSaAgES . . . o o 3-2
Message Contents TYPE . . ..o oottt e 3-2
Message Priority. . ... 3-3



STREAMS Modules and Drivers

Message StrUCIUIE. . . . .. 3-3
Structure Declarations . . ... ... 3-3
STREAMS Entry POINtS . ... ... . e e e 3-4

OpPeN ROULINE . . . ..o e 3-4

The CLONE DIIVEN . . . .ot e 3-5
Message ProCesSIiNg . . ...ttt 3-6
PUL ROULING . . .. 3-6

put Routine: Switch on Message Type . ... ... 3-7

put Routine: Flush Handling . .. ......... ... . . 3-7

put Routine: I/O Control Commands. . .. ......... ... i .. 3-7

put Routine: Data OUtpUL. . . ... ... e 3-8

put Routine: Error Detection. .. ....... ... 3-8
Service ROUtINE. . .. .. 3-9

Service Routine: Retrieve Message. . .......... .. ... 3-9

Service Routine: Check forBlocking . ........... ... ... . ......... 3-9

Service Routine: Return MessagetoQueue .................ccoou... 3-9

Service Routine: Forward Message. . . ... ..ottt 3-10
CloSE ROULINE . . .o oo e e 3-10

Chapter 4 STREAMS Processing Routines

INtrOdUCHION . . . oo 4-1
PUt Procedure ... ... 4-1
Service Procedure . . ... ... 4-2

Asynchronous Protocol Stream Example . ........... ... . i, 4-3
Read-Side ProCessing . . . ..o v vttt e 4-5

Driver ProCesSiNg. . . oot e 4-5

CHARPROC . ... e e e e 4-6

CANONPROC. . . . e e e 4-7
Write-Side Processing. . . .. oo 4-7
ANAlY SIS, . . o e 4-8

Chapter5 STREAMS Messages

INtrOdUCHION . . . . oo 5-1
Expedited Data . . . .. ..o 5-1
Message StrUCIUIE . . . .. .o 5-2
Message Linkage . ... 5-2
Sending/Receiving MeSSages . . . . .. oottt 5-4
Control of Stream Head Processing . ... ...t 5-6
Read Options . . . . .o 5-7
Write Offset. . .. 5-7
Message Queues and Priorities . .. ... 5-8
QUEBUE STIUCKUNE . . . . ettt e e e e e e e 5-11
Using queue Information. . . ... 5-12
gband Structure . .. ... .. 5-12
Using gband Information. . ......... ... . 5-12
Message ProCesSINg . . . ..ottt e 5-12
Flow Control . .. ... . 5-14
Service Interfaces. . . ... 5-18
Service Interface Benefits. . . .. ... . e 5-19
Service Interface Library .. ... 5-21
Accessing the Service Provider. . . ... .. i 5-23

Vi



Closing the Service Provider. .. .................
Sending Data to the Service Provider . ............

Receiving Data from the Service Provider

Module Service Interface . . .......... .. ... L.
Service Interface Procedure. .. .................
Message Allocationand Freeing . ......................
RecoveringfromNo Buffers . ......................
Extended STREAMS Buffers . ............... .. ... .....
Message TYpesS. . . ...t
Detailed Description of Message Types. . .............
Ordinary Messages .. ..........uuiiiiiiiiiinnnnn.

M SIG .« et

M_COPYIN . .

Chapter 6 Overview: STREAMS Modules and Drivers

Introduction . . ... ... . e
Differences Between Modules and Drivers . ...........
Similarities Between Modules and Drivers .. ..........
Module and Driver Declarations . ...................

Null Module Example. . ........................

Module and Driverioctls. . . ...........................
Generalioctl Processing. . . ....... .o
| STRioctlProcessing. . ...,
Transparent ioctl Processing. ... ...................
Transparent ioctl Messages . ......................
Transparent ioctl Examples . ......................

M_COPYINExample.......... ...,
M_COPYOUTExample........................
Bidirectional Transfer Example .................

Contents

Vi



STREAMS Modules and Drivers

I LISTIOCH. . .. e 6-22
Flush Handling. . . ... ..o e e e e 6-24
Driver-Kernel Interface . ......... .. . i e 6-28

Device Driver and Driver-Kernel Interface. . . ........... ... .. ... .. ... 6-31

STREAMS Interface. . . ... . e e 6-31
Configuring the System for STREAMS Drivers and Modules .. ............... 6-32

Modules and DriVErS. . .. .. oot 6-32

Rules for Open/Close Routines . .. ... ... 6-33
Rulesforioctls. . ... ... e 6-34
Rules for Put and Service Procedures . . .......... .. ... 6-34
Put Procedures . ... 6-35
Service ProCeduUres . . . ..ot 6-35
Data StruCtUres . . . ... e 6-36
Dynamic Allocation of STREAMS Data Structures. . . ............... 6-37
Header Files . ... e e 6-37

Chapter 7 STREAMS Modules

INtrOdUCHION . . ..o e 7-1
ROULINES . .. e 7-1
Filter Module Example. . .. ... o e 7-4

Flow Control . ... .. e e 7-8

Design GUIdEliNeS . .. ... e 7-10

Chapter 8 STREAMS Drivers

INtrOdUCHION . . . . oo 8-1
Driver Classification . . . .. ... 8-1
WItiNg @ DIiVEN . . . . 8-2
Major and Minor Device Numbers. . ... .. . 8-3
STREAMS DIIVEIS . . . ot e e e e e 8-4

Printer Driver Example . ... ... . 8-6
Declarations . . . ...t 8-7
Driver OPeN . .. 8-8
Driver Flush Handling ......... ... . . . . 8-10
Driver INterrupt. . . ... 8-11
Driver Close Routine .. ........ .. e 8-13

Driver Flow Control. . . . .. ... e 8-14

Cloning. . ..o e P140 8

Loop-around DIiver . . . .. o e 8-16

Design Guidelines . ... ... 8-25

Chapter 9 STREAMS Multiplexing

INtrodUCEION . . . . o 9-1
Building a Multiplexor . . . ... ... 9-2
Dismantling a Multiplexor . . . ... ... . 9-9
Routing Data through a Multiplexor. . . ... ... .. i 9-10

Connecting/Disconnecting Lower Streams . . .. ... ...t 9-10
Connecting Lower Streams. . . ... .. e 9-11
Disconnecting Lower Streams . ... e 9-12

Multiplexor Construction Example . .. ....... .. . 9-13

MUltiplexing DrIiVET . . . . . e 9-16

viii



Contents

Upper Write Put Procedure . ... ... .. e 9-19
Upper Write Service Procedure . . ........ . e 9-22
Lower Write Service Procedure . . ......... ... 9-23
Lower Read Put Procedure. . . ... ... i 9-24
Persistent LINKS . . .. ... 9-27
Design Guidelines . . . ... ... 9-31

Chapter 10 Transport Provider Interface

INtrodUCHION . . . .o 1. 10-
How TPRIWOIKS .. oo e e 10-1
Overview of Error Handling Capabilities. . ............................ 10-3

NoN-Fatal Errors . ... ..o 10-3
Fatal Brrors . ... 10-4
Transport Service Interface Sequence of Primitives. . . ................... 10-4
Precedence of TPl Primitivesona Stream. . ............. .. ... .o.... 10-5
Rules for Flushing QUeUES . . . .. ...t e e 10-5

Mapping Of Transport Primitivesto OSI ........... .. ... .. ... 10-6

Allowable Sequence of TPI Primitives . .. ......... .. ... . .. 10-7
Variables and OULPULS. . . . .. ..o e 10-9
OUtgoINg EVENtS . . . . .o e 10-9
Incoming EVents. . .. ... e e 10-10
Transport Service State Tables . . ... ... .. 10-11

Transport Primitive Precedence. .. ... 10-14
Chapter 11 Data Link Provider Interface
INtrodUCHiON . . ... 1. 11-
HOW DLPIWOIKS . .o e e e e e 11-2
Hardware/Software Environment. . . ... ... .. . . 11-4
The LAN EnVirONmMeNt . . . ... e 11-4
Media Access Methods. . . ... .. . 11-4
CSOMA/CD . . . 11-4
TOKEN RING . . oo 11-5
Logical Link Layer Protocols. . . ......... . 11-6
Protocol SUItES . . . ..o e 11-6
Ol o 11-6
TCP/IP over CSMA/CD . . ..o e e e e e 11-7
TCP/IPover TOKeN RING . . . .. oo e 11-7
NetWare over CSMA/CD . . ...t e 11-7
NetWare over TOken RiNG . . .. . ..o e 11-7
Network Management SUPPOIt. . ... ..ottt e 11-8
Broadcast and Multicast SUPPOIt . . ... ...t 11-8
Promiscuous Mode. . . ... ... e 11-8
The DLPI Network Driver Framework . . .. ... ... . . 11-8
Major Data SIrUCIUNES. . . . . . oo 11-10
The Hardware Independent Layer . ............ .. 11-13
The Hardware Dependent Layer . ..., 11-13
Watchdog ROULINES. . . . . ... 11-13
Function Names and File Organization . ............. ... .. ... .. ... ... 11-14
Model of the Data Link Layer. . . ... e 11-14
Model of the Service Interface. . . . ... ... . 11-14
Modes of Communication . ........... .. . 11-16



STREAMS Modules and Drivers

Connection-Mode ServiCe. . . ... . i e 11-16
Connectionless-Mode ServiCe. . .. ... . o i e 11-17
DLPI AdAressiNg . ... .. 11-17
Physical Attachment Identification . . ............................. 11-18
Data Link User Identification . ............ ... ... .. ... .. . ... 11-19
The Connection Management Stream. . .. ... ... ... 11-19
DLPI SEIVICES . . oo e 11-20
Local Management SEerViCES. . ..o i it 11-22
Information Reporting . . . .. ... 11-22
Attach Service . ... 11-23
Bind Service. . ... e 11-24
Connection-mode SEIVICES . . . . .ot e e 11-27
Connection Establishment Service ........... .. ... .. ... ... . ... ... 11-27
Normal Connection Establishment. . .. ........................ 11-27
Connection Establishment Rejections . ........................ 11-29
Data Transfer Service . ........ . i e 11-30
Connection Release Service . ... 11-31
RESEL SEIVICE . ... e 11-33
Connectionless-Mode SEerviCES. . . ... it e 11-37
Connectionless Data Transfer Service. . ......... .. .. . ... 11-37
QOS Management ServiCe .. ... 11-37
Error Reporting Service. . .. ... 11-38
XID and TEST ServiCe. . ..ot e e e e 11-38
Acknowledged Connectionless-Mode Services . .............. .. ..., 11-39
Acknowledged Connectionless-Mode Data Transfer Services . .. ....... 11-40
Error Reporting Service. . .. ... 11-41
Connection-Mode Example . ... ... e 11-41
DLPI PrimMItiVES . . . . e 11-43
Local Management Service Primitives. . . . ............. ... ... .. . . ... 11-43
PPA Initialization / De-initialization . . .. .......... ... .. ... ... ..... 11-44
Connection-Mode Service Primitives. . ... ... .. . 11-45
Connection Establishment. . ... ... ... ... .. . . . . .. . 11-45
Connectionless-Mode Service Primitives. . .. ........ ... .. .. 11-46
XID and TEST Operations Primitives . .. .......... .. .. .. 11-46
Quality of Data Link Service. . . ... 11-46
Connection-Mode SErViCE . ... .ot e 11-46
QOS for Connectionless-Mode Services . ..., 11-47
QOS Parameter Definitions. . . . ... . . 11-47
Throughput . . ... 11-48
Parameter Format. . . ... ... .. . . 11-48
TransitDelay . .. ... e 11-49
Parameter Format. . . ... ... .. . . 11-49
POty . . . 11-49
Parameter Format. . . ... ... .. . . 11-50
Protection. . ... ... e 11-50
Parameter Format. . . ... ... .. . . 11-50
Residual Error Rate . . ... ... . 11-51
Parameter Format. . . ... ... .. . . 11-51
ResIlienCe. . . ... 11-51
Parameter Format. . . ... ... .. . . 11-51
QOS Data StrUCIUIES. . . . ot e e e e e e 11-52
Procedures for QOS Negotiation and Selection . .. ...................... 11-52
Connection-Mode QOS Negotiation. . ................ ... ... ...... 11-53
Connectionless-Mode QOS Selection. . ............. ... ... ... ..... 11-56



Glossary

Index

Illustrations

Allowable Sequence of DLPI Primitives. . .....................
Variables and Actions for State Transition Table. ... .........
DPLI State Transition Table Variables .. ...............
DLPI User-Originated Events .. .........................
DLPI Provider-Originated Events .. ......................
DLPI State Transition Table. . . ......... .. ... ... ... ....
Common Local ManagementPhase. .....................
Precedence of DLPI Primitives . .. ........ ... .. ...
Write Queue Precedence ......... ...
Read Queue Precedence. .............. .. ... ... ...
Guidelines for Protocol Independent DLS Users . ..............
Guidelines for Using DLPI Under PowerMAX OS ...............
Using STREAMS Networking Buffers in a DLPI Application. . . . ...
A Sample DLPI /STREAMS Networking Buffer Program . . . . ..

Figure 1-1. Simple STREAMS . ..... ... ... .. . . ..
Figure 1-2. STREAMS-basedPipe .........................
Figure 1-3. Stream to Communication Driver .. ................
Figure 1-4. AMESSaQE . .. .ottt e
Figure 1-5. Messagesona MessageQueue . .................
Figure 1-6. Detailed Stream .. ............ ... ... ...
Figure 1-7. Many-to-One Multiplexor .. ......................
Figure 1-8. One-to-Many Multiplexor .. ......................
Figure 1-9. Many-to-Many Multiplexor .......................
Figure 1-10. Internet Multiplexing Stream . ...................
Figure 1-11. X.25 Multiplexing Stream . .....................
Figure 1-12. X.25 Multiplexing Stream . .....................
Figure 1-13. Protocol Migration ............................
Figure 1-14. Module Reusability . ...........................

Figure 2-1. Upstream and Downstream Stream Construction

Figure 2-2. Stream Queue Relationship . .....................
Figure 2-3. Opened STREAMS-Based Driver .................
Figure 2-4. Creating STREAMS-Based Pipe .................

Figure 2-5. Case ConverterModule . ... .....................
Figure 4-1. Ildle Stream Configuration for Example .............
Figure 4-2. Operational Stream for Example .................

Figure 4-3. Module Put and Service Procedures ...............
Figure 5-1. Message Form and Linkage .....................
Figure 5-2. Message OrderingonaQueue ...................
Figure 5-3. Message Ordering with One Priority Band . ... .......
Figure 5-4. Flow Control ........ ... ... . ... .. ..
Figure 5-5. Protocol Substitution . ...........................
Figure 5-6. Servicelnterface .................... ... .. .....

Figure 5-7. M_PROTO and M_PCPROTO Message Structure

Figure 6-1. Flushing the Write-Side of a Stream . ...............
Figure 6-2. Flushing the Read-Side ofa Stream ...............

Contents

Xi



STREAMS Modules and Drivers

xii

Figure 6-3. Interfaces Affecting Drivers . ........... ... .. . . ... 6-30
Figure 8-1. Device Driver Streams . . . ... ..o oottt 8-6
Figure 8-2. Loop-Around Streams . . ... ...ttt e 8-17
Figure 9-1. Protocol Multiplexor .. ... .. ... 9-3
Figure 9-2. Before Link . ........ .. . . . 9-4
Figure 9-3. IP Multiplexor after FirstLink . ........ ... .. .. ... ... .. . ... 9-6
Figure 9-4. IP MUltiplexor . . . ... ... 9-7
Figure 9-5. TP Multiplexor . . ... .. 9-8
Figure 9-6. Internet Multiplexor before Connecting . ....................... 9-13
Figure 9-7. Internet Multiplexor after Connecting . . .. ............ ... .. ..... 9-15
Figure 9-8. open() of MUXdriver and Driverl ............. ... ..., 9-28
Figure 9-9. Multiplexor after I_PLINK .. ... ... ... . i 9-29
Figure 9-10. Other Users Opening a MUXdriver . ............. ... ... ...... 9-30
Figure 10-1. Example of a Stream from a User to a Transport Provider .. ....... 10-2
Figure 10-2. State Table OQUIPULS . ... ... ..t 10-9
Figure 10-3. Initialization State Table .. ............ ... ... .. ... ... .. ..... 10-12
Figure 10-4. Data-Transfer State Table for Connection Oriented Service .. ... ... 10-14
Figure 10-5. Data-Transfer State Table for Connectionless Service ............ 10-14
Figure 10-6. Stream Write Queue Precedence Table ........................ 10-15
Figure 10-7. Stream Read Queue Precedence Table ........................ 10-16
Figure 11-1. The IEEE 802 Model . . ... ... ... . . 11-2
Figure 11-2. The DLPIModel ..... ... .. . . . 11-3
Figure 11-3. Ethernet Frame Format. . .......... ... ... . . . . ... 11-4
Figure 11-4. 802.3 Frame Format. . .. ... ... i 11-5
Figure 11-5. 8025 Frame Format. . . ........... .. . i 11-5
Figure 11-6. 802.2 Message Format. . ............ .. ... 11-6
Figure 11-7. Structure ofthe Driver . . ....... ... . . . . . i 11-9
Figure 11-8. Abstract View of DLPI ......... ... ... . . . .. 11-15
Figure 11-9. Data Link Addressing Components ..................ouiuu... 11-18
Figure 11-10. Information Reporting . . .. ....... . e 11-23
Figure 11-11. Attaching a Stream to a PhysicalLine ....................... 11-23
Figure 11-12. Detaching a Streamto a PhysicalLine ....................... 11-24
Figure 11-13. Binding a Streamtoa DLSAP .......... ... ... .. . ..., 11-25
Figure 11-14. Unbinding a Streamtoa DLSAP ......... ... ... ... ... ...... 11-26
Figure 11-15. Enabling a Specific Multicast Addressona Stream . ............ 11-26
Figure 11-16. Disabling a Specific Multicast Address on a Stream ............ 11-27
Figure 11-17. Successful Connection Establishment . ....................... 11-28
Figure 11-18. Token Retrieval ......... ... . ... .. . . . 11-28
Figure 11-19. DLS User Rejection of Connection Establishment Attempt ... . . .. 11-29
Figure 11-20. DLS Provider Rejection of Connection Establishment Attempt . ... 11-30
Figure 11-21. Both Primitives Are Destroyed by Provider ................... 11-30
Figure 11-22. Normal Flow . ....... ... .. . e 11-31
Figure 11-23. DLS User-Invoked ConnectionRelease ...................... 11-32
Figure 11-24. Simultaneous DLS User-Invoked Connection Release ........... 11-32
Figure 11-25. DLS Provider Invoked ConnectionRelease ................... 11-33
Figure 11-26. Simultaneous DLS User and Provider Connection Release . ...... 11-33
Figure 11-27. DLS User-Invoked ConnectionReset ........................ 11-35
Figure 11-28. Simultaneous DLS User-Invoked Connection Reset . ............ 11-35
Figure 11-29. DLS Provider-Invoked ConnectionReset . .................... 11-36
Figure 11-30. Simultaneous DLS User/Provider-Invoked Connection Reset . . ... 11-36
Figure 11-31. Connectionless Data Transfer ............. ... .. ............. 11-37
Figure 11-32. Connectionless Data Transfer (QOS) ........................ 11-38
Figure 11-33. Message Flow: XID Service ............ ... .. 11-39
Figure 11-34. Message Flow: TEST Service . ... .. 11-39



Screens

Figure 11-35.
Figure 11-36.
Figure 11-37.
Figure 11-38.
Figure 11-39.
Figure 11-40.

Screen 2-1.
Screen 2-2.
Screen 3-1.
Screen 3-2.
Screen 3-3.
Screen 3-4.
Screen 3-5.
Screen 5-1.
Screen 5-2.
Screen 5-3.
Screen 5-4.
Screen 5-5.
Screen 5-6.
Screen 5-7.
Screen 5-8.
Screen 5-9.
Screen 5-10.
Screen 5-11.
Screen 5-12.
Screen 5-13.
Screen 6-1.
Screen 6-2.
Screen 6-3.
Screen 6-4.
Screen 6-5.
Screen 6-6.
Screen 6-7.
Screen 6-8.
Screen 6-9.
Screen 6-10.
Screen 6-11.
Screen 6-12.
Screen 6-13.
Screen 6-14.
Screen 7-1.
Screen 7-2.
Screen 7-3.
Screen 7-4.
Screen 7-5.
Screen 7-6.
Screen 7-7.
Screen 7-8.
Screen 8-1.
Screen 8-2.

Contents

Acknowledged Connectionless-Mode Transmission Service . . . ... 11-40
Acknowledged Connectionless-Mode Exchange Service . ........ 11-40
Reply Data Unit Preparation Service ........................ 11-41
Connection Mode Example . .. ... ... i 11-42
Write Queue Precedence . ............ ... i 11-68
Read Queue Precedence. . ........ ... ... 11-70
Insertinga Module intoa STREAM . . ... ........ ... .. 2-10
Module and Driver Control . . .. ... 2-12
Pseudo-Code foraputRoutine .. ............ ... .. ... ....... 3-6
put Routine Example of Flush Handling. . ...................... 3-7
put Routine Example of I/O Control Command Handling .......... 3-8
put Routine Example of Default Error Handling . ................ 3-8
Pseudo-Code for Service Routine . . ............. .. ... oL 3-9
Obtained Fields . . . ... 5-10
Service Interface Library Example . . ............ .. ... ... .. ... 5-22
Accessing the Service Provider. . ............ ... i, 5-24
Acknowledgment from Service Provider ....................... 5-25
Closing the Service Provider. . . ........... ... i, 5-26
Sending Data. . ...t e 5-27
Receiving Data . .......... i e 5-28
Module Service Interface Declaration. . ........................ 5-30
Write Procedure. . . ... 5-32
Appending a Character to a Message Block . . .................. 5-34
Processing Message Blocks. . . ........ ... ... i i, 5-35
Device Receive InterruptHandler. .. ......................... 5-37
Write Service Procedure . ... 5-38
Module and Driver Declarations . . . ........ .. ... ... 6-3
Required Structures. . . ... .. e 6-4
Null Module Procedure . . . ... e 6-5
|_ STRiIOCtI Processing . ... 6-9
Request/Response Messages. . . ..o v v it i i 6-13
GETSTRUCT and GETADDR . . . . ... 6-15
| STRand Transparentioctl . ............. ... .. ... 6-17
Write-Side put Procedure . ... 6-19
Message Block Allocation. . . .......... ... ... i 6-21
Strlist Structure. . .. ... e 6-23
Line Discipline Flush Handling. . . . .......................... 6-24
Line Discipline Break Flushing. .. ........... ... ... ... ..... 6-25
Priority Band FlushHandling . . ............................. 6-28
mod Declaration FOrm. . . ... .. 6-31
Read Side putProcedure . . ...t 7-2
Write Side put Procedure. . ... e 7-3
Service ROULINE . . . ... 7-3
Filter Module. . . . ... 7-5
Write Side put Procedure and Queue Flush . .................... 7-6
M_DATA Message Processing . ... ...vvviiin e 7-7
Read Side Line Discipline. . . .......... .. i i 7-9
Write Side Line Discipline . ......... ... .. i 7-10
Line Printer Driver. . . .. ..o e 8-7
DrVEr QPN . . .ot 8-9

Xiii



STREAMS Modules and Drivers

Tables

Xiv

Screen 8-3.
Screen 8-4.
Screen 8-5.
Screen 8-6.
Screen 8-7.
Screen 8-8.
Screen 8-9.

Flush Handling. . . ... . e 8-11
Device Interrupt. . . .. ..o 8-12
Driver Close RoUtINE . . . . . ..o e 8-14
Driver Declarations . .. .......... . i 8-18

Open Procedure . . ... 8-19
Driver Sanity Checks. . ........ ... . . 8-21
Write and Read Side Flow Control .. ........ ... .. ............. 8-24

Screen 8-10. Re-enablingthe Writer. . . ......... ... ... . . . . . . 8-25

Screen 9-1.
Screen 9-2.
Screen 9-3.
Screen 9-4.
Screen 9-5.
Screen 9-6.
Screen 9-7.
Screen 9-8.
Screen 9-9.

Table 10-1.

Daemon Program Declarations and Initialization . ................ 9-4
Multiplexor Declarations . . .. ... . 9-17
Canonical DriverOpen Code. . ... ... . e 9-18
Upper Write Put Procedure . .. ... ... e 9-20
Upper Write Service Procedure. . . ... .. 9-23
Lower Write Service Procedure. . . ... 9-24
Lower Read Put Procedure .......... ... . . . ... 9-25
Clean Upper qUEUE. . . . ..ot e 9-27
Retrieving the MUX ID fromthe File.......................... 9-31

Mapping ISO IS 8072 and IS 8072/DADL1 to Transport Primitives ... 10-7

Table 10-2. Kernel Level Transport Interface States. . ....................... 10-8
Table 10-3. State Table Variables .. .......... .. ... . i 10-9
Table 10-4. Kernel Level Transport Interface Outgoing Events. . .............. 10-9
Table 10-5. Kernel Level Transport Interface Incoming Events. . .............. 10-10
Table 11-1. DLS Servicesand Primitives. . . .......... ... i, 11-21
Table 11-2. DLPIStates . . ... ..o e e e 11-57
Table 11-3. State TransitionTable .............. ... ... .. ... . . ... ... .. ... 11-58
Table 11-4. Variables. . .. ... . . e 11-59
Table 11-5. EVENtS. . ... o e 11-59
Table 11-6. DLPIProvider Events . ...t 11-60
Table 11-7. Local ManagementPhase ............ .. ... .. ... . . . ..., 11-63
Table 11-8. Connectionless-Mode Data Transfer Phase...................... 11-64
Table 11-9. Acknowledged Connectionless-Mode Data Transfer Phase ......... 11-65
Table 11-10. Connection EstablishmentPhase............................. 11-65
Table 11-11. Connection Mode Data Transfer Phase . . ...................... 11-66
Table 11-12. ioctls supported in DLPILayer . .......... ..., 11-72



1
Introduction to STREAMS

INtrOdUCHION . . .. 1-1
ReferenCes . ... .. 1-1
Notation ConNVENtIONS . . . . ...ttt e e e e 1-2

Overview of STREAMS . .. ... e e e 1-3

Basic Stream Operations . . ... ..ot 1-5

STREAMS COMPONENES. . . .ottt e e e e e e e 1-7
QUEBUEBS . ot e 1-7
MBS SagES. . . v it e e 1-8

Message TYPES . ..ot 1-8
Message Queuing Priority. . . ... 1-9
MOdUIES . . . e 1-10
DIIVEIS o e 1-12

MU IEXING .. oo e e 1-12

Benefits of STREAMS . . ... e e e e 1-17
Standardized Service Interfaces . . .. ... 1-17
Manipulating Modules . . .. ... ... . . e 1-17

Protocol Portability . . . ... ... 1-18
Protocol Substitution. . . ... . . 1-18
Protocol Migration .. ......... . e 1-18

Module Reusability . . . ... 1-19



STREAMS Modules and Drivers



Introduction

References

1
Introduction to STREAMS

STREAMS Modules and Drivedgscribes everything you need to know about the
STREAMS tool set so that you can develop PowerMAX OS operating system communi-
cation services. It is part of tHgevice Driver Programmingeries of manuals which
includes:

* Device Driver Programming
* Device Driver Referenc@n-line only)
It contains chapters regarding the following components of the STREAMS interface:

* System Calls

* Input/Output operations

* Processing Routines

* STREAMS Messages and Message Types
* Modules and Drivers

* Multiplexing

In addition, it contains chapters about how STREAMS works with the following 1SO-stan-
dard protocols:

* Transport Provider Interface

¢ Data Link Provider Interface

A comprehensive glossary covering all of the terms found iD#wice Driver Program-
ming manual set is also included.

This book occasionally refers to other books, notably the reference manuals. The refer-
ence manuals are providedly in on-line form.

* Command Referen¢&ection 1)
* Operating System API Referer(&ections 2 and 3)

* Windowing System API Referer{@ection 3 windowing functions)
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¢ System Files and Devices Refereff®ection 4, 5, and 7)

* Device Driver ReferencgSections D1 - D5)

These books contain the manual pages for the various commands, system calls, library
functions, file contents, and devices. Within each book, manual pages are grouped numer-
ically by section numbers. Within a section, the pages are sorted alphabetically, without
regard to the letter that follows the section number. For example, the manual pages for
Sections 3C, 3E, 3I, 3M, 3N, 3S, 3W, and 3X are all sorted together within Section 3 in the
Operating System API Reference.

Manual pages are referred to with the function name showing first in constant width font,
followed by the section number appearing in parentheses in normal font. For example, the
Executable and Linking Format Library (ELF) manual page appe&i§3s)

TheCommand Reference, Operating System AP| Referand8ystem Files and Devices
Referencare foundation documents which describe formally and comprehensively every
feature of the PowerMAX OS system and are a recommended supplement to this book.

Notation Conventions

1-2

The following conventions are observed in this book:

¢ Computer input and output appearconstant width type. Substitut-
able values appear italic type:

$ cc file.cfile.c file.c

The dollar sign is the default system prompt for the ordinary user. There is an
implied RETURN at the end of each command. When a command extends beyond
the width of the page, the break is marked with a backslash and an indented second
line:

$cc-L .JarchivesL ./mylibs filel.c file2.c file3.t
filed.c -l foo

Of course, a command that extends beyond the width of your terminal screen will
wrap around. You should use the backslash only if you enter the command exactly
as we show it.

* |n cases where you are expected to enter a control character, the character
is shown as, for exampleontrol_d or ~d. Either form means that you
press thed key while holding down th€ TRL key.

* A number in parentheses following a command or function name refers to
the section of the reference manuals where the command or function is
described. For example¢(1) , means that thec command is described
in Section 1 of the reference manuals. The sections which are in each book
are listed earlier, under “References.”



Introduction to STREAN

Overview of STREAMS

STREAMSs a general, flexible facility and a set of tools for development of PowerMAX
OS system communication services. It supports the implementation of services ranging
from complete networking protocol suites to individual device drivers. STREAMS defines
standard interfaces for character input/output within the kernel, and between the kernel
and the rest of the PowerMAX OS system. The associated mechanism is simple and open-
ended. It consists of a set of system calls, kernel resources, and kernel routines.

The standard interface and mechanism enable modular, portable development and easy
integration of high-performance network services and their components. STREAMS does
not impose any specific network architecture. The STREAMS user interface is upwardly
compatible with the character 1/0 user level functions suabpas, close , read ,

write , andioctl

A Streamis a full-duplex processing and data transfer path between a STREAMS driver in
kernel space and a process in user space. See Figure 1-1. In the kernel, a Stream is con-
structed by connecting a “Stream head,” a “driver,” and zero or more “modules” between
the Stream head and driver. TBgeam heads the end of the Stream nearest to the user
process. All system calls made by a user level process on a Stream are processed by the
Stream head.

Pipes are also STREAMS-based. A STREAMS-based pipe is a full-duplex (bidirectional)
data transfer path in the kernel. It implements a connection between the kernel and one or
more user processes and also shares properties of STREAMS-based devices.

A STREAMS driver may be a device driver that provides the services of an external 1/0
device, or a software driver, commonly referred to as a pseudo-device driver. The driver
typically handles data transfer between the kernel and the device and does little or no pro-
cessing of data other than conversion between data structures used by the STREAMS
mechanism and data structures that the device understands.

A STREAMS module represents processing functions to be performed on data flowing on
the Stream. The module is a defined set of kernel-level routines and data structures used to
process data, status, and control information. Data processing may involve changing the
way the data is represented, adding or deleting header and trailer information to data,
and/or packetizing and depacketizing data. Status and control information includes signals
and input/output control information. Each module is self-contained and functionally iso-
lated from any other component in the Stream except its two neighboring components.
The module is not a required component in STREAMS, whereas the driver is, except in a
STREAMS-based pipe where only the Stream head is required.

The STREAMS module communicates with its neighbors by passing “messages.” One or
more modules may be inserted into a Stream between the Stream head and driver to per-
form intermediate processing of messages as they pass between the Stream head and
driver. STREAMS modules agynamically interconnected in a Stream by a user process.

No kernel programming, assembly, or link editing is required to create the interconnec-
tion.
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User Process

User Space
¢ Kernel Space
downstream
Stream Head
Module
(optional)

Driver

upstream
External Interface 161190
Figure 1-1. Simple STREAMs
User Space

/ \ Kernel Space

Stream Head Stream Head

!

161200

Figure 1-2. STREAMS-based Pipe

STREAMS uses queue structures to keep information about given instances of a pushed
module or opened STREAMS device.gleueis a data structure that contains status
information, a pointer to routines for processing messages, and pointers for administering
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the Stream. Queues are always allocateghins; one queue for the “read-side” and the
other for the “write-side.” There is one queue pair for each driver and module, and the
Stream head. The pair of queues is allocated whenever the Stream is opened or the module
is pushed (added) onto the Stream.

Data is passed between a driver and the Stream head and between modules in the form of
messages. Messagés a set of data structures used to pass data, status, and control infor-
mation between user processes, modules, and drivers. Messages that are passed from the
Stream head toward the driver or from the process to the device, are said tddvavel
stream(also calledvrite-sidg. Similarly, messages passed in the other direction, from the
device to the process or from the driver to the Stream head, tyasteéam(also called
read-side.

A STREAMS message is made up of one or more “message blocks.bleakiconsists

of a header, a data block, and a data buffer. The Stream head transfers data between the
data space of a user process and STREAMS kernel data space. Data to be sent to a driver
from a user process is packaged into STREAMS messages and passed downstream. When
a message containing data arrives at the Stream head from downstream, the message is
processed by the Stream head, which copies the data into user buffers.

Within a Stream, messages are distinguished by a type indicator. Certain message types
sent upstream may cause the Stream head to perform specific actions, such as sending a
signal to a user process. Other message types are intended to carry information within a

Stream and are not directly seen by a user process.

Basic Stream Operations

This section describes the basic set of operations for manipulating STREAMS entities.

A STREAMS driver is similar to a traditional character I/O driver in that it has one or
more nodes associated with it in the file system, and it is accessed usipgrihgystem

call. Typically, each file system node corresponds to a separate minor device for that
driver. Opening different minor devices of a driver causes separate Streams to be con-
nected between a user process and the driver. The file descriptor returnedgdanticall

is used for further access to the Stream. If the same minor device is opened more than
once, only one Stream is created; the fiygn call creates the Stream, and subsequent
open calls return a file descriptor that references that Stream. Each process that opens the
same minor device shares the same Stream to the device driver.

Once a device is opened, a user process can send data to the device usitey theys-
tem call and receive data from the device usingrdeal system call. Access to
STREAMS drivers usingead andwrite is compatible with the traditional character
I/O mechanism.

Theclose system call closes a device and dismantles the associated Stream when the last
open reference to the Stream is given up.

The following example shows how a simple Stream is used. In the example, the user pro-
gram interacts with a communications device that provides point-to-point data transfer
between two computers. Data written to the device transmitted over the communications
line, and data arriving on the line can be retrieved by reading from the device.
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#include <fcntl.h>
main()

char buf[1024];
int fd, count;

if ((fd = open(*/dev/comm/01”, O_RDWR)) < 0) {
perror(“open failed”);
exit(1);

}

while ((count = read(fd, buf, 1024)) > 0) {
if (write(fd, buf, count) != count) {
perror(“write failed”);
break;

}
exit(0);
}

\_ )

In the exampleldev/icomm/01 identifies a minor device of the communications device
driver. When this file is opened, the system recognizes the device as a STREAMS device
and connects a Stream to the driver. Figure 1-3 shows the state of the Stream following the

call toopen.
User Process

User Space

Stream Head Kernel Space

Communications
Driver

161210

Figure 1-3. Stream to Communication Driver

This example illustrates a user reading data from the communications device and then
writing the input back out to the same device. In short, this program echoes all input back
over the communications line. The example assumes that a user sends data from the other
side of the communications line. The program reads up to 1024 bytes at a time, and then
writes the number of bytes just read.
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Theread call returns the available data, which may contain fewer than 1024 bytes. If no
data is currently available at the Stream headighe call blocks until data arrive.

Similarly, thewrite call attempts to sencbuntbytes to/dev/comm/01 . However,
STREAMS implements a flow control mechanism that prevents a user from exhausting
system resources by flooding a device driver with data.

Flow control controls the rate of message transfer among the modules, drivers, Stream
head, and processes. Flow control is local to each Stream and is advisory (voluntary). It
limits the number of characters that can be queued for processing at any queue in a
Stream. It also limits buffers and related processing at any queue and in any one Stream.
However, it does not consider buffer pool levels or buffer usage in other Streams. Flow
control is not applied to high-priority messages.

If the Stream exerts flow control on the user,whit¢e  call blocks until flow control is
relieved. The call does not return until it has ssnintbytes to the devicexit , which is

called to terminate the user process, also closes all open files, and thereby dismantling the
Stream in this example.

STREAMS components

Queues

This section gives an overview of the STREAMS components and discusses how these
components interact with each other. A more detailed description of each STREAMS
component is given later.

A queueis aninterface between a STREAMS driver or module and the rest of the Stream.
Queues are always allocated as an adjacent pair. The queue with the lower address in the
pair is a read queue, and the queue with the higher address is used for the write queue.

A queue'sserviceroutine is invoked tprocess messages on the queue. It usually removes
successive messages from the queue, processes them, and calig"theutine of the
next module in the Stream to give the processed message to the next queue.

A queue'putroutine is invoked by the preceding queyeitand/orserviceroutine toadd
a message to the current queue. If a module does not need to enqueue mespages, its
routine can call the neighboring queygsroutine.

Each queue also has a pointer to ap€eff and “clos€ routine. Theopenroutine of a

driver is called when the driver is first opened and on every successive open of the Stream.
Thecloseroutine of the driver is called when the last reference to the Stream is given up
and the Stream is dismantled. Tdpenroutine of a module is called when the module is

first pushed on the Stream and on every successive open of the Streatos@&hmutine

of the module is called when the module is popped (removed) off the Stream.
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All input and output under STREAMS is based on messages. The objects passed between
STREAMS modules are pointers to messages. All STREAMS messages use two data
structuresisgb anddatab ) to refer to the message data. These data structures describe
the type of the message and contain pointers to the data of the message, as well as other
information. Messages are sent through a Stream by successive calisub firecedure

of each module or driver in the Stream.

All STREAMS messages are assigned message types to indicate their intended use by
modules and drivers and to determine their handling by the Stream head. A driver or mod-
ule can assign most types to a message it generates, and a module can modify a message
type during processing. The Stream head converts certain system calls to specified mes-
sage types and sends them downstream. It responds to other calls by copying the contents
of certain message types that were sent upstream.

Most message types are internal to STREAMS and can only be passed from one
STREAMS component to another. A few message types, for exakhpDpATA
M_PROTQandM_PCPROTQan also be passed between a Stream and user processes.
M_DATAmessages carry data within a Stream and between a Stream and a user process.
M_PROTOrM_PCPROT@essages carry both data and control information.

Figure 1-4 shows that a STREAMS message consists of one or more linked message
blocks that are attached to the first message block of the same message.

Message
| Message I Message
al/?)((:al; Block Block -

161610

Figure 1-4. A Message

Messages can exist stand-alone, as in Figure 1-4, when the message is being processed by
a procedure. Alternately, a message can await processing on a linked list of messages,
called a message queue. In Figure 1-5, Message 2 is linked to Message 1.
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Message Message
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Message Message

Block Block

(type) next (type) next

¢ message ¢ message

Message Message

Block Block
Message

Block

\
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Figure 1-5. Messages on a Message Queue

When a message is on a queue, the first block of the message contains links to preceding
and succeeding messages on the same message queue, in addition to the link to the second
block of the message (if present). The message queue head and tail are contained in the
queue.

STREAMS utility routines enable developers to manipulate messages and message
gueues.

Message Queuing Priority

In certain cases, messages containing urgent information (such as a break or alarm condi-
tions) must pass through the Stream quickly. To accommodate these cases, STREAMS
provides multiple classes of message queuing priority. All messages have an associated
priority field. Normal (ordinary) messages have a priority of zero. Priority messages have
a priority greater than zero. High-priority messages are high-priority by virtue of their
message type. The priority field in high-priority messages is unused and should always be
set to zero. STREAMS prevents high priority messages from being blocked by flow con-
trol and causes service  procedure to process them ahead of all ordinary messages on
the queue. This results in the high priority message transiting each module with minimal
delay.
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Non-priority, ordinary messages are placed at the end of the queue following all other
messages in the queue. Priority messages can be either high priority or priority band mes-
sages. High-priority messages are placed at the head of the queue but after any other high-
priority messages already in the queue. Priority band messages that enable support of
urgent, expedited data are placed in the queue after high-priority messages but before ordi-
nary messages.

Message priority is defined by the message type; once a message is created, its priority
cannot be changed. Certain message types come in equivalent high priority/ordinary pairs
(for exampleM_PCPROT@ndM_PROTY) so that a module or device driver can choose
between the two priorities when sending information.

A module performs intermediate transformations on messages passing between a Stream
head and a driver. There may be zero or more modules in a Stream (zero when the driver
performs all the required character and device processing).

Each module is constructed from a pair of queue structuref\(gdd andBu/Bd in

Figure 1-6). One queue performs functions on messages passing upstream through the
module Au andBu). The other setAd andBd) performs another set of functions on
downstream messages.

Each queue in a module generally has distinct functions, that is, unrelated processing pro-
cedures and data. The queues operate independentuamidl not know if a message
passes throughd unlessAd is programmed to inform it. Messages and data can be shared
only if the developer specifically programs the module functions to perform the sharing.

Each queue connects to the adjacent queue in the direction of message flow (for example,
Au to Bu or Bd to Ad). In addition, within a module, a queue can readily locate its mate
and access its messages and data.
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Figure 1-6. Detailed Stream

Each queue in a module points to messages, processing procedures, and data as follows:

* Messages — These are dynamically attached to the queue on a linked list
(the message queue, FettandBu in Figure 1-6) as they pass through the
module.

* Processing procedures —pat procedure processes messages and must
be incorporated in each queue. An opticselice procedure can also
be incorporated. According to their function, the procedures can send mes-
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sages upstream and/or downstream, and can also modify the private data in
their module.

* Data — developers may use a private field in the queue to reference private
data structures (for example, state information and translation tables).

In general, each queue in a module has a distinct set of all these elements.

STREAMS device drivers are an initial part of a Stream. They are structurally similar to
STREAMS modules. The call interfaces to driver routines are identical to the interfaces
used for modules.

Three significant differences exist between modules and drivers. A driver must be able to
handle interrupts from the device, a driver can have multiple Streams connected to it, and
a driver is initialized/de-initialized usingpen andclose , whereas a module is initial-
ized/de-initialized usingg PUSH ioctl  andI_POP ioctl

Drivers and modules can pass signals, error codes, and return values to processes using
message types provided for that purpose.

Earlier, Streams were described as linear connections of modules, where each invocation
of a module is connected to at most one upstream module and one downstream module.
While this configuration is suitable for many applications, others require the ability to
multiplex Streams in a variety of configurations. Typical examples are terminal window
facilities, and internetworking protocols (which might route data over several subnet-
works).

Figure 1-7 shows an example of a multiplexor that multiplexes data from several upper
Streams over a single lower Stream. An upper Stream is one that is upstream from a multi-
plexor, and a lower Stream is one that is downstream from a multiplexor. A terminal win-
dowing facility might be implemented in this fashion, where each upper Stream is associ-
ated with a separate window.



Introduction to STREAN

MUX

161470

Figure 1-7. Many-to-One Multiplexor

Figure 1-8 shows a second type of multiplexor that might route data from a single upper
Stream to one of several lower Streams. An internetworking protocol could take this form,
where each lower Stream links the protocol to a different physical network.

MUX

161480

Figure 1-8. One-to-Many Multiplexor

Figure 1-9 shows a third type of multiplexor that might route data from one of many upper
Streams to one of many lower Streams.
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MUX
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Figure 1-9. Many-to-Many Multiplexor

The STREAMS mechanism supports the multiplexing of Streams through special pseudo-
device drivers. Using a linking facility, users can dynamically build, maintain, and dis-
mantle multiplexed Stream configurations. Simple configurations like the ones shown in
Figure 1-7 and Figure 1-9 can be further combined to form complex, multilevel multi-
plexed Stream configurations.

STREAMS multiplexing configurations are created in the kernel by interconnecting multi-
ple Streams. Conceptually, there are two kinds of multiplexors: upper and lower multi-
plexors. Lower multiplexors have multiple lower Streams between device drivers and the
multiplexor, and upper multiplexors have multiple upper Streams between user processes
and the multiplexor.

Figure 1-10 is an example of the multiplexor configuration that typically occurs where
internetworking functions are included in the system. This configuration contains three
hardware device drivers. The IP (Internet Protocol) is a multiplexor.

The IP multiplexor switches messages among the lower Streams or sends them upstream
to user processes in the system. In this example, the multiplexor expects to see the same
interface downstream to Module 1, Module 2, and Driver 3.
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Figure 1-10. Internet Multiplexing Stream

Figure 1-10 depicts the IP multiplexor as part of a larger configuration. The multiplexor
configuration, shown in the dashed rectangle, generally has an upper multiplexor and addi-
tional modules. Multiplexors can also be cascaded below the IP multiplexor driver if the
device drivers are replaced by multiplexor drivers.

Figure 1-11 shows a multiplexor configuration where the multiplexor (or multiplexing
driver) routes messages between the lower Stream and one upper Stream. This Stream per-
forms X.25 multiplexing to multiple independent Switched Virtual Circuit (SVC) and Per-
manent Virtual Circuit (PVC) user processes. Upper multiplexors are a specific applica-
tion of standard STREAMS facilities that support multiple minor devices in a device
driver. This figure also shows that more complex configurations can be built by having one
or more multiplexed drivers below and multiple modules above an upper multiplexor.
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Developers can choose either upper or lower multiplexing, or both, when designing their
applications. For example, a window multiplexor would have a similar configuration to the
X.25 configuration of Figure 1-11, with a window driver replacing the Packet Layer, a tty
driver replacing the driver XYZ, and the child processes of the terminal process replacing
the user processes. Although the X.25 and window multiplexing Streams have similar
configurations, their multiplexor drivers would differ significantly. The IP multiplexor in
Figure 1-10 has a different configuration than the X.25 multiplexor, and the driver would
implement its own set of processing and routing requirements in each configuration.

PVC SvC Processes
Processes Processes
Modules Modules Modules
X.25

Packet Layer Protocol
Multiplexor Driver

Driver XYZ
or
Lower Multiplexor

161510

Figure 1-11. X.25 Multiplexing Stream

In addition to upper and lower multiplexors, you can create more complex configurations
by connecting Streams containing multiplexors to other multiplexor drivers. With such a
diversity of needs for multiplexors, it is not possible to provide general purpose multi-
plexor drivers. Instead, STREAMS provides a general purpose multiplexing facility,

which allows users to set up the intermodule/driver plumbing to create multiplexor config-
urations of generally unlimited interconnection.
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Benefits of STREAMS

STREAMS provides the following benefits:

¢ A flexible, portable, and reusable set of tools for development of
PowerMAX OS system communication services.

* Easy creation of modules that offer standard data communications services
and the ability to manipulate those modules on a Stream.

* From user level, modules can be dynamically selected and interconnected;
kernel programming, assembly, and link editing are not required to create
the interconnection.

STREAMS also greatly simplifies the user interface for languages that have complex input
and output requirements.

Standardized Service Interfaces

STREAMS simplifies the creation of modules that present a service interface to any
neighboring application program, module, or device driver. A service interface is defined

at the boundary between two neighbors. In STREAMS, a service interface is a specified
set of messages and the rules that allow passage of these messages across the boundary. A
module that implements a service interface receives a message from a neighbor and
responds with an appropriate action (for example, sends back a request to retransmit)
based on the specific message received and the preceding sequence of messages.

In general, any two modules can be connected anywhere in a Stream. However, rational
sequences are generally constructed by connecting modules with compatible protocol ser-
vice interfaces. For example, a module that implements an X.25 protocol layer, presents a
protocol service interface at its input and output sides. See Figure 1-12. In this example,
other modules should only be connected to the input and output side if they have the com-
patible X.25 service interface.

Manipulating Modules

STREAMS provides the capabilities to manipulate modules from the user level, to inter-
change modules with common service interfaces, and to change the service interface to a
STREAMS user process. These capabilities yield further benefits when implementing net-
working services and protocols, including:

¢ User level programs can be independent of underlying protocols and physi-
cal communication media.

* Network architectures and higher level protocols can be independent of
underlying protocols, drivers, and physical communication media.

* Higher level services can be created by selecting and connecting lower
level services and protocols.
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The following examples show the benefits of STREAMS capabilities for creating service
interfaces and manipulating modules. These examples are only illustrations and do not
necessarily reflect real situations.

Protocol Portability

Figure 1-12 shows how the same X.25 protocol module can be used with different drivers
on different machines by implementing compatible service interfaces. The X.25 protocol
module interfaces are Connection Oriented Network Service (CONS) and Link Access
Protocol - Balanced (LAPB).

MACHINE A MACHINE B
CONS
INTERFACE
X.25 X.25
Protocol Layer SAME Protocol Layer
Module MODULE Module

LAPB
INTERFACE
LAPB LAPB
Driver DIFFERENT Driver
DRIVER

Machine A Machine B

161640

Figure 1-12. X.25 Multiplexing Stream

Protocol Substitution

Alternate protocol modules (and device drivers) can be interchanged on the same machine
if they are implemented to an equivalent service interface.

Protocol Migration

Figure 1-13 illustrates how STREAMS can move functions between kernel software and
front-end firmware. A common downstream service interface allows the transport protocol
module to be independent of the number or type of modules below. The same transport
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module connects without change to either an X.25 module or X.25 driver that has the same
service interface.

By shifting functions between software and firmware, developers can produce cost effec-
tive, functionally equivalent systems over a wide range of configurations. They can rapidly
incorporate technological advances. The same transport protocol module can be used on a
lower capacity machine, where economics may preclude the use of front-end hardware,
and also on a larger scale system where a front-end is economically justified.

Class 1 Class 1
Transport SAME Transport
Protocol MODULES Protocol

CONS

Interface

X.25

Packet Layer
Protocol

KERNEL X.25

LAPB

Driver HARDWARE Packet Layer

Driver

161650

Figure 1-13. Protocol Migration

Figure 1-14 shows the same canonical module (for example, one that provides delete and
kill processing on character strings) reused in two different Streams. This module is typi-
cally implemented as a filter, with no downstream service interface. In both cases, a tty
interface is presented to the Stream's user process because the module is nearest to the
Stream head.
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2
STREAMS System Calls

Introduction

This chapter shows how to build, use, and dismantle a Stream using STREAMS-related
systems calls. It also contains a section on STREAMS construction.

General and STREAMS-specific system calls provide the user level facilities required to
implement application programs. This system call interface is upwardly compatible with
the traditional character 1/O facilities. Thpen(2) system call recognizes a STREAMS

file and creates a Stream to the specified driver. A user process can receive and send data
on STREAMS files usingead(2) andwrite(2) in the same manner as with tradi-

tional character files. Thectl(2) system call enables users to perform functions spe-

cific to a particular device. STREAMSctl commands (sestreamio(7 )) support a

variety of functions for accessing and controlling streams. Theclase(2) in a

Stream dismantles a Stream.

In addition to the traditionabctl commands and system calls, there are other system
calls used by STREAMS. Thaoll(2)  system call enables a user to poll multiple
Streams for various events. Thetmsg(2) andgetmsg(2) system calls enable users

to send and receive STREAMS messages, and are suitable for interacting with STREAMS
modules and drivers through a service interface.

STREAMS provides kernel facilities and utilities to support development of modules and
drivers. The Stream head handles most system calls so that the related processing does not
have to be incorporated in a module or driver.

STREAMS System Calls

A STREAMS device responds to the standard character I/O system calls, such as
read(2) andwrite(2) , by turning the request into a message. This feature ensures
that STREAMS devices may be accessed from the user level in the same manner as non-
STREAMS character devices. However, additional system calls provide other capabilities.

The STREAMS-related system calls are as follows:

open(2) Open a Stream

close(2) Close a Stream

read(2) Read data from a Stream
write(2) Write data to a Stream
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getmsg and putmsg

poll

ioctl(2) Control a Stream

getmsg(2) Receive a message at the Stream head

putmsg(2 ) Send a message downstream

poll(2) Notify the application program when selected events occur on a
Stream

pipe(2) Create a channel that provides a communication path between

multiple processes

The putmsg(2) andgetmsg(2) system calls enable a user process to send and
receive STREAMS messages, in the same form the messages have in kernel modules and
drivers.read(2) andwrite(2) are not designed to include the message boundaries
necessary to encode messages.

The advantage of this capability is that a user process, as well as a STREAMS module or
driver, can implement a service interface.

Thepoll(2) system call allows a user process to monitor a number of streams to detect
expected 1/O events. Such events might be the availability of a device for writing, input
data arriving from a device, a hangup occurring, an error being detected, or the arrival of a
priority message. Sgmll(2)  for more information.

STREAM Construction

2-2

STREAMS builds a Stream as a linked list of kernel resident data structures. The list is
created as a set of linked queue pairs. The first queue pair is the head of the Stream and the
second queue pair is the end of the Stream. The end of the Stream represents a device
driver, pseudo device driver, or the other end of a STREAMS-based pipe. Kernel routines
interface with the Stream head to perform operations on the Stream. Figure 2-1 depicts the
upstream (read) and downstream (write) portions of the Stream. Queue H2 is the upstream
half of the Stream head and Queue H1 is the downstream half of the Stream head. Queue
E2 is the upstream half of the Stream end and Queue E1 is the downstream half of the
Stream end.
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Stream Head

QUEUE H1 QUEUE H2

(write) (read)

QUEUE E1 QUEUE E2
Stream End 161670

Figure 2-1. Upstream and Downstream Stream Construction

At the same relative location in each queue is the address of the entry point, a procedure to
process any message received by that queue. The procedure for Queues H1 and H2 pro-
cess messages sent to the Stream head. The procedure for Queues E1 and E2, process mes-
sages received by the other end of the Stream, the Stream end (tail). Messages move from
one end to the other, from one queue to the next linked queue, as the procedure specified
by that queue is executed.

Figure 2-2 shows the data structures forming each gqugele, ginit , gband,
module_info , andmodule_stat . Thegband structures have information for each
priority band in the queue. Tiygaeue data structure contains various modifiable values

for that queue. Thginit  structure contains a pointer to the processing procedures, the
module_info  structure contains initial limit values, and thedule_stat  structure is

used for statistics gathering. Each queue in the queue pair contains a different set of these
data structures. There isgaeue, ginit , module_info , andmodule_stat data
structure for the upstream portion of the queue pair and a set of data structures for the
downstream portion of the pair. In some situations, a queue pair may share some or all the
data structures. For example, there may be a seppnite structure for each queue in

the pair and onenodule_stat  structure that represents both queues in the pair. These
data structures are described in Device Driver Reference.
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Figure 2-2. Stream Queue Relationship

Figure 2-2 shows two neighboring queue pairs with links (solid vertical arrows) in both
directions. When a module is pushed onto a Stream, STREAMS creates a queue pair and
links each queue in the pair to its neighboring queue in the upstream and downstream
direction. The linkage allows each queue to locate its next neighbor. This relation is imple-
mented between adjacent queue pairs byjtmext pointer. Within a queue pair, each
gueue locates its mate (see dashed arrows in Figure 2-2) by use of STREAMS utilities,
because there is no pointer between thedueue s. The existence of the Stream head

and Stream end is known to the queue procedures only as destinations towards which mes-
sages are sent.

Opening a STREAMS Device File

One way to build a Stream is to open (spen(2) ) a STREAMS-based driver file as
shown in Figure 2-3. All entry points into the driver are defined bgtileamtab  struc-
ture for that driver. Thetreamtab  structure has a format as follows:
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struct streamtab {

struct qinit *st_rdinit;
struct qinit *st_wrinit;
struct ginit *st_muxrinit;
struct qinit *st_muxwinit;

Thestreamtab  structure defines a module or drivst. rdinit points to the read
ginit  structure for the driver arst_wrinit points to the driver's writginit ~ struc-
ture.st_muxrinit andst_muxwinit  point to the lower read and writinit ~ struc-
tures if the driver is a multiplexor driver.

If the open call is the initial file open, a Stream is created. (There is one Stream per
major/minor device pair.) First, an entry is allocated in the user's file tablevaodea is
created to represent the opened file. The file table entry is initialized to point to the allo-
catedvnode (seef vnode in Figure 2-3) and thenode is initialized to specify a file of

type character special.

Second, a Stream header is created frosidata data structure and a Stream head is
created from a pair @jueue structures. The content stdata andqueue are initial-
ized with predetermined values, including the Stream head processing procedures.

Thesnode contains the file system dependent information. It is associated with the
vnode representing the device. ThRecommonvp field of thesnode points to the com-

mon devicevnode . Thevnode field,v_data , contains a pointer to ttemode . Instead

of maintaining a pointer to thaode , thesnode contains the&node as an element. The
scavenged field of stdata is initialized to point to the allocatechode . The
v_stream field of thevnode data structure is initialized to point to the Stream header;
thus, there is a forward and backward pointer between the Stream headenenudi¢he

There is one Stream header per Stream.hBagler is used by STREAMS while per-
forming operations on the Stream. In the downstream portion of the Stream, the Stream
header points to the downstream half of the Stream head queue pair. Similarly, the
upstream portion of the Stream terminates at the Stream header, because the upstream half
of the Stream head queue pair points tohltbader . Figure 2-3 shows that from the
Stream header onward, a Stream is built of linked queue pairs.
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Figure 2-3. Opened STREAMS-Based Driver

Next, aqueue structure pair is allocated for the driver. Theue limits are initialized to
those values specified in the correspondimadule_info  structure. Thejueue pro-
cessing routines are initialized to those specified by the correspaqidiing structure.
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Then, theg_next values are set so that the Stream head guiele points to the driver
write queue and the driver reaqueue points to the Stream head regueue . The

g_next values at the ends of the Stream are set to null. Finally, the dpear proce-

dure (located using its reaghit  structure) is called.

If this is the initial open of this Stream, the driegen routine is called. If modules have
been specified to be autopushed, they are pushed immediately after theodener
When a Stream is already open, furtbpens of the same Stream result in calls to the
open procedures of all pushable modules and the ddpen. Note that this is done in
the reverse order from the initial Streapen . In other words, the initiadpen processes
from the Stream end to the Stream head, while tgten s process from the Stream head
to the Stream end.

Creating a STREAMS-based Pipe

In addition to opening a STREAMS-based driver, a Stream can be created by creating a
pipe (seepipe(2) ). Because pipes are not character devices, STREAMS creates and
initializes astreamtab  structure for each end of the pipe. As with modules and drivers,
thestreamtab  structure defines the pipe. Téterdinit , however, points to the read

ginit  structure for the Stream head and not for a driver. Similarlysttherinit

points to the Stream head's widieit  structure and not to a driver. Tse muxrinit
andst_muxwinit  are initialized tdNULL because a pipe cannot be a multiplexor driver.

When thepipe system call is executed, two Streams are created. STREAMS follows the
procedures similar to those of opening a driver; however, duplicate data structures are cre-
ated. Two entries are allocated in the user's file table andhveles are created to repre-

sent each end of the pipe, as shown in Figure 2-4. The file table entries are initialized to
point to the allocatednode s and eachinode is initialized to specify a file of tygelFO .

Next, two Stream headers are created fetgata data structures and two Stream heads
are created from two pairs qlieue structures. The content sfdata andqueue are
initialized with the same values for all pipes.

Each Stream header represents one end of the pipe, and it points to the downstream half of
each Stream head queue pair. Unlike STREAMS-based devices, however, the downstream
portion of the Stream terminates at the upstream portion of the other Stream.
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file table streamtab file table streamtab
entry entry
f vnode f_vnode
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Figure 2-4. Creating STREAMS-Based Pipe

Theq_next values are set so that the Stream head \gtieeie points to the Stream
head readjueue on the other side. Thg next values for the Stream head's rgadue
points to null because it terminates the Stream.

Adding and Removing Modules
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As part of building a Stream, a module can be addedh¢d) with anioctl 1_PUSH
(seestreamio(7) ) system call. The push inserts a module beneath the Stream head.
Because of the similarity of STREAMS components, the push operation is similar to the
driveropen . First, the address of tlggnit  structure for the module is obtained.

Next, STREAMS allocates a pair qfieue structures and initializes their contents as in
the driveropen.

Then,g_next values are set and modified so that the module is interposed between the
Stream head and its neighbor immediately downstream. Finally, the nogauieproce-
dure (located usinginit ) is called.
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Each push of a module is independent, even in the same Stream. If the same module is
pushed more than once on a Stream, there will be multiple occurrences of that module in
the Stream. The total number of pushable modules that may be contained on any one
Stream is limited by the kernel paramediSTRPUSH

Anioctll_POP  (seestreamio(7) ) system call removep¢ps) the module immedi-

ately below the Stream head. The pop calls the mathde procedure. On return from

the moduleclose , any messages left on the module's message queues are freed (deallo-
cated). Then, STREAMS connects the Stream head to the component previously below
the popped module and deallocates the moduylelse pair.| PUSH andl_POP enable

a user process to alter dynamically the configuration of a Stream by pushing and popping
modules as required. For example, a module may be removed and a new one inserted
below the Stream head. Then the original module can be pushed back after the new mod-
ule has been pushed.

Closing the Stream

The lastclose to a STREAMS file dismantles the Stream. Dismantling consists of pop-
ping any modules on the Stream and closing the driver. Before a module is popped, the
close may delay to allow any messages on the write message queue of the module to be
drained by module processing. Similarly, before the driver is closedpde may delay

to allow any messages on the write message queue of the driver to be drained by driver
processing. IO_NDELAYor O_NONBLOQKseeopen(2) ) is clearclose waits up to

15 seconds for each module to drain and up to 15 seconds for the driver to drain. If
O_NDELAY(or O_NONBLOGQKs set, the pop is performed immediately and the driver is
closed without delay. Messages can remain queued, for example, if flow control is inhibit-
ing execution of the write quewervice procedure. When all modules are popped and
any wait for the driver to drain is completed, the drislese routine is called. On return

from the driverclose , any messages left on the driver's queues are freed, amaketie
andstdata structures are deallocated.

NOTE

STREAMS frees only the messages contained on a message
gueue. Any message or data structures used internally by the
driver or module must be freed by the driver or moaibse
procedure.

Finally, the user's file table entry and tiimde are deallocated and the file is closed.

Stream Construction Example

Screen 2-1 and Screen 2-2 extend the previous communications device echoing example
shown in “Basic Stream Operations” in “Introduction,” by inserting a module in the
Stream. The (hypothetical) module in this example can convert (change case, delete,
and/or duplicate) selected alphabetic characters.
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Inserting Modules

2-10

An advantage of STREAMS over the traditional character I/O mechanism stems from the
ability to insert various modules into a Stream to process and manipulate data that pass
between a user process and the driver. In the example, the character conversion module is
passed a command and a corresponding string of characters by the user. All data passing
through the module are inspected for instances of characters in this string; the operation
identified by the command is performed on all matching characters. The necessary decla-
rations for this program are shown in Screen 2-1:

~

#include <string.h>
#include <fentl.h>
#include <stropts.h>

#define BUFLEN 1024

/*
* These defines would typically be
* found in a header file for the module
*
/
#define XCASE 1 /* change alphabetic case of char */
#define DELETE 2 [* delete char */
#define DUPLICATE 3 /* duplicate char */

main()
char buf[BUFLEN];

int fd, count;
struct strioctl strioctl;

\_ )

Screen 2-1. Inserting a Module into a STREAM

The first step is to establish a Stream to the communications driver and insert the character
conversion module. The following sequence of system calls accomplishes the following
display:

4 )

if ((fd = open(“/dev/icomm/01”, O_RDWR)) < 0) {
perror(“open failed”);
exit(1);

}

if (ioctl(fd, I_PUSH, “chconv”) < 0) {
perror(“ioctl I_PUSH failed”);
exit(2);

\_ )

Thel _PUSH ioctl  call directs the Stream head to insert the character conversion mod-
ule between the driver and the Stream head, creating the Stream shown in Figure 2-5. As
with drivers, this module resides in the kernel and must have been configured into the sys-
tem before it was booted, unless the system has an autoload capability.
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Figure 2-5. Case Converter Module

An important difference between STREAMS drivers and modules is illustrated here. Driv-
ers are accessed through a node or nodes in the file system and may be opened just like
any other device. Modules, on the other hand, do not occupy a file system node. Instead,
they are identified through a separate naming convention, and are inserted into a Stream
usingl_PUSH. The name of a module is defined by the module developer.

Modules are pushed onto a Stream and removed from a Stream in Last-In-First-Out
(LIFO) order. Therefore, if a second module was pushed onto this Stream, it would be
inserted between the Stream head and the character conversion module.

Module and Driver Control
The next step in this example is to pass the commands and corresponding strings to the

character conversion module. This can be done by issogtlg calls to the character
conversion shown in Screen 2-2:
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4 )

/* change all uppercase vowels to lowercase */
strioctl.ic_cmd = XCASE;

strioctl.ic_timout = 0;/* default timeout (15 sec) */
strioctl.ic_dp = “AEIOU”;

strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_STR, &strioctl) < 0) {
perror(“ioctl I_STR failed”);
exit(3);

}

/* delete all instances of the chars 'x' and 'X' */
strioctl.ic_cmd = DELETE;

strioctl.ic_dp = “xX";

strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_STR, &strioctl) < 0) {

perror(“ioctl I_STR failed”);
exit(4);

\_ )

Screen 2-2. Module and Driver Control

ioctl  requests are issued to STREAMS drivers and modules indirectly, usin&irie

ioctl  call (seestreamio(7) ). The argument tb STR must be a pointer tosdri-

octl structure, which specifies the request to be made to a module or driver. This struc-
ture is defined irstropts.h and has the following format:

struct strioctl {

int ic_cmd,; I* ioctl request */

int ic_timout;  /* ACK/NAK timeout */

int ic_len; /* length of data argument */
char* ic_dp; /* ptr to data argument */

whereic_cmd identifies the command intended for a module or drietjmout
specifies the number of secondslaB8TR request should wait for an acknowledgment
before timing outechelon is the number of bytes of data to accompany the request, and
ic_dp points to that data.

In the example, two separate commands are sent to the character conversion module. The
first setsic_cmd to the comman®CASEand sends as data the stridgefOU’; it con-

verts all uppercase vowels in data passing through the module to lowercase. The second
setsic_cmd to the comman@®ELETEand sends as data the string “xX”; it deletes all
occurrences of the characters ‘X’ and ‘X’ from data passing through the module. For each
command, the value @_timout s set to zero, which specifies the system default tim-
eout value of 15 seconds. Tliedp field points to the beginning of the data for each
commandjc_len is set to the length of the data.

|_STR is intercepted by the Stream head, which packages it into a message, using infor-
mation contained in thstrioctl structure, and sends the message downstream. Any
module that does not understand the command iimd passes the message further
downstream. The request will be processed by the module or driver closest to the Stream
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head that understands the command specifidd loynd . Theioctl  call will block up
toic_timout  seconds, waiting for the target module or driver to respond with either a
positive or negative acknowledgment message. If an acknowledgment is not received in
ic_timout  seconds, thioctl  call will fail.

NOTE

Only onel_STR request can be active on a Stream at one time.
Further requests will block until the activeSTR request is
acknowledged and the system call completes.

Thestrioctl structure is also used to retrieve the results, if any, 6fSiR request.

If data is returned by the target module or driverdp must point to a buffer large
enough to hold that data, aitdlen  will be set on return to show the amount of data
returned.

The remainder of this example is identical to the example earlier in this chapter:

while ((count = read(fd, buf, BUFLEN)) > 0) {
if (write(fd, buf, count) != count) {
perror(“write failed”);
break;

}
}
exit(0);

Note that the character conversion processing was realized with no change to the commu-
nications driver.

Theexit system call dismantles the Stream before terminating the process. The charac-
ter conversion module is removed from the Stream automatically when it is closed. Alter-
natively, modules may be removed from a Stream usint B@P ioctl  call described

in streamio(7) . This call removes the topmost module on the Stream, and enables a
user process to alter the configuration of a Stream dynamically, by popping modules as
needed.

A few of the importantoctl  requests supported by STREAMS have been discussed.
Several other requests are available to support operations such as determining if a given
module exists on the Stream, or flushing the data on a Stream. These requests are
described fully irstreamio(7)
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Introduction

This chapter provides an overview of the STREAMS subsystem, and is intended to high-
light the principal differences between STREAMS and standard ®$hstem V block
and character device drivers. This includes:

* background information on what advantages STREAMS has over the stan-
dard character 1/O mechanism

* a general overview of the components of a STREAMS implementation,
and how they work together

* asummary of the most important differences between STREAMS and non-
STREAMS drivers

The STREAMS Subsystem

The STREAMS subsystem was added to the UNIX operating system to respond to the
shortcomings of the character I/0O mechanism. It overcame these drawbacks by providing
the building blocks for implementing robust, modular data connections for a wide variety
of hardware configurations.

The STREAMS subsystem is made up of the following three components:

¢ system callssome of which are unique to STREAMS and some of which
are also used by other types of devices. See the “STREAMS System Calls”
chapter for more information.

¢ standard kernel functionGometimes called primitives) used along with
other Block and Character Interface (BCI) functions to write drivers and
modules

* kernel resource¢for example, the STREAMS scheduler) responsible for
managing and maintaining streams

In this chapter, STREAMS always refers to this system, which makes it possible to build
and use an individual stream. As with other types of devices, a user process communicates
with a STREAMS device through system calls. However, opening and communicating
with a STREAMS device differs in several ways:

* A user process can select from available modules to build the stream. This
feature enhances the portability and reusability of code.
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Modularity

Messages

* STREAMS-specific system callg€tmsg(2) andputmsg(2)) pro-
vide a user process with the ability to receive and send STREAMS mes-
sages in the same form as they are passed between kernel modules and
drivers.

* Thepoll(2) system call makes it possible for a user process to monitor
several streams for input or output.

A user process may build a customized stream using speciiR) commands to

push modules onto a basic stream (consisting only of the stream head and a driver). Mod-
ules added to a stream may perform, for example, canonical processing or they may
implement a communication protocol. By breaking out functionality into modules, the
driver itself can be kept simple and flexible, and modules can be mixed and matched, as
needed.

Modules can also be reused by different streams, decreasing the size of code included in
the kernel.

An essential concept in STREAMS programming isrttessageAll transferred data,

control information, queue flushing, errors, and signals are transformed into messages in a
stream. By imposing this uniformity on all information flowing in a stream, STREAMS
can use a standard set of kernel functions and structures for moving and processing mes-
sages. To distinguish the different types of information typically passed between devices
and processes, STREAMS classifies messages according to two main criteria: message
contents type and message priority.

Message Contents Type
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Messages are eithdata or control type messages. Some examples of control messages
areM_IOCTL (generated in responseitatl(2) system calls)M_SIG (sent upstream
to post a signal to a process), &dDELAY(to request a real-time delay).

Three message types are classified as data mesbade&TAWwhich contain only data)
andM_PROTQandM_PCPROTQ@vhich contain some control information in addition to
data). The STREAMS functiodatamsg(D3) is used to test a message to see ifitis a
data message. Several other functions depend on this distirfaigig(D3) |, put-
nextctl(D3) , putnextctl1(D3)
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Message Priority

Messages are further classifiedaadinary (also called normal) gpriority also called

(high priority). Normally, messages are passed from module to module by callimgt the
routine of a module with a pointer to the message as an argument. The module places ordi-
nary messages on its own message queue where it remains until scheduled for processing.
Ordinary messages are defined as those subject to the STREAMS flow control mecha-
nisms, and are processed in the order in which they were placed on the message queues.

Some messages, for examm@epr andnak (negative acknowledgment) messages must
move through the system quickly and so are designated priority messages. These mes-
sages are always placed at the head of the queue of messages waiting to be processed.
When the queueservice routine is called, priority messages are processed before all
ordinary messages.

Message Structure

To ensure uniformity in the passing of messages in a stream, all messages share a common
structure. A message consists of at least one instance of each of the following three con-
structs:

* The message block structure (defined as tppek t ) contains next and
previous pointers (for message queue formation), pointers to the beginning
and end of the data, and a pointer to a continuation block (for messages
requiring more than one block), and a pointer to a data bitidk ¢ ).

* The data block structure (defined as tgpt_t ) includes fields identify-
ing the message type, pointers marking the data boundaries, and a count of
the number of messages pointing to this data block.

* The data itself, delineated by fields in th#k t structure.

For most operations, a message is treated as a unit and is referenced by a pointer to its
mblk_t structure. See “STREAMS Messages” for more information.

Structure Declarations

Three STREAMS structures must be declared for a driver to be correctly installed on a
PowerMAX OS system. First,raodule_info  structure must be declared and populated
with information about the queue to be created. Normally, there will be one instance of the
structure for both the read and write sides of the driver, but, if they have identical require-
ments, they may sharevaodule_info  structure, as shown here.

static struct
module_info  spminfo= {0, “sp”, 0, INFPSZ, 5120, 1024};

The six members of theodule_info  structure are: the identification number, the name,
the maximum and minimum packet sizes, and the high and low water marks.

3-3
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In the above example, no identification number is assi@nede name isp, and no
effective minimum and maximum packet sizes are specified (the minimQrans the
maximum is set to amfinitely large constanilFPSZ)). The high and low water marks
(5120 and 1024, respectively) are for flow control. The specified numbers are compared
against a weighted byte count of all messages held on a message queue.

The second required structure is tfieit(D4) structure. Again, onginit  structure

is required for each side of the queue. When a stream is opened, the system allocates the
required queue structures for the driver, and loads the driver entry point addresses from the
ginit  structures, which must contain nbitLL entries for all routines to be included in

the driver, as shown:

static struct qginit rinit=
{sprput,NULL,spopen, spclose, NULL, &spminfo,NULLY};

static struct ginit winit=
{NULL,NULL,NULL, NULL, NULL,  &spminfo,NULL};

The seven members of th@it  structure are: thput routine, theservice routine,
theopen routine, theclose routine, theadmin routine (reserved for future expansion),
and the addresses of thedule_info  and themodule_stat  structures.

The third required structuretreamtab , is pointed to by thedevsw table, and con-
tains addresses of the read and wqitgt  structures.

struct streamtab spinfo= {&rinit, &winit, NULL, NULL};

For multiplexing drivers, a set of upper and lowe@rit  structures are required, and
therefore thestreamtab  structure contains four entries, which are shown as follows:

struct streamtab spinfo= {&urinit, &uwinit, &lrinit,
&lwinit};

STREAMS Entry Points

Open Routine

3-4

This section outlines each of the entry points that may be included in a STREAMS module
or driver. The inclusion of a particular routine depends on the functionality required. For
example, theCLONEdriver (described later in this section) has onlppen routine. The
emphasis of this section is on how drivers, not modules, use these routines. Much of the
information applies to modules as well.

When a STREAMS device is opened (with tpen(2) system call), the subsystem
uses thedevsw structure to identify the device type, and creates a stream consisting of
the stream head and the driver. The drivggsn routine is then executed. Though similar

to a non-STREAMS driveopen, the STREAMS routine has a different syntax. dbe
andflag arguments are the same as in the standard dipegr, although some of thitag
values do not apply to STREAMS devices. The other two arguments are
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* (@, a pointer to the queue structure, which in turn, contains a pointer to the
ginit  structure which points to the drivedpen routine.

¢ sflag the streanopen flag, which has a value & for a normal driver
open,MODOPEMTr a normal module open, @.ONEOPEMN the CLONE
driver is used. ThELONHriver is discussed in the next section.

The driver must returf if it is successful, or an appropriaeno value if it is not.

The only entry points that can communicate with the user level in a stream apethe
andclose routines. Only these two routines can sleep (at a priority lesP#ERQ, but

must explicitly return to the driver routine if a signal is received. They may also access the
user structure.

Theopen andclose routines must be specified in the read queue of the driver.

Theopen routine may be used to initialize a private driver data structure, pointed to by
theq_ptr member of the queue structure. $pen(D2) for more information about
opening STREAMS drivers.

The CLONE Driver

When the value offlag has been set t6BLONEOPENhe CLONEdriver is invoked. The
CLONEdriver has been provided to select a minor device number (that is, an unused
stream). Without th€ LONEKdriver, user processes would have to makaeth(2)

call to search through a driver's minor devices for an unused one. To eliminate this require-
ment, STREAMS allows a driver to be implemented akaeabledevice. TheCLONE

driver removes the need to search for an unused stream.

Networking applications may sometimes require a separate stream for each communica-
tion channel. Because the user process needs a minor device number but is not concerned
about the particular number, tid ONEdriver is used to make the selection.

The CLONEriver consists of only ampen routine. The minor portion of the device num-
ber passed to theLONEdriver is actually the major number of the cloneable device. The
CLONEdriver looks for the cloneable device in ttdevsw . Seeclone(7) andDevice
Driver Programmingfor more details.

The driveropen routine must first test theflagto see if it has been set to a valu€aD-
NEOPENIf it has, the driver searches for the first unused minor device number, up to
devcent  (the maximum number of streams this device may support). An example is
shown here.

case CLONEOPEN:
for (dev=0; dev < devcnt; dev++);

The value ofdevent is derived from thétDEVfield of themaster.d file during the
configuration process. The code shown then searches through the table until it finds the
first open minor device, and returns that value.

3-5
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Message Processing

put Routine

3-6

Theput andservice routines represent the two basic ways a STREAMS module or
driver processes messages. phe routine bypasses the flow control mechanism alto-
gether, providing the fastest possible throughput. (service) routines are subject to
flow control by the scheduler. A driver that must wait for output to complete before send-
ing another message should use the scheduling mechanism.

Whether a driver hasput routine, asrv routine, or both depends on the processing the
driver must perform. For a module, which has at least a driver downstream and the stream
head upstreanput andsrv procedures may be appropriate for both queue of the mod-
ule. However, a driver does not normally need to have a saitéce  routine, because

it is not passing messages to another queue.

The flexibility of STREAMS makes it almost impossible to establish rigid rules about
which routines a driver should include. The next two sections show some of the typical
processing done by tipait andsrv routines.

The pseudo-code example shown below is a generic write guéumutine for a driver.
It illustrates the basic structure used by many drivers.

~

Xxwput(q, mp)
queue_t *q;
mblk_t *mp;

{

switch ( message typ e) {

case M_FLUSH:

flush specified queues

send flush message upstream
10 free message block

QOOO\ImU‘I-wa\H—‘\

12 case M_IOCTL:

13 if recognizable command type

14 handle

15 else

16 send M_IOCNAK message upstream
17

18 case M_DATA:

19 output data to device

20

21 default:

22 send error message upstream

23 )

\_ )

Screen 3-1. Pseudo-Code for a put Routine

The main task of this routine is to detect the incoming message's type, and then use a
switch statement to process each type. The next five subsections illustrate how different
message types are typically handled.



STREAMS Input/Outpu

Each line of the pseudo-code will be expanded into C language statements illustrating how
the functionality is implemented.

put Routine: Switch on Message Type

The message type of a STREAMS message is stored iabtltgpe field of the data
block dblk_t ) structure of the messagentpis a pointer to the message block, the type
can be referenced with the following statement:

switch (mp->b_datap->db_type)

This line corresponds to line 5 in Screen 3-1.

put Routine: Flush Handling

Drivers must flush messages queues when eithdfltbkSHR(flush the read queue) or
FLUSHW(flush the write queue) bits have been set.

~

™

if (*mp->b_rptr & FLUSHW) flushq(g, FLUSHDATA);
if (*mp->b_rptr & FLUSHR) {

flushq(RD(q), FLUSHDATA);

*mp->rptr & FLUSHW;

areply(q, mp);

return;

0O~NOJAWN

freemsg(mp);

-

)

Screen 3-2. put Routine Example of Flush Handling

In line 1, the first byte of the messagep(>b_rptr ) is tested to see HLUSHWS set. If
it is, theflushq(D3) function is called to remove messages from queuEhe
FLUSHDATAlag removes only data messageslJSHALLwould also remove control
messages.

If the FLUSHRbit is also set (line 2), messages destined for the user process are flushed.
TheRD(D3) macro (line 3) is used to access the mate quegeldie FLUSHWbit is then
cleared (line 4) and the message is sent upstream (line 5). In lindr8emesg(D3)

function deallocates the memory used by the message and data blocks.

put Routine: I/0O Control Commands

The stream head interprétsSSTR typeioctl(2) commands and construdis IOCTL
messages from them. Processing depends on the driver and type of message. If the mes-
sage type is not recognized, the driver should send a negative acknowledgment message
back upstream, as shown here.
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mp->b_datap->db_type = M_IOCNAK;

agreply(q, mp);
return;

Screen 3-3. put Routine Example of I/O Control Command Handling

Using the same message buffer as the incoming message, the driver changes the incoming
message into a message of tipdd OCNAKand sends the negative acknowledgment back
upstream viareply()

put Routine: Data Output

M_DATAmessages may represent the normal type of data for output to the device. Pro-
cessing may occur in line, or more likely, in a subordinate routine that is called to handle
the actual output.

Data messages also may be enqueued for processing diy tl{service) procedure with
theputg(D3) function, as shown in the example.

putq (g, mp);

The arguments to the function are the pointer to the queue to be emjlaad & pointer
to the message to be enqueuag)(

put Routine: Error Detection
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The default case is included to catch all unrecognized message types received by the
driver.

mp->b_datap->db_type = M_ERROR;
mp->b_rptr = mp->b_datap->db_base;
*mp->b_rptr = EPROTO;

mp->b_wptr = mp->b_rptr+1;

areply(q, mp);

return;

Screen 3-4. put Routine Example of Default Error Handling

In the same way as the negative acknowledgment was sent upstream, an error message
(M_ERRORSs sent to the user process.
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Service Routine

The service routine is called by the STREAMS scheduler to process messages linked to
the queue. The scheduler calls service routines for all active queue in FIFO order.

Service routines are typically included in modules rather than in drivers, and a driver's
downstream (write) queue generally does not need one. On the upstream side, some driv-
ers may simply discard data if unable to pass it to the next queue. If this approach is inap-
propriate, the driver's read queue may includemice  routine, as shown in this
pseudo-code example.

~

xxrsrv(q)
queue_t *q;

1

2

3

4 while (more messages on queue)
5 retrieve next message

6 if (next queue is full)

7 put back on queue

8 else

9 process message

10 send to next queue

\_ )

Screen 3-5. Pseudo-Code for Service Routine

The rest of this section shows how a driver typically handles read-side messages. As was
done in theout routine example, C language fragments corresponding to the pseudo-code
will be presented.

Service Routine: Retrieve Message

Thegetq(D3) function attempts to retrieve the next message on the queue.

while (mp = getq(q))

Service Routine: Check for Blocking

The upstream queue must be tested withcdrgutnext(D3) function to see if the
message may be passed to the pakt procedure.

if (lcanputnext(g->qg_next))
Service Routine: Return Message to Queue

Theputbq(D3) function places the message back on the queue, and awaits a successful
canputnext  call. All priority messages are placed ahead of ordinary messages.

putbq (g, mp

3-9
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The message pointed at impis placed at the beginning of the message queue pointed at
by a.

Service Routine: Forward Message

Theputnext(D3)  macro passes the messages tgthie procedure of the next queue
upstream, but only aft@anputnext has succeeded.

putnext (g, mp

mpis a pointer to the message to be sentgdad pointer to the sending (not the next, or
receiving) queue.

Close Routine

Like theopen routine, theclose routine is specified in the read queue of the driver. The
argument to thelose routine is a pointer to the queue.

Typically, theclose routine of a STREAMS driver performs the following functions:

¢ clears the fields in private driver data structures by setting thatdlta

* flushes messages from both queue (read and write) associated with the
driver, using thdlushq(D3)  function

* sends aM_HANGURessage to notify connected processes that the stream
is being dismantled

¢ frees allocated message blocks withfleemsg(D3) function

3-10
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Introduction

Put Procedure

4
STREAMS Processing Routines

Theput andservice procedures in the queue are routines that process messages as
they transit the queue. The processing is generally performed according to the message
type and can result in a modified message, new message(s), or no message. A resultant
message, if any, is generally sent in the same direction in which it was received by the
gueue, but may be sent in either direction. Typically, @athprocedure places messages

on its queue as they arrive, for later processing bgdhdce procedure.

A queue will always contain jput procedure and may also contain an associded
vice procedure. Having bothput andservice procedure in a queue enables
STREAMS to provide the rapid response and the queuing required in multiuser systems.

Theservice andput routines pointed at by a queue, and the queues themselves, are not
associated with any process. These routines may not sleep if they cannot continue process-
ing, but must instead return. Any information about the current status of the queue must be
saved by the routine before returning.

A put procedure is the queue routine that receives messages from the preceding queue in
the Stream. Messages are passed between queues by a procedure in one queue calling the
put procedure contained in the following queue. A call togbe procedure in the
appropriate direction is the only way to pass messages between STREAMS components.
There is usually a separgiat procedure for the read and write queues because of the
full-duplex operation of most Streams. However, there can be a gingl@rocedure

shared between both the read and write queues.

Theput procedure allows rapid response to certain data and events, such as echoing of
input characters. It has higher priority than any schedséedice procedure and is
associated with immediate, as opposed to deferred, processing of a message.

Theput procedure executes before feevice procedure for any given message.
In a multiprocessor system, both procedures could be running simultaneously.

Each STREAMS component accesses the adjgméntprocedure indirectly using the
DDI functions (for examplgyutnext ).

4-1
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NOTE

Under no circumstances may a driver or module directly call other
driver or module routines, includimut andservice routines.

All calls are indirect. See tHeevice Driver Referencir further
information.

For example, consider thatodA modB andmodCare three consecutive components in a
Stream, withmodCconnected to the Stream headnldAreceives a message to be sent
upstreammodAprocesses that message and calidBs readput procedure, which pro-
cesses it and callmodCs readput procedure, which in turn processes it and calls the
Stream head's regulit procedure. Thus, the message is passed along the Stream in one
continuous processing sequence. This sequence completes the entire processing in a short
time with low overhead (subroutine calls). On the other hand, if this sequence is lengthy
and the processing is implemented on a multiuser system, then this way of processing may
be good for this Stream but may be harmful for others. Streams may have to wait too long
to get their turn, because eguit procedure is called from the preceding one, and the
kernel stack (or interrupt stack) grows with each function call. The possibility of running
off the stack exists, causing a system panic or producing indeterminate results.

NOTE

Because STREAMS modules in general do not know which mod-
ules they are connected myt routines cannot depend on a mes-
sage being handled solely pyt routines at the stream head or in
the driver. Any modules along the Stream may choose to queue
the message and process it with a service routine.

Service Procedure
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In addition to theput procedure, aervice procedure may be contained in each queue

to allow deferred processing of messages. If a queue has pathand aservice pro-

cedure, message processing is generally divided between both procedurag. Phne-

cedure is always called first, from a preceding queue. After completing its part of the mes-
sage processing, it arranges for gHegvice procedure to be called by passing the
message to theutq routine.putq does two things: it places the message on the message
gueue of the queue and schedules the queue service procedure for deferred execution.
Whenputq returns to thgput procedure, the procedure can return or continue to process
messages. Some time later, dervice procedure is automatically called by the
STREAMS scheduler.

The STREAMS scheduler is separate and distinct from the PowerMAX OS system pro-
cess scheduler. The scheduler calls sachice  procedure of the scheduled queues one
at a time in a FIFO manner.

The scheduling of quetservice routines is machine-dependent.

STREAMS utilities deliver the messages to the proces®ngce routine in the FIFO
sequence within each priority class (high priority, priority band, ordinary), because the
service procedure is unaware of the message priority and simply receives the next mes-
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sage. Theservice routine receives control in the order it was scheduled. When the
service routine receives control, it may encounter multiple messages on its message
gueue. This buildup can occur if there is a long interval between the time a message is
gueued by gut procedure and the time that the STREAMS scheduler calls the associ-
atedservice routine. In this interval, multiple calls to that procedure can cause mul-

tiple messages to build up. Thervice procedure always processes all messages on its
message queue unless prevented by flow control.

Terminal output and input erase and kill processing, for example, is typically performed in
aservice procedure because this type of processing does not have to be as timely as
echoing. Aservice procedure also allows processing time to be more evenly spread
among multiple Streams. As with tpat procedure, there can be a sepasateice

procedure for each queue in a STREAMS component or a single procedure used by both
the read and write queues.

Asynchronous Protocol Stream Example

In the following example, the system supports different kinds of asynchronous terminals,
each logging in on its own port. The port hardware is limited in function; for example, it
detects and reports line and modem status, but does not check parity.

Communications software support for these terminals is provided using a STREAMS-
based asynchronous protocol. The protocol includes a variety of options that are set when
a user dials in to log on. The options are determined by a STREAMS user pgetess,

strm , which analyzes data sent to it through a series of dialogs (prompts and responses)
between the process and the terminal user.

The process sets the terminal options for the duration of the connection by pushing mod-
ules onto the Stream or by sending control messages to cause changes in modules (or in
the device driver) already on the Stream. The options supported include

* ASCII or EBCDIC character codes
* For ASCII code, the parity (odd, even or none)
* Echo or not echo input characters

¢ Canonical input and output processing or transparent (raw) character han-
dling

These options are set with the following modules:

CHARPROC Provides input character processing functions, including dynami-
cally settable (using control messages passed to the module) char-
acter echo and parity checking. The module's default settings are
to echo characters and not check character parity.

CANONPROC Performs canonical processing on ASCII characters upstream and
downstream (note that this performs some processing in a way
different from the conventional UNIX system character /O tty
subsystem).

4-3
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ASCEBC Translates EBCDIC code to ASCII upstream and ASCII to
EBCDIC downstream.

At system initialization, a user procegsfstrm , is created for each tty pogetstrm

opens a Stream to its port and pushesGHARPRO@odule onto the Stream by an
ioctl|_ PUSH command. Then, the process issugstensg system call to the Stream

and sleeps until a message reaches the Stream head. The Stream is now in its idle state.

The initial idle Stream, shown in Figure 4-1, contains only one pushable mGtHAR-
PROCThe device driver is a limited function raw tty driver connected to a limited-func-
tion communication port. The driver and port transparently transmit and receive one
unbuffered character at a time.

Y

Stream Head

CHARPROC
Module

TTY
Device Driver

161710

Figure 4-1. Idle Stream Configuration for Example

After receiving initial input from a tty porgetstrm establishes a connection with the
terminal, analyzes the option requests, verifies them, and issues STREAMS system calls
to set the options. After setting up the optiogststrm  creates a user application pro-
cess. Later, when the user terminates that applicatgdstrm restores the Stream to its

idle state by similar system calls.

Figure 4-2 continues the example and associates kernel operations with user-level system
calls. As a result of initializing operations and pushing a module, the Stream for port one
has the following configuration:
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Stream Head

CANONPROC
Module

write read

CHARPROC
Module

TTY
Device Driver

161720

Figure 4-2. Operational Stream for Example

As mentioned before, the upstream queue is also referred to as the read queue reflecting
the message flow direction. Correspondingly, downstream is referred to as the write queue.

Read-Side Processing

In our example, read-side processing consists of driver proce€3tARPRO@rocess-
ing, andCANONPRO@ocessing.

Driver Processing
The user process has been blocked org#tmsg(2) system call while waiting for a
message to reach the Stream head, and the device driver independently waits for input of a

character from the port hardware or for a message from upstream. After receiving an input
character interrupt from the port, the driver places the associated charactdt iDARA
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CHARPROC

4-6

message, allocated previously. Then, the driver sends the messag€ttAREROC
module by callingCHARPROE€ upstreanput procedure. On return fro@HARPRQGhe
driver calls theallocb utility routine to get another message for the next character.

CHARPROG@as bottput andservice procedures on its read-side. In the example, the
other queues in the modules also have both procedures, as shown in Figure 4-3.

write read

f

Y |

(put) (service)
CANONPROC A
Module >
(service) (put)
(put) (service)
CHARPROC » A
Module = >
(service) (put)

| A

%

Figure 4-3. Module Put and Service Procedures

161730

When the driver callCHARPROE read queuput procedure, the procedure checks pri-
vate data flags in the queue. In this example, the flags indicate that echoing is to be per-
formed.

NOTE

Echoing is optional for this example and the port hardware can not
automatically echo.
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CHARPROCauses the echo to be transmitted back to the terminal by first copying the
message with a STREAMS utility routine. Th&HARPROGses another utility routine

to obtain the address of its own write queue. FinallyGHARPRO@adput procedure

uses another utility routine to call its wripat procedure and pass it the message copy.
The write procedure sends the message to the driver to effect the echo and then returns to
the read procedure.

This part of read-side processing is implemented with procedures so that the entire
processing sequence occurs as an extension of the driver input character interrupt.

After returning from echo processing, GEIARPRO@adput procedure checks another

of its private data flags and determines that parity checking should be performed on the
input character. Parity should most reasonably be checked as part of echo processing.
However, for this example, parity is checked only when the characters are sent upstream.
This relaxes the timing in which the checking must occur, that is, it can be deferred along
with the canonical processingHARPROGsesputq to schedule the (original) message

for parity check processing by its resetvice  procedure. When theHARPRO®&ad

service procedure is complete, it forwards the message to theprgagrocedure of
CANONPROGIote that if parity checking was not required, @Gti¢ARPRO@ut proce-

dure would call th€ ANONPRQ@It procedure through theutnext routine.

CANONPROgerforms canonical processing. As implemented, all read queue processing
is performed in itservice  procedure so th&@ANONPROsput procedure simply calls

putg to schedule the message for its reaxvice  procedure and then exits. Téer-

vice procedure extracts the character from the message buffer and places it in the line
buffer contained in anoth&di_DATAmessage it is constructing. Then, the message that
contained the single character is returned to the buffer pool. If the character received was
not an end-of-line, theervice  procedure returns. Otherwise, a complete line has been
assembled anBANONPRO$&nds the message upstream to the Stream head that unblocks
the user process from thetmsg(2) call and passes it the contents of the message.

Write-Side Processing

The write-side of this Stream carries two kinds of messages from the user pomtless:
messages faCHARPRO&ndM_DATAmessages to be output to the terminal.

ioctl messages are sent downstream as a resultioCtf®) system call. When
CHARPROC€&ceives afioctl  message type, it processes the message contents to change
internal flags and then uses a utility routine to send an acknowledgment message upstream
to the Stream head. The Stream head acts on the acknowledgment message by unblocking
the user from thectl

For terminal output, it is presumed tidt DATAmessages, sent yrite(2) system

calls, contain multiple characters. In general, STREAMS returns to the user process
immediately after processing tiagite call so that the process may send additional mes-
sages. Flow control eventually blocks the sending process. The messages can queue on the
write-side of the driver because of character transmission timing. When a message is
received by the driver's wrifgut procedure, the procedure ugesq to place the mes-

sage on its write-sidservice message queue if the driver is currently transmitting a
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Analysis
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previous message buffer. However, there is generally no write gaetiee  procedure
in a device driver. Driver output interrupt processing takes the place of scheduling and per-
forms theservice procedure functions, removing messages from the queue.

For reasons of efficiency, a module implementation would generally avoid placing one
character per message and using separate routines to echo and parity check each character,
as was done in this example. Nevertheless, even this design yields potential benefits. Con-
sider a case where alternate, more intelligent, port hardware was substituted. If the hard-
ware processed multiple input characters and performed the echo and parity checking
functions of CHARPRQGQhen the new driver could be implemented to present the same
interface asCHARPRQMther modules such &ANONPROEuld continue to be used

without change.
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Expedited Data
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STREAMS Messages

Messages are the means of communication within a Stream. All input and output under
STREAMS is based on messages. The objects passed between Streams components are
pointers to messages. All messages in STREAMS use two data structures to refer to the
data in the message. These data structures describe the type of the message and contain
pointers to the data of the message, as well as other information. Messages are sent
through a Stream by successive calls tgotlte routine of each queue in the Stream using

the appropriate utility routines. Messages may be generated by a driver, a module, or by
the Stream head.

The Open Systems Interconnection (OSI) Reference Model developed by the International
Standards Organization (ISO) and International Telegraph and Telephone Consultative
Committee (CCITT) provides an international standard seven-layer architecture for the
development of communication protocols. PowerMAX OS adheres to this standard and
also supports the Transmission Control Protocol and Internet Protocol (TCP/IP).

OSl and TCP/IP support the transport of expedited data (see note below) for transmission
of high-priority, emergency data. This data is useful for flow control, congestion control,
routing, and various applications where immediate delivery of data is necessary.

Expedited data is mainly used for exceptional cases and transmission of control signals.
Expedited data is processed immediately, ahead of normal data on the queue, but after
STREAMS high-priority messages and after any expedited data already on the queue.

Expedited data flow control is unaffected by the flow control constraints of normal data
transfer. Expedited data has its own flow control because it can easily run the system out
of buffers if its flow is unrestricted.

Drivers and modules define separate high- and low-water marks for priority band data
flow. (Water marks are defined for each queue and identify the upper and lower limit of
bytes that can be contained on the queue.) The default water marks for priority band data
and normal data are the same. The Stream head also ensures that incoming priority band
data is not blocked by normal data already on the queue by associating a priority with the
messages. This priority implies a certain ordering of the messages in the queue. See “Mes-
sage Queues and Priorities” for more information.
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NOTE

Within the STREAMS mechanism and in this guide expedited
data is also referred to as priority band data.

Message Structure

All messages are composed of one or more message blocks. A message block is a linked
triplet of two structures and a variable length data buffer. The structures are a message
block (msgb) and a data blocldétab ). The data buffer is a location in memory where

the data of a message are stored.

Seedatab(D4DK) andmsgb(D4DK) for fields that can be referenced in data and mes-
sage blocks.

The fieldb_band determines where the message is placed when it is enqueued using the
STREAMS utility routines. This field has no meaning for high priority messages and is set
to zero for these messages. When a message is allocatdlbalia , theb_band field

will be initially set to zero. Modules and drivers may set this field if so desired.

Message Linkage
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The message block is used to link messages on a message queue, link message blocks to
form a message, and manage the reading and writing of the associated data buffer. The
b_rptr andb_wptr fields in themsgb structure locate the data currently contained in

the buffer. As shown in Figure 5-1, the message blodkl(_t ) points to the data block

of the triplet. The data block contains the message type, buffer limits, and control vari-
ables. STREAMS allocates message buffer blocks of varying sibedase and

db_lim are the fixed beginning and end (+1) of the buffer.

A message consists of one or more linked message blocks. Multiple message blocks in a
message can occur, for example, because of buffer size limitations, or as the result of pro-
cessing that expands the message. When a message is composed of multiple message
blocks, the type associated with the first message block determines the message type,
regardless of the types of the attached message blocks.
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Figure 5-1. Message Form and Linkage

A message may occur singly, as when it is processedpoy gprocedure, or may be
linked on the message queue in a queue, waiting to be processedsbwvittee proce-
dure. Message 2, as shown in Figure 5-1, links to Message 1.

Note that a data block in Message 1 is shared between Message 1 and another message.
Multiple message blocks can point to the same data block to conserve storage and to avoid
copying overhead. For example, the same data block, with associated buffer, may be refer-
enced in two messages, from separate modules that use separate protocol levels.
Figure 5-2 illustrates the concept, but data blocks typically are not shared by messages on
the same queue. The buffer can be retransmitted, if required, because of errors or timeouts,
from either protocol level without replicating the data. @apmsg utility routine does

data block sharing. Seripmsg(D3) . STREAMS maintains a count of the message
blocks sharing a data block in tte_ref field.

STREAMS provides utility routines, specified in thevice Driver Referencég assist in
managing messages and message queues, and to assist in other areas of module and driver
development. A utility routine should always be used when operating on a message queue
or accessing the message storage pool. If messages are manipulated on the queue without
using the STREAMS utilities, the message ordering may become confused and lead to
inconsistent results.
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CAUTION

If you do not use the STREAMS utilities as they are defined by
the Driver-Kernel Interface, the system may panic or deadlock.
Non-Driver-Kernel Interface drivers are not supported.

Sending/Receiving Messages
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Most message types can be generated by modules and drivers. A few are reserved for the
Stream head. The most commonly used messageslabATAM_PROTO,and
M_PCPROTOhese messages can also be passed between a process and the topmost mod-
ule in a Stream with the same message boundary alignment maintained on both sides of
the kernel. This allows a user process to function, to some degree, as a module above the
Stream and maintain a service interfabe.PROT@GndM_PCPROT@essages are
intended to carry service interface information among modules, drivers, and user pro-
cesses. Some message types can only be used within a Stream and cannot be sent or
received from the user level.

Modules and drivers do not interact directly with any system calls egpepi{2) and

close(2) . The Stream head handles all message translation and passing between user
processes and STREAMS components. Message transfer between processes and the
Stream head can occur in different forms. For exanmpl®ATAandM_PROT@nessages

can be transferred in their direct form by tetmsg(2) andputmsg(2) system

calls. Alternatively,write(2) causes one or moiM_DATAmMessages to be created

from the data buffer supplied in the c&ll. DATAmessages received at the Stream head

are consumed bsead(2) and copied into the user buffer. As another exam\plSIG

causes the Stream head to send a signal to a process.

Any module or driver can send any message in either direction on a Stream. However,
based on their intended use in STREAMS and their treatment by the Stream head, certain
messages can be categorized as upstream, downstream, or bidiredioDAT A
M_PROTQor M_PCPROT@nessages, for example, can be sent in both directions. Other
message types are intended to be sent upstream to be processed only by the Stream head.
Messages intended to be sent downstream are silently discarded if received by the Stream
head.

STREAMS enables modules to create messages and pass them to neighboring modules.
However, theead(2) andwrite(2)  system calls are not enough to enable a user pro-
cess to generate and receive all such messagesré&adt,andwrite are byte-stream
oriented with no concept of message boundaries. To support service interfaces, the mes-
sage boundary of each service primitive must be preserved so that the beginning and end
of each primitive can be located. Alsead andwrite offer only one buffer to the user

for transmitting and receiving STREAMS messages. If control information and data were
placed in a single buffer, the user would have to parse the contents of the buffer to separate
the data from the control information.

The putmsg system call enables a user to create messages and send them downstream.
The user supplies the contents of the control and data parts of the message in two separate
buffers. Thegetmsg system call retrievelsl DATAor M_PROT@nessages from a Stream

and places the contents into two user buffers.

The format ofputmsg is as follows:
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int putmsg (int fd, struct strbuf &tiptr, struct strbuf Hataptr, int flags)

wherefd identifies the Stream to which the message is pastdptt,anddataptridentify
the control and data parts of the messageflagsimay be used to specify that a high-pri-
ority messageM_PCPROTshould be sent. When a control part is present, séligg

to 0 generates avi_ PROT@nessage. lflagsis set toRS_HIPRI, anM_PCPROT@es-
sage is generated.

NOTE

The Stream head guarantees that the control part of a message
generated bputmsg(2) is at least 64 bytes in length. This pro-
motes reusability of the buffer. When the buffer is a reasonable
size, modules and drivers may reuse the buffer for other headers.

Thestrbuf  structure is used to describe the control and data parts of a message, and has
the following format:

struct strbuf {
int maxlen;/* maximum buffer length */
int len; /* length of data */
char *buf; [* pointer to buffer */

wherebuf points to a buffer containing the dalen specifies the number of bytes of
data in the buffer, anchaxlen specifies the maximum number of bytes the given buffer
can hold, and is only significant when retrieving information into the buffer uggtg

msg.

Thegetmsg system call retrievelsl DATAM_PROTQor M_PCPROT@essages avail-
able at the Stream head, and has the following format:

int getmsg (int  fd, struct strbuf * ctlptr, struct strbuf * dataptr, int * flagsp

The arguments tgetmsg are the same as thosepotmsg except that thllagspparam-
eter is a pointer to ant .

putpmsg andgetpmsg (seeputmsg(2) andgetmsg(2) ) support multiple bands of
data flow. They are analogous to the system patlssg andgetmsg . The extra param-
eter is the priority band of the message.

putpmsg has the following interface:
int putpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, intband, int flags)

The parametebandis the priority band of the message to put downstream. The valid val-
ues forflagsareMSG_HIPRIandMSG_BANIMSG_BANRNdMSG_HIPRI are mutually
exclusive. MSG_HIPRI generates a high-priority messa@e PCPROTandbandis
ignored.MSG_BANRauses aM_PROT@r M_DATAmessage to be generated and sent
down the priority band specified bgnd The valid range fdpandis from 0 to 255, inclu-
sive.
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The call
putpmsg (fd, ctlptr, dataptr, 0, MSG_BAND);
is equivalent to the system call
putmsg (fd, ctlptr, dataptr, 0);
and the call
putpmsg (fd, ctlptr, dataptr, 0, MSG_HIPRI);
is equivalent to the system call
putmsg (fd, ctlptr, dataptr, RS_HIPRI);
If MSG_HIPRIis set andbandis nonzeroputpmsg fails with EINVAL.

getpmsg has the following format:
int getpmsg (int  fd, struct strbuf * ctlptr, struct strbuf * dataptrint*  bandp int * flagsp

wherebandpis the priority band of the message. This system call retrieves a message from
the Stream. Ifflagspis set taM\SG_HIPRI, getpmsg attempts to retrieve a high-priority
message. IMSG_BANI» set,getpmsg tries to retrieve a message from priority band
*pandpor higher. fIMSG_ANYs set, the first message on the Stream head read queue is
retrieved. These three flagel$G_HIPRI, MSG_BANDandMSG_ANYare mutually
exclusive. On return, if a high priority message was retrievfldgsp is set to
MSG_HIPRIland*bandpis set td. Otherwise*flagspis set taMSG_BANRnd*bandpis

set to the band of the message retrieved.

The call

int band=0;
int flags= MSG_ANY;

getpmsg (fd, ctlptr, datapt, & band & flags);
is equivalent to

int flags=0;

getmsg (fd, ctlptr, dataptr, & flag9);

If MSG_HIPRIis set andbandpis nonzerogetpmsg fails with EINVAL.

Control of Stream Head Processing
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TheM_SETOPTSnessage allows a driver or module to exercise control over certain
Stream head processing. M SETOPTSan be sent upstream at any time. The Stream
head responds to the message by altering the processing associated with certain system
calls. The options to be modified are specified by the contents stfdpéons struc-

ture contained in the message. Seelteice Driver Referend®r more information.
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Write Offset
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Six Stream head characteristics can be modified. Four characteristics correspond to fields
contained imueue (Minimum/maximum) packet sizes and high-/low- water marks). The
other two are discussed here.

The value for read optionsd_readopt ) corresponds to two sets of three modes a user
can set using the SRDOPT ioctl (seestreamio(7) ) call. The first set deals with
data and message boundaries:

byte-streamRNORM Theread(2) call completes when the byte count is satisfied, the
Stream head read queue becomes empty, or a zero length message
is encountered. In the last case, the zero length message is put
back on the queue. A subsequesad returnsO bytes.

message non-discarBNISGN
Theread(2) call completes when the byte count is satisfied or
at a message boundary, whichever comes first. Any data remain-
ing in the message are put back on the Stream head read queue.

message discarlRMSGP
Theread(2) call completes when the byte count is satisfied or
at a message boundary. Any data remaining in the message are
discarded.

Byte-stream mode nearly models pipe data transfer. Message non-discard mode nearly
models a TTY in canonical mode.

The second set deals with the treatment of protocol messagesit@atlig) system
call:

normal protocolRPROTNORM
Theread(2) call fails withEBADMSGf an M_PROTr
M_PCPROT@essage is at the front of the Stream head read
gueue. This is the default operation protocol.

protocol discardRPROTDIS
Theread(2) call discards anyy_PROT®r M_PCPROTO
blocks in a message, delivering e DATAblocks to the user.

protocol dataRPROTDA)T
Theread(2) call converts tht PROT@ndM_PCPROT®es-
sage blocks td1_DATAblocks, treating the entire message as
data.

The value for write offsetsp_wroff ) is a hook to allow more efficient data handling. It
works as follows: In every data message generatedinifje§2)  system call and in the
first M_DATAblock of the data portion of every message generateghbinasg(2) call,

the Stream head leaves_wroff  bytes of space at the beginning of the message block.
Expressed as a C language construct:
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bp->b_rptr = bp->b_datap->db_base + write offset

The write offset value must be smaller than the maximum STREAMS message size,
STRMSGSAn certain cases (for example, if a buffer large enough to hold the offset+data
is not currently available), the write offset might not be included in the block. To handle
all possibilities, modules and drivers should not assume that the offset exists in a message,
but should always check the message.

The intended use of write offset is to leave room for a module or a driver to place a proto-
col header before user data in the message instead of allocating and prepending a separate
message.

Message Queues and Priorities

Message queues grow when the STREAMS scheduler is delayed from cabirvica

procedure because of system activity, or when the procedure is blocked by flow control.
When called by the scheduler thervice procedure processes enqueued messages in a
FIFO manner. However, expedited data support and certain conditions require that associ-
ated messages (for example,MNnERRORreach their Stream destination as rapidly as
possible. This is done by associating priorities with the messages. These priorities imply a
certain ordering of messages on the queue as shown in Figure 5-2. Each message has a pri-
ority band associated with it. Ordinary messages have a priority of zero. High-priority
messages are high priority by nature of their message type. Their priority band is ignored.
By convention, they are not affected by flow control. bt utility routine places high-

priority messages at the head of the message queue followed by priority band messages
(expedited data) and ordinary messages.

normal priority priority priority high
band O band 1 band 2 soee band n priority
messages | messages | messages messages | messages
tail head

161750

Figure 5-2. Message Ordering on a Queue

When a message is queued, it is placed after the messages of the same priority already on
the queue (that is, FIFO within their order of queueing). This affects the flow control
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parameters associated with the band of the same priority. Message priorities range from 0
(normal) to 255 (highest). This provides up to 256 bands of message flow within a Stream.
Expedited data can be implemented with one extra band of flow (priority band 1) of data.
This is shown in Figure 5-3.

normal expedited high
tail (band 0) (band 1) priority head
messages | messages | messages

161760

Figure 5-3. Message Ordering with One Priority Band

High-priority messages are not subject to flow control. When they are queysedioby

the associated queue is always scheduled (in the same way as any queue; following all
other queues currently scheduled). Whensitwice  procedure is called by the sched-

uler, the procedure usgstq to retrieve the first message on queue, which will be a high-
priority message, if presergervice  procedures must be implemented to act on high-
priority messages immediately. The above mechanisms—priority message queueing,
absence of flow control, and immediate processing by a procedure—result in rapid trans-
port of high-priority messages between the originating and destination components in the
Stream.

The following routines aid users in controlling each priority band of data flow:
¢ flushband
* bcanputnext
* strqget
* strgset

flushband is discussed in the section titled “Flush Handling,” Bodnputnext  is
discussed in the section titled “Flow Control.” TRevice Driver Referencelso has a
description of these routines.

Thestrgget  routine allows modules and drivers to obtain information about a queue or
particular band of the queue. This insulates the STREAMS data structures from the mod-
ules and drivers. The format of the routine is:

int strqget (queue_t* g, dfields_t what unsigned char pri, long*  valp)
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The information is returned in tHeng referenced byalp. The fields that can be
obtained are defined by Screen 5-1:

~

typedef enum dfields {
QHIWAT =0, /*q_hiwat or gb_hiwat */
QLOWAT =1, /*g_lowat or gb_lowat */
QMAXPSZ =2, [*qg_maxpsz */
QMINPSZ =3, /*qg_minpsz */
QCOUNT =4, /*q_countor gb_count*/
QFIRST =5, /[*q_firstor gb_first */
QLAST =6, /*q_lastorgb_last*/
QFLAG =7, [*q_flagor gb_flag */
QBAD =8

} gfields_t;

\_ )

Screen 5-1. Obtained Fields

This routine returns 0 on success and an error number on failure.

The routinestrqset  allows modules and drivers to change information about a queue or
particular band of the queue. This also insulates the STREAMS data structures from the
modules and drivers. Its format is

int strgset (queue_t* g, dfields_t what unsigned char pri,long  val)

The updated information is provided Bal. strgset  returns O on success and an error
number on failure. If the field is intended to be read-only, then theEPEBRMS returned
and the field is left unchanged. The following fields are currently read-Q@OUNT
QFIRST, QLAST andQFLAG

Note that thestrqget andstrqset routines must be bracketed by the
freezestr(D3) andunfreezestr(D3) routines.

Theioctl s|_FLUSHBAND |_CKBAND, |_GETBAND I_CANPUT, andl_ATMARK
support multiple bands of data flow. Tieetl |_FLUSHBAND allows a user to flush a
particular band of messages. It is discussed in more detail in the section titled “Flush Han-
dling.” Theioctl I_CKBAND allows a user to check if a message of a given priority
exists on the Stream head read queue. Its interface is

ioctl (fd, I_CKBAND pri);

This returnsl if a message of priorityri exists on the Stream head read queudahdo
message of prioritpri exists. If an error occursl is returned. Note thatri should be of
typeint .

Theioctl |_GETBAND allows a user to check the priority of the first message on the
Stream head read queue. The interface is

ioctl (fd, |I_GETBAND prip);

This results in the integer referenceddnip being set to the priority band of the message
on the front of the Stream head read queue.

Theioctl | CANPUT allows a user to check if a certain band is writable. Its interface is
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ioctl (fd, I_CANPUT, pri);

The return value i§ if the priority bandori is flow controlled,l if the band is writable,
and-1 on error.

The fieldb_flag of themsgb structure can have a flMSGMARKat allows a module or

driver tomarka message. This is used to support TCP's (Transport Control Protocol) abil-

ity to show the user the last byte of out-of-band data. Once marked, a message sent to the
Stream head causes the Stream head to remember the message. A user may check to see if
the message on the front of its Stream head read queue is marked WithTtNARK

ioctl . If a user is reading data from the Stream head and there are multiple messages on
the read queue, and one of those messages is markedad{2) terminates when it

reaches the marked message and returns the data only up to that marked message. The rest
of the data may be obtained with successive reads.

Theioctl I_ATMARK has the following format:
ioctl (fd, |_ATMARK flag);

whereflag may be eitheANYMARKr LASTMARKANYMARHKndicates that the user
merely wants to check if the message is marké&TMARKndicates that the user wants
to see if the message is the only one marked on the queue. If the test sutdeeds,
returned. On failure) is returned. If an error occurd, is returned.

queue Structure

service procedures, message queues, message priority, and basic flow control are all
intertwined in STREAMS. A queue generally does not use its message queue if there is no
service procedure in the queue. The function cfeavice procedure is to process
messages on its queue. Message priority and flow control are associated with message
queues.

The operation of a queue revolves arounddieue structure. Sequeue(D4DK) for
details.

Queues are always allocated in pairs (read and write); one queue pair per module, driver,
or Stream head. A queue contains a linked list of messages. Wjuena pair is allo-
cated, the following fields are initialized by STREAMS:

* ¢g_qginfo - fromstreamtab

* g_minpsz ,g_maxpsz,g_hiwat ,qg_lowat -frommodule_info

Copying values froomodule_info  allows them to be changed in theeue without
modifying thestreamtab andmodule_info  values.

g_count andgb_count are used in flow control calculations and represent the number
of bytes in the various bands on the queue.
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Using queue Information

gband Structure

Modules and drivers should use STREAMS utility routines to gltérst , q_last
g_count , andg_flag . See théevice Driver Referencr more information.

Modules and drivers can changeptr . Modules and drivers can read but should not
changeg_ginfo , g_bandp , andg_nband .

Modules and drivers need locks for their private data structures (just as the STREAMS
code protects the_next pointer, for example).

Seequeue(D4DK) for a list of flags that you can test.

The queue flow information for each band is containeddbamd structure. This struc-
ture is not visible to a module/driver, although some information in it may be read and
written usingstrqget  andstrgset

gband includes a field analogous to thyeeue 'sq_count field. However, the field only
applies to the messages on the queue in the band of data flow represented by the corre-
spondinggband structure. (In contrast]_count only contains information regarding
normal and high-priority messages.)

Each band has a separate high- and low-water mark. These are initially sejueudés
g_hiwat andq_lowat respectively. Modules and drivers may change these values if
desired through thstrgset  function.

Thegband structures are not preallocated per queue. They are allocated when a message
with a priority greater than zero is placed on the queuputy , putbq , orinsq .

Because band allocation can fail, these routines return 0 on failure and 1 on success. Once
agband structure is allocated, it remains associated with the queue until the queue is
freed.strgset  andstrqget  will causegband allocation to occur.

Using gband Information

Use the STREAMS utility routines when manipulating the fields imthend structure.
Use the routinestrgset  andstrgget  to access band information.

Message Processing
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put procedures are generally required in pushable modsdegice procedures are
optional. If theput routine enqueues messages, you need a corresp@ediime  rou-

tine to handle the enqueued messages. Iftlheroutine does not enqueue messages, you
do not need theervice routine.

The general processing flow when both procedures are present is as follows:

1. A message is received by thet procedure in a queue, where some pro-
cessing may be performed on the message.
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2. Theput procedure places the message on the queue witiuthe utility
routine for theservice  procedure to process further at some later time.

3. putg places the message on the queue based on its priority.
4. putg makes the queue ready for execution by the STREAMS scheduler.

5. After some indeterminate delay (intended to be short), the STREAMS
scheduler calls theervice procedure.

6. Theservice procedure gets the first message from the message queue
with thegetq utility.

7. Theservice procedure processes the message and passes iptt the
procedure of the next queue wihtnext

8. Theservice procedure gets the next message and processes it.

This processing continues until the queue is emgyg( does not return a message) or
flow control blocks further processing. Téervice  procedure returns to the caller.

NOTE

A service orput procedure must never sleep since it has no
user context. It must always return to its caller.

If no processing is required in tipait procedure, the procedure does not have to be
explicitly declared. Howeveputq can be placed in thginit  structure declaration for
the appropriate queue side to queue the message feerthee  procedure, for exam-
ple:

static struct ginit winit={ putg modwsry...... h

Typically, put procedures will, at a minimum, process high-priority messages to avoid
gueueing them. IM_FLUSHmessages are queued there is a danger that a message queued
after theM_FLUSHwill be discarded when thd_FLUSHSs processed.

The key attribute of aervice procedure in the STREAMS architecture is delayed pro-
cessing. When service  procedure is used in a module, the module developer is imply-
ing that there are other, more time-sensitive activities to be performed elsewhere in this
Stream, in other Streams, or in the system in general. The presersendgta proce-

dure is mandatory if the flow control mechanism is to be used by the queue.

The delay for STREAMS to call service  procedure varies with implementation and
system activity.

If a module or driver wishes to recognize priority bandss#reice  procedure is writ-
ten to the following algorithm:
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while ((bp = getq(q)) '= NULL) {
if (pcmsg(bp->b_datap->db_type)) {
putnext(q, bp);
} else if (bcanputnext(q, bp->b_band)) {
putnext(q, bp);

}else {
putba(g, bp);
return;

}

\_ )

NOTE

In this example, a race condition exists on a multiprocessor sys-
tem betweerbcanputnext andputnext . By the time
putnext is called, the destination queue may be full, potentially
causing the high water mark to be exceeded. Although the queue
may be full, the amount of “overwrite” bounded, and is therefore
not usually a problem.

The STREAMS flow control mechanism is voluntary and operates between the two near-
est queues in a Stream containgggvice procedures (see Figure 5-4). Messages are
generally held on a queue only ifervice procedure is present in the associated queue.
Flow control is applied per band. Each band has its own high- and low-water marks.

Messages accumulate on a queue when the queneise  procedure processing does

not keep pace with the message arrival rate, or when the procedure is blocked from placing
its messages on the following Stream component by the flow control mechanism. Push-
able modules contain independent upstream and downstream limits. The Stream head con-
tains a preset upstream limit (which can be modified by a special message sent from
downstream) and a driver may contain a downstream limit.
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Figure 5-4. Flow Control

Flow control operates as follows:

1. Eachtime a STREAMS message handling routine (for exampple,)
adds or removes a message from a message queue, the limits are checked.
STREAMS calculates the total size of all message bldagksb_wptr
- bp->b_rptr ) on the message queue.

2. The total is compared to the queue high-water and low-water values. If the
total exceeds the high-water value, an internal full indicator is set for the
gueue. The operation of tleervice procedure in this queue is not
affected if the indicator is set, and #ervice procedure continues to be
scheduled.

3. The next part of flow control processing occurs in the nearest preceding
gueue that containssarvice procedure. In Figure 5-4, if Queue D is full
and Queue C has ervice procedure, then Queue B is the nearest pre-
ceding queue.

4. Theservice procedure in Queue B uses a STREAMS utility routine to
see if a queue ahead is marked full. If messages cannot be sent, the sched-
uler blocks theservice  procedure in Queue B from further execution.
Queue B remains blocked until the low water mark of the full queue,
Queue D, is reached.

5. While Queue B is blocked, any messages except high-priority messages
arriving at Queue B will accumulate on its message queue.

NOTE

High-priority messages are not subject to flow control.
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Eventually, Queue B may reach a full state and the full condition will propagate
back to the previous module in the Stream.

6. When theservice procedure processing on Queue D causes the message
block total to fall below the high-water mark, the full indicator is turned
off. When the message block total falls below the low-water mark,
STREAMS automatically schedules the nearest preceding blocked queue
(Queue B in this example), to restart processing. This automatic scheduling
is known as back-enabling a queue.

Modules and drivers need to observe the message priority. High-priority messages, deter-
mined by the type of the first block in the message, are not subject to flow control. They
are processed immediately and forwarded, as appropriate.

For ordinary messages, flow control must be tested before any processing is performed.
Thecanputnext  utility determines if the forward path from the queue is blocked by
flow control.

This is the general flow control processing of ordinary messages:

1. Retrieve the message at the head of the queugetgh.
2. Determine if the message type is high priority and not to be processed here.

3. If so, pass the message to e procedure of the following queue with
putnext

4. Usecanputnext to determine if messages can be sent onward.

5. If messages should not be forwarded, put the message back on the queue
with putbg and return from the procedure.

6. Otherwise, process the message.

The canonical representation of this processing witléaraice  procedure is as fol-
lows:

while (getq !'= NULL)
if (high priority message || no flow control)
process message
putnext
else
putbq
return

Expedited data have their own flow control with the same general processing as that of
ordinary messagebcanputnext  provides modules and drivers with a way to test flow
control in the given priority band. It returns 1 if a message of the given priority can be
placed on the queue, returns O if the priority band is flow controlled, and if the band does
not yet exist on the queue in question, the routine returns 1.

Banded data has separate flow control. In other words, bands 1 through 255 operate totally
independently. Any band greater than or equal to band 1, when flow controlled, will stop
band 0 data (normal data).

Note that the calbcanputnext(q, 0) is equivalent to the catianputnext(q)
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NOTE

A service procedure must process all messages on its queue
unless flow control prevents this.

A service procedure continues processing messages from its queugetoptireturned
NULL When an ordinary message is enqueuepuby , putq causes theervice pro-
cedure to be scheduled only if the queue was previously empty, and a pgategpusall
returnsNULL (that is, theQWANTRag is set). If there are messages on the qurueq,
presumes theervice procedure is blocked by flow control and the procedure is auto-
matically rescheduled by STREAMS when the block is removed. Bahdce proce-

dure cannot complete processing as a result of conditions other than flow control (for
example, no buffers), it must ensure it will return later (for example, by use of the
bufcall  utility routine) or it must discard all messages on the queue. If this is not done,
STREAMS never schedules teervice procedure to be run unless the quepats
procedure enqueues a priority message puitly .

NOTE

High-priority messages are discarded only if there is already a
high-priority message on the Stream head read queue. Only one
high-priority message can be present on the Stream head read
gueue at any time.

putbg replaces messages at the beginning of the appropriate section of the message
gueue by their priority. This might not be the same position at which the message was
retrieved by the precedirgetq . A latergetqg might return a different message.

putq only looks at the priority band in the first message. If a high-priority message is
passed t@utq with a nonzerd_band value,b_band is reset to O before placing the
message on the queue. If the message is pasgedgtowith ab_band value that is
greater than the numberaifand structures associated with the qugueq tries to allo-

cate a nevgband structure for each band up to and including the band of the message.

The above also appliespoitbq andinsq . If an attempt is made to insert a message out
of order in a queue bpsq , the message is not inserted and the routine fails.

putg will not schedule a queue foenable (qg) has been previously called for this
gueuenoenable instructsputq to enqueue the message when called by this queue, but
not to schedule theervice procedurenoenable does not prevent the queue from
being scheduled by a flow control back-enable. The inverseoehable is
enableok(q)

Driver upstream flow control is explained next as an example. Although device drivers
typically discard input when they are unable to send it to a user process, STREAMS
allows driver read-side flow control, possibly for handling temporary upstream blockages,
through a driver readervice  procedure that is disabled during the drigpen with

noenable . If the driver input interrupt routine determines messages can be sent
upstream, it sends the message wittnext . Otherwise, it callputq to queue the mes-

sage. The message waits on the message queue (possibly with queue length checked when
new messages are enqueued by the interrupt routine) until the upstream queue becomes
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unblocked. When the blockage abates, STREAMS back-enables the drivezmacel

procedure, which then sends the messages upstream using the mechanisms described pre-
viously. This is similar tdooprsrv  (see the section titled “Loop-around Driver” where
theservice procedure is present only for flow control.

genable , another flow control utility, allows a module or driver to cause one of its
gueues to be schedulegknable might also be used when a module or driver wants to
delay message processing for some reason. An example is a buffer module that gathers
messages in its message queue and forwards them as a single, larger message. This mod-
ule usesoenable to inhibit itsservice procedure and queues messages withuits
procedure until a certain byte count or “in queue” time has been reached. When either
condition is met, the module catienable to cause itservice procedure to run.

Another example is a communication line discipline module that implements end-to-end
(that is, to a remote system) flow control. Outbound data is held on the write-side message
gueue until the read-side receives a transmit window from the remote end of the network.

NOTE

STREAMS routines are called at different priority levels. Inter-
rupt routines are called at the interrupt priority of the interrupting
device.service routines are called with interrupts enabled
(henceservice routines for STREAMS drivers can be inter-
rupted by their own interrupt routines). Write spig procedures
may also be interrupted by their own interrupt routines.

Service Interfaces

5-18

STREAMS can implement a service interface between any two components in a Stream,
and between a user process and the topmost module in the Stream. A service interface is
defined at the boundary between a service user and a service provider. A service interface
is a set of primitives and the rules that define a service and the allowable state transitions
that result as these primitives are passed between the user and the provider. These rules are
typically represented by a state machine. In STREAMS, the service user and provider are
implemented in a module, driver, or user process. The primitives are carried bidirection-
ally between a service user and provideMirPROT@ndM_PCPROT@essages.

PROTOmessagesM_PROT@ndM_PCPROT)Ccan be multiblock, with the second
through last blocks of typkl_DATA The first block in @ROTQOmessage contains the
control part of the primitive in a form agreed on by the user and provider. The block is not
intended to carry protocol headers. (Although its use is not recommended, upstream
PROTQOmessages can have multif®OTCblocks at the start of the messaget-

msg(2) compacts the blocks into a single control part when sending to a user process).
The M_DATAblock(s) contains any data part associated with the primitive. The data part
may be processed in a module that receives it, or it may be sent to the next Stream compo-
nent along with any data generated by the module. The contdPRFOnessages and

their allowable sequences are determined by the service interface.

PROTOmessages can be sent bidirectionally (upstream and downstream) on a Stream and
between a Stream and a user procpstnsg(2) andgetmsg(2) system calls are
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analogous, respectively, tarite(2) andread(2) except that the former allow both

data and control parts to be (separately) passed, and they retain the message boundaries
across the user-Stream interfapatmsg(2) andgetmsg(2) separately copy the

control part M_PROT®@r M_PCPROT®Ilock) and data part{_DATAblocks) between

the Stream and user process.

An M_PCPROT®@essage is normally used to acknowledge primitives composed of other
messagesV_PCPROT®@nsures that the acknowledgment reaches the service user before
any other message. If the service user is a user process, the Stream head only stores a sin-
gle M_PCPROT@essage, and discards subseqierRCPROT@essages until the first

one is read witlyetmsg(2)

A STREAMS message format has been defined to simplify the design of service inter-
faces. System callgetmsg(2) andputmsg(2) , are available for sending messages
downstream and receiving messages that are available at the Stream head.

This section describes the system cgdmsg andputmsg in the context of a service
interface example. First, a brief overview of STREAMS service interfaces is presented.

Service Interface Benefits

A principal advantage of the STREAMS mechanism is its modularity. From the user level,
kernel-resident modules can be dynamically interconnected to implement any reasonable
processing sequence. This modularity reflects the layering characteristics of contemporary
network architectures.

One benefit of modularity is the ability to interchange modules of like functions. For
example, two distinct transport protocols, implemented as STREAMS modules, may pro-
vide a common set of services. An application or higher layer protocol that requires those
services can use either module. This ability to substitute modules enables user programs
and higher level protocols to be independent of the underlying protocols and physical
communication media.

Each STREAMS module provides a set of processing functions, or services, and an inter-
face to those services. The service interface of a module defines the interaction between
that module and any neighboring modules, and is a necessary component for providing
module substitution. By creating a well-defined service interface, applications and
STREAMS modules can interact with any module that supports that interface, as shown in
Figure 5-5.
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Figure 5-5. Protocol Substitution

User Space

Kernel Space

161780

By defining a service interface through which applications interact with a transport proto-

col, it is possible to substitute a different protocol below that service interface in a way

completely transparent to the application. In this example, the same application can run
over the Transmission Control Protocol (TCP) and the ISO transport protocol. Of course,
the service interface must define a set of services common to both protocols.

The three components of any service interface are the service user, the service provider,
and the service interface itself, as shown in Figure 5-6.
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Figure 5-6. Service Interface

Typically, a user makes a request of a service provider using some well-defined service
primitive. Responses and event indications are also passed from the provider to the user
using service primitives.

Each service interface primitive is a distinct STREAMS message that has two parts: a con-
trol part and a data part. The control part contains information that identifies the primitive
and includes all necessary parameters. The data part contains user data associated with
that primitive.

An example of a service interface primitive is a transport protocol connect request. This
primitive requests the transport protocol service provider to establish a connection with
another transport user. The parameters associated with this primitive may include a desti-
nation protocol address and specific protocol options to be associated with that connec-
tion. Some transport protocols also allow a user to send data with the connect request. A
STREAMS message would be used to define this primitive. The control part would iden-
tify the primitive as a connect request and would include the protocol address and options.
The data part would contain the associated user data.

Service Interface Library

The service interface library example presented in Screen 5-2 through Screen 5-7 includes
four functions that enable a user to do the following:

5-21



STREAMS Modules and Drivers

* Establish a Stream to the service provider and bind a protocol address to
the Stream. See Screen 5-2, Screen 5-3 and Screen 5-4.

* Send data to a remote user. See Screen 5-6.
* Receive data from a remote user. See Screen 5-7.

* Close the Stream connected to the provider. See Screen 5-5.

Screen 5-2 shows the structure and constant definitions required by the library. These typ-
ically will reside in a header file associated with the service interface.

(. )

/*

* Primitives initiated by the service user.

*

#define BIND_REQ 1 /* bind request */
#define UNITDATA_REQ 2 /* unitdata request */

/*

* Primitives initiated by the service provider.

*

#define OK_ACK 3 /* bind acknowledgment */
#define ERROR_ACK 4 /* error acknowledgment */
#define UNITDATA_IND 5 /* unitdata indication */

/*

* The following structure definitions define the format of the
* control part of the service interface message of the above
* primitives.

*

struct bind_req { /* bind request */
long PRIM_type;  /* always BIND_REQ */
long BIND_addr;  /* addr to bind */

b

struct unitdata_req { /* unitdata request */
long PRIM_type;  /* always UNITDATA_REQ */
long DEST_addr;  /* destination addr */

h

struct ok_ack { /* positive acknowledgment */
long PRIM_type;  /* always OK_ACK */

b

struct error_ack { /* error acknowledgment */
long PRIM_type; /* always ERROR_ACK */
long UNIX_error;  /* UNIX system error code */
h
struct unitdata_ind {/* unitdata indication */

long PRIM_type;  /* always UNITDATA_IND */
long SRC_addr; /* source addr */

%

/* union of all primitives */

union primitives {

long type;
struct bind_req bind_req;
struct unitdata_req unitdata_req;
struct ok_ack ok_ack;
struct error_ack error_ack;

struct unitdata_ind  unitdata_ind;

. )

Screen 5-2. Service Interface Library Example
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/* header files needed by library */
#include <stropts.h>

#include <stdio.h>

#include <errno.h>

Five primitives have been defined. The first two represent requests from the service user to
the service provider. These are as follows:

BIND_REQ Asks the provider to bind a specified protocol address (that is, give
it a name on the network.). It requires an acknowledgment from
the provider to verify that the contents of the request are syntacti-
cally correct.

UNITDATA_REQ Asks the provider to send data to the specified destination address.
It does not require an acknowledgment from the provider.

The three other primitives represent acknowledgments of requests, or indications of
incoming events, and are passed from the service provider to the service user. These are as

follows:

OK_ACK Informs the user that a previous bind request was received suc-
cessfully by the service provider.

ERROR_ACK Informs the user that a non-fatal error was found in the previous
bind request. It indicates that no action was taken with the primi-
tive that caused the error.

UNITDATA_IND Indicates that data destined for the user have arrived.

The defined structures describe the contents of the control part of each service interface
message passed between the service user and service provider. The first field of each con-
trol part defines the type of primitive being passed.

Accessing the Service Provider

The first routine presentethter_open , opens the protocol driver device file specified

by pathand binds the protocol address containedddr so that it may receive data. On
success, the routine returns the file descriptor associated with the open Stream; on failure,
it returns-1 and set®&rro to indicate the appropriate error value.
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inter_open(char *path, int oflags, int addr)
{

int fd;

struct bind_req bind_req;

struct strbuf ctlbuf;

union primitives rcvbuf;

struct error_ack *error_ack;

int flags;

if ((fd = open(path, oflags)) < 0)
return(-1);

/* send bind request msg down stream */

bind_req.PRIM_type = BIND_REQ;
bind_req.BIND_addr = addr;
ctlbuf.len = sizeof(struct bind_req);
ctlbuf.buf = (char *)&bind_req;

if (putmsg(fd, &ctlbuf, NULL, 0) < 0) {

close(fd);
return(-1);

\__ Y,

Screen 5-3. Accessing the Service Provider

After opening the protocol driveinter_open  packages a bind request message to send
downstreamputmsg is called to send the request to the service provider. The bind
request message contains a control part that hdddslareqstructure, but it has no data
part.ctlbufis a structure of typstrbuf , and it is initialized with the primitive type and
address. Notice that theaxlen field of ctlbuf is not set before callingutmsg ,
becauseutmsg ignores this field. Theataptrargument toutmsg is set toNULL to
indicate that the message contains no data part. AlsBiagis@rgument is 0, which speci-
fies that the message is not a high-priority message.

After inter_open  sends the bind request, it must wait for an acknowledgment from the
service provider, as shown in Screen 5-4:
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4 )

/* wait for ack of request */

ctlbuf.maxlen = sizeof(union primitives);
ctlbuf.len = 0;

ctlbuf.buf = (char *)&rcvbuf;

flags = RS_HIPRI;

if (getmsg(fd, &ctlbuf, NULL, &flags) < 0) {
close(fd);
return(-1);

/* did we get enough to determine type */
if (ctlbuf.len < sizeof(long)) {

close(fd);

errno = EPROTO;

return(-1);

/* switch on type (first long in rcvbuf) */
switch(rcvbuf.type) {
default:
close(fd);
errno = EPROTO;
return(-1);

case OK_ACK:
return(fd);

case ERROR_ACK:
if (ctbuf.len < sizeof(struct error_ack)) {
close(fd);
errno = EPROTO;
return(-1);

error_ack = (struct error_ack *)&rcvbuf;
close(fd);

errno = error_ack->UNIX_error;
return(-1);

}

. )

Screen 5-4. Acknowledgment from Service Provider

getmsg is called to retrieve the acknowledgment of the bind request. The acknowledg-
ment message consists of a control part that contains eitloér ack or error_ack
structure, and no data part.

The acknowledgment primitives are defined as priority messages. Messages are queued in
a FIFO sequence within their priority at the Stream head; high-priority messages are
placed at the front of the Stream head queue followed by priority band messages and ordi-
nary messages. The STREAMS mechanism allows only one high-priority message per
Stream at the Stream head at one time; any further high-priority messages are freed until
the message at the Stream head is processed. (Only one high priority message can be
present on the Stream head read queue at any time.) High-priority messages are particu-
larly suitable for acknowledging service requests when the acknowledgment should be
placed ahead of any other messages at the Stream head.

Before callinggetmsg , this routine must initialize thetrbuf  structure for the control
part.buf should point to a buffer large enough to hold the expected control parmaxad
len must be set to show the maximum number of bytes this buffer can hold.
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Because neither acknowledgment primitive contains a data padatéygr argument to
getmsg is set toNULL Theflagspargument points to an integer containing the value
RS_HIPRI. This flag indicates thajetmsg should wait for a STREAMS high-priority
message before returning. It is set because we want to catch the acknowledgment primi-
tives that are priority messages. Otherwise, if the flag is zero, the first message is taken.
With RS_HIPRI set, even if a normal message is availaggmsg will block until a
high-priority message arrives.

On return fromgetmsg , thelen field is checked to ensure that the control part of the
retrieved message is an appropriate size. The example then checks the primitive type and
takes appropriate actions. ADK_ACKindicates a successful bind operation, and
inter_open  returns the file descriptor of the open Stream ERROR_ACIkhdicates a

bind failure, ancerrno is set to identify the problem with the request.

Closing the Service Provider

The next routine in the service interface library exampietés_close , Which closes
the Stream to the service provider.

inter_close(int fd)

close(fd);

Screen 5-5. Closing the Service Provider

The routine simply closes the given file descriptor. This routine causes the protocol driver
to free any resources associated with that Stream. For example, the driver may unbind the
protocol address that had previously been bound to that Stream, thereby freeing that
address for use by some other service user.

Sending Data to the Service Provider
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The third routineinter_snd , passes data to the service provider for transmission to the
user at the address specifiecdddr. The data to be transmitted are contained in the buffer
pointed to bybufand containgen bytes. On successful completion, this routine returns the
number of bytes of data passed to the service provider; on failure, it retuarsd sets
errno  to an appropriate error value.
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inter_snd(int fd, char *buf, int len, long addr)

struct strbuf ctlbuf;
struct strbuf databuf;
struct unitdata_req unitdata_req;

unitdata_req.PRIM_type = UNITDATA_REQ;
unitdata_req.DEST_addr = addr;

ctlbuf.len = sizeof(struct unitdata_req);
ctlbuf.buf = (char *)&unitdata_req;
databuf.len = len;

databuf.buf = buf;

if (putmsg(fd, &ctlbuf, &databuf, 0) < 0) {
errno = EIO;
return(-1);

}

return(len);

}

\_ )

Screen 5-6. Sending Data

In this example, the data request primitive is packaged with both a control part and a data
part. The control part containsuaitdata_regstructure that identifies the primitive type

and the destination address of the data. The data to be transmitted are placed in the data
part of the request message.

Unlike the bind request, the data request primitive requires no acknowledgment from the
service provider. In the example, this choice was made to minimize the overhead during
data transfer. If thputmsg call succeeds, this routine assumes all is well and returns the
number of bytes passed to the service provider.

Receiving Data from the Service Provider

The final routine in this exampl@ter_rcv , retrieves the next dathuf points to a

buffer where the data should be stolled shows the size of that buffer, aaddr points to

a long integer where the source address of the data will be placed. On successful comple-
tion, inter_rcv returns the number of bytes in the retrieved data; on failure, it returns

-1 and sets the appropriate PowerMAX OS System error value.
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inter_rcv(int fd, char *buf, int len, long *addr)

struct strbuf ctlbuf;

struct strbuf databuf;

struct unitdata_ind unitdata_ind;
int retval;

int flagsp;

ctlbuf.maxlen = sizeof(struct unitdata_ind);
ctlbuf.len = 0;

ctlbuf.buf = (char *)&unitdata_ind;
databuf.maxlen = len;

databuf.len = 0;

databuf.buf = buf;

flagsp = 0;

if ((retval = getmsg(fd, &ctlbuf, &databuf, &flagsp)) < 0) {
errno = EIO;
return(-1);

}

if (retval) {
errno = EIO;
return(-1);

}

if (unitdata_ind.PRIM_type != UNITDATA_IND) {
errmo = EPROTO;
return(-1);

}
*addr = unitdata_ind.SRC_addr;
return(databuf.len);

}

\_ )

Screen 5-7. Receiving Data

getmsg is called to retrieve the data indication primitive, where that primitive contains
both a control and data part. The control part consistsinitéata_ind structure that
identifies the primitive type and the source address of the data sender. The data part con-
tains the data itself.

In ctlbuf , buf must point to a buffer where the control information will be stored, and
maxlen must be set to indicate the maximum size of that buffer. Similar initialization is
done fordatabuf

The integer pointed at Hlagspin thegetmsg call is set to zero, indicating that the next
message should be retrieved from the Stream head, regardless of its priority. Data will
arrive in normal priority messages. If no message currently exists at the Stream head,
getmsg will block until a message arrives.

The user's control and data buffers should be large enough to hold any incoming data. If
both buffers are large enougietmsg processes the data indication and re@yrmdicat-

ing that a full message was retrieved successfully. However, if either buffer is not large
enoughgetmsg only retrieves the part of the message that fits into each user buffer. The
remainder of the message is saved for later retrieval (if in message non-discard mode), and
a positive, non-zero value is returned to the UMEYRECTIindicates that more control
information is waiting for retrievaMOREDAT Akdicates that more data is waiting for
retrieval, and MORECTL | MOREDATY Adicates that data from both parts of the mes-
sage remains. In the example, if the user buffers are not large enough @eanisy

returns a positive, non-zero value), the function willeseto to EIO and fail.
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The type of the primitive returned lgzetmsg is checked to make sure it is a data indica-
tion (UNITDATA_IND in the example). The source address is then set and the number of
bytes of data is returned.

The example presented is a simplified service interface. The state transition rules for such
an interface were not presented for the sake of brevity. The intent was to show typical uses
of theputmsg andgetmsg system calls. Sqmutmsg(2) andgetmsg(2) for further

details. For simplicity, this example did not also consider expedited data.

Multiprocessor/Driver-Kernel Interface driver locks are used to protect against race condi-
tions on multiprocessor systems with respect to the current state.

Module Service Interface

Screen 5-8 and Screen 5-9 show an example of part of a module that illustrates the concept
of a service interface. The module implements a simple service interface and mirrors the
service interface library example given earlier. The following rules pertain to service inter-
faces:

* Modules and drivers that support a service interface must actPR@ITO
messages and not pass them through.

* Modules may be inserted between a service user and a service provider to
manipulate the data part as it passes between them. However, these mod-
ules may not alter the contents of the control gRRRQTblock, first mes-
sage block) nor alter the boundaries of the control or data parts. The mes-
sage blocks comprising the data part may be changed, but the message may
not be split into separate messages nor combined with other messages.

In addition, modules and drivers must observe the rule that high-priority messages are not
subject to flow control and forward them accordingly.

The service interface primitives are defined in the declarations as shown in Screen 5-8:
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#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>
#include <sys/errno.h>

/* Primitives initiated by the service user */

#define BIND_REQ1/* bind request */
#define UNITDATA_REQ2/* unitdata request */

/* Primitives initiated by the service provider */

#define OK_ACK3 /* bind acknowledgment */
#define ERROR_ACKA4/* error acknowledgment */
#define UNITDATA_IND5/* unitdata indication */
/*
* The following structures define the format of the
* stream message block of the above primitives.
*
/
struct bind_req { /* bind request */
long PRIM_type;/* always BIND_REQ */
long BIND_addr;/* addr to bind*/
b
struct unitdata_req {/* unitdata request */
long PRIM_type;/* always UNITDATA_REQ */
long DEST_addr;/* dest addr */

étruct ok_ack {/* ok acknowledgment */
long PRIM_type;/* always OK_ACK */

struct error_ack {/* error acknowledgment */
long PRIM_type;/* always ERROR_ACK */
long UNIX_error;/* UNIX system error code */
I
struct unitdata_ind {/* unitdata indication */
long PRIM_type;/* always UNITDATA_IND */
long SRC_addr;/* source addr */
b
union primitives {/* union of all primitives */
long type;
struct bind_req bind_req;
struct unitdata_req unitdata_req;
struct ok_ack ok_ack;
struct error_ack error_ack;
struct unitdata_ind unitdata_ind;
J:
struct dgproto {/* structure per minor device */
short state;/* current provider state */
long addr;/* net address */
Ick_t *Ick;

/*’k Provider states */
#define IDLE 0
#define BOUND 1

)

Screen 5-8. Module Service Interface Declaration

In general, thé1_PROT@r M_PCPROT®Iock is described by a data structure containing
the service interface information. In this example, union primitives is that structure.

Two commands are recognized by the module:

BIND_REQ Give this Stream a protocol address (that is, give it a name on the
network). After aBIND_REQis completed, data from other send-
ers will find their way through the network to this particular
Stream.

UNITDATA_REQ Send data to the specified address.
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Three messages are generated:

OK_ACK A positive acknowledgmena€k) of BIND_REQ

ERROR_ACK A negative acknowledgmemntdk) of BIND_REQ

UNITDATA_IND Data from the network have been received (this code is not
shown).

The acknowledgment of BIND _REQinforms the user that the request was syntactically
correct (or incorrect IERROR_ACKThe receipt of 8IND_REQis acknowledged with
anM_PCPROT® ensure that the acknowledgment reaches the user before any other mes-
sage. For example WNITDATA_IND could come through before the bind has completed,
and the user would get confused.

The driver uses a per-minor device data structigproto , which contains the follow-

ing:

state Current state of the service providBLE or BOUND
addr Network address that has been bound to this Stream
Ick A spin lock to protect state information

It is assumed (though not shown) that the module open procedure sets the write queue
g_ptr to point at the appropriate private data structure.

Service Interface Procedure

The writeput procedure is shown in Screen 5-9:
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int protowput(queue_t *q, mblk_t *mp)
{

union primitives *proto;
struct dgproto *dgproto;
int err;

pl_t oldpri;

dgproto = (struct dgproto *) g->q_ptr;
switch (mp->b_datap->db_type) {

default:
/* don't understand it */
mp->b_datap->db_type = M_ERROR;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;
*mp->b_wptr++ = EPROTO;
areply(q, mp);
break;

case M_FLUSH:
/* standard flush handling goes here ... */
break;

case M_PROTO:

/* Protocol message -> user request */

proto = (union primitives *) mp->b_rptr;

switch (proto->type) {

default:
mp->b_datap->db_type = M_ERROR;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;
*mp->b_wptr++ = EPROTO;
areply(q, mp);
return;

case BIND_REQ:
oldpri = LOCK(dgproto->Ick, plstr);
if (dgproto->state != IDLE) {
err = EINVAL;
goto error_ack;

if (mp->b_wptr - mp->b_rptr != sizeof(struct bind_req)) {
err = EINVAL;
goto error_ack;

}
if (err = chkaddr(proto->bind_req.BIND_addr))
goto error_ack;

dgproto->state = BOUND;

dgproto->addr = proto->bind_req.BIND_addr;
UNLOCK(dgproto->Ick, oldpri);
mp->b_datap->db_type = M_PCPROTO;
proto->type = OK_ACK;

.

Screen 5-9. Write Procedure
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mp->b_wptr = mp->b_rptr + sizeof(struct ok_ack);

qgreply(q, mp);
break;

error_ack:
UNLOCK(dgproto->Ick, oldpri);
mp->b_datap->db_type = M_PCPROTO;
proto->type = ERROR_ACK;
proto->error_ack.UNIX_error = err;
mp->b_wptr = mp->b_rptr + sizeof(struct error_ack);
areply(q, mp);
break;
case UNITDATA_REQ:
oldpri = LOCK(dgproto->Ick, plstr);
if (dgproto->state '= BOUND)
goto bad;
if (mp->b_wptr - mp->b_rptr != sizeof(struct unitdata_req))
goto bad;
if (err = chkaddr(proto->unitdata_req.DEST_addr))
goto bad;

/* start device or mux output ... */

UNLOCK(dgproto->Ick, oldpri);

putq(d, mp);
break;

bad:
UNLOCK(dgproto->Ick, oldpri);
freemsg(mp);
break;

}

\_ )

The writeput procedure switches on the message type. The only types accepted are
M_FLUSHandM_PROTOFor M_FLUSHmessages, the driver performs the canonical
flush handling (not shown). F&d_PROT@nessages, the driver assumes the message
block contains a union primitive and switches ontihee field. Two types are under-
stood:BIND_REQandUNITDATA REQ

For aBIND_REQ the current state is checked; it mustDEE . Next, the message size is
checked. If it is the correct size, the passed-in address is verified for legality by calling
chkaddr . If everything checks, the incoming message is converted infKaACKand

sent upstream. If there is any error, the incoming message is converted into an
ERROR_ACHKnNd sent upstream.

For UNITDATA_REQthe state is also checked; it musB8@UNDAs above, the message

size and destination address are checked. If there is any error, the message is simply dis-
carded. If all is well, the message is put on the queue, and the lower half of the driver is
started.

If the writeput procedure receives a message type that it does not understand, either a
badb_datap->db_type or badproto->type, the message is converted into an
M_ERRORessage and sent upstream.

The generation oUNITDATA_IND messages (not shown in the example) normally
occurs in the device interrupt if this is a hardware driver or in the lowerpreagroce-

dure if this is a multiplexor. The algorithm is simple: The data part of the message is
prepended by akl_PROT@nessage block that containsir@Etdata_ind structure and

sent upstream.
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Message Allocation and Freeing
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Theallocb utility routine allocates a message and the space to hold the data for the mes-
sageallocb returns a pointer to a message block containing a data buffer of at least the
size requested, providing there is enough memory available. It returns null on failure. Note
thatallocb always returns a message of tyypeDATAThe type may then be changed if
requiredb_rptr andb_wptr are set talb_base (seemsgb anddatab ), which is the

start of the memory location for the data.

allocb may return a buffer larger than the size requestealoifb indicates buffers
are not availableaflocb fails), theput /service procedure may not cadleep to
wait for a buffer to become available. Instead ithfeall  utility can defer processing in
the module or the driver until a buffer becomes available.

If message space allocation is done bypilte procedure andllocb  fails, the message
is usually discarded. If the allocation fails in thervice routine, the message is
returned to the queubufcall s called to enable to tteervice  routine when a mes-
sage buffer becomes available, andsirice  routine returns.

Thefreeb utility routine releases (deallocates) the message block descriptor and the cor-
responding data block, if the reference count (ab structure) is equal to 1. If the
reference counter exceeds 1, the data block is not released.

Thefreemsg utility routine releases all message blocks in a message. liresies to
free all message blocks and corresponding data blocks.

In Screen 5-1Cgllocb is used by theappend subroutine that appends a character to a
message block:

(. )

/*

* Append a character to a message block.

* If (*bpp) is null, it will allocate a new block

* Returns 0 when the message block is full, 1 otherwise
*/

#define MODBLKSZ128/* size of message blocks */
static bappend(mblk_t **bpp, int ch)
{

mblk_t *bp;

if ((bp = *bpp) != NULL) {
if (bp->b_wptr >= bp->b_datap->db_lim)
return 0;
} else if ((*bpp = bp = allocb(MODBLKSZ, BPRI_MED)) == NULL)
return 1;
*bp->b_wptr++ = ch;
return 1;

}

\_ )

Screen 5-10. Appending a Character to a Message Block

bappend receives a pointer to a message block pointer and a character as arguments. If a
message block is suppli¢tbpp '=NULL) , thenbappend checks if there is room for



STREAMS Messages

more data in the block. If not, it fails. If there is no message block, a block of afifeBst
BLKSZis allocated throughllocb

If thealloch fails, bappend returns success, silently discarding the character. This may
or may not be acceptable. For TTY-type devices, it is generally accepted. If the original
message block is not full or tladloch is successfubappend stores the character in

the block.

Screen 5-11 shows subroutimodwput which processes all the message blocks in any
downstream data (typd_DATA messagesteemsg deallocates messages.

~

/* Write side put procedure */
static modwput( queue_t *q, mblk_t *mp)
{
switch (mp->b_datap->db_type) {
default:
putnext(g, mp);/* Don't do these, pass them along */
break;

case M_DATA: {
register mblk_t *bp;
struct mblk_t *nmp = NULL, *nbp = NULL;

for (bp = mp; bp != NULL; bp = bp->b_cont) {
while (bp->b_rptr < bp->b_wptr) {
if (*bp->b_rptr == "\n")
if ('bappend(&nbp, \r'))
goto newblk;
if ('bappend(&nbp, *bp->b_rptr))
goto newblk;

bp->b_rptr++;

continue;
newblk:
if (nmp == NULL)
nmp = nbp;

else linkb(nmp, nbp); /* link message block
to tail of nmp */
nbp = NULL;

}

if (nmp == NULL)
nmp = nbp;
else linkb(nmp, nbp);
freemsg(mp); /* de-allocate message */
if (nmp)
putnext(g, nmp);
break;

}

\_ )

Screen 5-11. Processing Message Blocks

In Screen 5-11, data messages are scanned and fitter@gput copies the original mes-
sage into a new block(s), modifying as it copi@sp points to the current new message
block; andnmppoints to the new message being formed as mulipIBATAmMessage
blocks. The outefor loop goes through each message block of the original message,
while the innemwhile loop goes through each bybappend is used to add characters to
the current or new block; if it fails, the current new block is fulhrifpis NULL, nmpis
pointed at the new block. ifmpis notNULL, the new block is linked to the endmhp

with thelinkb  utility.
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At the end of the loops, the final new block is linkedtop The original message (all
message blocks) is returned to the poofrbgmsg . If a new message exists, it is sent
downstream.

Recovering from No Buffers

Thebufcall  utility can recover from aallocb  failure. The call syntax is as follows:
bufcall (int sizeint pri, int (* fung(), long arg)

bufcall calls (*fung(arg) when a buffer o$izebytes is available. Whdancis called, it

has no user context and must return without sleeping. Also, because of interrupt process-
ing, and multiprocessor contention for resources, there is no guarantee thdtimgien

called, a buffer will actually be available (someone else may steal it).

On succesdyufcall  returns a nonzero identifier that can be used as a parameter to
unbufcall  to cancel the request later. On failure, 0 is returned and the requested func-
tion will never be called.

NOTE
Make sure you avoid deadlock when holding resources while

waiting forbufcall  to call (*fund(arg). Usebufcall  spar-
ingly.

Two examples, Screen 5-12 and Screen 5-13, are provided. Screen 5-12 is a device receive
interrupt handler:
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~

#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>

dev_rintr(int dev)
/* process incoming message ... */

/* allocate new buffer for device */
dev_re_load(dev);
}
/*
* Reload device with a new receive buffer
*/
dev_re_load(int dev)
{
mblk_t *bp;

if (bp = alloch(DEVBLKSZ, BPRI_MED)) == NULL) {
cmn_err(CE_WARN, “dev: allocb failure (size %d)\n", DEVBLKSZ);
/*
* Allocation failed. Use bufcall to
* schedule a call to ourselves.
*
/
(void) bufcall(DEVBLKSZ, BPRI_MED, dev_re_load, dev);
return;

}

[* pass buffer to device ... */

\_ )

Screen 5-12. Device Receive Interrupt Handler

dev_rintr  is called when the device has posted a receive interrupt. The code retrieves
the data from the device (not showdgv_rintr must then give the device another
buffer to fill by a call todev_re_load , which callsallocb . If allocb fails,
dev_re load usesbufcall to call itself when STREAMS determines a buffer is
available.

NOTE

Becausdoufcall may fail, there is still a chance that the device
may hang. A better strategy,btifcall  fails, is to discard the
current input message and resubmit that buffer to the device. Los-
ing input data is generally better than hanging.

Screen 5-13 is a writgervice  proceduremod_wsrv, which needs to prepend each
output message with a headaond_wsrv illustrates a case for potential deadlock:
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static int mod_wsrv(queue_t *q)
{

int genable;
mblk_t *mp, *bp;

while (mp = getq(a)) {
[* check for priority messages and canput ... */

/* Allocate a header to prepend to the message. If
* the allocb fails, use bufcall to reschedule.
*
/
if ((bp = allocb(HDRSZ, BPRI_MED)) == NULL) {
if ('bufcallHDRSZ, BPRI_MED, genable, q)) {
itimeout(genable, q, HZ*2, plstr);

/* Put the message back and exit, we will be re-enabled later */
putba(q, mp);
return;

}

[* process message .... */

}

\_ )

Screen 5-13. Write Service Procedure

However, ifalloch  fails, mod_wsrv wants to recover without loss of data and calls
bufcall . In this example, the routine passethtiécall  isgenable . When a buffer is
available, theservice procedure is automatically re-enabled. Before exiting, the current
message is put back on the queue. This example dealbufgtil  failure by resorting

to theitimeout  operating system utility routine. This routine schedules the given func-
tion to be run with the given argument in the given number of clock ticks (there are HZ
clock ticks per second). In this examplebiffcall ~ fails, the system rungenable

after two seconds have passed.

Extended STREAMS Buffers
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Some hardware using the STREAMS mechanism supports memory-mapped 1/O that
allows the sharing of buffers between users, kernel, and the 1/O card.

If the hardware supports memory-mapped I/O, data received from the network are placed
in the DARAM (dual access RAM) section of the 1/0 card. Because DARAM is a shared
memory between the kernel and the 1/O card, data transfer between the kernel and the I/O
card is eliminated. Once in kernel space, you can manipulate the data buffer as if it were a
kernel resident buffer. Similarly, data being sent downstream is placed in DARAM and
then forwarded to the network.

In a typical network arrangement, data is received from the network by the I/O card. The

block of data is read into the card's internal buffer. It interrupts the host computer to denote
that data have arrived. The STREAMS driver gives the controller the kernel address where
the data block is to go and the number of bytes to transfer. After the controller reads the
data into its buffer and verifies the checksum, it copies the data into main memory to the

address specified by the direct memory access (DMA) memory address. Once in the ker-
nel space, the data is packaged into message blocks and processed in the usual way.
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When data is transmitted from user process to the network, the data is copied from the user
space to the kernel space, and packaged as a message block and sent to the downstream
driver. The driver interrupts the 1/0O card signaling that data is ready to be transmitted to
the network. The controller copies the data from the kernel space to the internal buffer on
the 1/O card, and from there data is placed on the network.

The STREAMS buffer allocation mechanism enables the allocation of message and data
blocks to point directly to a client-supplied (non-STREAMS) buffer. Message and data
blocks allocated this way are indistinguishable (for the most part) from the normal data
blocks. The client-supplied buffers are processed as if they were normal STREAMS data
buffers.

Drivers may not only attach non-STREAMS data buffers but also free them. This is done
as follows:

¢ Allocation - if the drivers are to use DARAM without wasting STREAMS
resources and without being dependent on upstream modules, a data and
message block can be allocated without an attached data buffer. The rou-
tine to use is calledsballoc . This returns a message block and data
block without an associated STREAMS buffer. The buffer used is the one
supplied by the caller.

* Freeing- each driver using non-STREAMS resources in a STREAMS
environment must fully manage those resources, including freeing them.
However, to make this as transparent as possible, a driver-dependent rou-
tine is executed fireeb is called to free a message and data block with an
attached non-STREAMS buffer.

freeb detects if a buffer is a client supplied, non-STREAMS buffer. If ftégb

finds thefree_rtn  structure associated with that buffer. After calling the driver-
dependent routine (defined free_rtn ) to free the buffer, th&eeb routine
frees the message and data block.

NOTE

The free routine must not reference any dynamically allocated
data structures that become freed when the driver is closed,
because messages can exist in a Stream after the driver is closed.
This can occur, for example, when a Stream is closed down. The
driver close routine is called and the driver's private data structure
may be deallocated. If the driver sends a message created by
esballoc  upstream, that message may still be on the Stream
head read queue. The Stream head read queue is then flushed,
freeing the message and calling the driver's free routine after the
driver has been closed.

The format of thdree_rtn  structure is as follows:
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struct free_rtn {
void (*free_func) (); /* driver dependent free routine */
char *free_arg; /* argument for free_rtn */

h

typedef struct free_rtn frtn_t;

The structure has two fields: a pointer to a function and a location for any argument passed
to the function. Instead of defining a specific number of argunfezgsarg is defined

as achar * . Drivers can then pass pointers to structures if more than one argument is
needed.

The STREAMS utility routineesballoc , provides a common interface for allocating

and initializing data blocks. It makes the allocation as transparent to the driver as possible
and provides a way to change the fields of the data block, since modification should only
be performed by STREAMS. The driver calls this routine when it wants to attach its own
data buffer to a newly allocated message and data block. If the routine successfully com-
pletes the allocation and assigns the buffer, it returns a pointer to the message block. The
driver is responsible for supplying the argumentssioalloc , namely, a pointer to its

data buffer, the size of the buffer, the priority of the data block, and a pointer to the
free_rtn  structure. All arguments should be nNbiLL See théevice Driver Refer-
encefor a detailed description etballoc

Message Types
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All the STREAMS messages are definedya/stream.h . The messages differ in their
intended purpose and their queueing priority. The contents of certain message types can be
transferred between a process and a Stream by system calls.

Below, the message types are briefly described and classified according to their queueing
priority.

Ordinary Messageg&lso called “normal” messages):

M_BREAK Request to a Stream driver to send a “break”

M_CTL Control/status request used for intermodule communication
M_DATA User data message for I/O system calls

M_DELAY Request a real-time delay on output

M_IOCTL Control/status request generated by a Stream head
M_PASSFP File pointer passing message

M_PROTO Protocol control information

M_RSE Reserved for internal use

M_SETOPTS Set options at the Stream head, sent upstream
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Signal sent from a module/driver to a user

High Priority Messages

M_COPYIN Copy in data for transpareioctl s, sent upstream
M_COPYOUT Copy out data for transpardottl s, sent upstream
M_ERROR Report downstream error condition, sent upstream
M_FLUSH Flush module queue

M_HANGUP Set a Stream head hangup condition, sent upstream
M_IOCACK Positiveioctl(2) acknowledgment
M_IOCDATA Data for transpareinoctl s, sent downstream
M_IOCNAK Negativeioctl(2) acknowledgment
M_PCPROTO Protocol control information

M_PCRSE Reserved for internal use

M_PCSIG Signal sent from a module/driver to a user
M_READ Read notification, sent downstream

M_START Restart stopped device output

M_STARTI Restart stopped device input

M_STOP Suspend output

M_STOPI Suspend input

NOTE

Transparenioctl s support applications developed before the
introduction of STREAMS.

Defined STREAMS message types differ in their intended purposes, their treatment at the
Stream head, and in their message queueing priority.

STREAMS does not prevent a module or driver from generating any message type and
sending it in any direction on the Stream. However, established processing and direction
rules should be observed. Stream head processing according to message type is fixed,
although certain parameters can be altered.
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Detailed Description of Message Types

The message types are classified according to their message queueing priority. Ordinary
messages are described first, with high priority messages following. In certain cases, two
message types may perform similar functions, differing only in priority. The use of the
word “module” generally implies “module or driver.”

Ordinary messages are also called normal or non-priority messages. Ordinary messages
are subject to flow control whereas high priority messages are not.

Ordinary Messages

M_BREAK

M_CTL

M_DATA
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Sent to a driver to request that BREAK be transmitted on whatever media the driver is
controlling.

The message format is not defined by STREAMS and its use is developer dependent. This
message may be considered a special caseMf @TLmessage. AM_BREAKnessage

cannot be generated by a user-level process and is always discarded if passed to the
Stream head.

Generated by modules that want to send information to a particular module or type of
module.M_CTLmessages are typically used for inter-module communication, as when
adjacent STREAMS protocol modules negotiate the terms of their interfadd. BmL

message cannot be generated by a user-level process and is always discarded if passed to
the Stream head.

Intended to contain ordinary data. Messages allocated talldod  routine are type
M_DATAby defaultM_DATAmessages are generally sent bidirectionally on a Stream and
their contents can be passed between a process and the Stream heagetmah@)
andputmsg(2) system calls, the contentsidf DATAmessage blocks are referred to as
the data part. Messages composed of multiple message blocks will typicalM Haxd A

as the message type for all message blocks following the first.
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Sent to a media driver to request a real-time delay on output. The data buffer associated
with this message is expected to contain an integer to show the number of machine ticks of
delay desiredM_DELAYmessages are typically used to prevent transmitted data from
exceeding the buffering capacity of slower terminals.

The message format is not defined by STREAMS and its use is developer dependent. Not
all media drivers may understand this message. This message may be considered a special
case of aitM_CTLmessage. AM_DELAYmessage cannot be generated by a user-level
process and is always discarded if passed to the Stream head.

Generated by the Stream head in respon$eS6R, |_LINK , |_UNLINK , |_PLINK ,
andl_PUNLINK (ioctl(2) STREAMS system calls, set¢reamio(7) ), and in
response taoctl  calls that contain a command argument value not defingtida-

mio(7) . When one of thesiectl s is received from a user process, the Stream head
uses values supplied in the call and values from the process to cré&téC@TL mes-
sage containing them, and sends the message downstved®@CTL messages are
intended to perform the geneiattl  functions of character device drivers.

For anl_STRioctl , the user values are supplied in a structure of the following form,
provided as an argument to tioetl  call (sed_STR in streamio(7) ):

struct strioctl

{

int ic_cmd,; /* downstream request */
int ic_timout; /* ACK/NAK timeout */

int ic_len; /* length of data arg */
char *ic_dp; [* ptr to data arg */

whereic_cmd is the request (or command) defined by a downstream module or driver,
ic_timout is the time the Stream head will wait for acknowledgment tokh©CTL
message before timing out, aicddp is a pointer to an optional data buffer. On input,
ic_len contains the length of the data in the buffer passed in and, on return from the call,
it contains the length of the data, if any, being returned to the user in the same buffer.

TheM_IOCTL message format is omd IOCTL message block followed by zero or more
M_DATAmessage blocks. STREAMS constructdvaiOCTL message block by placing
aniocblk  structure, defined igys/stream . h, in its data buffer:
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struct iocblk
{
int  ioc_cmd; /* ioctl command type */
cred_t *ioc_cr; /* full credentials */
uint  ioc_id; /* ioctl identifier */
uint  ioc_count; /* byte count for ioctl data */
int  ioc_error; /* error code for M_IOCACK or M_IOCNAK */
int  ioc_rval; /* return value for M_IOCACK */
long ioc_filler[4];  /* reserved for future use */
¥

For anl_STRioctl ,ioc_cmd corresponds tec_cmd of thestrioctl structure.
ioc_cr points to a credentials structure defining the user process's permissions (see
cred.h ). Its contents can be tested to determine if the user issuingcthe call is

authorized to do so. For anSTR ioctl , ioc_count is the number of data bytes, if
any, contained in the message and corresporidslém

ioc_id is an identifier generated internally, and is used by the Stream head to match each
M_IOCTL message sent downstream with response messages sent upstream to the Stream
head. The response message which completes the Stream head processingctbr the

is anM_IOCACK(positive acknowledgment) or al_IOCNAK(negative acknowledg-

ment) message.

For anl_STRioctl , if a user supplies data to be sent downstream, the Stream head cop-
ies the data, pointed to i _dp in thestrioctl structure, intdV_DATAmessage
blocks and links the blocks to the inithdl IOCTL message blockoc_count is copied
fromic_len . If there is no datapc_count is zero.

If the Stream head does not recognize the command argumenioaflan, it creates a
transparenM_IOCTL message. The format of a transpafdniOCTL message is one
M_IOCTL message block followed by oive DATAblock. The form of théocblk  struc-

ture is the same as above. Howeuats, cmd is set to the value of the command argu-
ment in theioctl  system call anibc_count is set toTRANSPARENTdefined in
sys/stream.h . TRANSPARENTistinguishes the case wherelaBTR ioctl  may
specify a value ofoc_cmd equivalent to the command argument of a transparent
ioctl . TheM_DATAblock of the message contains the value ofitiggparameter in the
ioctl  call.

The first module or driver that understands tbe cmd request contained in the
M_IOCTL acts on it. For ah STR ioctl , this action generally includes an immediate
upstream transmission of & IOCACKmessage. For transparémt IOCTLs, this action
generally includes the upstream transmission dflaGOPYINor M_COPYOUmessage.

Intermediate modules that do not recognize a particular request must pass the message on.
If a driver does not recognize the request, or the receiving module can not acknowledge it,
anM_IOCNAKmessage must be returned.

M_IOCACKandM_IOCNAKmessage types have the same format 44 d@CTL mes-

sage and contain aacblk structure in the first block. AM_IOCACKblock may be

linked to followingM_DATAblocks. If one of these messages reaches the Stream head
with an identifier that does not match that of the currently-outstaidiil@CTL message,

the response message is discarded. A common means of assuring that the correct identifier
is returned is for the replying module to convertthdOCTL message into the appropri-
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ate response type and gt count to O, if no data is returned. Then, treply util-
ity is used to send the response to the Stream head.

In anM_IOCACKor M_IOCNAKmessageipc_error  holds any return error condition
set by a downstream module. If this value is non-zero, it is returned to the aseoin.
Note that both aiM_IOCNAKand anvM_IOCACKmay return an error. However, only an
M_IOCACKcan have a return value. For in IOCACKioc_rval  holds any return
value set by a responding module. ForMNOCNAK oc_rval is ignored by the
Stream head.

If a module processing dnSTR ioctl ~ wants to send data to a user process, it must use
theM_IOCACKmessage that it constructs such thatMhéOCACKblock is linked to one

or more followingM_DATAblocks containing the user data. The module must set
ioc_count to the number of data bytes sent. The Stream head places the data in the
address pointed to by_dp in the usei_STR strioctl structure.

If a module processing a transparintl  (that is, it received a transparént IOCTL)
wants to send data to a user process, it can use oMy @®PYOUmessage. For a trans-
parentioctl , no data can be sent to the user process M 8&CACKmessage. All data
must have been sent in a precedihgCOPYOUihessage. The Stream head will ignore
any data contained in @i_IOCACKmessage (itM_DATAblocks) and will free the
blocks.

No data can be sent with &h IOCNAKmessage for any type bf IOCTL The Stream
head will ignore and will free anyi_ DATAblocks.

The Stream head blocks the user process unt d®@CACKor M_IOCNAKresponse to
theM_IOCTL (sameioc_id ) is received. For aM_IOCTL generated from ah STR

ioctl , the Stream head will time out if no response is receivéd fimout interval

(the user may specify an explicit interval or specify use of the default interval). For
M_IOCTL messages generated from all otioetl s, the default (infinite) is used.

Used by STREAMS to pass a file pointer from the Stream head at one end of a Stream
pipe to the Stream head at the other end of the same Stream pipe.

The message is generated as a result of BENDFD ioctl  (seestreamio(7) )

issued by a process to the sending Stream head. STREAMS plabésA8SFRAMes-

sage directly on the destination Stream head's read queue to be retrievédREGWIFD

ioctl  (seestreamio(7) ). The message is placed without passing it through the
Stream (that is, it is not seen by any modules or drivers in the Stream). This message
should never be present on any queue except the read queue of a Stream head. Conse-
guently, modules and drivers do not need to recognize this message, and it can be ignored
by module and driver developers.

Intended to contain control information and associated data. The message format is one or
more (see notdyl_ PROTOnessage blocks followed by zero or mbteDATAmMessage
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blocks as shown in Figure 5-7. The semantics oMh®ATAandM_PROTGnessage
block are determined by the STREAMS module that receives the message.

TheM_PROTGQnessage block will typically contain implementation dependent control
information.M_PROT@nessages are generally sent bidirectionally on a Stream, and their
contents can be passed between a process and the Stream head. The contents of the first
message block of dl_PROT@®nessage is generally referred to as the control part, and the
contents of any followingl DATAmessage blocks are referred to as the data part. In the
getmsg(2) andputmsg(2) system calls, the control and data parts are passed sepa-
rately.

NOTE

On the write-side, the user can only genekt®ROT@nessages
containing ondVl_ PROT@nessage block.

Although its use is not recommended, the formatloPROT@ndM_PCPROT@eneri-
cally PROTQ@messages sent upstream to the Stream head allows mR@IECblocks
at the beginning of the messagetmsg(2) will compact the blocks into a single con-
trol part when passing them to the user process.

M_PROTO control
or P> information
M_PCPROTO
M_DATA | data
M_DATA - data

161800

Figure 5-7. M_PROTO and M_PCPROTO Message Structure

Reserved for internal use. Modules that do not recognize this message must pass it on.
Drivers that do not recognize it must free it.
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Used to alter some characteristics of the Stream head. It is generated by any downstream
module, and is interpreted by the Stream head. The data buffer of the message has the fol-

lowing structure:

-

struct stroptions

{
ulong so_flags;
short so_readopt;
ushort so_wroff;
long so_minpsz;
long so_maxpsz;
ulong so_hiwat;
ulong so_lowat;

b

o

unsigned char so_band;

~

/* options to set */
/* read option */
* write offset */
/* minimum read packet size */
/* maximum read packet size */
/* read queue high-water mark */
/* read queue low-water mark */
/* update water marks for this band */

)

whereso_flags
of the following:

SO_ALL

SO_READOPT

specifies which options are to be altered, and can be any combination

Update all options according to the values specified in the remain-
ing fields of thestroptions structure.

Set the read mode (seead(2) ) as specified by the value of
so_readopt

RNORM
RMSGD
RMSGN
RPROTNORM
RPROTDAT

RPROTDIS

Byte stream
Message discard
Message non-discard
Normal protocol

TurnM_PROT@ndM_PCPROT@essages
into M_DATAmessages.

DiscardM_PROT@ndM_PCPROT®Ilocks in
a message and retain any linRddDATA
blocks.

SO_WROFF

Direct the Stream head to insert an offset specifiesbbwroff

into the first message block of &l DATAmessages created as a
result of awrite(2) system call. The same offset is inserted
into the firstM_DATAmessage block, if any, of all messages cre-
ated by gputmsg system call. The default offset is zero.

The offset must be less than the maximum message buffer size (system dependent). Under
certain circumstances, a write offset may not be inserted. A module or driver must test that

b_rptr

in themsgb structure is greater thatb_base in thedatab structure to deter-

mine that an offset has been inserted in the first message block.
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SO_MINPSZ

SO_MAXPSZ

SO_HIWAT

SO_LOWAT

SO_MREADON

SO_MREADOFEF

SO_NDELON

Change the minimum packet size value associated with the
Stream head read queuesm minpsz . This value is advisory

for the module immediately below the Stream head. It is intended
to limit the size oM_DATAmessages that the module should put
to the Stream head. There is no intended minimum size for other
message types. The default value in the Stream head is zero.

Change the maximum packet size value associated with the
Stream head read queuestd maxpsz This value is advisory for

the module immediately below the Stream head. It is intended to
limit the size ofM_DATAmessages that the module should put to
the Stream head. There is no intended maximum size for other
message types. The default value in the Stream hébERSZ,

the maximum STREAMS allows.

Change the flow control high water margg_fiwat in the
gueue structure,gb_hiwat in thegband structure) on the
Stream head read queue to the value specified iniwat

Change the flow control low water mark {owat in thequeue
structuregb_lowat in thegband structure) on the Stream head
read queue to the value specifiecddn lowat

Enable the Stream head to geneMté&kEADMessages when pro-
cessing aead(2) system call. If bott5O_MREADOA&Nd
SO_MREADOF&#&te set irso_flags , SO_MREADOFRWill have
precedence.

Disable the Stream head generatioiofREADmessages when
processing aead(2) system call. This is the default. If both
SO_MREADOBMNdSO_MREADOF#&re set inso_flags
SO_MREADOFRFill have precedence.

Set non-STREAMS tty semantics f@_NDELAY(or
O_NONBLOQHKrocessing omead(2) andwrite(2) system
calls. IfO_NDELAY(or O_NONBLOQKs set, aead(2)  will
return O if no data is waiting to be read at the Stream head. If
O_NDELAY(or O_NONBLOQKs clear, aead(2) will block

until data becomes available at the Stream head.

Regardless of the state ©f NDELAY(or O_ NONBLOQKa write(2) will block on
flow control and will block if buffers are not available.

If both SO_NDELONMNdSO_NDELOFFre set irso_flags , SO_NDELOFwill have

precedence.

NOTE

For conformance with the POSIX standard, it is recommended
that new applications use tke NONBLOC#ag whose behavior
is the same as that & NDELAMnless otherwise noted.
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SO_NDELOFF Set STREAMS semantics f@ _NDELAYor O_NONBLOQHKro-
cessing omead(2) andwrite(2)  system calls. IO_NDELAY
(or O_NONBLOOKS set, aead(2) will return-1 and set
EAGAINIf no data is waiting to be read at the Stream head. If
O_NDELAY(or O_NONBLOQKs clear, aead(2) will block
until data becomes available at the Stream head. (See the note
above.)

If O_NDELAY(or O_NONBLOQKHKs set, avrite(2)  will return-1 and seEAGAINif

flow control is in effect when the call is received. It will block if buffers are not available.
If O_NDELAY{or O_NONBLOQKs set and part of the buffer has been written and a flow
control or buffers not available condition is encountevaite(2)  will terminate and
return the number of bytes written.

If O_NDELAY(or O_NONBLOGQKSs clear, awrite(2)  will block on flow control and
will block if buffers are not available.

This is the default. If botiSO_NDELOMNdSO_NDELOFFRre set irso_flags
SO_NDELOFHwill have precedence.

In the STREAMS-based pipe mechanism, the behavicgadf(2) andwrite(2) is
different for theO_ NDELAYandO_NONBLOCHags. Segead(2) andwrite(2)  for
details.

SO_BAND Set water marks in a band. If t8©_BANDOlag is set with the
SO_HIWATor SO_LOWATlag, theso_band field contains the
priority band number theo_hiwat andso_lowat fields per-
tain to.

If the SO_BANDlag is not set and theO_HIWATandSO_LOWATlags are on, the nor-
mal high and low water marks are affected. ¥ BANDlag has no effect 8O_HIWAT
andSO_LOWATlags are off.

Only one band's water marks can be updated with a $ihgl=TOPTS3nessage.

SO_ISTTY: Inform the Stream head that the Stream is acting like a controlling
terminal.
SO_ISNTTY. Inform the Stream head that the Stream is no longer acting like a

controlling terminal.

For SO_ISTTY, the Stream may or may not be allocated as a controlling terminal via an
M_SETOPTSnessage arriving upstream during open processing. If the Stream head is
opened before receiving this message, the Stream will not be allocated as a controlling ter-
minal until it is queued again by a session leader.

SO_TOSTOP Stop on background writes to the Stream.
SO_TONSTOP Do not stop on background writes to the Stream.

SO_TOSTORNASO_TONSTORre used with job control.
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M_SIG

Sent upstream by modules or drivers to post a signal to a process. When the message
reaches the front of the Stream head read queue, it evaluates the first data byte of the mes-
sage as a signal number, definedys/signal.h . (Note that the signal is not gener-

ated until it reaches the front of the Stream head read queue.) The associated signal will be
sent to process(es) under the following conditions:

If the signal isSSIGPOLL, it will be sent only to those processes that have explicitly regis-
tered to receive the signal (deSETSIG in streamio(7) ).

If the signal is noSIGPOLL and the Stream containing the sending module or driver is a
controlling tty, the signal is sent to the associated process group. A Stream becomes the
controlling tty for its process group if, @pen(2) , a module or driver sends an
M_SETOPT3nessage to the Stream head withSfe ISTTY flag set.

If the signal is noSIGPOLL and the Stream is not a controlling tty, no signal is sent,
except in case GIOCSPGRRandTIOCSPGRPThese twadoctl s set the process group
field in the Stream head so the Stream can generate signals even if it is not a controlling

tty.

High Priority Messages

M_COPYIN
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Generated by a module or driver and sent upstream to request that the Stream head per-
form acopyin for the module or driver. It is valid only after receivingMnlOCTL mes-
sage and before an_IOCACKor M_IOCNAK

The message format is oe COPYINmessage block containingcapyreq  structure,
defined insys/stream.h

~

struct copyreq {

int  cg_cmd; /* ioctl command (from ioc_cmd) */
cred_t *cq_cr; /* full credentials */

uint  cq_id; /*ioctl id (from ioc_id) */

caddr_t cq_addr; /* address to copy data to/from */
uint  cq_size; /* number of bytes to copy */

int  cq_flag; /* reserved */

mblk_t *cq_private; /* private state information */
long cp_filler[4];/* reserved for future use */

b

\_ )

The first four members of the structure correspond to those micthie  structure in the
M_IOCTL message which allows the same message block to be reused for both structures.
The Stream head will guarantee that the message block allocated KbrIDETL mes-

sage is large enough to containapyreq structure. Theq_addr field contains the

user space address from which the data is to be copiedqThiee field is the number
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of bytes to copy from user space. Tueflag field is reserved for future use and should
be set to zero.

Thecq_private  field can be used by a module to point to a message block containing
the module's state information relating to tbil . The Stream head will copy (without
processing) the contents of this field to tfielOCDATAresponse message so that the
module can resume the associated state. Ma@OPYINor M_COPYOUinessage is
freed, STREAMS will not free any message block pointed tocpyrivate . This is

the module's responsibility.

This message should not be queued by a module or driver unless it intends to process the
data for theoctl

Generated by a module or driver and sent upstream to request that the Stream head per-
form acopyout for the module or driver. It is valid only after receivingMnlOCTL
message and before h IOCACKor M_IOCNAK

The message format is ot COPYOUmessage block followed by one or mbteDATA
blocks. TheM_COPYOUinessage block containcapyreq structure as described in
theM_COPYINmessage with the following differences: Tdtg addr field contains the
user space address to which the data is to be copiedqgThiee field is the number of
bytes to copy to user space.

Data to be copied to user space is contained in the IMk&RATAblocks.

This message should not be queued by a module or driver unless it intends to process the
data for theoctl  in some way.

Sent upstream by modules or drivers to report some downstream error condition. When
the message reaches the Stream head, the Stream is marked so that all subsequent system
calls issued to the Stream, excludeigse(2) andpoll(2) , will fail with errno  set

to the first data byte of the messaB@LLERRS set if the Stream is beiqpll ed (see

poll(2) ). All processes sleeping on a system call to the Stream are awakened. An
M_FLUSHmessage witkFLUSHRVi6 sent downstream.

The Stream head maintains two error fields, one for the read-side and one for the write-
side. The one-byte formdM_ERRORhessage sets both of these fields to the error speci-
fied by the first byte in the message.

The second style of thd_ERRORnessage is two bytes long. The first byte is the read
error and the second byte is the write error. This allows modules to set a different error on
the read-side and write-side. If one of the bytes is SSXBRRORhNen the field for the
corresponding side of the Stream is unchanged. This allows a module to just an error on
one side of the Stream. For example, if the Stream head was not in an error state and a
module sent aM_ERRORnessage upstream with the first byte seERROTCand the

second byte set NOERRQORall subsequent read-like system calls (for exampky ,
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getmsg ) will fail with EPROTQbut all write-like system calls (for examplerite |,
putmsg ) will still succeed. If a byte is set to O, the error state is cleared for the corre-
sponding side of the Stream. The valdBBERRORBNd 0 are not valid for the one-byte
form of theM_ERRORhessage.

Requests all modules and drivers that receive it to flush their message queues (discard all
messages in those queues) as indicated in the message. All modules that enqueue mes-
sages must identify and process this message type.

An M_FLUSHcan originate at the Stream head, or in any module or driver. The first byte
of the message contains flags that specify one of the following actions:

* FLUSHRFlush the read queue of the module.
* FLUSHWFIlush the write queue of the module.
* FLUSHRWFIlush both the read queue and the write queue of the module.

* FLUSHBANDFlush the message according to the priority associated with
the band.

Each module passes this message to its neighbor after flushing its appropriate queue(s),
until the message reaches one end of the Stream.

Drivers are expected to include the following processing/foFLUSHmessages. When
anM_FLUSHmessage is sent downstream through the write queues in a Stream, the driver
at the Stream end should flush its queues according to the flag settings as follows:

* If only FLUSHWSs set, the write queue is flushed and the message is dis-
carded.

* If the message indicates that the read queues are to be flushed, the driver
should flush its read queue, shut off #FHldJSHWIag, and send the mes-
sage up the Stream's read queues.

When a flush message is sent up a Stream's read-side, the Stream head checks whether the
write-side of the Stream is to be flushed:

¢ |f only FLUSHRis set, the Stream head discards the message.

* If FLUSHWs set, the Stream head turns off BiéJSHRflag and sends the
message down the Stream's write side.

The lower side of a multiplexing driver should procksdLUSHmessages the same as
the Stream head.

If FLUSHBANDs set, the second byte of the message contains the value of the priority
band to flush.
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Sent upstream by a driver to report that it can no longer send data upstream. As example,
this might be because of an error, or to a remote line connection being dropped. When the
message reaches the Stream head, the Stream is marked so that all suvsés(@gnt
andputmsg(2) system calls issued to the Stream will fail and returkl&n error.
Thoseioctl s that cause messages to be sent downstream are alsdPfail&tHUHs set

if the Stream is being polled (spell(2) ).

However, subsequentad(2) orgetmsg(2) calls to the Stream will not generate an
error. These calls will return any messages (according to their function) that were on, or in
transit to, the Stream head read queue beforgl thANGURmMessage was received. When

all such messages have been reaai(2) will return 0 andgetmsg(2)  will set each

of its two length fields to 0.

This message also causeSI&HUPsignal to be sent to the controlling process instead of
the foreground process group, since the allocation and deallocation of controlling termi-
nals to a session is the responsibility of the controlling process.

Signals the positive acknowledgment of a previgusOCTL message. The message for-
mat is oneM_|IOCACKblock (containing atiocblk  structure, sed _IOCTL) followed

by zero or moréVl_DATAblocks. Theocblk data structure may contain a value in
ioc_rval  to be returned to the user process. It may also contain a vadwe énror

to be returned to the user processnmo .

If this message is responding tolaBTR ioctl ~ (seestreamio(7) ), it may contain

data from the receiving module or driver to be sent to the user process. In this example,
message format is o IOCACKblock followed by one or morgl_DATAblocks con-

taining the user data. The Stream head returns the data to the user if there is a correspond-
ing outstandindV_IOCTL request. Otherwise, tii_IOCACKmessage is ignored and alll
blocks in the message are freed.

Data can not be returned in lsh IOCACKmessage responding to a transpak&rniOCTL
The data must have been sent with preceMn@OPYOUinessage(s). If anyl_DATA
blocks follow theM_IOCACKblock, the Stream head will ignore and free them.

The format and use of this message type is described furtherMnt@CTL

Generated by the Stream head and sent downstream as a responise @Odt INor
M_COPYOUmessage. The message format is dn8OCDATAmessage block followed
by zero or moré/_DATAblocks. TheM_IOCDATAmessage block containgapyresp
structure, defined isys/stream.h
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struct copyresp {

int  cp_cmd; /* ioctl command (from ioc_cmd) */
cred_t *cp_cr; /* full credentials */

uint cp_id; /* ioctl id (from ioc_id) */

caddr_t cp_rval;  /* status of request: 0 -> success

non_zero -> failure */
uint cp_padl; /*reserved */
int  cp_pad2; /*reserved */
mblk_t *cp_private; /* private state info from cq_private */
long cp_filler[4]; /* reserved for future use */

%

\_ )

The first three members of the structure correspond to those iothile structure in
theM_IOCTL message which allows the same message blocks to be reused for all of the
related transparent messagkks COPYINM_COPYOUM_IOCACKM_ IOCNAK. The

cp_rval field contains the result of the request at the Stream head. Zero indicates suc-
cess and non-zero indicates failure. If failure is indicated, the module should not generate
anM_IOCNAKmessage. It must abort akttl  processing, clean up its data structures,
and return. Thep_private  field is copied from thep_private  field in the associ-
atedM_COPYINor M_COPYOUmessage. It is included in the IOCDATAmMessage so

the message can be self-describing. This is intended to singudify processing by
modules and drivers.

If the message is in response toMNCOPYINmessage and success is indicated, the
M_IOCDATAblock will be followed byM_DATAblocks containing the data copied in.

If an M_IOCDATAblock is reused, any unused fields defined for the resultant message
block should be cleared (particularly inlsin IOCACKor M_IOCNAK.

This message should not be queued by a module or driver unless it intends to process the
data for the@octl  in some way.

Signals the negative acknowledgment (failure) of a prelilbUOCTL message. Its form

is oneM_IOCNAKblock containing amocblk  data structure ( séd_IOCTL). The

iocblk  structure may contain a valueigt_error  to be returned to the user process

in errno . Unlike theM_IOCACK no user data or return value can be sent with this mes-
sage. If anyM_DATAblocks follow theM_IOCNAKblock, the Stream head will ignore and
free them. When the Stream head receivdd d®@CNAK the outstandingctl  request,

if any, will fail. The format and usage of this message type is described further under
M_IOCTL

Similar to theM_PROT@essage type, except for the priority and the following additional
attributes.

When anM_PCPROT@essage is placed on a queuesé@wice procedure is always
enabled. The Stream head will allow only dMePCPROT@essage to be placed in its
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read queue at a time. If & PCPROT@essage is already in the queue when another
arrives, the second message is silently discarded and its message blocks freed.

This message is intended to allow data and control information to be sent outside the nor-
mal flow control constraints.

Thegetmsg(2) andputmsg(2) system calls refer thl_ PCPROT@essages as high
priority messages.

M_PCRSE

Reserved for internal use. Modules that do not recognize this message must pass it on.
Drivers that do not recognize it must free it.

M_PCSIG

Similar to theM_SIG message, except for the priority.

M_PCSIGis often preferable to thd_SIG message especially in tty applications, because
M_SIG may be queued whilel_PCSIGis more guaranteed to get through quickly. For
example, if one generates in SIG message when the DEL (delete) key is pressed on the
terminal and one has already typed aheadth®lG message becomes queued and the
user doesn't get the call until it's too late; it becomes impossible to kill or interrupt a pro-
cess by pressing a delete key.

M_READ

Generated by the Stream head and sent downstreanrdadé?)  system call if no
messages are waiting to be read at the Stream head and if read notification has been
enabled. Read notification is enabled with 8@ MREADOfMg of theM_SETOPTS
message and disabled by use of$fite MREADOHRIRg.

The message content is set to the value ofllygeparameter (the number of bytes to be
read) in theead(2) call.

M_READSs intended to notify modules and drivers of the occurrencaedd. It is also
intended to support communication between Streams that reside in separate processors.
The use of thd_READmessage is developer dependent. Modules may take specific
action and pass on or free thle READnessage. Modules that do not recognize this mes-
sage must pass it on. All other drivers may or may not take action and then free the mes-
sage.

This message cannot be generated by a user-level process and should not be generated by
a module or driver. It is always discarded if passed to the Stream head.
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M_START and M_STOP
Request devices to start or stop their output. They are intended to produce momentary
pauses in a device's output, not to turn devices on or off.

The message format is not defined by STREAMS and its use is developer dependent.
These messages may be considered special case®Mofcaih message. These messages
cannot be generated by a user-level process and each is always discarded if passed to the
Stream head.

M_STARTI and M_STOPI

Similar toM_STARTandM_STORexcept thaM_STARTIandM_STOPIare used to start
and stop input.
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6
Overview: STREAMS Modules and Drivers

Modules and drivers are processing elements in STREAMS. A Stream device driver is
similar to a conventional UNIX system driver. It is opened like a conventional driver and is
responsible for the system interface to the device.

STREAMS modules and drivers are structurally similar. The call interfaces to driver rou-
tines are identical to interfaces used for modules. Drivers and modules must declare
streamtab , ginit , andmodule_info  structures. Within the STREAMS mechanism,
drivers are required elements, but modules are optional. However, in the STREAMS-based
pipe mechanism only the Stream head is required.

One consequence of the flexibility and modularity of STREAMS is the tendency to split
up the processing formerly done by drivers and distribute it among a number of
STREAMS modules and a driver. For example, where a TTY driver might directly call a
line discipline routine, a STREAMS configuration would isolate the line discipline pro-
cessing in a module. While STREAMS drivers may be cleaner and less complicated to
write, the driver writer may have the additional responsibility of writing modules as well.

Furthermore, the user-level program establishing access to a STREAMS device has the
option of building a stream with whatever modules are available. This flexibility implies
that a module's functionality must be well documented by the developer so that an applica-
tions programmer can be confident of correctly including it in a stream.

Differences Between Modules and Drivers

The following list summarizes the major differences between STREAMS modules and
drivers:

* Drivers are always positioned at the end of a stream. Consequently, for
hardware devices, the driver must handle interrupts, but modules do not.

* Drivers may be at the stream end for more than one stream at a time,
whereas a module can only be part of one stream.

* A module is not assigned a special device file and must be pushed onto a
stream while a driver is opened.

* Modules have no user context, and cannot accesséme structure. This
is also true for drivers, with the exception of thpeen(D3) and
close(D3) routines.
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Similarities Between Modules and Drivers

While the differences are significant, the similarities between modules and drivers are also
important.

* Both modules and drivers are built gueue structures.

* The manner in which the entry point routines are called is similar.
STREAMS devices are considered a subset of character devices, so they
are accessed through ttadevsw switch table. If the device were a simple
character device, the entry point routine would be looked up in this table. If
a STREAMS device has a non-null value in thestr field of the
cdevsw table, the designatestreamtab(D4) table should be used
instead. Thestreamtab  structure, in turn, contains pointersdimit
structures defining the entry points.

* STREAMS drivers and modules both hateamtab tables for access
to routines, and so both have the same choice of routines, most of which are
different from those found in thelevsw table for character devices. See
“STREAMS Entry Points” for a discussion of these routines.

* Both modules and drivers pass the same objects, (pointguetes and
to messages). Consequently, both modules and drivers make extensive use
of the STREAMS-specific functions described in Bevice Driver Refer-
encemanual.

User context is not generally available to STREAMS module procedures and drivers. The
exception is during execution of tbpen andclose routines. Driver and modulgpen
andclose routines have user context and may access theea structure, although

this is discouraged. Ttapen andclose routines may use blocking primitives as defined

in the DDI.

NOTE

STREAMS driver and modulput procedures andervice
procedures have no user context. They cannot accegsatea
structure of a process and must not sleep.

The module and drivaspen/close interface has been modified
for UNIX System V Release #However, the system dalilts to
UNIX System V Release 3.0 intacke unlesgrefixdevilag Is
defined. Examples and descriptions in this chaptdecefthe
Release 4 integce.

This release of the operating system does not support code that
does not conform to the DDI/DKI standard.

Module and Driver Declarations

A module and driver contains, at a minimum, declarations of the form as shown in
Screen 6-1:
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4 )

#include <sys/types.h> /* required in all modules and drivers */
#include <sys/stream.h>  /* required in all modules and drivers */
#include <sys/param.h>

#include <sys/cred.h>

#include <sys/synch.h>

#include <sys/ddi.h> /* required in all modules and drivers */

static struct module_info rminfo = { 0x08, “mod”, 0, INFPSZ, 0,0 };
static struct module_info wminfo = { 0x08, “mod”, 0, INFPSZ, 0, 0 };
static int modopen(), modput(), modclose();

static struct ginit rinit = {
modput, NULL, modopen, modclose, NULL, &minfo, NULL };

static struct ginit winit = {
modput, NULL, NULL, NULL, NULL, &wminfo, NULL };

struct streamtab modinfo = { &rinit, &winit, NULL, NULL };

int moddevflag = D_MT;

\_ )

Screen 6-1. Module and Driver Declarations

The contents of these declarations are constructed for the null module example in this sec-
tion. This module does no processing. Its only purpose is to show linkage of a module into
the system. The descriptions in this section are general to all STREAMS modules and
drivers unless they specifically reference the example.

The declarations shown are the header set; the read and write gonrnfe ( and
wminfo ) module_info  structures; the module open, read/write-put, and close proce-
dures; the read and writénjit ~ andwinit ) qginit  structures; and th&treamtab
structure.

The header fileddi.h ,types.h , andstream.h , are always required for modules and
drivers. The header filparam.h , contains definitions foNULL and other values for
STREAMS modules and drivers.

NOTE

When configuring a STREAMS module or driver the
streamtab structure must be externally accessible. The
streamtab  structure name must be the prefix appended with
info . Also, the driver flag must be externally accessible. The flag
name must be the prefix appended wlithrflag

Thestreamtab containginit  values for the read and write queues. @iné¢  struc-
tures in turn point to module_info  and an optionahodule_stat  structure. The two
required structures are shown in Screen 6-2:
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6-4

struct qinit {

int (*qi_putp)(); /* put procedure */

int (*qi_srvp)(); /* service procedure */

int (*qi_qopen)(); /* called on each open or a push */
int (*gi_qclose)(); /* called on last close or a pop */

int (*qi_gadmin)(); /* reserved for future use */

struct module_info *qi_minfo;  /* information structure */
struct module_stat *qi_mstat;  /* statistics structure - optional */

b

struct module_info {

ushort_t mi_idnum; /* module ID number */

char *mi_idname; /* module name */

long mi_minpsz; /* min packet size, for developer use */
long mi_maxpsz; /* max packet size, for developer use */
ulong_t mi_hiwat; /* hi-water mark */

ulong_t mi_lowat; /* lo-water mark */

b

\_ )

Screen 6-2. Required Structures

Theqinit  contains the queue procedurnest , service , open, andclose . All mod-

ules and drivers with the sarageamtab (that is, the samienodsw or cdevsw entry)

point to the same upstream and downstrganit  structure(s). The structure is meant to

be software read-only, as any changes to it affect all instantiations of that module in all
Streams. Pointers to tlopen andclose procedures must be contained in the read
ginit  structure. These fields are ignored on the write-side. Our example lsas-no

vice procedure on the read-side or write-side.

Themodule_info  contains identification and limit values. All queues associated with a
certain driver/module share the samedule_info  structures. Thenodule_info
structures define the characteristics of that driver/module’'s queues. As wahithe,

this structure is intended to be software read-only. However, the four limit values
(q_minpsz , g_maxpsz, g_hiwat , q_lowat ) are copied to gueue structure where

they are modifiable. In the example, the flow control high- and low-water marks are zero
since there is neervice  procedure and messages are not queued in the module.

Three names are associated with a module:

* The character string iimodsw.
* The prefix forstreamtab , used in configuring the module.

* The module name field in teodule_info  structure. The module name
must match the entry for the module in the device driver/module configura-
tion file. The name of this configuration file is machine specific; it is
described in either thmaster(4) or mdevice(4) manual page,
depending on your system.

Each module ID number and module name should be unique in the system. The module
ID number is currently used only in logging and tracing. @88 in the example.

Minimum and maximum packet sizes are intended to limit the total number of characters
contained ilM_DATAmessages passed to this queue. These limits are advisory except for
the Stream head. For certain system calls that write to a Stream, the Stream head observes
the packet sizes set in the write queue of the module immediately below it. Otherwise, the
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use of packet size is developer-dependent. In the exalNBIESZ indicates unlimited
size on the read-side.

Themodule_stat is optional. Currently, there is no STREAMS support for statistical
information gathering.

Null Module Example

The null module procedures are shown in Screen 6-3:

static int modopen(queue_t *q, dev_t *devp, int flag,
int sflag, cred_t *credp)
{

gprocson(q);/* enables put and srv routines */
/* return success */
return O;

}
static int modput(queue_t *q, mblk_t *mp)

putnext(q, mp);/* pass message through */

/* Note: we only need one put procedure that can be used for both
* read-side and write-side.
*

static int modclose(queue_t *q, int flag, cred_t *credp)
{
gprocsoff(q);/* disables put and srv routines */
return O;

}

. )

Screen 6-3. Null Module Procedure

The form and arguments of these procedures are the same in all modules and all drivers.
Modules and drivers can be used in multiple Streams and their procedures must be re-
entrant.

modopen illustrates the open call arguments and return value. The arguments are the read
gueue pointerd), the pointerdevy to the major/minor device number, the file flaftmmy(

defined insysf/file.h ), the Stream open flagflag), and a pointer to a credentials
structure ¢redp. The Stream open flag can take on the following values:

MODOPEN Normal module open
0 Normal driver open
CLONEOPEN Clone driver open

The return value from open @sfor success and an error number for failure. If a driver is
called with theCLONEOPERag, the device number pointed to by tlevpshould be set

by the driver to an unused device number accessible to that driver. This should be an entire
device number (major and minor device number). dxen procedure for a module is
called on the firskt PUSH and on all lateopen calls to the same Stream. During a push,

a nonzero return value causes ltHeUSH to fail and the module to be removed from the
Stream. If an error is returned by a module during@en call, theopen fails, but the
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Stream remains intact. In the null module exampiagopen simply enables itput (and
service ) procedure(s) usingprocson and returns successfully.

If the Enhanced Security Utilities are installed, the modpken fails if the calling pro-
cess does not have tRe DEVprivilege in its working set (saatro(2) for a list of
privileges.)

On Enhanced Security versions of the system, permission checks in module and driver
open routines should be done with thev_priv  routine; there is no need to check if
u.u_uid == . This and theuser routine have been replaced with:

error = drv_priv(credp);
if (error)  /* not privileged */
return errno;

modput illustrates the common interfacegat procedures. The arguments are the read

or write queue pointer, as appropriate, and the message pointerpthgrocedure in

the appropriate side of the queue is called when a message is passed from upstream or
downstream. Theut procedure has no return value, but it is definemhtas (). In the
example, no message processing is done. All messages are forwardegultrengy .

See theDevice Driver Referencgutnext calls theput procedure of the next queue in

the proper direction.

The close routine is only called on BiPOP ioctl ~ for modules, or on the lastose
call of the Stream for drivers. The arguments are the read queue pointer, the file flags as in
modopen, and a pointer to a credentials structure.

gprocsoff  is called to disable thgut (andservice ) procedures.

The return value i® on success. A failure afose is ignored by the system.

Module and Driver ioctls

STREAMS is an addition to the UNIX system traditional character input/output (1/0)
mechanism. In this section, the phrases “character I/O mechanism” and “I/O mechanism
refer only to that part of the mechanism that pre-existed STREAMS.

The character 1/O mechanism handlesadtl(2) system calls in a transparent man-
ner. The kernel expects @ctl s to be handled by the device driver associated with the
character special file on which the call is sent.iétltl  calls are sent to the driver,
which is expected to do all validation and processing other than file descriptor validity
checking. The operation of any specifictl is dependent on the device driver. If the
driver requires data to be transferred in from user space, it uses thecogsriel func-

tion. It may also useopyout to transfer out any data results back to user space.

With STREAMS, there are a number of differences from the character I/O mechanism that
affectioctl  processing.

First, there are a set of generic STREAM&|I command values (séactl(2) ) rec-
ognized and processed by the Stream head. These are descatredriio(7) . The
operation of the generic STREAM&:tl s are generally independent of the presence of
any specific module or driver on the Stream.
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The second difference is the absence of user context in a module and driver when the
information associated with thectl is received. This prevents useamfpyin or
copyout by the module. This also prevents the module and driver from associating any
kernel data with the currently running process. (It is likely that by the time the module or
driver receives thioctl , the process generating it may no longer be running.)

A third difference is that for the character I/O mechanismpetl s are handled by the
single driver associated with the file. In STREAMS, there can be multiple modules on a
Stream and each one can have its own sieictf s. Theioctl s that can be used on a
Stream can change as modules are pushed and popped.

STREAMS provides the capability for user processes to perform control functions on spe-
cific modules and drivers in a Stream wiblctl  calls. Moststreamio(7) ioctl

commands go no further than the Stream head. They are fully processed there and no
related messages are sent downstream. However, certain commands and all unrecognized
commands cause the Stream head to credie HDCTL message that includes tioetl

arguments, and send the message downstream to be received and processed by a specific
module or driver. Th&/_IOCTL message is the initial message type that caioais

information to modules. Other message types are used to complitetithe processing

in the Stream. In general, each module must uniquely recognize and take action on spe-
cific M_IOCTL messages.

STREAMSioctl  handling is equivalent to the transparent processing of the character
I/O mechanism. STREAMS modules and drivers can pracetts s generated by appli-
cations that are implemented for a non-STREAMS environment.

General ioctl Processing

STREAMS blocks a user process that issuemeth and causes the Stream head to
generate aM_IOCTL message. The process remains blocked until either

* A module or a driver responds with &h IOCACK(ack positive acknowl-
edgment) message or &h IOCNAK(nak negative acknowledgment) mes-
sage.

* No message is received and the request “times out.”
* Theioctl is interrupted by the user process.

* An error condition occurs.

For theioctl |_STR , the timeout period can be a user-specified interval or a default. For
the otheM_IOCTL ioctl s, the default value (infinite) is used.

For anl_STR, the STREAMS module or driver that generates a positive acknowledgment
message can also return data to the process in that message. An alternate means to return
data is provided with transpardattl s. If the Stream head does not receive a positive

or negative acknowledgment message in the specified timiecthe call fails.

A module that receives an unrecogniza¢dOCTL message should pass it on unchanged.
A driver that receives an unrecogniZ2ddIOCTL should produce a negative acknowledg-
ment.
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The form of arM_IOCTL message is a sing |IOCTL message block followed by zero
or moreM_DATAblocks. TheM_IOCTL message block contains mblk  structure,
defined insys/stream.h . For details, se®cblk(D4)

For anl_STRioctl ,ioc_cmd (in theiocblk structure) contains the command sup-
plied by the user in thetrioctl structure defined istreamio(7)

If a module or driver determines &h IOCTL message is in error for any reason, it must
produce the negative acknowledgment message by setting the messag&tyi@aiNAK

and sending the message upstream. No data or a return value can be sent to a user in this
case. Ifioc_error  (iniocblk ) is setto 0, the Stream head causesatie call to

fail with EINVAL. The driver has the option of settilog_error  to an alternate error
number if desired.

NOTE

ioc_error  can be set to a honzero value in bBthlOCACK
andM_IOCNAK This causes that value to be returned as an error
number to the process that sentitic!

If a module wants to look at whiictl s of other modules are doing, the module should

not look for a specifid/1_IOCTL on the write-side but look fovl_IOCACKor M_IOCNAK

on the read-side. For example, the module $ERETS(seetermios(7) ) going down

and wants to know what is being set. The module should look at it and save the data but
not use it. The read-side processing knows that the module is waiting for an answer for the
ioctl . When the read-side processing seeackor nak next time, it checks if it is the
sameioctl  (hereTCSETS and if it is, the module may use the data previously saved.

The two STREAMSoctl mechanismsl,_STR and transparent, are described next.
(Here,|_STR means thetreamio(7) I_STR command and implies the related
STREAMS processing unless noted otherwi$edTR has a restricted format and
restricted addressing for transferringtl -related data between user and kernel space. It
requires only a single pair of messages to comjubete  processing. The transparent
mechanism is more general and has almost no restrictioretbn data format and
addressing. The transparent mechanism generally requires that multiple pairs of messages
be exchanged between the Stream head and module to complete the processing.

| _STR ioctl Processing

6-8

Thel STRioctl  provides a capability for user applications to do module and driver
control functions on STREAMS files.STR allows an application to specify thatl
timeout. It requires that all usirctl  data (to be received by the destination module) be
placed in a single block that is pointed to from the esactl structure. The module
can also return data to this block.

If the module is looking at, for example, thR€SETITCGETSgroup ofioctl  calls as
they pass up or down a Stream, it must never assume that b&@G&EEScomes down
that it actually has a data buffer attached to it. The user may have fO@SE Sas an
|_STR call and accidentally given a null data buffer pointer. You should always check
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b_cont to see if it iSNULL before using it as an index to the data block that goes with
M_IOCTL messages.

The TCGETAcall, if formed as ah STR call with a data buffer pointer set to a value by
the user, always has a data buffer attachda tmnt from the main message block.
Check to see that thectlt message does not have a buffer attached before allocating a
new buffer and assigniriyg cont to point at it. If you do not, the original buffer will be
lost.

Figure 6-4 illustrates processing associated with 8iR ioctl . Ipdoioctl is called
to process trappdd_IOCTL messages:

é )

TYPE
Ipdoioctl(struct Ip *Ip, mblk_t *mp)

struct iocblk *iocp;
queue_t *q;

q = Ip->qgptr; /*its own write queue*/

/* 1st block contains iocblk structure */
iocp = (struct iocblk *)mp->b_rptr;

switch (iocp->ioc_cmd) {
case SET_OPTIONS:
/* Count should be exactly one short's worth
(for this example) */
if (locp->ioc_count != sizeof(short))
goto iocnak;
if (mp->b_cont == NULL)
goto lognak; /* not shown in this example */
/* Actual data is in 2nd message block */
Ipsetopt(Ip, *(short *)mp->b_cont->b_rptr);
[*hypothetical routine*/

/* ACK the ioctl */
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = 0;
areply(q, mp);
break;

default:

iocnak:
/* NAK the ioctl */
mp->b_datap->db_type = M_IOCNAK;
areply(q, mp);

}

\_ )

Screen 6-4. |_STR ioctl Processing

Ipdoioctl illustrates driveM_IOCTL processing, which also applies to modules. How-
ever, at casdefault , a module would natak an unrecognized command, but would

pass the message on. In this example, only one command is reco§&ETe@PTIONS
ioc_count contains the number of user-supplied data bytes. For this example, it must
equal the size of a short. The user data is sent directly to the printer interfadpsesing

topt . Next, theM_IOCTL message is changed to tyide IOCACKand theioc_count

field is set to zero to show that no data is to be returned to the user. Finally, the message is
sent upstream usingreply . If ioc_count was left nonzero, the Stream head copies

that many bytes from the 2nd through Nth message blocks into the user buffer.
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Transparent ioctl Processing

6-10

The transparent STREAMiBctl  mechanism allows application programs to perform
module and driver control functions wiibctl s other than_STR. It is intended to
transparently support applications developed before the introduction of STREAMS, and
alleviates the need to recode and recompile the user level software to run over STREAMS
files.

The mechanism extends the data transfer capability for STREASS calls beyond

that provided in thé STR form. Modules and drivers can transfer data between their ker-
nel space and user space in @&@utl  that has a value of theommand argument not
defined instreamio(7) . Thesdoctl s are known as transparénttl s to differen-

tiate them from thé STR form. Transparent processing support is necessary when exist-
ing user level applications perforioctl s on a non-STREAMS character device and
the device driver is converted to STREAMS. Tbetl  data can be in any format mutu-
ally understood by the user application and module.

The transparent mechanism also supports STREAMS applications that want to send
ioctl data to a driver or module in a single call, where the data may not be in a form
readily embedded in a single user block. For example, the data may be contained in nested
structures, different user space buffers, and so forth.

This mechanism is needed because user context does not exist in modules and drivers
whenioctl  processing occurs. This prevents them from using the keopgin and
copyout functions. For example, consider the followingtl  call:

ioctl  ( stream_fildes user_command ioctl_struc);
whereioctl_structis a structure containing the members:

int stringlen; /* string length */
char *string;
struct other_struct *otherl,;

To read (or write) the elements iotctl_struct a module would have to do a series of
copyin /copyout calls using pointer information from a pricopyin to transfer addi-

tional data. A non-STREAMS character driver could directly execute these copy functions
because user context exists during all PowerMAX OS system calls to the driver. However,
in STREAMS, user context is only available to modules and drivers in their open and
close routines.

The transparent mechanism enables modules and drivers to request that the Stream head
do acopyin orcopyout on their behalf to transféoctl data between their kernel

space and various user space locations. The related data is sent in message pairs
exchanged between the Stream head and the module. A pair of messages is required so
that each transfer can be acknowledged. In additidvl t®OCTL, M_IOCACK and
M_IOCNAKmessages, the transparent mechanism alsoMiSE®PYINM_COPYOUT
andM_IOCDATAmessages.

The general processing by which a module or a driver reads data from user space for the
transparent case involves pairs of request/response messages, as follows:

1. The Stream head does not recognizectimemandargument of afoctl
call and creates a transpardhtlOCTL message. Thiecblk  structure
has aTRANSPARENindicator containing the value of tiaeg argument
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in the call. 1t sends thi¥l_IOCTL message downstream. See “Transparent
ioctl Messages” for more details.

2. A module receives thd_IOCTL message, recognizes tioe_cmd , and
determines that it SRANSPARENT

3. If the module requires user data, it create$la€OPYINmessage to
request &opyin of user data. The message contains the address of user
data to copy in and how much data to transfer. It sends the message
upstream.

4. The Stream head receives MeCOPYINmessage and uses the contents to
copyin the data from user space intoMnIOCDATAresponse message
that it sends downstream. The message also contains an indicator of
whether the data transfer succeeded. dpyin  might fail, for instance,
because of aBFAULTcondition. Seéntro(2)

5. The module receives thé IOCDATAmMessage and processes its contents.

The module may use the message contents to generate aMo@@PYIN Steps 3
through 5 may be repeated until the module has requested and received all the user
data to be transferred.

6. When the module completes its data transfer, it dogsdthe processing
and sends all_|IOCACKmessage upstream to notify the Stream head that
ioctl  processing has successfully completed.

Writing data from a module to user space is similar except that the module uses an
M_COPYOUmessage to request the Stream head to write data into user space. In addition
to length and user address, the message includes the data to be copied out. In this case, the
M_IOCDATAresponse will not contain user data, only show success or failure.

The module may intermikl_COPYINandM_COPYOUmessages in any order. However,

each message must be sent one at a time; the module must receive the associated
M_IOCDATAresponse before any subsequdanCOPYINM_COPYOUrEquest oackinak
message is sent upstream. After the MsCOPYINM_COPYOUinessage, the module

must send aM_IOCACKmessage (avl_IOCNAKfor a detected error condition).

NOTE

For a transparemil_IOCTL, user data cannot be returned with an
M_IOCACKmessage. The data must have been sent with a preced-
ing M_COPYOUmessage.

Transparent ioctl Messages

The form of theM_IOCTL message generated by the Stream head for a transpatient

is a singleM_IOCTL message block followed by om& DATAblock. The form of the
iocblk  structure in theM_IOCTL block is the same as described under “General ioctl
Processing.” Howeverpc_cmd is set to the value of theommandargument in the
ioctl system call andoc_count is set toTRANSPAREN,Tdefined in
sys/stream.h . TRANSPARENTistinguishes the case wherelaBTR ioctl  may
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specify a value ofoc_cmd equivalent to theommand argument of a transparent
ioctl . TheM_DATAblock of the message contains the value oftlye parameter in the
call.

NOTE

Modules that process a specific_cmd that did not validate the
ioc_count field of theM_IOCTL message will break if trans-
parentoctl s with the same command are done from user space.

Transparent ioctl Examples

The following are three examples of transpaiientl  processing. Screen 6-5 and
Screen 6-6 illustraté_COPYIN Screen 6-7 illustrateldl COPYOUTScreen 6-8 and
Screen 6-9 show a more complex example with state transitions combining both
M_COPYINandM_COPYOUT

M_COPYIN Example

In this example, the contents of a user buffer are transferred into the kernel as part of an
ioctl  call of the form

ioctl ( fd, SET_ADDR, & bufadd
wherebufaddis a structure declared as

struct address {
int ad_len;/* buffer length in bytes */
caddr_t ad_addr;/* buffer address */
%

This requires two pairs of messages (request/response) following receipMfl@®ETL
message. The first wilopyin the structure and the second vatlpyin the buffer.
Screen 6-5 illustrates processing that supports only the transparent fioath of. xxx-
wput is the write-sidgut procedure for the module or drivexx :
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~

struct address { /* same members as in user space */
int ad_len; /* length in bytes */
caddr_t ad_addr; /* buffer address */
)
[* state values (overloaded in private field) */
#define GETSTRUCT 0 /* address structure */
#define GETADDR 1 /* byte string from ad_addr */

xxxwput(queue_t *q, mblk_t *mp)

struct iocblk *iocbp;
struct copyreq *cqp;

switch (mp->b_datap->db_type) {

case M_IOCTL:
iocbp = (struct iocblk *)mp->b_rptr;
switch (iocbp->ioc_cmd) {

case SET_ADDR:

if (ilocbp->ioc_count I= TRANSPARENT) {/* fail if |_STR */
if (mp->b_cont) { * return buffer to pool ASAP */
freemsg(mp->b_cont);
mp->b_cont = NULL;

}
mp->b_datap->db_type = M_IOCNAK;/* EINVAL */

qgreply(q, mp);
break;

}

/* Reuse M_IOCTL block for M_COPYIN request */

cgp = (struct copyreq *)mp->b_rptr;

/* Get user space structure address from linked M_DATA block */
cgp->cq_addr = (caddr_t) *(long *)mp->b_cont->b_rptr;
freemsg(mp->b_cont); /* MUST free linked blocks */
mp->b_cont = NULL;

cqp->cq_private = (mblk_t *)GETSTRUCT; /* to identify response */
/* Finish describing M_COPYIN message */

cgp->cq_size = sizeof(struct address);
cgp->cq_flag = 0;

mp->b_datap->db_type = M_COPYIN;
mp->b_wptr = mp->b_rptr + sizeof(struct copyreq);
agreply(q, mp);

break;

\_ )

Screen 6-5. Request/Response Messages
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default: /* M_IOCTL not for us */
/* if module, pass on */
/* if driver, nak ioctl */
break;

} I* switch (iocbp->ioc_cmd) */
break;

case M_IOCDATA:
xxxioc(q, mp);/* all M_IOCDATA processing done here */
break;

} /* switch (mp->b_datap->db_type) */

\_ J
xxx wput verifies that theSET_ADDRs TRANSPARENTo avoid confusion with an
| STRioctl , which uses a value @c_cmd equivalent to theommandargument of
a transparenibctl . When sending akl_IOCNAK freeing the linkedl_DATAblock is

not mandatory as the Stream head frees it. However, this returns the block to the buffer
pool more quickly.

In this and all the following examples in this section, the message blocks are reused to
avoid the overhead of deallocating and allocating.

NOTE

The Stream head guarantees that the size of the message block
containing ariocblk  structure is large enough also to hold the
copyreq andcopyresp structures.

cg_private  is set to contain state information foctl  processing (tells us what the
subsequent_IOCDATAresponse message contains). Keeping the state in the message
makes the message self-describing and simplifiegottie  processingM_|IOCDATA
processing is done ixxxoc . Two M_IOCDATAtypes are processeBETSTRUCENd
GETADDR
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xxxioc(queue_t *q, mblk_t *mp)/* M_IOCDATA processing */
{

struct iocblk *iocbp;
struct copyreq *cqp;
struct copyresp *csp;
struct address *ap;

csp = (struct copyresp *)mp->b_rptr;
iocbp = (struct iocblk *)mp->b_rptr;
switch (csp->cp_cmd) {/* validate M_IOCDATA for this module */

case SET_ADDR:
if (csp->cp_rval) {* GETSTRUCT or GETADDR failed */
freemsg(mp);
return;

switch ((int)csp->cp_private) {/* determine state */

case GETSTRUCT:/* user structure has arrived */
mp->b_datap->db_type = M_COPYIN; /* reuse M_IOCDATA block */
cgp = (struct copyreq *)mp->b_rptr;
ap = (struct address *)mp->b_cont->b_rptr; /* user structure */
cgp->cq_size = ap->ad_len;/* buffer length */
cqp->cq_addr = ap->ad_addr;/* user space buffer address */
freemsg(mp->b_cont);
mp->b_cont = NULL;
cqp->cq_flag = 0;
csp->cp_private = (mblk_t *)GETADDR;/* next state */
areply(q, mp);
break;

case GETADDR: /* user address is here */

if (xxx_set_addr(mp->b_cont) == FAILURE){/*hypothetical routine*/
mp->b_datap->db_type = M_IOCNAK;
iocbp->ioc_error = EIO;

}else {
mp->b_datap->db_type = M_IOCACK;/* success */
iocbp->ioc_error = 0;/* may have been overwritten */
iocbp->ioc_count = 0;/* may have been overwritten */
iocbp->ioc_rval = 0;/* may have been overwritten */

mp->b_wptr = mp->b_rptr + sizeof(struct iocblk);
freemsg(mp->b_cont);

mp->b_cont = NULL;

areply(q, mp);

break;

default: /* invalid state: can't happen */
freemsg(mp->b_cont);
mp->b_cont = NULL;
mp->b_datap->db_type = M_IOCNAK;
mp->b_wptr = mp->rptr + sizeof(struct iocblk);

\_ )

Screen 6-6. GETSTRUCT and GETADDR
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iocbp->ioc_error = EINVAL; /* may have been overwritten */

greply(q, mp);
ASSERT (0);/* panic if debugging mode */
break;

break;/* switch (cp_private) */

default: /* M_IOCDATA not for us */
/* if module, pass message on */
[* if driver, free message */
break;
} /* switch (cp_cmd) */
}

\_ )

Xxx _set_addr is a routine (not shown in the example) that processes the user address
from theioctl . Because the message block has been reused, the fields that the Stream
head examines (denoted imay have been overwritlemust be cleared before sending an
M_IOCNAK

M_COPYOUT Example

In this example, the user wants option values for this Stream device to be placed into the
user'soptions  structure (see beginning of example code). This can be done by use of a
transparenioctl  call of the form

ioctl (fd, GET_OPTIONS, & optadd
or, alternately, by use ofstreamio call
ioctl (fd, |I_STR, & opts_striocf

In the first casepptaddis declaredstruct options . In thel_STR caseppts_strioctl
is declaredstruct strioctl , Whereopts_strioctlic_dp points to the user
options  structure.

Screen 6-7 illustrates support of both th8TR and transparent forms of @ttl . The
transparent form requires a sindle COPYOUTmessage following receipt of the
M_IOCTLto copyout the contents of the structuvecx wput is the write-sidgut pro-
cedure for module or driveexx :
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struct options {/* same members as in user space */
int op_one;
int op_two;
shortop_three;
long op_four;

1
xxxwput(queue_t *q, mblk_t *mp)

struct iocblk *iocbp;
struct copyreq *cqp;
struct copyresp *csp;
int transparent = 0;

switch (mp->b_datap->db_type) {

case M_IOCTL:
iocbp = (struct iocblk *)mp->b_rptr;
switch (iocbp->ioc_cmd) {

case GET_OPTIONS:

if (ilocbp->ioc_count == TRANSPARENT) {
transparent = 1;
cgp = (struct copyreq *)mp->b_rptr;
cqp->cq_size = sizeof(struct options);
/* Get structure address from linked M_DATA block */
cgp->cq_addr = (caddr_t) *(long *)mp->b_cont->b_rptr;
cqp->cq_flag = 0;

/* No state necessary - we will only ever get one
* M_IOCDATA from the Stream head indicating success
* or failure for the copyout */

if (mp->b_cont)
freemsg(mp->b_cont);/* overwritten */
if ((mp->b_cont = allocb(sizeof(struct options),
BPRI_MED)) == NULL) {
mp->b_datap->db_type = M_IOCNAK;
iocbp->ioc_error = EAGAIN;
areply(q, mp);
break;

XXX_get_options(mp->b_cont); /* hypothetical routine */
if (transparent) {
mp->b_datap->db_type = M_COPYOUT;
mp->b_wptr = mp->b_rptr + sizeof(struct copyreq);
}else {
mp->b_datap->db_type = M_IOCACK;
iocbp->ioc_count = sizeof(struct options);

\_ )

Screen 6-7. |_STR and Transparent ioctl
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qgreply(q, mp);
break;

default: /* M_IOCTL not for us */
/* if module, pass on; if driver, nak ioctl */

break;
} I* switch (iocbp->ioc_cmd) */
break;

case M_IOCDATA:
csp = (struct copyresp *)mp->b_rptr;
if (csp->cmd != GET_OPTIONS) { /* M_IOCDATA not for us */
/* if module, pass on; if driver, free message */

break;

}

if (csp->cp_rval) {
freemsg(mp);/* failure */
return;

/* Data successfully copied out, ack */

mp->b_datap->db_type = M_IOCACK;/* reuse M_IOCDATA for ack */
mp->b_wptr = mp->b_rptr + sizeof(struct iocblk);

iocbp->ioc_error = 0;/* may have been overwritten */
iocbp->ioc_count = 0;/* may have been overwritten */

iocbp->ioc_rval = 0;/* may have been overwritten */

areply(q, mp);

break;

} I+ switch (mp->b_datap->db_type) */

\_ Y,

Bidirectional Transfer Example

6-18

Screen 6-8 and Screen 6-9 illustrate bidirectional data transfer between the kernel and user
space during transpardpottl  processing. It also shows how more complex state infor-
mation can be used.

The user wants to send and receive data from user buffers as part of a tramsghrent
call of the form

ioctl  (fd, XXX IOCTL, & addr_xxxdata

The useladdr_ xxxdata structure defining the buffers is declaredtagct  xxdata ,
as shown. This requires three pairs of messages following receiptMf t&€TL mes-
sage:

1. tocopyin the structure
2. tocopyin one user buffer

3. tocopyout the second user buffer

Xxx wput is the write-sidgut procedure for the module or driverx:
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struct xxxdata { [* same members in user space */
int x_inlen; /* number of bytes copied in */
caddr_t x_inaddr; /* buffer address of data copied in */
int x_outlen; /* number of bytes copied out */
caddr_t x_outaddr; [* buffer address of data copied out */
k

/* State information for ioctl processing */

struct state {
int st_state; /* see below */
struct xxxdatast_data; /* see above */

/* state values */

#define GETSTRUCT 0 /* get xxxdata structure */

#define GETINDATA 1 /* get data from x_inaddr */

#define PUTOUTDATA 2 /* get response from M_COPYOUT */
static int

xxxwput(queue_t *q, mblk_t *mp)

struct iocblk *iocbp;

struct copyreq *cqp;

struct state *stp;

mblk_t *tmp;

switch (mp->b_datap->db_type) {

case M_IOCTL:
iocbp = (struct iocblk *)mp->b_rptr;
switch (iocbp->ioc_cmd) {
case XXX_IOCTL:
if (iocbp->ioc_count = TRANSPARENT) {/* fail if |_STR */
if (mp->b_cont) { /* return buffer to pool ASAP */

freemsg(mp->b_cont);
mp->b_cont = NULL;

}
mp->b_datap->db_type = M_IOCNAK;/* EINVAL */
qgreply(q, mp);
break;
}
/* Reuse M_IOCTL block for M_COPYIN request */
cgp = (struct copyreq *)mp->b_rptr;
/* Get structure's user address from linked M_DATA block */
cgp->cq_addr = (caddr_t) *(long *)mp->b_cont->b_rptr;

freemsg(mp->b_cont);
mp->b_cont = NULL;

\_ )

Screen 6-8. Write-Side put Procedure
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/* Allocate state buffer */

if (tmp = allocb(sizeof(struct state), BPRI_MED)) == NULL) {
mp->b_datap->db_type = M_IOCNAK;
iocbp->ioc_error = EAGAIN;
areply(q, mp);
break;

}

tmp->b_wptr += sizeof(struct state);

stp = (struct state *)tmp->b_rptr;

stp->st_state = GETSTRUCT;

cqp->cq_private = tmp;

/* Finish describing M_COPYIN message */

cgp->cq_size = sizeof(struct xxxdata);
cgp->cq_flag = 0;
mp->b_datap->db_type = M_COPYIN;
mp->b_wptr = mp->b_rptr + sizeof(struct copyreq);
greply(q, mp);
break;

default: /* M_IOCTL not for us */
/* if module, pass on */
/* if driver, nak ioctl */
break;

} I* switch (iocbp->ioc_cmd) */
break;

case M_IOCDATA:

xxxioc(q, mp);/* all M_IOCDATA processing done here */
break;

} I+ switch (mp->b_datap->db_type) */
}
xxx wput allocates a message block to contain the state structure and reuses the

M_IOCTL to create arM_COPYINmessage to read in thexxdata structure.
M_IOCDATAprocessing is done ixxx ioc :
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xxxioc(queue_t *q, mblk_t *mp) /* M_IOCDATA processing */
{

struct iocblk *iocbp;
struct copyreq *cqp;
struct copyresp *csp;
struct state *stp;
mblk_t *xxx_indata();

csp = (struct copyresp *)mp->b_rptr;
iocbp = (struct iocblk *)mp->b_rptr;
switch (csp->cp_cmd) {

case XXX_IOCTL:
if (csp->cp_rval) {/* failure */
if (csp->cp_private)/* state structure */
freemsg(csp->cp_private);
freemsg(mp);
return;

stp = (struct state *)csp->cp_private->b_rptr;
switch (stp->st_state) {

[* save structure */

freemsg(mp->b_cont);

mp->b_cont = NULL;

/* Reuse M_IOCDATA to copyin data */
mp->b_datap->db_type = M_COPYIN;
cqp = (struct copyreq *)mp->b_rptr;
cgp->cq_size = stp->st_data.x_inlen;
cgp->cq_addr = stp->st_data.x_inaddr;
cqp->cq_flag = 0;

stp->st_state = GETINDATA;/* next state */
areply(q, mp);

break;

case GETINDATA:/* data successfully copied in */
/* Process input, return output */

iocbp->ioc_error = EIO;
qreply(d, mp);
break;

}

mp->b_datap->db_type = M_COPYOUT,;

cgp = (struct copyreq *)mp->b_rptr;

cgp->cq_size = min(msgdsize(mp->b_cont),
stp->st_data.x_outlen);

cgp->cq_addr = stp->st_data.x_outaddr;

.

case GETSTRUCT:/* xxxdata structure copied in */

stp->st_data = *(struct xxxdata *)mp->b_cont->b_rptr;

if ((mp->b_cont = xxx_indata(mp->b_cont)) == NULL) {
/* hypothetical */
mp->b_datap->db_type = M_IOCNAK; /* fail xxx_indata */
mp->b_wptr = mp->b_rptr + sizeof(struct iocblk);

~

Screen 6-9. Message Block Allocation
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cqp->cq_flag = 0;

stp->st_state = PUTOUTDATA;/* next state */
greply(q, mp);

break;

case PUTOUTDATA: /* data successfully copied out, ack ioctl */
freemsg(csp->cp_private);/* state structure */
mp->b_datap->db_type = M_IOCACK;
mp->b_wtpr = mp->b_rptr + sizeof(struct iocblk);
iocbp->ioc_error = 0;/* may have been overwritten */
iocbp->ioc_count = 0;/* may have been overwritten */
iocbp->ioc_rval = 0;/* may have been overwritten */
areply(q, mp);
break;

default: /* invalid state: can't happen */
freemsg(mp->b_cont);
mp->b_cont = NULL;
mp->b_datap->db_type = M_IOCNAK;
mp->b_wptr = mp->b_rptr + sizeof(struct iocblk);
iocbp->ioc_error = EINVAL;
areply(q, mp);
ASSERT (0);/* panic if debugging mode */
break;
} /* switch (stp->st_state) */
break;
default: /* M_IOCDATA not for us */
/* if module, pass message on */
/* if driver, free message */
break;
} /* switch (csp->cp_cmd) */

}

\_ )

At case GETSTRUCT, the usexxxdata structure is copied into the modulstate
structure (pointed at bgp_private  in the message) and the IOCDATAmMessage is
reused to create a secdldCOPYINmessage to read in the user datecase GETIN-

DATA the input user data is processed byxke indata routine (not supplied in the
example), which frees the linked_DATAblock and returns the output data message
block. TheM_IOCDATAmessage is reused to creatd/artCOPYOUmMessage to write the
user data. Atase PUTOUTDATA the message block containing the state structure is
freed and an acknowledgment is sent upstream.

Care must be taken at the “can't happen” default case since the message block containing
the state structurecp_private ) is not returned to the pool because it might not be
valid. This might result in a lost block. TR&SSERThelps find errors in the module if a

“can't happen” condition occurs.

Theioctl I_LIST supports thetrconf  andstrchg commands that are used to
guery or change the configuration of a Stream. Only the superuser or an owner of a
STREAMS device may alter the configuration of that StreamsBeleg(1)  for more
information.

Thestrchg command does the following:

* Pushes one or more modules on the Stream

* Pops the topmost module off the Stream
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* Pops all the modules off the Stream

* Pops all modules up to but not including a specified module
Thestrconf  command does the following:

* [ndicates if the specified module is present on the Stream
* Prints the topmost module of the Stream

* Prints a list of all modules and topmost driver on the Stream

If the Stream contains a multiplexing driver, 8teehg  andstrconf ~ commands will
not recognize any modules below that driver.

Theioctl |_LIST performs two functions. When the third argument ofitkd  call

is set toNULL, the return value of the call shows the number of modules, including the
driver, present on the Stream. For example, if there are two modules above the driver, 3 is
returned. On failuregrrno  may be set to a value specifiedstneamio(7) . The sec-

ond function of the_LIST ioctl is to copy the module names found on the Stream to
the user-supplied buffer. The address of the buffer in user space and the size of the buffer
are passed to thectl  through a structurstr_list , Which is defined in Screen 6-10:

struct str_mlist {
char I_name[FMNAMESZ+1]; /* space for holding a module name */

struct str_list {
int sl_nmods; [* # of modules for which space is allocated */
struct str_mlist *sl_modlist;/* address of buffer for names */

2

Screen 6-10. str_list Structure

wheresl_nmods is the number of modules in tee modlist array that the user has
allocated. Each element in the array must be at IEREIAMES¥1 bytes long.
FMNAMES#E defined bysys/conf.h

The user can find out how much space to allocate by first invokinipdtié LIST

with arg set toNULL Thel_LIST call witharg pointing to thestr_list structure
returns, in thesl_nmods member, the number of entries that have been filled into the
sl_modlist array. Note that the number of entries includes the driver. If there is not
enough space in the_modlist array (see note) al_nmods is less than 1, the
|_LIST call fails anderrno is set toEINVAL. If arg or thesl_modlist array points
outside the allocated address sp&f6AULTis returned.

NOTE

It is possible, but unlikely, that another module was pushed on the
Stream after the user invoked thelIST ioctl with the NULL
argument and before thelIST ioctl with the structure argu-
ment was invoked.
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Flush Handling

6-24

All modules and drivers are expected to hamdig-LUSHmessages. AM_FLUSHmes-
sage can originate at the Stream head or from a module or a driver. The first byte of the
M_FLUSHmessage is an option flag that can have the following values:

FLUSHR Flush read queue
FLUSHW Flush write queue
FLUSHRW Flush both, read and write, queues
FLUSHBAND Flush a specified priority band only

Screen 6-11 shows line discipline module flush handling:

static int
Id_put(queue_t *q, mblk_t *mp)

int gflag;
pl_tpl;

switch (mp->b_datap->db_type) {
default:

/*
* queue everything except flush
*/

putq(g, mp);
return;

case M_FLUSH:
pl = freezestr(q);
(void)strqget(q, QFLAG, 0, &gflag);/* get g_flag */
unfreezestr(q, pl);

if (*mp->b_rptr & FLUSHW)/* flush write queue */
flushq(gflag & QREADR ? WR(q) : ¢, FLUSHDATA);

if (*mp->b_rptr & FLUSHR)/* flush read queue */
flushq(gflag & QREADR ? q : RD(q), FLUSHDATA);

putnext(g, mp);
return;

}

\_ )

Screen 6-11. Line Discipline Flush Handling

The Stream head turns around MeFLUSHmessage iIFLUSHWSs set FLUSHRwill be
cleared).

A driver turns arount_FLUSHf FLUSHRis set (should mask ofLUSHW The Stream
head turns around tiM_FLUSHmessage iIFLUSHWs set FLUSHRwill be cleared).

A driver turns aroun®!_FLUSHf FLUSHRis set (should mask ofLUSHW

Screen 6-12 example shows the line discipline module flushing because of break:



Overview: STREAMS Modules and Drivers

~

static int
Id_put(queue_t *q, mblk_t *mp)
{

int gflag;
pl_tpl;

switch (mp->b_datap->db_type) {

default:
/*
* queue everything except flush, break
*
/
putq(d, mp);
return;

case M_FLUSH:
pl = freezestr(q);
(void)strqget(q, QFLAG, 0, &qgflag);/* get g_flag */
unfreezestr(q, pl);

if (*mp->b_rptr & FLUSHW)/* flush write queue */
flushq(gflag & QREADR ? WR(q) : q, FLUSHDATA);

if (*mp->b_rptr & FLUSHR)/* flush read queue */
flushq(gflag & QREADR ? g : RD(q), FLUSHDATA);

putnext(g, mp);
return;

case M_BREAK:

pl=freezestr(q);

(void)strqget(q, QFLAG, 0, &gflag);/* get g_flag */

unfreezestr(q,pl);

/*

* read side only;

* doesn't make sense for write side

*

if (gflag & QREADR) {
putnextctll(g, M_PCSIG, SIGINT);
putnextctl1(q, M_FLUSH, FLUSHW);
putnextctlL(WR(q), M_FLUSH, FLUSHR);

} else
freemsg(mp);

return;

\_ )

Screen 6-12. Line Discipline Break Flushing
The next two figures further show flushing the entire Stream due to a line break.

Figure 6-1shows the flushing of the write-side of a Stream, and Figure 6-2 shows the
flushing of the read-side of a Stream. The dotted boxes depict flushed queues.
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Figure 6-1. Flushing the Write-Side of a Stream

In Figure 6-1, the following is taking place:

1.
2.
3.

© N o O

A break is detected by a driver.
The driver generates &h BREAKnessage and sends it upstream.

The module translates tih& BREAKNnto anM_FLUSHmessage with
FLUSHWet and sends it upstream.

The Stream head does not flush the write queue (no messages are ever
gueued there).

The Stream head turns the message around (sends it down the write-side).
The module flushes its write queue.
The message is passed downstream.

The driver flushes its write queue and frees the message.

Figure 6-2 shows flushing the read-side of a Stream. The dotted boxes depict flushed
queues.
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Figure 6-2. Flushing the Read-Side of a Stream

The events taking place in Figure 6-2 are as follows:

1. After generating the fird¥l_FLUSHmessage, the module generates an
M_FLUSHwith FLUSHRset and sends it downstream.

. The driver flushes its read queue.

. The driver turns the message around (sends it up the read-side).

2
3
4. The module flushes its read queue.
5. The message is passed upstream.
6

. The Stream head flushes the read queue and frees the message.

Theflushband routine provides the module and driver with the capability to flush mes-
sages associated with a given priority band. SeBévice Driver Reference.

A user can flush a particular band of messages by issuing:
ioctl (fd, |_FLUSHBAND bandp;

wherebandpis a pointer to a structubandinfo that has a format:
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struct bandinfo {
uchar_tbi_pri;
intbi_flag;

%

Thebi flag field may be one dfLUSHR FLUSHWor FLUSHRW

Screen 6-13 shows flushing according to the priority band:

queue_t *rdg;/* read queue */ \
queue_t *wrg;/* write queue */

case M_FLUSH:
if (*bp->b_rptr & FLUSHBAND) {
if (*bp->b_rptr & FLUSHW)
flushband(wrg, FLUSHDATA, *(bp->b_rptr + 1));
if (*bp->b_rptr & FLUSHR)
flushband(rdg, FLUSHDATA, *(bp->b_rptr + 1));
}else {
if (*bp->b_rptr & FLUSHW)
flushg(wrg, FLUSHDATA);
if (*bp->b_rptr & FLUSHR)
flushq(rdq, FLUSHDATA);
}
/*
* modules pass the message on;
* drivers shut off FLUSHW and loop the message
* up the read-side if FLUSHR is set; otherwise,
* drivers free the message.
*
break;

\_ )

Screen 6-13. Priority Band Flush Handling

Note that modules and drivers are not required to treat messages as flowing in separate
bands. Modules and drivers can view the queue having only two bands of flow, normal and

high priority. However, the latter alternative flushes the entire queue whenever an
M_FLUSHmessage is received.

One use of the field_flag of themsgb structure is provided to give the Stream head a
way to stopM_FLUSHmessages from being reflected forever when the Stream is being
used as a pipe. When the Stream head receivdé &.USHmessage, it sets the
MSGNOLOORyg in theb_flag field before reflecting the message down the write-side
of the Stream. If the Stream head receiveMafRLUSHmMessage with this flag set, the
message is freed rather than reflected.

Driver-Kernel Interface

The Driver-Kernel Interfaces an interface between the PowerMAX OS system kernel
and drivers. These drivers are block interface drivers, character interface drivers, and driv-
ers and modules supporting a STREAMS interface. Each driver type supports an interface
from the kernel to the driver. This kernel-to-driver interface consists of a set of driver-
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defined functions that are called by the kernel. These functions are the entry points into the
driver.

One benefit of defining the DKl is increased portability of driver source code between var-
ious UNIX System V implementations. Another benefit is a gain in modularity that results
in extending the potential for changes in the kernel without breaking driver code.

The interaction between a driver and the kernel can be described as occurring along two
paths. See Figure 6-3.

One path includes those functions in the driver that are called by the kernel. These are
entry points into the driver. The other path consists of the functions in the kernel that are
called by the driver. Along both paths, information is exchanged between the kernel and
drivers in the form of data structures. The DKI identifies these structures and specifies a
set of contents for each.

The DKI defines data structure constraints (some fields are read/write, some are read-only,
and some are neither readable nor writable). Be careful when you use DKI data structures;
you must make sure that your code is portable, and that you do not corrupt the system. See
theDevice Driver Referenc®r more specific information.

NOTE

This release of the system does not support code that does not
conform to the DDI/DKI.

The DKI also defines the common set of entry points expected to be supported in each
driver type and their calling and return syntaxes. For each driver type, the DKI lists a set of
kernel utility functions that can be called by that driver and also specifies their calling and

return syntaxes.
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Figure 6-3. Interfaces Affecting Drivers

The set of STREAMS utilities available to drivers is listed inDiegice Driver Reference.

No system-defined macros that manipulate global kernel data or introduce structure size
dependencies are permitted in these utilities. Therefore, some utilities that have been
implemented as macros in the prior UNIX system releases are implemented as functions
in PowerMAX OS. This does not preclude the existence of both macro and function ver-
sions of these utilities. Driver source code must include a header file that picks up function
declarations while the core operating system source includes a header file that defines the
macros. With the DKI interface, the following STREAMS utilities are implemented as C
programming language functiordatamsg , OTHERQputnext , RD splstr , andWR

See “Header Files” for more information.

Replacing macros such BB with function equivalents in the driver source code allows
driver objects to be insulated from changes in the data structures and their size, further
increasing the useful lifetime of driver source code and objects.

The driver is insulated from implementation-specific details of multiprocessor STREAMS
synchronization.

The DKI interface defines an interface suitable for drivers and there is no need for drivers
to access global kernel data structures directly. The kernel fundiengetparm and
drv_setparm are provided for reading and writing information in these structures. This
restriction has an important consequence. Because drivers are not permitted to access glo-
bal kernel data structures directly, changes in the contents/offsets of information within
these structures will not break objects. @he getparm anddrv_setparm  functions

are described in more detail in thevice Driver Reference.
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Device Driver and Driver-Kernel Interface

The DDI is an interface that facilitates driver portability across different UNIX system
versions. The DKI is an interface that also facilitates driver source code portability across
implementations of PowerMAX OS on all machines. DKI driver code, however, has to be
recompiled on the machine on which it is to run.

The most important distinction between the DDI and the Driver-Kernel Interface lies in
scope. The DDI addresses complete interfaces for block, character, and STREAMS inter-
face drivers and modules. The DKI defines only driver interfaces with the kernel with the
addition of the kernel interface for file system type (FST) modules. The DKI interface
does not specify the system initialization driver interface (thatiis, andstart driver
routines) nor hardware related interfaces.

NOTE

The “complete interface” refers to hardware- and boot/auto-con-
figuration-related driver interface in addition to the interface with
the kernel.

STREAMS Interface

The entry points from the kernel into STREAMS drivers and modules are through the
ginit  structures pointed to by tistreamtab  structureprefixinfo.  See théDevice
Driver Reference.

STREAMS drivers may need to define additional entry points to support the interface with
boot/autoconfiguration software and the hardware (for example, an interrupt handler).

If the STREAMS module has prefirod, then the declaration is of the form:

~

static int modrput(queue_t *, mblk_t *);

static int modrsrv(queue_t *);

static int modopen(queue_t *, dev_t *, int, int, cred_t *);
static int modclose(queue_t *, int, cred_t *);

static int modwput(queue_t *, register mblk_t *);
static int modwsrv(queue_t *);

static struct mod_minfo = {}
static struct qinit rdinit =
{modrput, modrsrv, modopen, modclose, NULL, & m_info, NULL};

static struct ginit wrinit =
{modwput, modwsrv, NULL, NULL, NULL, & m_info, NULL};

struct streamtab modinfo = { &rdinit, &wrinit, NULL, NULL };

int moddevflag = D_MT,;

Screen 6-14. mod Declaration Form
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where

* modrput is the module's read quepet procedure.

* modrsrv is the module's read queservice procedure.

* modopen is theopen routine for the module.

* modclose is theclose routine for the module.

* modwput is theput procedure for the module's write queue.

* modwsrv is theservice procedure for the module's write queue.

Eachginit  structure can point to four entry points. (An additional function pointer has
been reserved for future use and must not be used by drivers or modules.) These four func-
tion pointer fields in theinit  structure aregi_putp , gi_srvp , gi_gopen , and
gi_close

The utility functions that can be called by STREAMS drivers and modules are listed in the
Device Driver Referenc@.hey must follow the call and return syntaxes specified in the
manual. Manual pages relating to the DDI/DKI are provided irDignvce Driver Refer-
ence.

Configuring the System for STREAMS Drivers and Modules

To configure the system to use a STREAMS software driver or module, you must edit a
number of configuration files. The names of the files vary on different systems; see either
the master(4) andsystem(4) manual pages or thadevice(4) andsde-

vice(4) manual pages for descriptions of the configuration files for your system.

This section summarizes guidelines common to the design of STREAMS modules and
drivers. Additional rules about modules and drivers can be found in “STREAMS Mod-
ules” and “STREAMS Drivers.”

Modules and Drivers
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1. Modules and drivers cannot access information iruttezea of a pro-
cess. Modules and drivers are not associated with any process, and there-
fore have no concept of process or user context, except during open and
close routines (see the section titled “Rules for Open/Close Routines” later
in This section).

To configure the system to use a STREAMS software driver or module, you must
edit a number of configuration files. The names of the files vary on different sys-
tems; see either thmaster(4) andsystem(4) manual pages or thade-
vice(4) andsdevice(4) manual pages for descriptions of the configuration
files for your system.
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Every module and driver must procesdvarFLUSHmessage according to
the value of the argument passed in the message.

A module or a driver should not change the contents of a data block whose
reference count is greater than 1 because other modules/drivers that have
references to the block may not want the data changed. To avoid problems,
data should be copied to a new block and then changed in the new one. See
the Device Driver Reference.

Modules and drivers should manipulate queues and manage buffers only
with the routines provided for that purpose, in conformance with DDI/DKI.
See théDevice Driver Reference.

Modules and drivers should not require the data i aDATAmMessage to
follow a particular format, such as a specific alignment.

Care must be taken when modules are mixed and matched, because one
module may place different semantics on the priority bands than another
module. The specific use of each band by a module should be included in
the service interface specification.

When designing modules and drivers that make use of priority bands one should
keep in mind that priority bands merely provide a way to impose an ordering of
messages on a queue. The priority band is not used to determine the service primi-
tive. Instead, the service interface should rely on the data contained in the message
to determine the service primitive.

Rules for Open/Close Routines

open andclose routines may use blocking primitives as defined in the
DDI.

Theopen routine should return zero on success or an error number on fail-
ure. If theopen routine is called with th€LONEOPEMag, the device
number should be set by the driver to an unused device number accessible
to that driver. This should be an entire device number (major/minor).

If a module or a driver wants to allocate a controlling terminal, it should
send arM_SETOPT®nessage to the Stream head withSke ISTTY flag
set. Otherwise signaling will not work on the Stream.

open andclose routines have user context and can access some fields in
theu_area using thedrv_getparm anddrv_setparm functions.

A multithreaded driver or module must cgfirocson to enable its put and service
procedures angprocsoff  to disable them.

NOTE
The DKI interface provides thdrv_getparm and

drv_setparm functions to read/write kernel parameters, so the
driver/module should not access them directly.
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Rules for ioctls

* Do not change thiec_id, ioc_uid, ioc_gid, orioc_cmd fields
in anM_IOCTL message.

* The above rule also applies to fields inMNIOCDATAM_COPYIN and
M_COPYOUmnessage. Field names are different; Sedndce Driver
Reference.

* Always validateioc_count to see whether thiectl  is the transparent
orl_STR form.

Rules for Put and Service Procedures
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To ensure proper data flow between modules and drivers, the following rules should be
observed irput andservice procedures:

* Put andservice procedures must not sleep.

* Return codes can be sent with STREAMS messdgeOCACK
M_IOCNAKandM_ERROR

* Protect data structures commorptd andservice procedures by using
splstr

Note that multithreaded drivers must protect all global driver data with
DDI/DKI-defined locks or synchronization utility functions.

* Put andservice procedures cannot access the information in the
u_area of a process.

* Messages should be handled consistently. Any given message type should
be handled completely by tipait procedure, or deferred to tkervice
procedure.

Put andservice procedures must protect against race conditions using DDI/DKI locks.
The basic model foput andservice concurrency for a multithreaded driver is as fol-
lows: Only one instance of tiservice  procedure for a specific queue may run at a time;
this ensures FIFO ordering of messages is preserved. Multiple instancepudf {h®ce-

dure may run concurrently, and that andservice routines may run concurrently

with each other. Strict adherence to the DDI/DKI rules governing system data structure
access and use of DDI/DKI STREAMS utilities (for exampgjetq , strqget , put-

next , and so forth) protects underlying STREAMS subsystem races. However, the driver
writer must take care to protect driver-private data structures from potential race condi-
tions because gfut andservice procedure concurrency. To protect against deadlock,
the processor priority associated with a given driver lock must be high enough to prevent
all interrupts that may need to acquire that lock.

NOTE

References to drivers apply to modules as well.



Put Procedures

Service Procedures
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* Generally, each queue definepwd procedure in itginit  structure for

passing messages between modules.

In some instances, drivers do not need put procedures; for example, mes-
sages are only passed upstream by the driver's interrupt routine, and there-
fore a read-side put procedure is not needed.

A put procedure must use tipaitq utility to enqueue a message on its
own queue. This is necessary to ensure that the various fieldsooitie
structure are maintained consistently. SeeDtbeéce Driver Reference.

When passing messages to a neighboring module, a module may not call
putg directly, but must call its neighbor modulpig procedure using the
appropriate DDI/DKI STREAMS utility. Seputnext in theDevice
Driver Reference.

However, thay_qinfo  structure that points to a modulplg procedure may point
toputq (thatis,putq is used as thput procedure for that module). When a mod-
ule calls a neighbor modulgisit procedure that is defined in this way, it will be
calling putg indirectly. If any module usgautq as itsput procedure in this way,
the module must definesagrvice procedure. Otherwise, no messages will ever be
processed by the next module. Also, becaugg does not procedd FLUSH
messages, any module that usets] as itsput procedure must definesarvice
procedure to procedd FLUSHmessages.

Theput procedure of a queue with iservice call its neighbor mod-
ule'sput procedure using the appropriate DDI/DKI STREAMS utility. See
putnext in theDevice Driver Reference.

Theput procedure of a queue with service procedure must call the
put procedure of the next queue uspunext if a message is to be
passed to that queue.

Processing many function calls with thet procedure could lead to inter-
rupt stack overflow. In that case, switcts@vice procedure processing
whenever appropriate to switch to a different stack.

Although most drivers do not have a read-gdée procedure, those that
do must be called (for example, from the interrupt handler) with the multi-
processor DDI/DKI functiomput .

If flow control is desired, service  procedure is required.

Theservice procedure should use thanputnext  or bcanputnext  routines
before doingoutnext  to honor flow control.

. Theservice procedure must usgetq to remove a message from its

message queue, so that the flow control mechanism is maintained.

. Theservice procedure should process all messages on its queue. The

only exception is if the queue ahead is blocked (thataisputnext
fails) or some other failure like buffer allocation failure. Adherence to this
rule is the only guarantee that STREAMS will enable (schedule for execu-
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tion) theservice procedure when necessary, and that the flow control
mechanism will not fail.

If aservice procedure exits for other reasons, it must take explicit steps to assure
it will be re-enabled.

4. Theservice procedure should not put a high-priority message back on
the queue, because of the possibility of getting into an infinite loop.

5. Theservice procedure must follow the steps below for each message
that it processes. STREAMS flow control relies on strict adherence to these
steps.

a. Remove the next message from the queue ggittg. It is possible
that theservice  procedure could be called when no messages exist
on the queue, so tleervice procedure should never assume that
there is a message on its queue. If there is no message, RETURN.

b. If all the following conditions are met:
¢ Failure of functionganputnext  or bcanputnext
* The message type is not a high priority type.

* The message is to be put on the next queue.
Continue to Step c. Otherwise, continue at Step d.

c. The message must be replaced on the head of the queue from which
it was removed usingutbq . See thdevice Driver Referencé&ol-
lowing this, theservice procedure is exited. Trservice proce-
dure should not be re-enabled at this point. It will be automatically
back-enabled by flow control.

d. If all the conditions of Step b are not met, the message should not be
returned to the queue. It should be processed as necessary. Then,
return to Step a.

Data Structures

Only the contents of_ptr , q_minpsz , g_maxpsz, q_hiwat , andg_lowat in the

gueue structure may be altered. minpsz , q_maxpsz, q_hiwat , andg_lowat are

set when the module or driver is opened, but they may be modified later only by using the
DDI/DKI utility strgset

Drivers and modules are allowed to changeginehiwat andgb_lowat fields of the
gband structure. They may only read tihp_count , gb_first , gb_last , and
gb_flag fields.

The routinesstrqget  andstrqgset  must be used to get and set the fields associated
with the queue. They insulate modules and drivers from changesdnehe structure

and from multiprocessor STREAMS implementation details, and also enforce the previ-
ous rules.
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Dynamic Allocation of STREAMS Data Structures

Header Files

Before PowerMAX OS, STREAMS data structures were statically configured to support a
fixed number of Streams, read and write queues, message and data blocks, link block data
structures, and Stream event cells. The only way to change this configuration was to
reconfigure and reboot the system. Resources were also wasted because data structures
were allocated but not necessarily needed.

With Release 4, the STREAMS mechanism has been enhanced to dynamically allocate the
following STREAMS data structurestdata , queub_last , andgb_flag fields.
STREAMS allocates memory to cover these structures as needed.

Dynamic data structure allocation has the advantage of the kernel being initially smaller
than a system with static configuration. The performance of the system may also improve
because of better memory use and added flexibility. Howaltecb , bufcall , and

freeb , the routines that manage these data structures, may be slower at times because of
extra overhead needed for dynamic allocation.

The following header files are generally required in modules and drivers:

types.h Contains type definitions used in the STREAMS header files.
stream.h Contains required structure and constant definitions.
stropts.h Primarily for users, but contains definitions of the arguments to

theM_FLUSHmessage type also required by modules.

ddi.h Contains definitions and declarations needed by drivers to use
functions for the UNIXSystem V DDI or DKI. This header file
should be the last header file included in the driver source code
(after all#include statements).

One or more of the header files described next may also be included. No standard UNIX
system header files should be included except as described in the following section. The
intent is to prevent attempts to access data that cannot or should not be accessed.

errno.h Defines various system error conditions, and is needed if errors
are to be returned upstream to the user.

sysmacros.h Contains miscellaneous system macro definitions (subject to
DDI/DKI restrictions).

param.h Defines various system parameters.

signal.h Defines system signal values, and should be used if signals are to
be processed or sent upstream.

file.h Defines file open flags, and is neededGf NDELAY(or
O_NONBLOGQKs interpreted.
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Introduction

Routines

7
STREAMS Modules

A STREAMS module is a pair of queues and a defined set of kernel-level routines and
data structures used to process data, status, and control information. A Stream may have
zero or more modules. User processes push (insert) modules on a Stream using the
| PUSH ioctl and pop (remove) them using th€OP ioctl . Pushing and popping

of modules happens in a Last-In-First-Out (LIFO) fashion. Modules manipulate messages
as they flow through the Stream.

STREAMS module routines (such agen, close , put , andservice ) have already
been described in the previous sections. This section shows some examples and further
describes attributes common to modpl# andservice routines.

A module'sput routine is called by the preceding module, driver, or Stream head and
before the correspondirsgrvice routine. Theput routine should do any processing

that needs to be done immediately (for example, processing of high-priority messages).
Any processing that can be deferred should be left for the corresp@aaiige  rou-

tine.

Theservice routine implements flow control, handles de-packetization of messages,
performs deferred processing, and handles resource allocation. Orsegvibe  rou-

tine is enabled, it may be started but not necessarily completed before running user-level
code.

Theput andservice routines must not calleep and cannot access thearea
area, because they are executed asynchronously with respect to any process.

Screen 7-1 shows a STREAMS module read-pide routine:
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(. )

static int modrput(queue_t *q, mblk_t *mp)
{ struct mod_prv *modptr;
modptr = (struct mod_prv *) g->q_ptr; /* for state information */
if (pcmsg(mp->b_datap->db_type)) { /* process priority message */
putnext(q, mp); /* and pass it on */

return;

}
switch(mp->b_datap->db_type) {

case M_DATA: /* may process message data */
putq(g, mp); /* queue message for service routine */
return;

case M_PROTO: /* handle protocol control message */

default:

putnext(q, mp);
return;

\_ J

Screen 7-1. Read Side put Procedure

The following briefly describes the code:

A pointer to a queue defining an instance of the module and a pointer to a
message are passed to pig routine.

* Theput routine switches on the type of the message. For each message
type, theput routine either enqueues the message for further processing
by the moduleservice routine, or passes the message to the next module
in the Stream.

* High priority messages are processed immediately bguheroutine and
passed to the next module.

* Ordinary (or normal) messages are either enqueued or passed along the
Stream.

Screen 7-2 shows a module write-spig routine:
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static int modwput(queue_t *q, mblk_t *mp)
{

struct mod_prv *modptr;

modptr = (struct mod_prv *) g->q_ptr;/* for state information */

if (pcmsg(mp->b_datap->db_type)) {/* process priority message */
putnext(q, mp); /* and pass it on */
return;

}
switch(mp->b_datap->db_type) {
case M_DATA: /* may process message data */
putg(q, mp); /* queue message for service routine */
/* or pass message along */
[* putnext(q, mp); */
return;
case M_PROTO:

case M_IOCTL:/* if command in message is recognized */
/* process message and send back reply */
/* else pass message downstream */

default:
putnext(d, mp);
return;

}

\ /

Screen 7-2. Write Side put Procedure

The write-sideput routine, unlike the read-side, may be pasdetOCTL messages. It is
up to the module to recognize and processdht command, or pass the message
downstream if it does not recognize the command.

Screen 7-3 shows a general scenario employed by the mcduléte  routine:

~

static int modrsrv(queue_t *q)
mblk_t *mp;
while ((mp = getq(q)) !'= (mblk_t *) NULL) {
if (pcmsg(mp->b_datap->db_type) &&
Icanputnext(q)) { /* flow control check */
putbq(q, mp);/* return message */
return;

}
/* process the message */
switch(mp->b_datap->db_type) {

butnext(q, mp);/* pass the result */

}
} 1% while */

\_ )

Screen 7-3. Service Routine

7-3



STREAMS Modules and Drivers

The steps are as follows:

1. Retrieve the first message from the queue gty .

2. If the message is high priority, process it immediately, and pass it along the
Stream.

3. Otherwise, theservice routine should use thmanputnext routine to
determine if the next module or driver that enqueues messages is within
acceptable flow control limitganputnext  goes down the Stream (or up
on the read-side) until it reaches a module, a driver, or the Stream head
with aservice routine. When it reaches one, it looks at the total message
space currently allocated at that queue for enqueued messages. If the
amount of space currently used at that queue exceeds the high-water mark,
canputnext  returns false (zero). If the next queue witkeavice rou-
tine is within acceptable flow control limits, it returns true (nonzero).

4. If canputnext returns false, theervice routine should return the
message to its own queue using pliébq routine. Theservice  routine
can do no further processing now, and it should return.

5. If canputnext returns true, theervice routine should complete any
processing of the message. This may involve retrieving more messages
from the queue, (depllocating header and trailer information, and per-
forming control function for the module.

6. When theservice routine is finished processing the message, it may call
theputnext routine to pass the resulting message to the next queue.

7. Above steps are repeated until there are no messages left on the queue (that
is, untilgetq returnsNULL) or canputnext  returns false.

Filter Module Example
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The module shown in Screen 7edmod , is an asymmetric filter. On the write-sidew-

line is converted teaarriage return followed bynewline. On the read-side, no conver-

sion is done. The declarations of this module are the same as those of the null module pre-
sented in the previous section:
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~

/* Simple filter - converts newline -> carriage return, newline */

#include <sys/types.h>

#include <sys/param.h>

#include <sys/stream.h>

#include <sys/stropts.h>

static struct module_info minfo = { 0x09, “crmod”, 0, INFPSZ, 512, 128 };
static int modopen, modrput, modwput, modwsrv, modclose;

static struct ginit rinit = {
modrput, NULL, modopen, modclose, NULL, &minfo, NULL };

static struct ginit winit = {
modwput, modwsrv, NULL, NULL, NULL, NULL, &minfo, NULL };

struct streamtab crmdinfo = { &rinit, &winit, NULL, NULL };

int moddevflag = D_MP;

\_ )

Screen 7-4. Filter Module

stropts.h includes definitions of flush message options common to user level, modules
and driversmodopen andmodclose are unchanged from the null module example
shown earlier in this chaptenodrput is like modput from the null module.

Note that, in contrast to the null module example, a simgldule_info  structure is
shared by the read-side and write-side. Woelule_info  includes the flow control
high- and low-water marks (512 and 128) for the write queue. (Although the same
module_info  is used on the read queue side, the read-side tesvice procedure,

so flow control is not used.) Thggnit  contains theervice  procedure pointer.

The write-sideput procedure, the beginning of tkervice procedure, and an example
of flushing a queue are shown in Screen 7-5:
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static int modwput(queue_t *q, register mblk_t *mp)
{

if (pcmsg(mp->b_datap->db_type) && mp->b_datap->db_type != M_FLUSH)
putnext(g, mp);
else
putq(g, mp); /* Put it on the queue */
}

static int modwsrv(queue_t *q)
mblk_t *mp;

while ((mp = getq(q) != NULL) {
switch (mp->b_datap->db_type) {

default:
if (canputnext(q)) {
putnext(q, mp);
break;
}else {
putba(q, mp);
return;

}

case M_FLUSH:
if (*mp->b_rptr & FLUSHW)
flushq(q, FLUSHDATA);
putnext(q, mp);
break;

\_ )

Screen 7-5. Write Side put Procedure and Queue Flush

modwput, the writeput procedure, switches on the message type. High-priority mes-
sages that are not typéd FLUSHareputnext to avoid scheduling. The others are
gueued for theervice procedure. AM_FLUSHmessage is a request to remove mes-
sages on one or both queues. It can be processed in eithat theservice  procedure;

it is preferable to use thput procedure, so th&l_FLUSHs handled immediately.

modwsrv is the writeservice procedure. It takes a single argument, a pointer to the
write queue . modwsrv processes only one high-priority messdgeFLUSH No other
high-priority messages should reanbdwsrv.

For anM_FLUSHmessagemodwsrv checks the first data byte. FLUSHW(defined in
stropts.h ) is set, the write queue is flushed with theshg  utility. See theDevice
Driver Referenceflushq takes two arguments, the queue pointer and a flag. The flag
shows what should be flushed, data messdgddSHDATAor everything FLUSHALL).

In Screen 7-6, data includé DATAM_DELAYM_PROTQOandM_PCPROT@essages.
The choice of what types of messages to flush is module-specific.

If canputnext (q) returns false, ordinary messages are returned to the queue, indicating
the downstream path is blocked. Screen 7-6 continues with the remaining ped-of
wsrv processindl_DATAmessages:
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case M_DATA: {
mblk_t *nbp = NULL;
mblk_t *next;

if (lcanputnext(q)) {

putba(q, mp);
return;

/* Filter data, appending to queue */
for (; mp != NULL; mp = next) {
while (mp->b_rptr < mp->b_wptr) {
if (*mp->b_rptr =="\n"
if (\bappend(&nbp, \r'))
goto push;
if (\bappend(&nbp, *mp->b_rptr))
goto push;
mp->b_rptr++;
continue;

push:
if (nbp)

putnext(q, nbp);

nbp = NULL;

if (lcanputnext(q)) {

if (mp->b_rptr >= mp->b_wptr) {

next = mp->b_cont;
freeb(mp);
mp=next;

}
if (mp)

putba(q, mp);
return;

}

} /* while */
next = mp->b_cont;
freeb(mp);

} 1+ for ¥/

if (nbp)
putnext(q, nbp);

} /* case M_DATA */
} 1* switch */
} /* while */

\_ )

Screen 7-6. M_DATA Message Processing

The differences itM_DATAprocessing between this and the example in the section titled
“Message Allocation and Freeing” relate to the way the new messages are forwarded and
flow controlled. To show alternative means of processing messages, this version creates
individual new messages rather than a single message containing multiple message
blocks. When a new message block is full, it is immediately forwarded wighuthext

routine rather than being linked into a single, large message (as was done in the example).
This alternative may not be desirable because message boundaries are altered and there is
an additional overhead of handling and scheduling multiple messages.

When the filter processing is performed (following pusianputnext  should check

flow control after, rather than before, each new message is forwarded. This is because
there is no provision to hold the new message until the queue becomes unblocked. If the
downstream path is blocked, the remaining part of the original message is returned to the
gueue. Otherwise, processing continues.
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Flow Control
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To use the STREAMS flow control mechanism, modules musterseee  procedures,
invoke canputnext  before callingputnext , and use appropriate values for the high-
and low-water marks.

Module flow control limits the amount of data that can be placed on a queue. It prevents
depletion of buffers in the buffer pool. Flow control is advisory in nature and can be
bypassed. It is managed by high- and low-water marks and regulat@@bNT\ahd
QFULLflags. Module flow control is implemented by using tamputnext , getq ,

putg , putbqg ,insq , andrmvq routines.

During normal flow control, when a module and driver are in sync, the following steps are
taken:

1. A driver sends data to a module usingghtext routine.
2. The module'put procedure queues data uspgdq .

3. Theputg routine increments the modulgscount by the number of
bytes in the message and enables#meice procedure.

4. When STREAMS scheduling runs tbervice  procedure, thservice
procedure retrieves the data by callingdbéy utility.

5. getq decrementg_count by an appropriate value.

If the module cannot process data at the rate at which the driver is sending the data, the
following steps occur:

1. The module's|_count goes above its high-water mark, and @eULL
flag is set byutq .

2. The driver'scanputnext  fails, and setQWANTMAg in the module's
queue.

3. The driver sends a command to the device to either stop input, queue the
data in its own queue, or drop the data.

4. The module's|_count falls below its low-water mark becausegetq .

5. getqg finds the nearest back queue witteavice procedure and enables
it.

6. The scheduler runs tlservice procedure.

The procedure for banded data is the same, excepglthabunt is used in place of
g_count .

NOTE

Flow control does not prevent exceedimchiwat on a given
gqueue. Flow control may exceed its maximum before
canputnext detectQFULLand flow is stopped.
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Screen 7-7 and Screen 7-8 show a line discipline module's flow control. Screen 7-7 is a
read-side line discipline module:

4 )

/* read-side line discipline module flow control */
Id_read_srv(queue_t *q)

mblk_t *mp; /* original message */
mblk_t *bp; /* canonicalized message */

while ((mp = getq(q)) '= NULL) {
switch (mp->b_datap->db_type) { /* type of message */
case M_DATA: /* data message */
if (canputnext(q)) {
bp = read_canon(mp);
putnext(qg, bp);
}else {
putbq(q, mp); /* put message back in queue */
return;

}

break:

default:
if (pcmsg(mp->b_datap->db_type))
putnext(g, mp); /* high priority message */
else { /* ordinary message */
if (canputnext(q))
putnext(q, mp);
else {
putbq(q, mp);
return;

}

break;

\_ )

Screen 7-7. Read Side Line Discipline

Screen 7-8 shows a write-side line discipline module:

7-9
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/* write-side line discipline module flow control */
Id_write_srv(queue_t *q)

mibk_t *mp;/* original message */
mblk_t *bp;/* canonicalized message */

while ((mp = getq(q)) '= NULL) {
switch (mp->b_datap->db_type) { /* type of message */
case M_DATA: /* data message */
if (canputnext(q)) {
bp = write_canon(mp);
putnext(q, bp);
}else {
putba(q, mp);
return;

break;

case M_IOCTL:
Id_ioctl(q, mp);
break:

default:
if (pcmsg(mp->b_datap->db_type))
putnext(q, mp);/* high priority message */
else { /* ordinary message */

if (canputnext(q))
putnext(q, mp);

else {
putbq(q, mp);
return;

}

break;

\_ )

Screen 7-8. Write Side Line Discipline

Design Guidelines

Module developers should follow these guidelines:

* Message types that are not understood by the modules should be passed to
the next module.

* The module that acts on &h IOCTL message should send nIOCACK

or M_IOCNAKmessage in response to thetl . If the module does not
understand thectl , it should pass th#l_IOCTL message to the next
module.

* Modules should be designed in such a way that they do not pertain to any
particular driver but can be used by all drivers.

7-10
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* In general, modules should not require the data ikl aDATAmessage to
follow a particular format, such as a specific alignment. This makes it eas-
ier to arbitrarily push modules on top of each other in a sensible fashion.
Not following this rule may limit module reusability.

* Filter modules pushed between a service user and a service provider may
not alter the contents of thé PROT@r M_PCPROT®lock in messages.
The contents of the data blocks may be manipulated, but the message
boundaries must be preserved.

* A multithreaded module is responsible for protecting module-specific data
against multiprocessor race conditions.

7-11
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Introduction

A driver is software that provides an interface between the operating system and a device.
The driver controls the device in response to kernel commands, and user-level programs
access the device through system calls. The system calls interface with the file system and
process control system, which in turn access the drivers. The driver provides and manages
a path for the data to and from the hardware device, and services interrupts issued by the
device controller.

Unlike a module, a device driver may have an interrupt routine so that it is accessible from
a hardware interrupt as well as from the Stream. A driver can have multiple Streams con-
nected to it. Multiple connections occur when more than one minor device of the same
driver is in use and for multiplexors. However, these particular differences are not recog-
nized by the STREAMS mechanism. They are handled by developer-provided code
included in the driver procedures.

This chapter describes the operation of a STREAMS driver, and discusses some of the
processing typically required in drivers.

Driver Classification

In general, drivers are grouped according to the type of the device they control, the access
method (the way data is transferred), and the interface between the driver and the device.

The type can be hardware or software. A hardware driver controls a physical device such
as a disk. A software driver, also called a pseudo-device, controls software, which in turn
may interface with a hardware device. The software driver may also support pseudo-
devices that have no associated physical device.

Drivers can be character-type or block-type, but many support both access methods. In
character-type transfer, data is read a character at a time or as a variable length stream of
bytes, the size of which is determined by the device. In block-type access, data transfer is
performed on fixed-length blocks of data. Devices that support both block- and character-
type access must have a separate special device file for each access method. Character
access devices can also use raw (also called unbuffered) data transfer that takes place
directly between user address space and the device. Unbuffered data transfer is used
mainly for administrative functions where the speed of the specific operation is more
important than overall system performance.

The driver interface refers to the system structures and kernel interfaces used by the driver.
For example, STREAMS is an interface.

8-1
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Writing a Driver

8-2

All drivers are identified by a string of up to four characters called the prefix. The prefix is
defined in the master file for the driver and is added to the name of the driver routines. For
example, th@pen routine for the driver with theyz prefix isxyz open.

Writing a driver differs from writing other C programs in the following ways:

* A driver does not havemain routine. Driver entry points are given spe-
cific names and accessed through switch tables.

* A driver functions as a part of the kernel. Consequently, a poorly written
driver can degrade system performance or corrupt the system.

¢ A driver cannot use system calls or the C library, because the driver func-
tions at a lower level.

* A driver cannot use floating-point arithmetic.

* A driver cannot use archives or shared libraries, but frequently used sub-
routines can be put in separate files in the source code directory for the
driver.

Driver code, like other system software, uses the advanced C language capabilities. These
include bit-manipulation capabilities, casting of data types, and use of header files for
defining and declaring global data structures.

Driver code includes a set of entry point routines:

* Initialization entry points that are accessed throimtinit and
io_start  arrays during system initialization.

* Switch table entry points that are accessed thrdadgvsw (block-
access) anddevsw (character-access) switch tables when the appropriate
system call is issued.

* Interrupt entry points that are accessed through the interrupt vector table
when the hardware generates an interrupt.

The following lists rules of driver development:

¢ All drivers must have entries in the necessary configuration files. See “Con-
figuring the System for STREAMS Drivers and Modules.”

¢ All drivers should havétinclude system header files that define data
structures used in the driver.

* Drivers may have aimit and/or astart  routine to initialize the driver.

Software drivers usually have little to initialize, because there is no hardware
involved. Aninit  routine is used when a driver needs to initialize but does not
need any system servicé&st  routines are run before system services are initial-
ized (like the kernel memory allocator, for example). When a driver needs to do ini-
tialization that requires system servicestat routine is used. Thstart rou-

tines are run after system services are initialized.

* Drivers haveopen andclose routines.
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* Most drivers have an interrupt handler routine.

The driver developer is responsible for supplying an interrupt routine for the device's
driver. The PowerMAX OS system provides a few interrupt handling routines for
hardware interrupts, but the developer has to supply the specifics about the device.

In general, grefix int interrupt routine should be written for any device that
does not send separate transmit and receive interrupts. TTY devices that request sep-
arate transmit and receive interrupts can have two separate interrupt routines associ-
ated with themprefix xint to transmit an interrupt, angrefix rint to

receive an interrupt.

* Most drivers haveatatic ~ subordinate driver routines to provide the func-
tionality for the specific device. The names of these routines should include
the driverprefix, although this is not required since the routine is declared
asstatic

* A bootable object file and special device files are also needed for a driver to
be fully functional.

Major and Minor Device Numbers

A device appears to the PowerMAX OS system as a special device file. The system
accesses a device by opening, reading, writing, and closing the device's special device file.

The system identifies and accesses the special device file using the file's major and minor
device numbers. The major number identifies a driver for a controller. The minor number
identifies a specific device.

Major numbers are assigned by the installation and configuration software. Minor num-
bers are designated by the driver developer.

Minor numbers are determined differently for different types of devices. Typically, minor
numbers are an encoding of information needed by the controller board.

Major and minor numbers can be external or internal.

¢ External major numbers are those visible to the user.

¢ Internal major numbers serve as an index intocttessw andbdevsw
switch tables. These are assigned by the configuration process when drivers
are loaded and they may change every time a full configuration boot is
done.

One driver may control several devices, but each device will have its own external
major number and all those external major numbers are mapped to one internal
major number for the driver.

* External minor numbers are controlled by a driver developer, although
there are conventions enforced for some types of devices by some utilities.
For example, a tape drive may interface with a hardware controller (device)
to which several tape drives (subdevices) are attached. All tape drives
attached to one controller will have the same external major number, but
each drive will have a different external minor number.
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¢ Internal minor numbers are used with hardware drivers to identify the logi-
cal controller that is being addressed. Because drivers that control multiple
devices (controllers) usually require a data structure for each configured
device, drivers address the per-controller data structure by the internal
minor number rather than the external major number.

Logical controller numbers are assigned sequentially by the central controller firmware at
self-configuration time.

The internal minor number for all software drivers is 0.

The switch tables will have only as many entries as required to support the drivers
installed on the system. Switch table entry points are activated by system calls that refer-
ence a special device file that supplies the external major number and instructions on
whether to usédevsw or cdevsw. The routinegietmajor andgetminor return an
internal major and minor number for the device. The rougiegsmajor andgetemi-

nor return an external major and minor number for the device.

STREAMS Drivers

8-4

At the interface to hardware devices, character I/O drivers have interrupt entry points; at
the system interface, those same drivers generally have direct entry points (routines) to
procesopen, close ,read ,write ,poll ,andioctl system calls.

STREAMS device drivers have interrupt entry points at the hardware device interface and
have direct entry points only for tepen andclose system calls. These entry points are
accessed by STREAMS, and the call formats differ from traditional character device driv-
ers. (STREAMS drivers are character drivers, too. We call the non-STREAMS character
drivers traditional character drivers or non-STREAMS character driversputh@roce-

dure is a driver's third entry point, but it is a message (not system) interface. The Stream
head translatesrite andioctl  calls into messages and sends them downstream to be
processed by the driver's write qugueé procedureread is seen directly only by the
Stream head, which contains the functions required to process system calls. A driver does
not know about system interfaces other tbpen andclose , but it can detect the
absence of eead indirectly if flow control propagates from the Stream head to the driver
and affects the driver's ability to send messages upstream.

For input processing, when the driver is ready to send data or other information to a user
process, it does not wake up the process. It prepares a message and sends it to the read
gueue of the appropriate (minor device) Stream. The drigpea routine generally

stores the queue address corresponding to this Stream.

For output processing, the driver receives messages in placeritd a call. If the mes-
sage can not be sent immediately to the hardware, it may be stored on the driver's write
message queue. Later output interrupts can remove messages from this queue.

When sending data to the device, the driver needs to handle the special cases that affect
hardware access to the memory. For example, drivers that perform physical Direct Mem-
ory Access (DMA) to or from STREAMS message buffers should be aware that a
STREAMS message buffer can cross page boundaries. This will happen if the buffer size
is greater than the page size of the machine. Buffers smaller than the page size are usually
allocated such that they will not cross a page boundary, but if the message was allocated
viaesballoc , the buffer could be positioned in an arbitrary location in memory.
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Drivers using physical DMA should therefore transfer only those ranges of memory that
are physically contiguous. The driver should check each message buffer to see if the data
crosses a page boundary, and transfer separately each range of data that resides in a differ-
ent page. If the hardware supports scatter-gather DMA, then the driver should generate a
new base-length pair for each page.

Figure 8-1 shows multiple Streams (corresponding to minor devices) to a common driver.
There are two distinct Streams opened from the same major device. Consequently, they
have the samg&treamtab  and the same driver procedures.

The configuration mechanism distinguishes between STREAMS devices and traditional
character devices, because system calls to STREAMS drivers are processed by
STREAMS routines, not by the PowerMAX OS system driver routines. Indéesw

file, the fieldd_str provides this distinction.

Multiple instantiations (minor devices) of the same driver are handled during the initial
open for each device. Typically, thegeue address is stored in a driver-private structure
array indexed by the minor device number. This is for use by the interrupt routine that
needs to translate from device number to a particular Streang_pire of thequeue

points to the private data structure entry. When the messages are received by the queue, the
calls to the driveput andservice procedures pass the address ofgtneue , allowing

the procedures to determine the associated device.

A driver is at the end of a Stream. As a result, drivers must include standard processing for
certain message types that a module might simply be able to pass to the next component.

STREAMS guarantees that only amgen orclose routine will be active at any time for
any given major/minor pair.
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Figure 8-1. Device Driver Streams

Printer Driver Example

8-6

Port

161840

Screen 8-2 through Screen 8-6 show how a simple interrupt-per-character line printer
driver could be written. The driver is unidirectional and has no read-side processing. It
shows some differences between module and driver programming, including the follow-

ing:

Open handling A driver is passed a device number or is asked to select one.
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Flush handling A driver must lodd_FLUSHmessages back upstream.

ioctl  handling A driver must send a negative acknowledgmeribédr mes-
sages it does not understand. This is discussed under “Module and
Driver ioctls.”

Declarations

The driver declarations are shown in Screen 8-1. For more information, see “Module and
Driver Declarations.”

~

/* Simple line printer driver */

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/ddi.h>

static struct module_info minfo = {
Oxaabb, “Ip”, 0, INFPSZ, 150, 50 };

static int Ipopen(queue_t *, dev_t *, int, int, cred_t *);
static int Ipclose(queue_t *, int, cred_t *);
static int Ipwput(queue_t *, mblk_t *);

static struct ginit rinit = {
NULL, NULL, Ipopen, Ipclose, NULL, &minfo, NULL };

static struct ginit winit = {
Ipwput, NULL, NULL, NULL, NULL, &minfo, NULL };

struct streamtab Ipinfo = { &rinit, &winit, NULL, NULL };
#define SET_OPTIONS(('I'<<8)|1)/* should be in a .h file */
Ikinfo_t Ip_Ikinfo;
/* This is a private data structure, one per minor device number. */
/* Access to struct Ip must be protected by DDI/DKI locks or */
/* synchronization primitives. */
struct Ip {

short flags;/* flags -- see below */

mblk_t *msg;/* current message being output */

queue_t *gptr;/* back pointer to write queue */

lock_t *Ick;

h
I* Flags bits */
#define BUSY 1/* device is running and interrupt is pending */

extern struct Ip Ip_Ip[l;/* per device Ip structure array */
extern int Ip_cnt;/* number of valid minor devices */

int Ipdevflag = D_MT;

\_ )

Screen 8-1. Line Printer Driver

Configuring a STREAMS driver requires only thieeamtab  structure to be externally
accessible. For hardware drivers, the interrupt handler must also be externally accessible.
All other STREAMS driver procedures would typically be declatatic
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Driver Open
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Thestreamtab  structure must be defined pefixinfo, whereprefix is the value of the
prefix field in the master file for this driver. The values in the module name and ID fields in
themodule_info  structure should be unique in the system. Note that, as in character /0O
drivers,extern variables are assigned values in the master file when configuring drivers
or modules.

The privatelp structure is indexed by the minor device number and contains these ele-
ments:

flags A set of flags. Only one bit is useBUSYindicates that output is
active and a device interrupt is pending.

msg A pointer to the current message being output.

gptr A back pointer to the write queue. This is needed to find the write

gueue during interrupt processing.

Ick A DDI/DKI driver lock to prevent race conditions on the
structure.

There is no read-sideut orservice procedure. The flow control limits for use on the
write-side are 50 bytes for the low water mark and 150 bytes for the high water mark.

The STREAMS mechanism allows only one Stream per minor device. The driver open
routine is called whenever a STREAMS device is opened. Opening also allocates a private
data structure. The driver opépopen in Screen 8-2, has the same interface as the mod-
ule open:
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void Ipinit()
{
register struct Ip *Ip;

/*
* allocate multiprocessor lock for each minor device
*
/
for (Ip = Ip_Ip; Ip < &Ip_Ip[lp_cnt]; Ip++)
Ip->Ick = LOCK_ALLOC(1, plstr, &lp_lkinfo, KM_SLEEP);
}

int Ipopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)

struct Ip *Ip;
dev_t device;

if (sflag) ~ /* check if non-driver open */
return ENXIO;

[* check if already open */
device = getminor(*devp);
if (device > Ip_cnt)

return ENXIO;
if (q->0_ptr)

return EBUSY;

/* point q_ptr at driver structure */
Ip = &lp_lIp[device];

Ip->gptr = WR(q);

g->qg_ptr = (char *)Ip;
WR(q)->q_ptr = (char *)Ip;

/* enable put and srv routines for queue pair */
gprocson(q);

return O;

\_ )

Screen 8-2. Driver Open

The Stream flagsflag must have the value 0, indicating a normal driver ogdewp is a
pointer to the major/minor device number for this port. After checlesiitag, the
STREAMS open flaglpopen extracts the minor device pointed to dgvp using the
getminor  function.credpis a pointer to a credentials structure.

The minor device number selects a printer. The device number pointeddéogmgust be
less tharp_cnt , the number of configured printers. Otherwise, failure occurs.

The next checkif (g->q_ptr) . . . , determines if this printer is already open. If

it is, EBUSYis returned to avoid merging printouts from multiple usgrgtr is a
driver/module private data pointer. It can be used by the driver for any purpose and is ini-
tialized to zero by STREAMS. In this example, the driver sets the valpegof , in both

the read and writqueue structures, to point to a private data structure for the minor
device,lp_Ip[device]

There are no physical pointers between que¥(q) generates the write pointer from
the read pointelRD(q) generates the read pointer from the write pointer, @mH-
ERQ(q) generates the mate pointer from either.

8-9
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Driver Flush Handling
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The following writeput procedurelpwput , illustrates driveM_FLUSHhandling. Note
that all drivers are expected to incorporate flush handling.

If FLUSHWSs set, the write message queue is flushed, and (in this example) the leading
messagelif->msg ) is also flushed.

The lineoldpri = LOCK(Ip->Ick, plstr); is used to protect the critical code,
assuming the device interrupts at level bejstr

Normally, if FLUSHRIis set, the read queue would be flushed. However, in this example,

no messages are ever placed on the read queue, so it is not necessary to flush it. The
FLUSHWbit is cleared and the message is sent upstreamareiply . If FLUSHRis not

set, the message is discarded.

The Stream head always performs the following actions on flush requests received on the
read-side from downstream.FLUSHRIis set, messages waiting to be sent to user space
are flushed. IFLUSHWs set, the Stream head clears Bi¢JSHRbit and sends the
M_FLUSHmessage downstream. In this way, a sildlé-LUSHmessage sent from the
driver can reach all queues in a Stream. A module must send tWbUSHmMessages to

have the same affect.

Ipwput enqueued!_DATAandM_IOCTL messages and, if the device is not busy, starts
output by callingpout . Messages types that are not recognized are discarded.
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int Ipwput(queue_t *q, mblk_t *mp)
{

register struct Ip *Ip;
pl_t oldpri;

Ip = (struct Ip *)g->q_ptr;
switch(mp->b_datap->db_type) {

default:
freemsg(mp);
break;

case M_FLUSH:
if (*mp->b_rptr & FLUSHW) {
/*
* flush the queue;
* also flush Ip->msg since it is logically
* at the head of the write queue.
* access to Ip must be locked to protect against
* potential multiprocessor race.
*
flushq(q, FLUSHDATA);
oldpri = LOCK(Ip->Ick, plstr);;
if (Ip->msg) {
freemsg(Ip->msg);
Ip->msg = NULL;

}
UNLOCK(Ip->Ick, oldpri);
}

if (*mp->b_rptr & FLUSHR) {
*mp->b_rptr &= ~FLUSHW;
areply(q, mp);

} else
freemsg(mp);

break;

case M_IOCTL:
case M_DATA:
putq(d, mp);
oldpri = LOCK(Ip->Ick, plstr);
if (I(Ip->flags & BUSY))
Ipout(lp);
UNLOCK(Ip->Ick, oldpri);

}

\_ )

Screen 8-3. Flush Handling

Ipint is the driver interrupt handler routinpout simply takes a character from the
gueue and sends it to the printer. For convenience, the message currently being output is
stored inlp->msg . Ipoutchar  sends a character to the printer and interrupts when
complete. Printer interface options need to be set before being able to print.

Screen 8-4 shows the interrupt routine in the printer driver.
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/*

* Device interrupt routine
*

Ipint(int device)

register struct Ip *Ip;

pl_t oldpri;

Ip = &Ip_lIp[device];

oldpri = LOCK(Ip->Ick, plstr);

if (I(Ip->flags & BUSY)) {
UNLOCK(Ip->Ick, oldpri);
cmn_err(CE_WARN, “Ip: unexpected interrupt\n”);
return;

}

Ip->flags &= ~BUSY;
Ipout(lp);
UNLOCK(Ip->Ick, oldpri);

o

Screen 8-4. Device Interrupt
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~

/* Start output to device -- called by put and interrupt routines */
/* argument Ip is locked on entry */

Ipout(struct Ip *Ip)
{

register mblk_t *bp;
queue_t *q;

q = Ip->qptr;

loop:
if ((bp = Ip->msg) == NULL) {/* no current message */
if ((bp = getq(q)) == NULL) {
Ip->flags &= ~BUSY;
return;

}

if (bp->b_datap->db_type == M_IOCTL) {
Ipiocti(Ip, bp);
goto loop;

}

Ip->msg = bp;/* new message */

if (bp->b_rptr >= bp->b_wptr) {/* validate message */
bp = Ip->msg->b_cont;
Ip->msg->b_cont = null;
freeb(Ip->msg);
Ip->msg = bp;
goto loop;

}

Ipoutchar(lp, *bp->b_rptr++);/* output one character */
Ip->flags |= BUSY;

. )

Driver Close Routine
The driverclose routine is called by the Stream head. Any messages left on the queue

are automatically removed by STREAMS. The Stream is dismantled and the data struc-
tures are deallocated.
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static int Ipclose(queue_t *q, int flag, cred_t *credp)

struct Ip *Ip;
pl_t oldpri;
/*
* disable put and srv routines for q pair
*
gprocsoff(q);
Ip = (struct Ip *) g->qg_ptr;
/* Free message, queue is automatically flushed by streans */
oldpri = LOCK(Ip->Ick, plstr);
if (Ip->msg) {
freemsg(Ip->msg);
Ip->msg = NULL;

}
Ip->flags = 0;
UNLOCK(Ip->Ick, oldpri);

\ /

Screen 8-5. Driver Close Routine

Driver Flow Control

The same utilities and mechanisms used for module flow control are used by drivers.

When the message is queupdtq increments the value of count by the size of the
message and compares the result against the driver's write high wateq linnitat )
value. If the count exceedshiwat , theputq utility routine sets the intern&ULL indi-
cator for the driver write queue. This causes messages from upstream to bechatted (
putnext returnsFALSE) until the write queue count reactedowat . The driver mes-
sages waiting to be output are dequeued by the driver output interrupt routigetgith
which decrements the count. If the resulting count is bgldawat , thegetq routine
back-enables any upstream queue that had been blocked.

For priority band datayjb_count , gb_hiwat , andgb_lowat are used.

Device drivers typically discard input when unable to send it to a user process. However,
STREAMS allows flow control to be used on the driver read-side to handle temporary
upstream blocks.

To some extent, a driver or a module can control when its upstream transmission will
become blocked. Control is available through MheSETOPTS3nessage to modify the
Stream head read-side flow control limits.

Cloning

In many earlier examples, each user process connected a Stream to a driver by opening a
particular minor device of that driver. Often, however, a user process had to connect a new
Stream to a driver regardless of which minor device is used to access the driver. In the
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past, this typically forced the user process to poll the various minor device nodes of the
driver for an available minor device. To alleviate this task, a facility called “clone open” is
supported for STREAMS drivers. If a STREAMS driver is implemented as a clonable
device, a single node in the file system may be opened to access any unused device that the
driver controls. This special node guarantees that the user is allocated a separate Stream to
the driver on everppen call. Each Stream is associated with an unused major/minor
device, so the total number of Streams that may be connected to a particular clonable
driver is limited by the number of minor devices configured for that driver.

The clone device may be useful, for example, in a networking environment where a proto-
col pseudo-device driver requires each user to open a separate Stream over which it estab-
lishes communication.

Note, however, that a race can occur when simultaneous cloning opens and non-cloning
opens are in progress. A clone driver must detect this race and E&UNRACHa sys-

tem errno) for the non-cloning open. The FS layers above will detect this errno and restart
the open.

NOTE

The decision to implement a STREAMS driver as a clonable
device is made by the designers of the device driver.

Knowledge of clone driver implementation is not required. A
description is presented here for completeness and to assist devel-
opers who must implement their own clone driver.

There are two ways to create a clone device node in the file system. The first is to have a
node with the major number of the clone driver and with a minor number equal to the
major number of the real device one wants to open. For exaliginetO0  might be

major 40, minor O (normal open), afttbv/net  might be major 4 (the major number of

the clone driver) minor 40 (the major number of the real device).

The second way to create a clone device node is for the driver to designate a special minor
device as its clone entry point. Heldgv/net  might be major 40, minor O (clone open).

The former example causeflagto be set tacCLONEOPEM the open routine when
/devinet is opened. The latter will not. Instead, in the latter case the driver has decided
to designate a special minor device as its clone interface. When the clone is opened, the
driver knows that it should look for an unused minor device. This implies that the reserved
minor for the clone entry point will never be given out.

In either case, the driver returns the new device number as

*devp= makedevice (getemajor (* devp, newminoj;

NOTE

makedevice is unique to the DDI. If the DDI is not used,
makedev can be used instead mbkedevice .
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Loop-around Driver

8-16

The loop-around driver is a pseudo-driver that loops data from one open Stream to another
open Stream. The user processes see the associated files almost like a full-duplex pipe.
The Streams are not physically linked. The driver is a simple multiplexor that passes mes-
sages from one Stream's write queue to the other Stream's read queue.

To create a connection, a process opens two Streams, obtains the minor device number
associated with one of the returned file descriptors, and sends the device number in an
|_STR ioctl(2) to the other Stream. For eachen, the driver open places the
passedjueue pointer in a driver interconnection table, indexed by the device number.
When the driver later receives theSTR as anM_IOCTL message, it uses the device
number to locate the other Stream's interconnection table entry, and stores the appropriate
gueue pointers in both of the Streams' interconnection table entries.

Subsequently, when messages other MalfOCTL or M_FLUSHare received by the

driver on either Stream's write-side, the messages are switched to the read queue following
the driver on the other Stream's read-side. The resultant logical connection is shown in
Figure 8-2. In Figure 8-2, the abbreviation QP represents a queue pair. Flow control
between the two Streams must be handled by special code since STREAMS does not auto-
matically propagate flow control information between two Streams that are not physically
interconnected.
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major/dev0 major/devl
vhode vnode
Stream Stream
Head Head
Module(s) Module(s)
Queue Pair Queue Pair

Driver Procedures
and
Interrupt Code

Port Port
0
161840

Figure 8-2. Loop-Around Streams

The next example shows the loop-around driver codeldde structure contains the
interconnection information for a pair of Streao®p_loop is indexed by the minor
device number. When a Stream is opened to the driver, the address of the corresponding
loop loop elementis placed ig_ptr (private data structure pointer) of the read-side

and write-sidequeue s. Because STREAMS cleaysptr when thequeue is allocated,
aNULLvalue ofg_ptr indicates an initiabpen . loop_loop verifies that this Stream is
connected to another open Stream. This example driver uses coarse-grained locking for
simplicity.
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The declarations for the driver are shown in Screen 8-6:

/* Loop-around driver */

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

static struct module_info minfo = {
Oxeel2, “loop”, 0, INFPSZ, 512, 128};
static int loopopen(queue_t *, dev_t *, int, int, cred_t *);
static int loopclose(quque_t *, int, cred_t *);
static int loopwput(queue_t *, mblk_t *);
static int loopwsrv(queue_t *);
static int looprsrv(queue_t *);

static struct qinit rinit = {
NULL, looprsrv, loopopen, loopclose, NULL, &minfo, NULL};

static struct ginit winit = {
loopwput, loopwsrv, NULL, NULL, NULL, &minfo, NULL};

struct streamtab loopinfo = {&rinit, &winit, NULL, NULL};

Ikinfo_t loop_Ikinfo;
lock_t *loop_Ick;

struct loop {
queue_t*gptr;/* back pointer to write queue */
queue_t *oqptr;/* pointer to connected read queue */

}
#define LOOP_SET (('I'<<8)|1)/* should be in a .h file */

extern struct loop loop_loop[];
extern int loop_cnt;

int loopdevflag = D_MT;

\_ )

Screen 8-6. Driver Declarations

The open procedure includes canonical clone processing that enables a single file system
node to yield a new minor device/vnode each time the driver is opened as shown in
Figure 8-7:
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@ )

void loopinit()
{

}

int loopopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)

loop_lock = LOCK_ALLOC(LOOPHIER, plstr, &loop_lkinfo, KM_SLEEP);

struct loop *loop;
dev_t newminor;
pl_tpl;

if (9->qg_ptr)/* already open */
return(0);

/*
* If CLONEOPEN, pick a minor device number to use.
* Otherwise, check the minor device range.
*

pl = LOCK(loop_lock, plstr);

if (sflag == CLONEOPEN) {

for (newminor = 0; newminor < loop_cnt; newminor++) {
if (loop_loop[newminor].gptr == NULL)
break;

} else
newminor = geteminor(*devp);

if (newminor >= loop_cnt) {
UNLOCK(loop_lock, pl);
return(ENXIO);

}

/* build new device number and reset devp */
/* getmajor gets the external major number, if (sflag == CLONEOPEN) */

*devp = makedev(getemajor(*devp), newminor);
loop = &loop_loop[newminor];

WR(q)->q_ptr = (char *) loop;

g->q_ptr = (char *) loop;

loop->gptr = WR(q);

loop->oqptr = NULL;

UNLOCK(loop_lock, pl);

/* enable put and srv routines for this queue pair */

gprocson(q);
return(0);

\_ )

Screen 8-7. Open Procedure

In loopopen , sflagcan beCLONEOPENNdicating that the driver should pick an unused
minor device (that is, the user does not care which minor device is used). In this example,
the driver scans its privateop _loop data structure to find an unused minor device
number. Ifsflaghas not been set @_.ONEOPENhe passed-in minor device specified by
geteminor (*devp) is used.

Because the messages are switched to the read queue following the other Stream's read-
side, the driver needspait procedure only on its write-side.

loopwput shows another use of ar5TR ioctl  call (see “Module and Driver ioctls”).

The driver supports BOOP_SETvalue ofioc_cmd in theiocblk  of theM_IOCTL
message. OOP_SETinstructs the driver to connect the current open Stream to the Stream
identified in the message. The second block ofMhéOCTL message holds an integer
that specifies the minor device number of the Stream to connect to.

The driver performs the following sanity checks:
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The data in the second block is checked for the proper amount
The range of theo device is checked

Theto device is checked to see if it is open

The current Stream is checked to see if it is disconnected

Theto Stream is checked to see if it is disconnected

If everything checks out, the regdeue pointers for the two Streams are stored in the
respectiveoqptr fields. This cross-connects the two Streams indirectly, using
loop_loop

Canonical flush handling is incorporated in ¢ procedure.

Finally, loopwput enqueues all other messages (for exanipl&ATAor M_PROTDfor
processing by itservice  procedure. A check is made to see if the Stream is connected.
If not, anM_ERROHR sent upstream to the Stream head.
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int loopwput(queue_t *q, mblk_t *mp)
{

register struct loop *loop;
pl_t pl;

loop = (struct loop *) g->q_ptr;
switch (mp->b_datap->db_type) {

case M_IOCTL: {
struct iocblk *iocp;
int error;

iocp = (struct iocblk *) mp->b_rptr;
switch (iocp->ioc_cmd) {
case LOOP_SET: {

int to;/* other minor device */

/*

* Sanity check. ioc_count contains the amount of
* user supplied data that must equal the size of
*an int.

*/

if (ilocp->ioc_count != sizeof(int)) {
error = EINVAL;
goto iocnak;

}

[* fetch other dev from 2nd message block */
to = *(int *)mp->b_cont->b_rptr;

/*

* More sanity checks. The minor must be in range, open
* already. Also, this device and the other one must be

* disconnected.

*/

pl = LOCK(loop_lock, plstr);

if (to >=loop_cnt || to < O || loop_loop[to].gptr) {
error = ENXIO;
UNLOCK(loop_lock, pl);
goto iocnak;

}

if (loop->oqptr || loop_loopl[to].oqptr) {
error = EBUSY;
UNLOCK(loop_lock, pl);
goto iocnak;

}

/* Cross connect streams using the loop structures */

o

~

Screen 8-8. Driver Sanity Checks
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-

loop->oqptr = RD(loop-loop][to].gptr);
loop_loop[to].oqptr = RD(Q);

UNLOCK(loop_lock, pl);

/*

* Return successful ioctl. Set ioc_count to zero,
* since no data is returned.

*/

mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = 0;

qgreply(q, mp);

break;
default:
error = EINVAL;
iocnak:
/*
* Bad ioctl. Setting ioc_error causes the ioctl
* call to return that particular errno. By default,
* joctl will return EINVAL on failure.
*
mp->b_datap->db_type = M_IOCNAK;
iocp->ioc_error = error;/* set returned errno */
. areply(d, mp);
break;
}

case M_FLUSH:
pl = LOCK(loop_lock, plstr);
if (*mp->b_rptr & FLUSHW) {
flushq(q, FLUSHALL);/* write */
if (loop->oqptr != NULL)
flushg(loop->oqptr, FLUSHALL);
/* read on other side equals write on this side */

}
if (*mp->b_rptr & FLUSHR) {
flushq(RD(q), FLUSHALL);
if (loop->oqptr != NULL)
flushq(WR(loop->oqptr), FLUSHALL);

}
UNLOCK(loop_lock, pl);
switch(*mp->b_rptr) {

case FLUSHW:
*mp->b_rptr = FLUSHR,;
break;

case FLUSHR:
*mp->b_rptr = FLUSHW;
break;
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pl = LOCK(loop_lock, plstr);

if (loop->oqptr != NULL) {
UNLOCK(loop_lock, pl);
/*
* loop->oqptr can only be cleared in loopclose, which
* can not be called while the put procedure is executing
*
/
putnext(loop->oqptr, mp);
}
else
UNLOCK(loop_lock, pl);
break;

default:/* If this Stream isn't connected, send M_ERROR upstream */
pl = LOCK(loop_lock, plstr);
if (loop->oqptr == NULL) {
UNLOCK(loop_lock, pl);
freemsg(mp);
putnextcti1(RD(q), M_ERROR, ENXIO);
break;

}
UNLOCK(loop_lock, pl);
putq(q, mp);

}
\_ J
Certain message types can be sent upstream by drivers and modules to the Stream head

where they are translated into actions detectable by user process(es). The messages may
also change the state of the Stream head:

M_ERROR Causes the Stream head to lock up. Message transmission
between Stream and user processes is terminated. All subsequent
system calls excemiose(2) andpoll(2)  will fail. Also
causes aM_FLUSHlearing all message queues to be sent down-
stream by the Stream head.

M_HANGUP Terminates input from a user process to the Stream. All subse-
guent system calls that would send messages downstream will
fail. Once the Stream head read message queue is empty, EOF is
returned on reads. Can also result inSH@HUPsignal being sent
to the process group.

M_SIG/M_PCSIG Causes a specified signal to be sent to a process.

putnextctll andputnextctl are utilities that allocate a nondata (that is, not
M_DATAM_DELAYM_PROTOor M_PCPROTQype message, place one byte in the
message (foputnextctll ), and call thgout procedure of the queue next to the speci-
fied queue.

service procedures are required in Screen 8-9 on both the write-side and read-side for
flow control:
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static int loopwsrv(queue_t *q)
{
mblk_t *mp;
register struct loop *loop;
pl_tpl;

loop = (struct loop *) g->q_ptr;
while ((mp = getq(q)) '= NULL) {
/*

* Check if we can put the message up the other Stream read

* queue.

*

pl = LOCK(loop_lock, plstr);

if (pcmsg(mp->b_datap->db_type) && !canputnext(loop->oqptr)) {
UNLOCK(loop_lock, pl);
putbq(q, mp);/* read-side is blocked */
break;

/* send message */

/*

* loopwput verified that loop->oqgptr was set and it can only

* be cleared in the close routine, which can not be called

* while this queue was enabled.

*

putnext(loop->oqptr, mp);/* To queue following other
Stream read queue */

}

/*
* read service routine
* Enter only when “back enabled” by flow control
*
static int looprsrv(queue_t *q)
{
struct loop *loop;
pl_tpl;

loop = (struct loop *) g->q_ptr;

pl = LOCK(loop_lock, plstr);

if (loop->oqptr '= NULL)
/* manually enable write service procedure */
UNLOCK(loop_lock, pl);
genable(WR(loop->oqptr));

} else
UNLOCK(loop_lock, pl);

}

\_ )

Screen 8-9. Write and Read Side Flow Control

The writeservice  procedureloopwsrv , takes on the canonical form. The queue being
written to is not downstream, but upstream (found by usgpgr ) on the other Stream.

In Screen 8-10, there is no read-sl¢ procedure so the reagrvice procedure,
looprsrv , is not scheduled by an associapedl procedure, as has been done previ-
ously.looprsrv  is scheduled only by being back-enabled when its upstream becomes
unstuck from flow control blockage. The purpose of the procedure is to re-enable the
writer (loopwsrv ) by usingogptr to find the relatedjueue . loopwsrv  cannot be
directly back-enabled by STREAMS because there is no djtete linkage between

the two Streams. Note that no message ever gets queued to therviad procedure.
Messages are kept on the write-side so that flow control can propagate up to the Stream
head. Thagenable routine schedules the write-sidervice procedure of the other
Stream.
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loopclose  breaks the connection between the Streams:

int loopclose(queue_t *q, int flag, cred_t *credp)

register struct loop *loop;
pl_tpl;

/* disable put and srv routines for queue pair. */
gprocsoff(q);

pl = LOCK(loop_lock, plstr);

loop = (struct loop *) g->q_ptr;

loop->qgptr = NULL;

/*
* |f we are connected to another stream, break the linkage, and send
* a hangup message. The hangup message causes the stream head to fail
* writes, allow the queued data to be read completely, and then
* return EOF on subsequent reads.
*
if (loop->oqptr) {
((struct loop *)loop->oqptr->q_ptr)->oqptr = NULL;
UNLOCK(loop_lock, pl);
putnextctl(loop->oqptr, M_HANGUP);
pl = LOCK(loop_lock, plstr);
loop->oqptr = NULL;

}
UNLOCK(loop_lock, plstr);

}

\_ )

Screen 8-10. Re-enabling the Writer

loopclose  sends aM_HANGURessage up the connected Stream to the Stream head.

NOTE

A loop-around driver must never directly link thenext point-
ers of the queue pairs of the two Streams.

Design Guidelines

Driver developers should follow these guidelines:

* Messages that are not understood by the drivers should be freed.

* A driver must process afl_IOCTL message. Otherwise, the Stream head
blocks for anM_IOCNAKor M_IOCACKuntil the timeout (potentially infi-
nite) expires.

¢ |f a driver does not understandiantl , anM_IOCNAKmessage must be
sent to upstream.

* Terminal drivers must always acknowledge EtéCioctl s whether they
understand them or not.
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¢ |f a driver wants to allocate a controlling terminal, it should send an
M_SETOPTS®nessage with th8O_ISTTY flag set upstream.

* A driver must be a part of the kernel for it to be opened.

* A multithreaded driver is responsible for protecting driver-specific data
against multiprocessor race conditions.

NOTE

For information regarding the loadable STREAMS drivers, see
the Device Driver Programmingnanual
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Introduction

9
STREAMS Multiplexing

This section describes how STREAMS multiplexing configurations are created and also
discusses multiplexing drivers. A STREAMS multiplexor is a driver with multiple
Streams connected to it. The primary function of the multiplexing driver is to switch mes-
sages among the connected Streams. Multiplexor configurations are created at user level
by system calls.

STREAMS-related system calls set up the “plumbing,” or Stream interconnections, for
multiplexing drivers. The subset of these calls that allows a user to connect (and discon-
nect) Streams below a driver is referred to as the multiplexing facility. This type of con-
nection is referred to as a 1-to-M, or lower, multiplexor configuration. This configuration
must always contain a multiplexing driver, which is recognized by STREAMS as having
special characteristics.

Multiple Streams can be connected above a drivapen(2) calls. This was done for

the loop-around driver and for the driver handling multiple minor devices in “STREAMS
Drivers.” There is no difference between the connections to these drivers, only the func-
tions performed by the driver are different. In the multiplexing case, the driver routes data
between multiple Streams. In the device driver case, the driver routes data between user
processes and associated physical ports. Multiplexing with Streams connected above is
referred to as an N-to-1, or upper, multiplexor. STREAMS does not provide any facilities
beyondopen(2) andclose(2) to connect or disconnect upper Streams for multiplex-

ing purposes.

From the driver's perspective, upper and lower configurations differ only in how they are
initially connected to the driver. The implementation requirements are the same: route the
data and handle flow control. All multiplexor drivers require special developer-provided
software to perform the multiplexing data routing and to handle flow control. STREAMS
does not directly support flow control among multiplexed Streams.

M-to-N multiplexing configurations are implemented by using both of the above mecha-
nisms in a driver.

As discussed in “STREAMS Drivers,” the multiple Streams that represent minor devices
are actually distinct Streams in which the driver keeps track of each Stream attached to it.
The STREAMS subsystem does not recognize any relationship between the Streams. The
same is true for STREAMS multiplexors of any configuration. The multiplexed Streams
are distinct and the driver must be implemented to do most of the work.

In addition to upper and lower multiplexors, more complex configurations can be created
by connecting Streams containing multiplexors to other multiplexor drivers. With such a
diversity of needs for multiplexors, it is not possible to provide general-purpose multi-
plexor drivers. STREAMS provides a general purpose multiplexing facility that allows
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users to set up the intermodule/driver plumbing to create multiplexor configurations of
generally unlimited interconnection.

Building a Multiplexor

This section builds a protocol multiplexor with the multiplexing configuration shown in
Figure 9-1. To free users from the need to know about the underlying protocol structure, a
user-level daemon process is built to maintain the multiplexing configuration. Users can
then access the transport protocol directly by opening the transport protocol (TP) driver
device node.

An internetworking protocol driver (IP) routes data from a single upper Stream to one of
two lower Streams. This driver supports two STREAMS connections beneath it. These
connections are to two distinct networks; one for the IEEE 802.3 standard with the 802.3
driver, and the other to the IEEE 802.4 standard with the 802.4 driver. The TP driver mul-
tiplexes upper Streams over a single Stream to the IP driver.
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The following example shows how this daemon process sets up the protocol multiplexor.
The necessary declarations and initialization for the daemon program are shown in

Screen 9-1:
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#include <fcntl.h>
#include <stropts.h>

main()

int fd_802_4,
fd_802_3,
fd_ip,
fd_tp;

/* daemonize this process */

switch (fork()) {
case O:
break;
case -1:
perror(“fork failed”);
exit(2);
default:
exit(0);

}
setsid();

o

)

Screen 9-1. Daemon Program Declarations and Initialization

This multilevel multiplexed Stream configuration is built from the bottom up. Therefore,
Screen 9-1 begins by first constructing the Internal Protocol (IP) multiplexor. This multi-
plexing device driver is treated like any other software driver. It owns a node in the Power-
MAX OS file system and is opened just like any other STREAMS device driver.

The first step is to open the multiplexing driver and the 802.4 driver, thus creating separate
Streams above each driver as shown in Figure 9-2 The Stream to the 802.4 driver may now
be connected below the multiplexing IP driver usinglthdéNK ioctl call.

daemon

802.4
Driver

Driver

Figure 9-2. Before Link

The sequence of instructions to this point is
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if (fd_802_4 = open(*/dev/802_4", O_RDWR)) < 0) {
perror(“open of /dev/802_4 failed”);
exit(1);

}

if ((fd_ip = open(“/dev/ip”, O_RDWR)) < 0) {
perror(“open of /dev/ip failed”);
exit(2);

}

/* now link 802.4 to underside of IP */

if (ioctl(fd_ip, I_LINK, fd_802_4) < 0) {
perror(“I_LINK ioctl failed”);
exit(3);

\_ )

I_LINK takes two file descriptors as arguments. The first file descrijotdp , must
reference the Stream connected to the multiplexing driver, and the second file descriptor,
fd_802_4 , must reference the Stream to be connected below the multiplexor. Figure 9-3
shows the state of these Streams followinglthéNK call. The complete Stream to the
802.4 driver has been connected below the IP driver. The Stream head's queues of the
802.4 driver is used by the IP driver to manage the lower half of the multiplexor.

9-5



STREAMS Modules and Drivers

daemon

User Space

Kernel Space

Driver

v |

802.4
Driver

161540

Figure 9-3. IP Multiplexor after First Link

|_LINK returns an integer value, calledixid , which is used by the multiplexing driver

to identify the Stream just connected below it. Thisxid is ignored in the example, but

is useful for dismantling a multiplexor or routing data through the multiplexor. Its signifi-
cance is discussed later.

The following sequence of system calls is used to continue building the internetworking
protocol multiplexor (IP):

4 )

if ((fd_802_3 = open(‘/dev/802_3", O_RDWR)) < 0) {
perror(“open of /dev/802_3 failed”);
exit(4);

}
if (ioctl(fd_ip, I_LINK, fd_802_3) < 0) {

perror(“I_LINK ioctl failed”);
exit(5);

\_ )

All links below the IP driver have now been established, giving the configuration in
Figure 9-5
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daemon

i User Space
| | Kernel Space
Controlling /
Stream P
Driver
802.4 802.3
Driver Driver

161550

Figure 9-4. IP Multiplexor

The Stream above the multiplexing driver used to establish the lower connections is the
controlling Stream and has special significance when dismantling the multiplexing config-
uration. This will be illustrated later in this section. The Stream referencitl ipy is

the controlling Stream for the IP multiplexor.

NOTE

The order in which the Streams in the multiplexing configuration
are opened is unimportant. If it is necessary to have intermediate
modules in the Stream between the IP driver and media drivers,
these modules must be added to the Streams associated with the
media drivers (using PUSH) before the media drivers are
attached below the multiplexor.

The number of Streams that can be linked to a multiplexor is restricted by the design of the
particular multiplexor. The manual page describing each driver describes such restrictions.
SeeDevice Driver Referencéiowever, only oné LINK operation is allowed for each
lower Stream; a single Stream cannot be linked below two multiplexors simultaneously.
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Continuing with the example, the IP driver is now linked below the transport protocol (TP)
multiplexing driver. As seen in Figure 9-4, only one link is supported below the transport
driver. This link is formed by the following sequence of system calls:

~

if ((fd_tp = open(“/dev/tp”, O_RDWR)) < 0) {
perror(“open of /dev/tp failed”);
exit(6);

}

if (ioctl(fd_tp, I_LINK, fd_ip) < 0) {
perror(“I_LINK ioctl failed”);
exit(7);

\_ )

The multilevel multiplexing configuration shown in Figure 9-5 has now been created.

daemon

User Space

Kernel Space

Controlling /

Stream P
Driver
802.4 802.3
Driver Driver

161550

Figure 9-5. TP Multiplexor

Because the controlling Stream of the IP multiplexor has been linked below the TP multi-
plexor, the controlling Stream for the new multilevel multiplexor configuration is the
Stream above the TP multiplexor.
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At this point, the file descriptors associated with the lower drivers can be closed without
affecting the operation of the multiplexor. If these file descriptors are not closed, all later
read , write ,ioctl , poll , getmsg andputmsg (or getmsg(2) andput-

msg(2)) system calls issued to them will fail becaliSelNK associates the Stream
head of each linked Stream with the multiplexor, so the user may not access that Stream
directly for the duration of the link.

The following sequence of system calls completes the daemon example:

close(fd_802_4);
close(fd_802_3);
close(fd_ip);

/* Hold multiplexor open forever */
pause();

The transport driver supports several simultaneous Streams. These Streams are multi-
plexed over the single Stream connected to the IP multiplexor. The mechanism for estab-
lishing multiple Streams above the transport multiplexor is actually a by-product of the
way in which Streams are created between a user process and a driver. By opening differ-
ent minor devices of a STREAMS driver, separate Streams are connected to that driver. Of
course, the driver must be designed with the intelligence to route data from the single
lower Stream to the appropriate upper Stream.

The daemon process maintains the multiplexed Stream configuration through an open
Stream (the controlling Stream) to the transport driver. Meanwhile, other users can access
the services of the transport protocol by opening new Streams to the transport driver; they
are freed from the need for any unnecessary knowledge of the underlying protocol config-
urations and subnetworks that support the transport service.

Multilevel multiplexing configurations should be assembled from the bottom up because
the passing obctl s through the multiplexor is determined by the multiplexing driver
and cannot generally be relied on.

Dismantling a Multiplexor

Streams connected to a multiplexing driver from above opn, can be dismantled by
closing each Stream wittlose . The mechanism for dismantling Streams that have been
linked below a multiplexing driver is less obvious, and is described below.

The I_UNLINK ioctl call disconnects each multiplexor link below a multiplexing
driver individually. This command has the form:

ioctl  (fd, |_UNLINK, muxid;

wherefd is a file descriptor associated with a Stream connected to the multiplexing driver
from above, andnuxidis the identifier that was returned byLINK when a driver was
linked below the multiplexor. Each lower driver may be disconnected individually in this
way, or a speciahuxidvalue of-1 may disconnect all drivers from the multiplexor simul-
taneously.
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In the multiplexing daemon program shown in Figure 9-1, the multiplexor is never explic-
itly dismantled because all links associated with a multiplexing driver are automatically
dismantled when the controlling Stream associated with that multiplexor is closed.
Because the controlling Stream is open to a driver, only the final celbs¥ for that

Stream closes it. In this example, the daemon is the only process that opens the controlling
Stream, so the multiplexing configuration is dismantled when the daemon exits.

For the automatic dismantling mechanism to work in the multilevel, multiplexed Stream
configuration, the controlling Stream for each multiplexor at each level must be linked
under the next higher level multiplexor. In the example, the controlling Stream for the IP
driver was linked under the TP driver, which resulted in a single controlling Stream for the
full, multilevel configuration. Because the multiplexing program relied on closing the con-
trolling Stream to dismantle the multiplexed Stream configuration instead of using explicit
I_UNLINK calls, themuxidvalues returned bly LINK could be ignored.

An important side-effect of automatic dismantling on the close is that it is not possible for
a process to build a multiplexing configuration with.INK and then exit. This is
becausexit(2) closes all files associated with the process, including the controlling
Stream. To keep the configuration intact, the process must exist for the life of that multi-
plexor. That is the motivation for implementing the example as a daemon process.

However, if the process uses persistent links with tReINK ioctl call, the multi-
plexor configuration remains intact after the process exits. Persistent links are described
later in this chapter.

Routing Data through a Multiplexor

STREAMS provides a mechanism for building multiplexed Stream configurations. How-
ever, the criteria on which a multiplexor routes data is driver-dependent. For example, the
protocol multiplexor shown before might use address information found in a protocol
header to determine over which subnetwork data should be routed. It is the multiplexing
driver's responsibility to define its routing criteria.

One routing option available to the multiplexor is to usentbgid value to determine to
which Stream data should be routed (remember that each multiplexor link is associated
with amuxid. I_LINK passes thenuxidvalue to the driver and returns this value to the
user. The driver can therefore specify thatrthexidvalue must accompany data routed
through it. For example, if a multiplexor routed data from a single upper Stream to one of
several lower Streams (as did the IP driver), the multiplexor could require the user to insert
themuxid of the desired lower Stream into the first four bytes of each message passed to
it. The driver could then match theuxid in each message with theuxid of each lower
Stream, and route the data accordingly.

Connecting/Disconnecting Lower Streams

Multiple Streams are created above a driver/multiplexor withtogie: system call on
either different minor devices, or on a clonable device file. Note that any driver that han-
dles more than one minor device is considered an upper multiplexor.
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To connect Streams below a multiplexor requires additional software within the multi-
plexor. The main difference between STREAMS lower multiplexors and STREAMS
device drivers are that multiplexors are pseudo-devices and that multiplexors have two
additionalginit  structures, pointed to by fields in tegeamtab  structure: théower

half read-sideginit ~ and thdower halfwrite-sideqinit

The multiplexor is conceptually divided into two parts: the lower half (bottom) and the
upper half (top). The multiplexajueue structures that have been allocated when the
multiplexor was opened, use the usgialt  entries from the multiplexorgreamtab

This is the same as any open of the STREAMS device. When a lower Stream is linked
beneath the multiplexor, thggnit  structures at the Stream head are substituted by the
bottom halfginit  structures of the multiplexors. Once the linkage is made, the multi-
plexor switches messages between upper and lower Streams. When messages reach the
top of the lower Stream, they are handledoby andservice routines specified in the

bottom half of the multiplexor.

Connecting Lower Streams

A lower multiplexor is connected as follows: the inigglen to a multiplexing driver cre-

ates a Stream, as in any other driepen uses the first twetreamtab  structure entries

to create the driver queues. At this point, the only distinguishing characteristic of this
Stream are noNULL entries in thestreamtab st_muxrinit andst_muxwinit

fields.

These fields are ignored lopen (see the rightmost Stream in Figure 9-6). Any other
Stream subsequently opened to this driver will have the saemmtab and thereby
the same mux fields.

Next, another file is opened to create a (soon to be) lower Stream. The driver for the lower
Stream is typically a device driver (see the leftmost Stream in Figure 9-6). This Stream has
no distinguishing characteristics. It can include any driver compatible with the multi-
plexor. Any modules required on the lower Stream must be pushed onto it now.

Next, this lower Stream is connected below the multiplexing driver with laifNK

ioctl  call (seestreamio(7) ). The Stream head points to the Stream head routines as
its procedures (known by itpieue ). An|_LINK to the upper Stream, referencing the
lower Stream, causes STREAMS to modify the contents of the Stream head's queues in
the lower Stream. The pointers to the Stream head routines, and other values, in the
Stream head's queues are replaced with those contained in the mux fields of the multiplex-
ing driver'sstreamtab . Changing the Stream head routines on the lower Stream means
that all subsequent messages sent upstream by the lower Stream's driver, eventually, are
passed to thput procedure designated st muxrinit  , the multiplexing driver. The
I_LINK also establishes this upper Stream as the control Stream for this lower Stream.
STREAMS remembers the relationship between these two Streams until the upper Stream
is closed, or the lower Stream is unlinked.

Finally, the Stream head sendsMnIOCTL message witloc_cmd set tol_LINK to

the multiplexing driver. Th&_DATApart of theM_IOCTL contains dinkblk  structure.

The multiplexing driver stores information from tikblk  structure in private storage
and returns aM_IOCACKmessage (acknowledgmeritiindex is returned to the pro-
cess requesting theLINK . This value can be used later by the process to disconnect this
Stream.
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An I_LINK is required for each lower Stream connected to the driver. Additional upper
Streams can be connected to the multiplexing drivaxpgeyn calls. Any message type can

be sent from a lower Stream to user processes along any of the upper Streams. The upper
Streams provide the only interface between the user processes and the multiplexor.

Note that no direct data structure linkage is established for the linked Streams. The read
queue's)_next is NULL and the write queuets next points to the first entity on the

lower Stream. Messages flowing upstream from a lower driver (a device driver or another
multiplexor) enters the multiplexing driveut procedure with_gbot as thequeue

value. The multiplexing driver has to route the messages to the appropriate upper (or
lower) Stream. Similarly, a message coming downstream from user space on any upper
Stream has to be processed and routed, if required, by the driver.

Also note that the lower Stream (see the headers and file descriptors) is no longer accessi-
ble from user space. This causes all system calls to the lower Stream tdetBiAL,

except forclose . This is why all modules have to be in place before the lower Stream is
linked to the multiplexing driver.

Finally, note that the absence of direct linkage between the upper and lower Streams
means that STREAMS flow control has to be handled by special code in the multiplexing
driver. The flow control mechanism cannot see across the driver.

In general, multiplexing drivers should be implemented so that new Streams can be
dynamically connected to (and existing Streams disconnected from) the driver without
interfering with its ongoing operation. The number of Streams that can be connected to a
multiplexor is developer-dependent.

Disconnecting Lower Streams
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Dismantling a lower multiplexor is done by disconnecting (unlinking) the lower Streams.
Unlinking can be initiated in three ways:

* AnI_UNLINK ioctl references a specific Stream
* An|_UNLINK references all lower Streams

* The lastclose of the control Stream performs the unlinking

As in the link, an unlink sendsliakblk  structure to the driver in a_IOCTL mes-

sage. In the first bullet iterh,UNLINK uses thé index value returned in thie LINK

to specify the lower Stream to be unlinked. In the second and third bullet items, the calls
must designate a file corresponding to a control Stream which causes all the lower Streams
that were previously linked by this control Stream to be unlinked. The driver sees a series
of individual unlinks.

If no open references exist for a lower Stream, a subsequent unlink automatically closes
the Stream. Otherwise, the lower Stream must be closetbé&y following the unlink.
STREAMS automatically dismantles all cascaded multiplexors (below other multiplexing
Streams) if their controlling Stream is closed.IADNLINK leaves lower, cascaded mul-
tiplexing Streams intact unless the Stream file descriptor was previously closed.
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Multiplexor Construction Example

This section describes an example of multiplexor construction and usage. Figure 9-6
shows the Streams before their connection to create the multiplexing configuration of
Figure 9-7. Multiple upper and lower Streams interface to the multiplexor driver. The user
processes of Figure 9-5 are not shown in Figure 9-6.

Setup and Supervisory Process

file desc. A

file desc. B

file desc. C

file desc.

file desc.

A
y
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y
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y

Stream Head

Stream Head

Stream Head

Stream Head

Stream Head

QUEUE Pr. A QUEUE Pr. B QUEUE Pr. C QUEUE Pair QUEUE Pair
Net 1 Net 2 802.2
Module Module Driver
Ethernet LAPB Multiplexor
Driver Driver Driver

161860

Figure 9-6. Internet Multiplexor before Connecting

The Ethernét, LAPB, and IEEE 802.2 device drivers terminate links to other nodes. The
multiplexor driver is an Internet Protocol (IP) multiplexor that switches data among the
various nodes or sends data upstream to a user(s) in the system. The Net modules typically
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9-14

provide a convergence function, which matches the multiplexor driver and device driver
interface.

Figure 9-6 depicts only a portion of the full, larger Stream. In the dotted rectangle above
the IP multiplexor, there generally is an upper transport control protocol (TCP) multi-
plexor, additional modules and, possibly, additional multiplexors in the Stream. Multiplex-
ors can also be cascaded below the IP driver if the device drivers are replaced by multi-
plexor drivers.
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Figure 9-7. Internet Multiplexor after Connecting

Streams A, B, and C are opened by the process, and modules are pushed as needed. Two
upper Streams are opened to the IP multiplexor. The rightmost Stream represents multiple
Streams, each connected to a process using the network. The Stream second from the right
provides a direct path to the multiplexor for supervisory functions. It is the control Stream,
leading to a process that sets up and supervises this configuration. It is always directly
connected to the IP driver. Although not shown, modules can be pushed on the control

Stream.

161870

9-15



STREAMS Modules and Drivers

After the Streams are opened, the supervisory process typically transfers routing informa-
tion to the IP drivers (and any other multiplexors above the IP), and initializes the links. As
each link becomes operational, its Stream is connected below the IP driver. If a more com-
plex multiplexing configuration is required, the IP multiplexor Stream with all its con-
nected links can be connected below another multiplexor driver.

Figure 9-7 shows that the file descriptors for the lower device driver Streams are left dan-
gling. The primary purpose in creating these Streams is to provide parts for the multi-
plexor. Those not used for control and not required for error recovery (by reconnecting
through an_UNLINK ioctl ) have no further function. These lower Streams can be
closed to free the file descriptor without affecting the multiplexor.

Multiplexing Driver

9-16

This section contains an example of a multiplexing driver that implements an N-to-1 con-
figuration. This configuration might be used for terminal windows, where each transmis-
sion to or from the terminal identifies the window. This example resembles a typical
device driver, with two differences: the device handling functions are performed by a sep-
arate driver, connected as a lower Stream, and the device information (that is, relevant user
process) is contained in the input data rather than in an interrupt call.

Each upper Stream is createddpen(2) . A single lower Stream is opened and then
linked by the multiplexing facility. This lower Stream might connect to the tty driver. The
implementation of this example is a foundation for an M-to-N multiplexor.

As in the loop-around driver (in “STREAMS Drivers”), flow control requires the use of
standard and special code, since connectivity among the Streams is broken at the driver.
Different approaches are used for flow control on the lower Stream, for messages coming
upstream from the device driver, and on the upper Streams, for messages coming down-
stream from the user processes.

The multiplexor declarations are shown in Screen 9-2:
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~

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

static int muxopen(queue_t *, dev_t *, int, int, cred_t *);
static int muxclose(queue_t *, int, cred_t *);

static int muxuwput(queue_t *, mblk_t *);

static int muxlwsrv(queue_t *);

static int muxirput(queue_t *, mblk_t *);

static int muxuwsrv(queue_t *);

static struct module_info info = {Oxaabb, “mux”, 0, INFPSZ, 512, 128};

static struct qinit urinit = {/* upper read */
NULL, NULL, muxopen, muxclose, NULL, &info, NULL };

static struct qinit uwinit = {/* upper write */
muxuwput, muxuwsrv, NULL, NULL, NULL, &info, NULL };

static struct ginit Irinit = {/* lower read */
muxirput, NULL, NULL, NULL, NULL, &info, NULL };

static struct ginit lwinit = {/* lower write */
NULL, muxlwsrv, NULL, NULL, NULL, &info, NULL };

struct streamtab muxinfo = {&urinit, &uwinit, &Irinit, &lwinit};

struct mux {
queue_t *gptr;  /* back pointer to read queue */

lock_t  *lck; /* lock to protect mux struct */
int flag; /* used to coordinate muxirput with muxclose*/
}
/* flag bits */
#define BUSY Oox1
#define CLOSING  0x2
extern struct mux mux_mux[];
extern int mux_cnt;

int muxdevflag = D_MP;

Ikinfo_t mux_lkinfo;
lock_t *muxlck;
sv_t *Muxsv;
int muxbot_ref;/* prevents unlinks while putnext in progress */
queue_t *muxbot; /* linked lower queue */
Q muxerr; /* set if error or hangup on lower stream */ /

Screen 9-2. Multiplexor Declarations

The fourstreamtab  entries correspond to the upper read, upper write, lower read, and
lower writeqinit  structures. The multiplexinginit  structures replace those in each

lower Stream head after theLINK has completed successfully. In a multiplexing con-
figuration, the processing performed by the multiplexing driver can be partitioned between
the upper and lower queues. There must be an upper Streanpwrijgrocedure and

lower Stream reagut procedure. If the queue procedures of the opposite upper/lower
gueue are not needed, the queue can be skipped over, and the message put to the following
queue.

In the example, the upper read-side procedures are not used. The lower Stream read queue
put procedure transfers the message directly to the read queue upstream from the multi-
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plexor. There is no lower writeut procedure because the upper wptg procedure
directly feeds the lower write queue downstream from the multiplexor.

The driver uses a private data structanex. mux_mux[dev] points back to the opened

upper read queue. This is used to route messages coming upstream from the driver to the
appropriate upper queue. It is also used to find a free major/minor devic€ @ NE-
OPENdriver open case.

The upper queue open contains the canonical driver open code as shown in Screen 9-3:

~

void muxinit(void)
register struct mux *mux;

muxick = LOCK_ALLOC(MUXHIER, plstr, &mux_lkinfo, KM_NOSLEEP);
muxsv = SV_ALLOC(KM_NOSLEEP);
for (mux = mux_mux; mux < &mux_mux[mux_cnt]; mux++)
mux->Ick = LOCK_ALLOC(MUXHIER, plstr, &mux_lkinfo, KM_NOSLEEP);
}

static int muxopen(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp)
{

struct mux *mux;

dev_t device;

pl_tpl;

if (q->q_ptr)
return(EBUSY);

if (muxick == NULL || muxsv == NULL)
return(ENXIO);

if (sflag == CLONEOPEN) {
for (device = 0; device < mux_cnt; device++) {
if (mux_mux[device].lck == NULL)
continue;
pl = LOCK(mux_mux[device].Ick, plstr);
if (mux_mux[device].qptr == NULL)
break;
/* Note that we break out of if statement */
/* with the correct lock held */
if (device >= mux_cnt)
UNLOCK(&mux_mux[device].lck, pl);
return(ENXIO);
}

else {
device = getminor(*devp);
if (device < 0 || device >= mux_cnt)
return(ENXIO);
if (mux_mux[device].lck == NULL)
return (EXNIO);
pl = LOCK(mux_mux[device].Ick, plstr);
}
}
/*
* Once we get here, the device is valid and we're holding its lock.
*/
mux = &mux_mux[device];
mux->qptr = q;
mux->flag = 0;
g->q_ptr = (char *) mux;
WR(q)->q_ptr = (char *) mux;
UNLOCK(mux->Ick, pl);
gprocson(q);
return(0);

\_ )

Screen 9-3. Canonical Driver Open Code
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muxopen checks for a clone or ordinary open call. It initializeptr to point at the
mux_mux[] structure.

The core multiplexor processing is the following: downstream data written to an upper
Stream is queued on the corresponding upper write message queue if the lower Stream is
flow controlled. This allows flow control to propagate towards the Stream head for each
upper Stream. A lower writgervice  procedure, rather than a wrtat procedure, is

used so that flow control, coming up from the driver below, may be handled.

On the lower read-side, data coming up the lower Stream are passed to the lowet read
procedure. The procedure routes the data to an upper Stream based on the first byte of the
message. This byte holds the minor device number of an upper StreaputTpeoce-

dure handles flow control by testing the upper Stream at the first upper read queue beyond
the driver. Theput procedure treats the Stream component above the driver as the next
queue.

Upper Write Put Procedure

muxuwput , the upper queue wrifgut procedure, trap®ctl s, in particulad_LINK
andl_UNLINK :
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-

static int muxuwput(queue_t *q, mblk_t *mp)
{

pl_tpl;
struct mux *mux;

mux = (struct mux *) g->q_ptr;
switch (mp->b_datap->db_type) {
case M_IOCTL: {

struct iocblk *iocp;

struct linkblk *linkp;

/*

*joctl. Only channel O can do ioctls. Two calls are
* recognized: LINK, and UNLINK

*

if (mux != mux_mux)
goto iocnak;

iocp = (struct iocblk *) mp->b_rptr;
switch (iocp->ioc_cmd) {
case |_LINK:
/*
* Link. The data contains a linkblk structure
* Remember the bottom queue in muxbot.
*
pl = LOCK(muxIck, plstr);
if (muxbot != NULL) {
UNLOCK(muxlck, pl);
goto iocnak;

linkp = (struct Inkblk *) mp->b_cont->b_rptr;
muxbot = linkp->I_gbot;
muxerr = 0;
muxbot_ref = 0;
UNLOCK(muxlck, pl);
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = 0;
qgreply(q, mp);
break;
case |_UNLINK:
/*
* Unlink. The data contains a linkblk structure.
* If muxbot is busy, fail unlink.
*
linkp = (struct linkblk *) mp->b_cont->b_rptr;
pl = LOCK(muxick, plstr);
if (muxbot_ref) {
mp->b_datap->db_type = M_IOCNAK;
iocp->ioc_error = EAGAIN;
}else {
muxbot = NULL;

.

Screen 9-4. Upper Write Put Procedure
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bad:

} mp->b_datap->db_type = M_IOCACK;
UNLOCK(muxlck, pl);
iocp->ioc_count = 0;
greply(q, mp);
break;
default:
iocnak:
/* fail ioctl */
mp->b_datap->db_type = M_IOCNAK;
agreply(q, mp);

break;

case M_FLUSH:
if (*mp->b_rptr & FLUSHW)
flushq(q, FLUSHDATA);
if (*mp->b_rptr & FLUSHR) {
*mp->b_rptr &= ~FLUSHW;
agreply(q, mp);
} else
freemsg(mp);
break;
case M_DATA:
/*
* Data. If we have no bottom queue --> fail
* Otherwise, queue the data and invoke the lower
* service procedure.
*
pl = LOCK(muxick, plstr);
if (muxerr || muxbot == NULL) {
UNLOCK(muxlck, pl);
goto bad;

if (canputnext(muxbot)) {
mblk_t *bp;
if ((bp = allocb(1, BPRI_MED)) == NULL) {
UNLOCK(muxlck, pl);
putq(q, mp);
bufcall(1, BPRI_MED, genable, q);
break;

muxbot_ref = 1;

UNLOCK(muxlck, pl);

*bp->b_wptr++ = (struct mux*) g->qg_ptr - mux_mux;
bp->b_cont = mp;

putnext(muxbot, bp);

pl = LOCK(muxick, plstr);

muxbot_ref = 0;

UNLOCK(muxlck, pl);

}else {
UNLOCK(muxlck, pl);
putq(g, mp);
break;
default:
/*
* Send an error message upstream.
*
mp->b_datap->db_type = M_ERROR,;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;
*mp->b_wptr++ = EINVAL;
. areply(d, mp);

~
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First, there is a check to enforce that the Stream associated with minor device 0 will be the
single, controlling Stream. ThHectl s are only accepted on this Stream. As described
previously, a controlling Stream is the one that issuek thRK . Having a single control
Stream is a recommended practicd.INK andl_UNLINK include alinkblk  struc-

ture containing:

|_gtop The upper write queue from which tihactl is coming. It
should always equa.

|_gbot The new lower write queue. It is the former Stream head write
gueue and is important because it is where the multiplexor gets
and puts its data.

|_index A unique (system wide) identifier for the link. It can be used for
routing or during selective unlinks. Since the example only sup-
ports a single linkl_index is not used.

Forl LINK ,1 gbot is saved imuxbot and a positive acknowledgment is generated.
From this point on, until ah UNLINK occurs, data from upper queues will be routed
throughmuxbot . Note that when ah LINK , is received, the lower Stream has already
been connected. This allows the driver to send messages downstream to perform any ini-
tialization functions. Returning avi_IOCNAKmessage (negative acknowledgment) in
response to ah LINK will cause the lower Stream to be disconnected.

Thel _UNLINK handling code nulls ouhuxbot and generates a positive acknowledg-
ment. A negative acknowledgment should not be returned tdUMLINK . The Stream

head assures that the lower Stream is connected to a multiplexor before sending an
|_UNLINK M_IOCTL

muxuwput handledM_FLUSHmessages as a normal driver would, except that there are
no messages enqueued on the upper read queue, so there is no nedtishaallif
FLUSHRs set.

M_DATAmessages are not placed on the lower write message queue. They are queued on
the upper write message queue. When flow control subsides on the lower Stream, the
lower service  proceduremuxlwsrv , is scheduled to start output. This is similar to
starting output on a device driver.

Upper Write Service Procedure
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static int muxuwsrv(queue_t *q)
{
struct mux *muxp;
mblk_t *mp;
pl_tpl;
muxp = (struct mux *) g->q_ptr;
while (mp = getq(q)) {
pl = LOCK(muxick, plstr);
if (Imuxbot) {
UNLOCK(muxlck, pl);
flushq(q, FLUSHALL);
return;

if (muxerr) {
UNLOCK(muxlck, pl);
flushq(g, FLUSHALL);
return;

if (canputnext(muxbot)) {
muxbot_ref = 1;
UNLOCK(muxlck, pl);
putnext(muxbot, mp);
pl = LOCK(muxick, plstr);
muxbot_ref = 0;
UNLOCK(muxlck, pl);

}else {
UNLOCK(muxlck, pl);
putba(q, mp);
return(0);

}

\_ )

Screen 9-5. Upper Write Service Procedure

As long as there is a Stream still linked under the multiplexor and there are no errors, the
service procedure takes a message off the queue and sends it downstream, if flow con-
trol allows.

Lower Write Service Procedure

muxlwsrv , the lower (linked) queue wrigervice procedure is scheduled as a result of
flow control subsiding downstream (it is back-enabled).
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static int muxiwsrv(queue_t *q)
{

register int i;

pl_t pl;

for (i = 0; i < mux_cnt; i++) {
pl = LOCK(mux_mux([i].Ick, plstr);
if (mux_mux[i].gptr)
genable(mux_mux[i].gptr);
UNLOCK(mux_mux[i].Ick, pl);

}

\_ )

Screen 9-6. Lower Write Service Procedure

muxiwsrv  steps through all possible upper queues. If a queue is active and there are mes-
sages on the queue, then the upper weteice  procedure is enabled lggnable .

Lower Read Put Procedure

The lower (linked) queue regulit procedure is shown in Screen 9-7:
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static int muxirput(queue_t *q, mblk_t *mp)
{

queue_t *uq;

mblk_t *b_cont;

int device;

register struct mux *mux;

pl_t pl;

pl = LOCK(muxick, plstr);

if (muxerr) {
freemsg(mp);
UNLOCK(muxlck, pl);
return(0);

}

UNLOCK(muxlck, pl);

switch (mp->b_datap->db_type) {
case M_FLUSH:

/*

* Flush queues. NOTE: sense of tests is reversed since
*we are acting like a “ streammead”

*

if (*mp->b_rptr & FLUSHW) {
*mp->b_rptr &= ~FLUSHR;
areply(q, mp);

} else

freemsg(mp);

break;

pl = LOCK(muxick, plstr);
muxerr = 1;
UNLOCK(muxlck, pl);
freemsg(mp);

break;

case M_DATA:
/*
* Route message. First byte indicates device to send to.
* No flow control.
*

* Extract and delete device number. If the leading block is
* now empty and more blocks follow, strip the leading block.
*/

device = *mp->b_rptr++;

/* Sanity check. Device must be in range */

if (device < 0 || device >= mux_cnt) {

freemsg(mp);
break;

}

/*
* If upper streams is open and not backed up, send the

\_ )

Screen 9-7. Lower Read Put Procedure
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* message there, otherwise discard it.
*
mux = &mux_mux[device];
pl = LOCK(mux->Ick, plstr);
ug = mux->qptr;
if (ug '= NULL && canputnext(uq)) {
mux->flag |= BUSY;
UNLOCK(mux->Ick, pl);
putnext(ug, mp);
pl = LOCK(mux->Ick, plstr);
mux->flag &= ~BUSY;
if (mux->flag & CLOSING)
SV_SIGNAL(muxsv, 0);
} else
freemsg(mp);
UNLOCK(mux->Ick, pl);
break;
default:
freemsg(mp);

\_ )

muxIrput  receives messages from the Stream linked below the multiplexor. Here, it
needs to act as the Stream head of the lower stream. This means thaMVddrirgSH

handling, the sense of the tests are reverséd. USHWSs set, therrFLUSHRIs turned off

and the message is sent back downstream. Otherwise, the message is freed. No flushing is
necessary in this example because no messages are enqueued on the lower queues of the
multiplexor.

muxirput  also handlem_ERRORNdM_HANGURessages. If one is received, it locks
up the upper Streams by settimgxerr .

M_DATAmessages are routed by looking at the first data byte of the message. This byte
contains the minor device of the upper Stream. Several sanity checks are made to see if the
device is in range and the upper Stream is open and not full.

This multiplexor does not support flow control on the read-side. It is merely a router. If
everything checks out, the message is put to the proper upper queue. Otherwise, the mes-
sage is discarded.

The upper Streamlose routine simply clears the mux entry so this queue will no longer
be found.
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a I
* Upper queue close
Wi

static int muxclose(queue_t *q, int flag, cred_t *credp)
{

register struct mux *mux;
pl_t pl;

mux = (struct mux *) g->q_ptr;
gprocsoff(q);
pl = LOCK(mux->Ick, plstr);
/*
* coordinate with muxiwrput. Use a global sync. variable since this
* case is unlikely and not worth the overhead of having 1 per
* minor.
*
while (mux->flag & BUSY) {
mux->flag |= CLOSING;
/* don't allow signals - this should be a short wait */
SV_WAIT(muxsv, primed, mux->Ick);
pl = LOCK(mux->Ick, plstr);
mux->flag &= ~CLOSING;
}
mux->gptr = NULL;
UNLOCK(mux->Ick);
g->g_ptr = NULL;
WR(q)->g_ptr = NULL;
return(0);

}

\_ )

Screen 9-8. Clean Upper queue

Persistent Links

With |_LINK andl_UNLINK ioctl s, the file descriptor associated with the Stream
above the multiplexor used to set up the lower multiplexor connections must remain open
for the duration of the configuration. Closing the file descriptor associated with the con-
trolling Stream dismantles the whole multiplexing configuration. Some applications may
not want to keep a process running merely to hold the multiplexor configuration together.
Therefore, “free-standing” links below a multiplexor are needed. A persistent link is such
a link. It is similar to a STREAMS multiplexor link, except that a process is not needed to
hold the links together. After the multiplexor has been set up, the process may close all file
descriptors and exit, and the multiplexor remains intact.

Twoioctl s,I_PLINK andl_PUNLINK, are used to create and remove persistent links
that are associated with the Stream above the multipleese(2) andl_UNLINK are
not able to disconnect the persistent links.

The format ofi_PLINK is
ioctl  (fdO, I_PLINK , fdl)

The first file descriptorfd0, must reference the Stream connected to the multiplexing
driver and the second file descriptold, must reference the Stream to be connected below
the multiplexor. The persistent link can be created in the following way:
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upper_stream_fd = open(“/dev/imux”, O_RDWR);
lower_stream_fd = open(“/dev/driver’, O_RDWR);
muxid = ioctl(upper_stream_fd, I_PLINK, lower_stream_fd);
/*
* save muxid in a file
*
/
exit(0);

Figure 9-8 shows howpen(2) establishes a Stream between the device and the Stream
head.

User
Process
User Space

o

Driverl MUXdriver

161570

Figure 9-8. open() of MUXdriver and Driverl

The persistent link can still exist even if the file descriptor associated with the upper
Stream to the multiplexing driver is closed. Th&LINK ioctl returns an integer
value,muxid , that can be used for dismantling the multiplexing configuration. If the pro-
cess that created the persistent link still exists, it may passuxid value to some other
process to dismantle the link, if the dismantling is desired, or it can leaneiitid value

in a file so that other processes may find it later. Figure 9-9 shows a multiplexor after
|_PLINK .
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User
Process

User Space

fdl Kernel Space

|fd_0|
v 4

MUXDriver

Persistent / # f

Link )
Driverl

161580

Figure 9-9. Multiplexor after |_PLINK

Several users can open the MUXdriver and send data to Driverl since the persistent link to
Driverl remains intact, as shown in Figure 9-10.
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i User Space

| | u ’/7 Kernel Space

MUXdriver
Persistent / # *
Link
Driverl

161590

Figure 9-10. Other Users Opening a MUXdriver

Thel PUNLINK ioctl  is used for dismantling the persistent link. Its format is
joctl  (fd0, |_PUNLINK, muxid

where thefdO is the file descriptor associated with Stream connected to the multiplexing
driver from above. Thenuxidis returned by thé PLINK ioctl for the Stream that
was connected below the multiplexor. Th€UNLINK removes the persistent link
between the multiplexor referenced by tti@ and the Stream to the driver designated by
the muxid Each of the bottom persistent links can be disconnected individually. An
|_PUNLINK ioctl  with themuxidvalue ofMUXID_ALL removes all persistent links
below the multiplexing driver referenced fup.

Screen 9-9 dismantles the previously given configuration:
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fd = open(“/dev/imux”, O_RDWR);
/*

* retrieve muxid from the file
*

ioctl(fd, I_PUNLINK, muxid);
exit(0);

Screen 9-9. Retrieving the MUX ID from the File

The use of théoctl sI|_PLINK andl_PUNLINK should not be intermixed with
I_LINK andl_UNLINK . Any attempt to unlink a regular link with PUNLINK or to
unlink a persistent link witth UNLINK ioctl causes therrno value ofEINVAL to
be returned.

Because multilevel multiplexing configurations are allowed in STREAMS, it is possible to
have a situation where persistent links exist below a multiplexor whose Stream is con-
nected to the above multiplexor by regular links. Closing the file descriptor associated
with the controlling Stream removes the regular link but not the persistent links below it.
On the other hand, regular links are allowed to exist below a multiplexor whose Stream is
connected to the above multiplexor with persistent links. In this example, the regular links
are removed if the persistent link above is removed and no other references to the lower
Streams exist.

The construction of cycles is not allowed when creating links. A cycle could be con-
structed by creating a persistent link of multiplexor 2 below multiplexor 1 and then closing
the controlling file descriptor associated with the multiplexor 2 and reopening it again and
then linking the multiplexor 1 below the multiplexor 2, but this is not allowed. The operat-
ing system prevents a multiplexor configuration from containing a cycle to ensure that
messages cannot be routed infinitely, thus creating an infinite loop or overflowing the ker-
nel stack.

Design Guidelines

The following lists general multiplexor design guidelines:

* The upper half of the multiplexor acts like the end of the upper Stream.
* The lower half of the multiplexor acts like the head of the lower Stream.
* Serviceprocedures are used for flow control.

* Message routing is based on multiplexor specific criteria.

* When one Stream is being fed by many Streams, flow control may have to
take place. Then all feeding Streams on the other end of the multiplexor
have to be enabled when the flow control is relieved.
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* When one Stream is feeding many Streams, flow control may also have to
take place. Be careful not to starve other Streams when one becomes flow-
controlled.

* Messages received on the lower half of a multiplexor that are not under-
stood should be freed.

* Messages that should close a multiplexor are driver dependent.
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Introduction

How TPl Works

10
Transport Provider Interface

This chapter describes the STREAMS-based Transport Provider Interface (TPI). TPl is a
service interface that maps to strategic levels of the Open Systems Interconnection (OSI)
Reference Model. TPI supports the services of the Transport Layer for connection-mode
and connectionless-mode services. One advantage to using TPl is its ability to hide imple-
mentation details of a particular service from the consumer of the service. This enables
system programmers to develop software independent of the particular protocol that pro-
vides a specific service. This chapter focuses on TPI as it is defined within the STREAMS
environment.

TPI defines a message interface to a transport provider implemented under STREAMS. A
user communicates to a transport provider via a full duplex path known as a stream. See
Figure 10-1. This stream provides a mechanism in which messages may be passed to the
transport provider from the transport user and vice versa.
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Figure 10-1. Example of a Stream from a User to a Transport Provider

The STREAMS messages that are used to communicate transport service primitives
between the transport user and the transport provider may have one of the following for-

mats:

* An M_PROT@nessage block followed by zero or mieDATAmMessage
blocks. TheM_PROTnessage block contains the type of transport service
primitive and all the relevant arguments associated with the primitive. The

M_DATAblocks contain transport user data associated with the transport
service primitive.

* OneM_PCPROT@essage block containing the type of transport service
primitive and all the relevant arguments associated with the primitive.
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* One or moréM_DATAmessage blocks containing transport user data.

Section 7 on-line manual pages describe the transport primitives which define both a con-
nection-mode and connectionless-mode transport service. They include primitives that
pertain to both transport modes.

For each type of transport service, two types of primitives exist:
* Primitives which originate from the transport user.

The primitives which originate from the transport user make requests to the trans-
port provider or respond to an event of the transport provider.

* Primitives which originate from the transport provider.

The primitives which originate from the transport provider are either confirmations
of a request or are indications to the transport user that an event has occurred.

“Mapping Of Transport Primitives to OSI” lists the primitive types along with the map-
ping of those primitives to the STREAMS message types and the transport primitives of
the ISO IS 8072 ani$ 8072DADtransport service definitions. The format of these prim-
itives and the rules governing the use of them are described in “Allowable Sequence of
TPI Primitives.”

Overview of Error Handling Capabilities

Non-Fatal Errors

There are two error handling facilities available to the transport user: one to handle non-
fatal errors and one to handle fatal errors.

The non-fatal errors are those that a transport user can correct, and are reported in the form
of an error acknowledgment to the appropriate primitive in error. Only those primitives
which require acknowledgments may generate a non-fatal error acknowledgment. These
acknowledgments always report a syntactical error in the specified primitive when the
transport provider receives the primitive. The primitive descriptions above define those
primitives and rules regarding the acknowledgment of them. These errors are reported to
the transport user via tfie ERROR_ACIKrimitive, and give the transport user the option

of reissuing the transport service primitive that caused the errofT TERROR_ACK
primitive also indicates to the transport user that no action was taken by the transport pro-
vider on receipt of the primitive which caused the error.

These errors do not change the state of the transport service interface as seen by the trans-
port user. The state of the interface after the issuanceloERROR_ACKrimitive

should be the same as it was before the transport provider received the interface primitive
that was in error.

The allowable errors that can be reported on the receipt of a transport initiated primitive
are presented in the description of the appropriate primitives.
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Fatal Errors

Fatal errors are those which can not be corrected by the transport user, or those errors
which result in an uncorrectable error in the interface or in the transport provider.

The most common of these errors are listed under the appropriate primitives. The transport
provider should issue fatal errors only if the transport user can not correct the condition
which caused the error or if the transport provider has no means of reporting a transport
user correctable error. If the transport provider detects an uncorrectable non-protocol error
internal to the transport provider, the provider should issue a fatal error to the user.

Fatal errors are indicated to the transport user via the STREAMS messalye BRROR

with the PowerMAX OS system err&PROTOThis is the only type of error that the
transport provider should use to indicate a fatal protocol error to the transport user. The
messag®l_ERRORill result in the failure of all the operating system service routines on

the stream. The only way for a user to recover from a fatal error is to ensure that all pro-
cesses close the file associated with the stream. At that point, the user may reopen the file
associated with the stream.

Transport Service Interface Sequence of Primitives

10-4

The allowable sequence of primitives are described in the state diagrams and tables in
“Allowable Sequence of TPI Primitives” for both the connection-mode and connection-
less-mode transport services. The following are rules regarding the maintenance of the
state of the interface:

* |t is the responsibility of the transport provider to keep record of the state
of the interface as viewed by the transport user.

* The transport provider must never issue a primitive that places the interface
out of state.

* The uninitialized state of a stream is the initial and final state, and it must
be bound (se&_ BIND_REQprimitive) before the transport provider may
view it as an active stream.

* |f the transport provider senddva ERRORpstream, it should also drop
any further messages received on its write side of the stream.

The following rules apply only to the connection-mode transport services.

* A transport connection release procedure can be initiated at any time dur-
ing the transport connection establishment or data transfer phase.

* The state tables for the connection-mode transport service providers
include the management of the sequence numbering when a transport pro-
vider sends multipl& _CONN_INDrequests without waiting for the
response of the previously sent indication. It is the responsibility of the
transport providers not to change state until all the indications have been
responded to, therefore the provider should remain i t\éRES_CIND
state while there are any outstanding connect indications pending response.
The provider should change state appropriately when all the connect indi-
cations have been responded to.
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* The state of a transport service interface of a stream may only be trans-
ferred to another stream when it is indicated ih ONN_RE®rimitive.
The following rules then apply to the cooperating streams:

- The stream which is to accept the current state of the interface must
be bound to an appropriate protocol address and must be in the idle
state.

- The user transferring the current state of a stream must have correct
permissions for the use of the protocol address bound to the accept-
ing stream.

- The stream which transfers the state of the transport interface must
be placed into an appropriate state after the completion of the trans-
fer.

Precedence of TPI Primitives on a Stream

The following rules apply to the precedence of transport interface primitives with respect
to their position on a stream:

NOTE

The stream queue which contains the transport user initiated prim-
itives is referred to as the stream write queue. The stream queue
which contains the transport provider initiated primitives is
referred to as the stream read queue.

* The transport provider has responsibility for determining precedence on its
stream write queue, as described in the rules in “Transport Primitive Prece-
dence.” This section specifies the rules for precedence for both the connec-
tion-mode and connectionless-mode transport services.

* The transport user has responsibility for determining precedence on its
stream read queue, as described in the rules in “Transport Primitive Prece-
dence.” All primitives on the stream are assumed to be placed on the queue
in the correct sequence as defined above.

The following rules apply only to the connection-mode transport services.

* There is no guarantee of delivery of user data onteldSCON_REQ
primitive has been issued.

Rules for Flushing Queues

The following rules pertain to flushing the stream queues. No other flushes should be
needed to keep the queues in the proper condition.
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* The transport providers must be aware that they will reddivELUSH
messages from upstream. These flush requests are issued to ensure that the
providers receive certain messages and primitives. It is the responsibility of
the providers to act appropriately as deemed necessary by the providers.

* The transport provider must send ublaFLUSHmessage to flush both the
read and write queues after receiving a succe3sfuNBIND REQmes-
sage and before issuing theOK_ACKprimitive.

The following rules pertain only to the connection-mode transport providers.

¢ |f the interface is in thd@ DATA_XFER, T_WIND_ORDREDr
T_WACK_ORDRHitate, the transport provider must send i &LUSH
message to flush both the read and write queues before sending up a
T_DISCON_IND.

¢ If the interface is in thé_DATA_XFER, T_WIND_ORDRELDr
T_WACK_ORDRHitate, the transport provider must send iy &LUSH
message to flush both the read and write queues after receiving a successful
T_DISCON_REQnessage and before issuing Th®©K_ACKprimitive.

Mapping Of Transport Primitives to OSI

The following table maps those transport primitives as seen by the transport provider to
the STREAMS message types used to realize the primitives and to the ISO IS 8072 and IS
8072/DADL1 transport service definition primitives.

10-6



Transport Provider Interface

Table 10-1. Mapping ISO IS 8072 and IS 8072/DAD1 to Transport Primitives

Transport Stream IS 8072 Transport
Primitives Message Types Primitives

T_CONN_REQ M_PROTO T-CONNECTrequest
T_CONN_IND M_PROTO T-CONNECTindication
T_CONN_RES M_PROTO T-CONNECTresponse
T_CONN_CON M_PROTO T-CONNECTconfirm
T_DATA _REQ M_PROTO T-DATA request
T_DATA_IND M_PROTO T-DATA indication
T_EXDATA _REQ M_PROTO T-EXPEDITED-DATA request
T_EXDATA_IND M_PROTO T-EXPEDITED-DATA indication
T_DISCON_REQ M_PROTO T-DISCONNECTrequest
T_DISCON_IND M_PROTO T-DISCONNECTindication
T_UNITDATA_REQ M_PROTO T-UNITDATA request
T_UNITDATA_IND M_PROTO T-UNITDATA indication
T_ORDREL_REQ M_PROTO not defined in 1SO
T_ORDREL_IND M_PROTO not defined in ISO

T _BIND_REQ M_PROTO not defined in 1SO

T _BIND_ACK M_PCPROTO not defined in 1SO
T_UNBIND_REQ M_PROTO not defined in 1SO
T_OK_ACK M_PCPROTO not defined in ISO
T_ERROR_ACK M_PCPROTO not defined in 1SO
T_INFO_REQ M_PCPROTO not defined in 1SO
T_INFO_ACK M_PCPROTO not defined in 1SO
T_UDERR_IND M_PROTO not defined in ISO
T_OPTMGMT_REQ M_PROTO not defined in 1SO
T_OPTMGMT_ACK M_PCPROTO not defined in ISO

Allowable Sequence of TPI Primitives

The following tables describe the possible events that may occur on the interface and the
possible states as viewed by the transport user that the interface may enter due to an event.
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The events map directly to the transport service interface primitives as described in “Intro-
duction.”

Table 10-2. Kernel Level Transport Interface States

Possible States
State Abbreviation Description Service Type
sta 0 unbnd unbound T_COTS, T_COTS_ORD,
T _CLTS

sta_1 w_ack b_req awaiting acknowledgment of T_COTS, T_COTS_ORD,
T BIND_REQ T _CLTS

sta 2 w_ack u_req awaiting acknowledgment of T_COTS, T_COTS_ORD,
T _UNBIND_REQ T _CLTS

sta_3 idle idle - no connection T_COTS, T_COTS_ORD,

T _CLTS

sta 4 w_ack op_req awaiting acknowledgment of T_COTS, T_COTS_ORD,
T OPTMGMT_REQ T _CLTS

sta 5 w_ack c_req awaiting acknowledgment of T _COTS, T_COTS_ORD
T CONN_REQ

sta_6 w_con c_req awaiting confirmation of T _COTS, T_COTS_ORD
T CONN_REQ

sta_7 w_res c_ind awaiting response of T _COTS, T_COTS_ORD
T CONN_IND

sta_8 w_ack c_res awaiting acknowledgment of T _COTS, T_COTS_ORD
T CONN_RES

sta_9 data_t data transfer T _COTS, T_COTS_ORD

sta_10 w_ind or_rel awaitingT_ORDREL_IND T_COTS_ORD

sta_11 w_req or_rel awaitingT_ORDREL_REQ T_COTS_ORD

sta_12 w_ack dreq6 awaiting acknowledgment of T _COTS, T_COTS_ORD
T _DISCON_REQ

sta_13 w_ack dreq7 awaiting acknowledgment of T_COTS, T_COTS_ORD
T _DISCON_REQ

sta_14 w_ack dreq9 awaiting acknowledgment of T_COTS, T_COTS_ORD
T _DISCON_REQ

sta_15 w_ack dreq10 awaiting acknowledgment of T _COTS, T_COTS_ORD
T _DISCON_REQ

sta_16 w_ack dreqll awaiting acknowledgment T_COTS, T_COTS_ORD
of T_DISCON_REQ
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Variables and Outputs

The following describes the variables and outputs used in the state tables.

Table 10-3. State Table Variables

Variable Description
q gueue pair pointer of current stream
rq gueue pair pointer of responding stream as

described in th@_CONN_RE®rimitive

outcnt counter for the number of outstanding
connection indications not responded to
by the transport user

Figure 10-2. State Table Outputs

Output Description
[1] outcnt =0
[2] outcnt = outent + 1
[3] outcnt = outent - 1
[4] pass connection to queue as indicated in

theT_CONN_RE®rimitive

Outgoing Events

The following outgoing events are those which are initiated from the transport service
user. They either make requests of the transport provider or respond to an event of the
transport provider.

Table 10-4. Kernel Level Transport Interface Outgoing Events

Event Description Service Type

bind_req bind request T _COTS,
T_COTS_ORD,
T _CLTS

unbind_req unbind request T _COTS,
T_COTS_ORD,
T _CLTS

optmgmt_req options mgmt request T_COTS,
T_COTS_ORD,
T CLTS
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Table 10-4. Kernel Level Transport Interface Outgoing Events

Event Description Service Type
conn_req connection request T_COTS,
T_COTS_ORD
conn_res connection response T_COTS,
T_COTS_ORD
discon_req disconnect request T_COTS,
T_COTS_ORD
data_req data request T_COTS,
T_COTS_ORD
exdata_req expedited data request T_COTS,
T_COTS_ORD
ordrel_req orderly release request T _COTS_ORD
unitdata_req unitdata request T _CLTS

Incoming Events

The following incoming events are those which are initiated from the transport provider.
They are either confirmations of a request or are indications to the transport user that an
event has occurred.

Table 10-5. Kernel Level Transport Interface Incoming Events

Event Description Service Type
bind_ack bind acknowledgment T _COTS,
T_COTS_ORD,
T_CLTS
optmgmt_ack options management T _COTS,
acknowledgment T _COTS_ORD,
T_CLTS
error_ack error acknowledgment T _COTS,
T_COTS_ORD,
T_CLTS
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Table 10-5. Kernel Level Transport Interface Incoming Events

Event Description Service Type
ok ackl ok acknowledgment T_COTS,
outcnt == T_COTS_ORD,
T_CLTS
ok _ack2 ok acknowledgment T_COTS,
outcnt==1, T_COTS_ORD,
q == rq
ok ack3 ok acknowledgment T_COTS,
outcnt==1, T_COTS_ORD,
ql=rq
ok _ack4 ok acknowledgment T_COTS,
outcnt> 1 T_COTS_ORD,
conn_ind connection indication T_COTS,
T_COTS_ORD
conn_con connection confirmation T_COTS,
T_COTS_ORD
data_ind data indication T_COTS,
T_COTS_ORD
exdata_ind expedited data indication T_COTS,
T_COTS_ORD
ordrel_ind orderly release indication T_COTS_ORD
discon_ind1 disconnect indication T_COTS,
outcnt == T _COTS_ORD
discon_ind2 disconnect indication T_COTS,
outcnt == T _COTS_ORD
discon_ind3 disconnect indication T_COTS,
outcnt> 1 T _COTS_ORD
pass_conn pass connection T_COTS,
T_COTS_ORD
unitdata_ind unitdata indication T _CLTS
uderror_ind unitdata error indication T _CLTS

Transport Service State Tables

The tables shown in Figure 10-3, Figure 10-4 and Figure 10-5 describe the possible next
states the interface may enter given a current state and event.

The contents of each box represent the next state given the current state (column) and the
current incoming or outgoing event (row). An empty box represents a state/event combi-
nation that is invalid. Along with the next state, each box may include an action. The trans-
port provider must take the specific actions in the order specified in the state table.
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10-12

sta 0 sta_1 sta_2 sta_3 sta_4
state unbnd w_ack w_ack idle w_ack
event b_req u_req op_req
bind_req sta_1
unbind_req sta_2
optmgmt_req sta_4
. sta_3
bind_ack [ﬂ
optmgmt_ack sta 3
error_ack sta 0 | sta_3 sta_3
ok_ackl sta_0

Figure 10-3. Initialization State Table
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sta_3 sta_5 sta_6 sta_7 sta_8 sta_9 | sta_10 sta_11 | sta_12 | sta_13 | sta_14 | sta_15 | sta_16
state idle w_ack | w_con | w_res w_ack data_t | w_ind w_req | w_ack w_ack | w_ack | w_ack | w_ack
event c_req c_req c_ind c_res orrel orrel dreq6 dreq7 dreq9 | dreql0 | dreqll
conn_req sta_5
conn_res sta_8
discon_req sta_12 | sta_13 sta_14 | sta_15 | sta_16
data_req sta_9 sta_11
exdata_req sta_9 sta_11
**ordrel_req sta_10 sta_3
conn ind sta_7 sta_7
- [2] [2]
conn_con sta_9
data_ind sta 9 | sta_10
exdata_ind sta_9 sta_10
**ordrel_ind sta_11 sta_3
discon_ind1 sta_3 sta_3 sta 3 | sta_3
. . sta_3
discon_ind2 =
- [3]
di ind3 sta_7
iscon_in 3]
error_ack sta_3 sta_7 sta_6 sta_7 sta_9 sta_10 | sta_11
ok_ack1l sta_6 sta_3 sta_3 sta_3 sta_3
sta_9 sta_3
ok_ack2 [3] [3]
sta_3 sta_3
ok_ack3 i ey
= [3114] (3]
K ackd sta_7 sta_7
O AC [314] 3]
pass_conn sta_9
**Only supported if service is type T_COTS_ORD 161900

10-13



STREAMS Modules and Drivers

Figure 10-4. Data-Transfer State Table for Connection Oriented Service

sta_3
state o
idle
event
unitdata_req sta_3
unitdata_ind sta_3
uderror_ind sta_3

161910

Figure 10-5. Data-Transfer State Table for Connectionless Service

Transport Primitive Precedence

10-14

The stream queue which contains the transport user initiated primitives is referred to as the
stream write queue. The stream queue which contains the transport provider initiated
primitives is referred to as the stream read queue. Figure 10-6 shows the stream write
gueue precedence table. Figure 10-7 shows the steam read queue precedence table.
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t_conn_req
t_conn_res
t_discon_req
t_data_req
t_exdata_req
t_bind_req X
t_unbind_req
t_info_req
t_unitdata_req
t_optmgmt_req

t_ordrel_req

t_conn_req 4

t_conn_res

t_discon_req

t_data_req 5|12 1

t_exdata_req 51111 1

t_bind_req

t_unbind_req

t_info_req

t_unitdata_req 1

t_optmgmt_req

t_ordrel_req 5

161920

Key

blank: not applicable / queue should be empty

1: X has no precedence over Y
2 : X has precedence over Y

3: X has precedence over Y
and Y must be removed
4 : X has precedence over Y
and both X and Y must be removed
5 : X may have precedence over Y
(choice of user) and if X does, then
it is the same as 3

Figure 10-6. Stream Write Queue Precedence Table
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t_conn_ind
t_conn_con
t_discon_ind
t data_ind
t_exdata_ind
t_info_ack
t_bind_ack
t_error_ack
t_ok_ack
t_unitdata_ind

t_uderror_ind

t_optmgmt_ack

/ t_ordrel_ack

t_conn_ind
t_conn_con 3111
t_discon_ind 1 212
t data_ind 511]2 1 1
t_exdata_ind 5111 1 1
v t_info_ack

t_bind_ack 1
t_error_ack 1112111

t_ok_ack 1111111
t_unitdata_ind 2 112]2
t_uderror_ind 1 1111
t_optmgmt_ack | 1 111
t_ordrel_ack 1 5 212

161930

Key

blank: not applicable / queue should be empty

1: X has no precedence over Y
2 : X has precedence over Y

3 : X has precedence over Y
and Y must be removed
4 : X has precedence over Y
and both X and Y must be removed
5 : X may have precedence over Y
(choice of user) and if X does, then
it is the same as 3

Figure 10-7. Stream Read Queue Precedence Table
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Introduction

This chapter presents some guidelines for the development of network device drivers
which conform to the Data Link Provider Interface (DLPI). It contains the following:

* An overview of the DLPI model

* A description of the different protocols used in a LAN together with the
requirements for network management

* A description of the PowerMAX OS driver network environment and the
capabilities a driver should provide in order to operate there

* Details of the framework for the design of these drivers
* A model of the OSI Data Link Layer

¢ Alisting of DLPI services and primitives

DLPI specifies a Streams based interface between the data link layer (data link service
provider) and the network layer (Data Link Service user) of the OSI reference model. It

enables a Data Link Service (DLS) user to access any DLPI conformance provider without
special knowledge of the provider's protocol.

NOTE

A DLS user is the user-level application or user-level or kernel-
level protocol that accesses the services of the data link layer.

This implies that the DLPI conformance providers can be freely substituted with minimal
changes to the implementation of the DLS user.

However, there may be many different DLS users such as CLNS, IP and IPX which may
use different framing formats and have other unique requirements. These formats divide
the driver into hardware dependent and hardware independent sections. The hardware
independent code provides the generic part that does not need to change from one driver to
the next and deals mostly with the specifics of the DLPI. Additionally it provides support
for a number of different potential DLS users, specifically TCP/IP, Netware and OSI. The
hardware independent code is available to developers of drivers and allows them to con-
cern themselves only with the hardware specifics of their particular driver.
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How DLPI Works

DLPI is a STREAMS-based implementation of the service specification of the IEEE 1SO
DIS 8886 and 1SO 8802 Logical Link Control (802.2) standard. The IEEE 802 standards
divide the data link layer of the OSI reference model into two sub-layers:

* A media independent upper portion called the Logical Link Control (LLC)
layer, described in standard 802.2

* A media dependent lower layer called the Media Access Control (MAC)
layer, described in standards 802.3 for Carrier Source Multiple Access with
Collision Detection (CSMA/CD), 802.4 for token bus and 802.5 for Token
Ring protocols.

Figure 11-1 shows the IEEE 802 model.

LLC sub-layer (802.2)
Data Link layer
MAC sub-layer (802.2,802.4,802.5)

161940

Figure 11-1. The IEEE 802 Model

The major components of the DLPI model are shown in Figure 11-2. The driver is referred
to as the DLS provider and a protocol module which is layered on top is referred to as a
DLS user.
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DLS user DLS user
DLPI
A DLSAP A DLSAP
DLS
Provider
PPA

161950

Figure 11-2. The DLPI Model

A DLS user accesses the services of a provider at a Service Access Point (SAP) using
DLPI primitives in the form of STREAMS messages. It can be seen that a DLS provider
must potentially route data from a single physical medium to multiple DLS users, for
example IP and IPX. Individual DLS users identify themselves to the DLS provider using
a SAP address which is conveyed to the provider using a primitive operation which binds a
DLSAP with a STREAM.

DLPI supports three modes of communication to deal with the wide variety of data link
providers and upper layer requirements:

* connection-oriented
¢ unacknowledged connectionless

¢ acknowledged connectionless

The framework described in this chapter is for the unacknowledged connectionless mode
since this is the form used by most LAN protocols.

Additionally, DLPI permits twastylesto distinguish between Physical Points of Attach-
ment (PPAs). Style one providers assigns PPAs based on the major and minor number of
the device opened. Typically, there will be one major number per board and DLS users
will be assigned a minor number when opening the stream using the STRE&MS

open feature. Style two providers enable the DLS user to specify the particular PPA after
an open by using an attach primitive. The framework described in this chapter uses a style
one provider.
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Hardware/Software Environment

Developers of Streams drivers should refer to the “STREAMS Modules” and “STREAMS
Drivers” chapters in this guide, and thevice Driver Referenc@&he Device Driver Ref-
erencealso contains information on dynamic loadable kernel modules. Packaging and
installation guidelines can be found in thevice Driver Programming.

The LAN Environment

This section gives an overview of the different LAN environments, including media, pro-
tocol suites and network management. It describes the numerous standards documents
relating to networking and highlights the more important information. The references
themselves should be consulted for more detailed information. For further background
reading se€omputer NetworksTannenbaum, Andrew S., 2nd ed. 1988 Prentice-Hall.

Media Access Methods

The two media access methods are CSMA/CD and Token Ring.

CSMA/CD

CSMA/CD LANSs are governed by two standards, the Ethernet 2.0 specification and the
IEEE 802.3 standard. See thBthernet: Data Link Layer and Physical Layer Specifica-
tions, Digital, Intel and Xerox, 198&nd theANSI/IEEE Std 802.3 ISO 8802/2 CSMA/CD
Access Metho@he 802.3 standard covers a whole range of speeds from 1 to 20 Mbps on
a variety of media. However, the two most common configurationthizéeEthernet and

thin Ethernet cables using 10 Mbps baseband transmission.

The 802.3 standard is derived from the Ethernet specification; however it does differ
slightly in the framing used.

Figure 11-3 shows the Ethernet frame format. Figure 11-4 shows the 802.3 frame format.

Destination Source Packet

address address type Data CRC

Preamble

8 6 6 2 0-1500 4

161960

Figure 11-3. Ethernet Frame Format
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Start of Destination Source

Preamble frame address address

Length Data CRC

7 1 20r6 20r6 2 0 - 1500 4

161970

Figure 11-4. 802.3 Frame Format

The only difference between an Ethernet and 802.3 frame that impacts a DLPI driver is
that the packet type indicator in an Ethernet frame is used as a length field in 802.3 frames.
Packet types are used to indicate the protocol using the Ethernet frame. Fortunately, most
protocol type values are greater than 1500, the maximum length of data, which enables a
driver to distinguish between the two types of framing. The exceptions to this rule are the
Xerox PUP protocols which have type fieldOgP00 and0x201 .

Token Ring

The two main Token Ring protocols are IEEE 802.5 and FDDI. SeANIs/IEEE Std
802.5 ISO 8802/5 Token Ring Access Mettieel SO FDDI Physical Layer Protocol, ISO
9314-1, 1989thelSO FDDI Media Access Control, ISO 9314-2, 188id thd SO FDDI
Physical Layer Medium Dependant, ISO 9314-3, 1f89more information regarding
Token Ring protocols.
The 802.5 frame format is shown in Figure 11-5.

Frame Access . Source Dest. . Frame

control control Delim address address Data CRC | Delim status

1 1 1 20r6 20r6 unlimited 4 1 1

161980

Figure 11-5. 802.5 Frame Format

There is no explicit maximum length for a frame, however there is an implicit maximum
since the entire frame must be transmitted within the token holding time.
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Logical Link Layer Protocols

Messages for the IEEE 802.2 LLC protocol have two formats depending on whether the
SNAP extension is used. These formats are shown in Figure 11-6.

802.(3,4,5)MAC header 802.(3,4,5)MAC trailer
IEEE 802.2 DSAP SSAP control Data
1 1 1
) DSAP SSAP org. protocol
control Data
IEEE 802.2 with SNAP (OXAA) (OXAA) code type
1 1 1 3 2

161990

Figure 11-6. 802.2 Message Format

Protocol Suites

The framework described in this document provides support for TCP/IP, NetWare and OSI
protocols and also allows for the possibility of them all being used at the same time on the
same host. It must therefore multiplex all incoming packets and route them to the appro-
priate protocol stack. This is done by examining the frame format and LLC headers and
matching them with information provided by the upper layer protocols at bind time.

(ONY|

The OSI protocols require a network driver to provide support for the IEEE 802.2 LLC
protocol along with an appropriate IEEE MAC layer protocol such as 802.3 for
CSMA/CD and 802.5 for Token Ring. SABISI/IEEE Std 802.2 ISO 8802/2 Logical Link
Control.
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TCP/IP over CSMA/CD

The TCP/IP protocol suite can use a CSMA/CD LAN in one of two ways. The first is
using Ethernet V2.0 frames, as describeRHC-894, A Standard for the Transmission of
IP Datagrams over Ethernet.

In this example the type field of the Ethernet frame is set to indicate the protocol using the
frame. For example, for IP it would be sets®800 . The second method is using 802.3
format frames. The latter is achieved by using the SNAP LSAP in the 802.2 header. This is
described irRFC-1042, A Standard for the Transmission of IP Datagrams over IEEE 802
Networks.

In this example the DSAP and SSAP are set to OxAA to indicate that the SNAP format is
being used and the last two bytes of the SNAP header are set to the same protocol type
identifier as used in Ethernet frames.

TCP/IP over Token Ring

The SNAP frame format will be used to transmit IP datagrams over a token ring network.
While the Org-code will be 0 for both IP and ARP packets, the EtherType fields will be
0x800 and 0x806 respectively.

NetWare over CSMA/CD

NetWare client and Portable NetWare stacks can communicate in any of four different
frame formats:

* Ethernet V-2.0 with the protocol ID field setGe8137

* |EEE-802.3 with no LLC header. This is the predominant frame format
among NetWare LANs. Any received frame whose length/type field has a
value of less thafx600 is automatically handed over to the IPX Trans-
port/Network driver. The user data part of the frame is not encapsulated in
a |IEEE-802.2 frame.

* |EEE 802.3 frame containing a IEEE-802.2 LPDU with SAP values of
OxEO

* SNAP frames witlDXAA SAPs in the LLC header and the type set to
0x8137

NetWare over Token Ring

IEEE-802.2 or SNAP frame formats can be used to send IPX packets. The actual frame
format will depend on the address that will be used with the bind request primitive. An
address values @xFE will result in all IPX packets to be transmitted as IEEE-802.2
frames. However, an addressOsB137 will result in SNAP frames as the frame type of
choice.
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Network Management Support

A network interface driver will probably need to provide some support for network man-
agement especially in the form of statistics. There are two standards governing network
management:

* The SNMP MIB as defined iRFC-1213, Management Information Base
for Network Management of TCP/IP-based Internet: MIB-II,

* The OSI network management framework, as defind@@/IEC DIS
10165, Information Processing Systems - Open Systems Interconnection -
Structure of Management Information.

Additionally, there are thistats statistics which are required by some TCP/IP imple-
mentations.

Broadcast and Multicast Support

Broadcast and multicast support are required by various protocols. For example OSI
CLNS uses certain multicast addresses to identify all end systems and all intermediate sys-
tems for routing purposes.

Promiscuous Mode

A promiscuous mode SAP is one which receives all packets on the network whether
addressed to it or not. This is typically used by applications which monitor network traffic.
This must not interfere with the normal running of other protocols on the host. Therefore,
in the framework described in “The DLPI Network Driver Framework,” packets intended
for the local host are duplicated and sent to the promiscuous SAP as well as the real desti-
nation SAP. Users can query and set the state of promiscuous mode by uBihtthe
CGPROMIS@ndDLIOCSPROMISGtreams messages respectively. These streams mes-
sages are documentedidaetl(3d)

The DLPI Network Driver Framework

The driver software is logically divided into two halves:

* The hardware independent layer handles the DLPI primitives from the DLS
user.

* The hardware dependent layer interfaces with the hardware controller.

Figure 11-7 shows the structure of the driver. Data is passed between the Hardware Inde-
pendent Layer and the DLS user in the form of messages. A message is a set of data struc-
tures used to pass data, status and control information.
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DLS user DLS user

_DLPI | * | *
interface + | + |

Hardware

Independent | DL_sap_t DL_sap_t |

DL_bdconfig_t

Hardware
Dependent

Hardware | +
interface + |

Hardware

162000

Figure 11-7. Structure of the Driver

The driver described here provides only the unacknowledged connectionless services. The
DLPI primitives for connection mode data transfer are not supported by this provider. In
addition to data transfer, the DLS user communicates to the Hardware Independent Layer
using anioctl  interface for getting status messages and controlling the card functional-
ity. See “Hardware/Software Environment.”

The Hardware Independent Layer invokes appropriate Hardware Dependent Layer func-
tions during initialization and frame transmission. The Hardware Dependent Layer com-
municates with the Hardware Independent Layer by inserting received frames directly into
the read queue of the Hardware Independent Layer. In addition, the two layers share some
variables for synchronization and flow control purposes.

The Hardware Dependent Layer is responsible for card specific initialization functions,
frame transmission and reception. It also keeps track of error information and translates
someioctl s to controller commands. See “The Hardware Dependent Layer” for more
information.

The DLS provider is configured as a STREAMS driver. A DLS user accesses the provider
usingopen(2) to establish a Stream to the driver. Thereafter, the user and the provider
communicate by using the DLPI primitives.

After an open, the process must identify itself to the provider by binding a SAP to the
Stream with &L_BIND_REQprimitive. This allows the provider to determine the desti-
nation of received frames. A privileged process (that is, oneudtl ) may set its SAP

to be “promiscuous” so that it can receive all incoming frames.
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Major Data Structures

11-10

The DLPI data structures and the associated defines are present in

/usr/include/sys/dIpi.h

. Other major data structures needed in the driver are

those for SAPs, board configuration structure, Ethernet statistics and the MIB. These are
described here. Hardware specific data structures are also needed in the driver, but these
are outside the scope of this chapter.

An Ethernet driver associates every installed board/adapter with an instance of a configu-
ration structurddL_bdconfig_t . A configuration structure describes the characteristics

of the board, contains information needed to operate the board and also holds adapter spe-
cific statistics maintained by the driver. Furthermore, each instance of a

DL_bdconfig_t

structure is shared by the hardware dependent and independent parts

of the driver and used to pass information between them. A configuration structure is com-
posed of a number of standard fields often used by all the drivers. In addition, fields are
available for optional use by the individual drivers.

major
io_start
xio_start
max_saps
bd_ditype
bd_number
flags
tx_next
timer_id
timer_val
eaddr
ttl_valid_sap

sap_ptr

promisc_cnt

multicast_cnt
valid_sap

mib

ifstats

The major number of the device that identifies a particular board.
The start of I/O base address.

The start of extended I/O base address.

The number of service access points associated with the board
Device type (Ethernet, FDDI, and so on)

The board number in a multiboard setup.

A bitmask to identify the operational status of the board.

The next SAP to be serviced.

Watchdog timer id.

Watchdog timer value.

The physical address of the board.

Total number of valid SAPs.

Pointer to a table of service access points associated with the
board.

The number of promiscuous SAPs currently associated with the
board.

The total number of multicast address currently being used.
A pointer to a link list of valid SAPs that are in use.

A list of statistics that are currently being maintained by the
board.

Pointer to the interface statistics structure.
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All fields in the board structure may be initialized by the driver-speidific routines.
For some drivers, theajor , bd_number andmax_saps fields are initialized in the
space.c files that are a part of every driver package. $ae _ptr is initialized to

NULL by theinit

routines. Theromisc_cnt  fields are initialized by thait  rou-

tines and updated by tHelLpromisc_on andDLpromisc_off routines. The

multicast_cnt
DLadd_multicast

fields are initialized by thénit routines and updated by the
andDLdel_multicast routines.

Theflags element can take the following values:

BOARD_PRESENT

BOARD_DISABLED

TX_BUSY

TX_QUEUED

The board specifiénit  routines will turn on the
BOARD_PRESENAit after a successful initialization and
reset sequence.

An unsuccessful initialization or a reset sequence will
result in the hardware dependent part of the driver turning
on theBOARD_DISABLELDDit. In addition, this bit could

be turned on if the driver recognizes a malfunctioning
board.

The bit indicates a temporary lack of resources (e.g.,
buffers needed to transmit a packet).

This bit indicates packets waiting to be transmitted over
the network.

Each SAP is identified by a set of standard parameters that describe both the type of the
SAP and its operational characteristics. Each instance of a SAP is associated with a sap

structure DL_sap_t ).

State

sap_addr
flags
read g
write_q

mac_type

service_mode
provider_style
bd

next_sap

max_spdu

Identifies the current state of the SAP as defined by DLPI.
Must be initialized tdL_UNBOUNDy the driver specific
init  routines.

An unique identifier for the SAP.

Defines the operational characteristics of the SAP.

The read side STREAMS queue associated with the SAP.
The write side STREAMS queue associated with the SAP.

One of DL_ETHERDL_CSMACDor DL_FDDI depend-
ing on the type of the SAP.

DL_CLDLS , Connection Less Data Link Service.
DL_STYLE1
Back pointer that points to the controlling board.
Points to next SAP in the list of valid SAPs.

Maximum amount of user data that can be transmitted in
every frame and this is a function of the type of the SAP.
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min_spdu Minimum amount of user data that can be transmitted in
every frame and this is a function of the type of the SAP.

sap_sv SAP synchronization variable

Theflags field of the SAP structure can assume the following values:

RAWCSMACD A SAP through which only 802.3 frames are sent and
received.

SNAPCSMACD A SAP that sends and receives SNAP format frames.

PROMISCUOUS A SAP that receives a copy of all the inbound frames irre-

spective of the destination SAP.

SEND_LOCAL_TO_NET Indicates that a copy of all the loopback frames should
also be sent over the network.

PRIVILEGED Need super-user permission to operate the SAP.

A number of statistical counters are maintained as a part of the configuration structure.
Counters are updated both by the hardware independent and dependent parts of the driver.
A brief description of each counter is provided. A user can retrieve the current values of
the counters using the appropriatetl s.

iflnOctets The total number of bytes received from a given board.
ifOutOctets The total number of bytes sent from a given board.
ifOutUcastPkts number of unicastpackets sent out.

ifOutNUcastPkts number of broadcast and multicast packets sent out.
iflnDiscards number of valid packets received but dropped.
iflnUcastPkts number of unicast packets received.

iflnNUcastPkts number of broadcast and multicast packets received.
iflnErrors number of packets received with errors.

ifUnknownProtos number of packets received and dropped because of an

invalid destination SAP.

ifOutQlen number of packets queued up for transmission.
ifOutErrors number of packets transmitted with errors.
etherAlignErrors number of frames alignment errors.
etherCRCerrors number of frames with CRC errors.
etherMissedPkts number of missed packets.

etherOverrunErrors number of DMA Overrun errors.
etherUnderrunErrors number of DMA Underrun errors.
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etherCollisions number of collisions.

etherAbortErrors number of Transmits aborted at interface.
etherReadgFull Number of times read queues were flow controlled.
etherRcvResources Number of resource allocation failures (e.g.: Buffers).

The Hardware Independent Layer

The Hardware Independent Layer processes all calls made by the DLS user and the hard-
ware dependent layer. It has the following routines:

DLopen() open routine

DLclose() close routine

DLwput() put routine for the write queue

DLrsrv() service routine for the read queue

DLrecv() process a completely formed incoming packet

Note that all of these functions have a common pref@LofThis is to make the functions
hardware independent. Afinclude file in the Hardware Dependent Layer converts
these functions to be hardware specific. See “Function Names and File Organization.”

Further details on these and related functions can be found in the on-line manual pages.
“DLPI Primitives” contains information on the meaning of error codes used in the proce-
dure list.

The Hardware Dependent Layer

The Hardware Dependent Layer provides the services of an external I/O device (Ethernet
controller). It handles data transfer between the kernel and the device and is not involved
in DLPI interface processing other than conversion between data structures used by the
STREAMS mechanism and data structures that the device understands. Additionally, it
updates all the fields (other than the ones mentioned above) in the MIB structure.

Further details on functions for the Hardware Dependent Layer can be found on the man-
ual pages in the on-line manual pages.

Watchdog Routines

All implementations of Ethernet drivers contain a watchdog routine. A watchdog routine
monitors adapter activity and informs the user of any malfunctionsirmbeut()  rou-

tine that is available as a part of the operating system forms the basis for watchdog activ-
ity. The algorithm is as follows:
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* Thetimer_val field of theDL_bdconfig_t  structure is set to an
appropriate value and a calltimeout() (with the watchdog routine as
one of its arguments) is made after each packet is transmitted
(DLxmit_packet () ) routine. Thetimer_id field of
DL_bdconfig_t is updated to reflect the return value frimeout()

* Every call to the watchdog routine results in the following:
- Thetimer_val is decremented.

- Ifthetimer_val is zero, a warning message is printed out on the
console.

- A non zero of value dimer_val  results in another call tome-
out with the original set of arguments.

* As a part of the interrupt processing associated with successful transmis-
sion of packets, a call tantimeout is issued to cancel the watchdog
activity. Thetimer_id  field of DL_bdconfig_t is used as the argu-
ment tountimeout

Function Names and File Organization

All function names used (but not necessarily defined) in the Hardware Independent Layer
have the common prefix of DL. Function names in the Hardware Dependent Layer have
the common prefix used with the STREAMS initialization. An include file maps the gen-
eral names of the Hardware Independent Layer to driver specific names of the Hardware
Dependent Layer. This allows us to use the same Hardware Independent Layer routines
without any modification with different device-specific Hardware Dependent Layer rou-
tines to get different drivers. For example, the funcBammit_packet() in the Hard-

ware Independent Layer is definedeggxmit_packet() in theegl driver and as
hpexmit_packet() in thehpe driver.

Model of the Data Link Layer

The data link layer (layer 2 in the OSI Reference Model) is responsible for the transmis-
sion and error-free delivery of bits of information over a physical communications
medium.

The model of the data link layer is presented here to describe concepts that are used
throughout DLPI. It is described in terms of an interface architecture, as well as address-
ing concepts needed to identify different components of that architecture. The description

of the model assumes familiarity with the OSI Reference Model.

Model of the Service Interface

Each layer of the OSI Reference Model has two standards:
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* one that defines the services provided by the layer, and

* one that defines the protocol through which layer services are provided.

DLPI is an implementation of the first type of standard. It specifies an interface to the ser-
vices of the data link layer. Figure 11-8 depicts the abstract view of DLPI.

Data
Request/Response Link user
Primitives A

DLPI

Y

Data Link
Provider

Indication/Confirmation
Primitives

162010

Figure 11-8. Abstract View of DLPI

The data link interface is the boundary between the network and data link layers of the
OSI Reference Model. The network layer entity is the user of the services of the data link
interface (DLS user), and the data link layer entity is the provider of those services (DLS
provider). This interface consists of a set of primitives that provide access to the data link
layer services, plus the rules for using those primitives (state transition rules). A data link
interface service primitive might request a particular service or indicate a pending event.

To provide uniformity among the various PowerMAX OS system networking products, an
effort is underway to develop service interfaces that map to the OSI Reference Model. A
set of kernel-level interfaces, based on the STREAMS development environment, consti-
tute a major portion of this effort. The service primitives that make up these interfaces are
defined as STREAMS messages that are transferred between the user and provider of the
service. DLPI is one such kernel-level interface, and is targeted for STREAMS protocol
modules that either use or provide data link services. In addition, user programs that need
to access a STREAMS-based data link provider directly may do so usiogtieg(2)
andgetmsg(2) system calls.

In Figure 11-8, the DLS provider is configured as a STREAMS driver, and the DLS user
accesses the provider usingen(2) to establish a stream to the DLS provider. The
stream acts as a communication endpoint between a DLS user and the DLS provider. After
the stream is created, the DLS user and DLS provider communicate via messages.

DLPI is intended to free data link users from specific knowledge of the characteristics of
the data link provider. Specifically, the definition of DLPI hopes to achieve the goal of
allowing a DLS user to be implemented independent of a specific communications
medium. Any data link provider (supporting any communications medium) that conforms
to DLPI may be substituted beneath the DLS user to provide the data link services. Sup-
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port of a new DLS provider should not require any changes to the implementation of the
DLS user.

Modes of Communication

The data link provider interface supports two modes of communication: connection and
connectionless. The connection mode is circuit-oriented and enables data to be transferred
over a pre-established connection in a sequenced manner. Data may be lost or corrupted in
this service mode, however, due to provider-initiated re-synchronization or connection
aborts.

The connectionless mode is message-oriented and supports data transfer in self-contained
units with no logical relationship required between units. Because there is no acknowledg-
ment of each data unit transmission, this service mode can be unreliable in the most gen-
eral case. However, a specific DLS provider can provide assurance that messages will not
be lost, duplicated, or reordered.

The acknowledged connectionless mode provides the means by which a data link user can
send data and request the return of data at the same time. Although the exchange service is
connectionless, in-sequence delivery is guaranteed for data sent by the initiating station.
The data unit transfer is point-to-point.

Connection-Mode Service
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The connection-mode service is characterized by four phases of communication:

Local Management This phase enables a DLS user to initialize a stream for
use in communication and establish an identity with the
DLS provider.

Connection Establishment This phase enables two DLS users to establish a data link
connection between them to exchange data. One user (the
calling DLS user) initiates the connection establishment
procedures, while another user (the called DLS user) waits
for incoming connect requests. The called DLS user is
identified by an address associated with its stream. For
both the calling and called DLS users, only one connection
may be established per stream.

Thus, the stream is the communication endpoint for a data
link connection.

The called DLS user may choose to accept a connection
on the stream where it received the connect request, or it
may open a new stream to the DLS provider and accept the
connection on this new, responding stream. By accepting
the connection on a separate stream, the initial stream can
be designated as a listening stream through which all con-
nect requests will be processed. As each request arrives, a
new stream (communication endpoint) can be opened to
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handle the connection, enabling subsequent requests to be
gueued on a single stream until they can be processed.

Data Transfer In this phase, the DLS users are considered peers and may
exchange data simultaneously in both directions over an
established data link connection. Either DLS user may
send data to its peer DLS user at any time. Data sent by a
DLS user is guaranteed to be delivered to the remote user
in the order in which it was sent.

Connection Release This phase enables either DLS user, or the DLS provider,
to break an established connection. The release procedure
is considered abortive, so any data that has not reached the
destination user when the connection is released may be
discarded by the DLS provider.

Connectionless-Mode Service

The connectionless mode service does not use the connection establishment and release
phases of the connection-mode service. The local management phase is still required to
initialize a stream. Once initialized, however, the connectionless data transfer phase is
immediately entered. Because there is no established connection, however, the connec-
tionless data transfer phase requires the DLS user to identify the destination of each data
unit to be transferred. The destination DLS user is identified by the address associated
with its user.

Connectionless data transfer does not guarantee that data units will be delivered to the des-
tination user in the order in which they were sent. Furthermore, it does not guarantee that a
given data unit will reach the destination DLS user, although a given DLS provider may
provide assurance that data will not be lost.

DLPI Addressing

Each user of DLPI must establish an identity to communicate with other data link users.
This identity consists of two pieces. First, the DLS user must somehow identify the physi-
cal medium over which it will communicate. This is particularly evident on systems that
are attached to multiple physical media. Second, the DLS user must register itself with the
DLS provider so that the provider can deliver protocol data units destined for that user.
Figure 11-9 illustrates the components of this identification approach.
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Figure 11-9. Data Link Addressing Components

Physical Attachment Identification
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The physical point of attachmefPPA in Figure 11-9) is the point at which a system
attaches itself to a physical communications medium. All communication on that physical
medium funnels through the PPA. On systems where a DLS provider supports more than
one physical medium, the DLS user must identify which medium it will communicate
through. A PPA is identified by a unique PPA identifier. For media that support physical
layer multiplexing of multiple channels over a single physical medium (such as the B and
D channels of ISDN), the PPA identifier must identify the specific channel over which
communication will occur.

Two styles of DLS provider are defined by DLPI, distinguished by the way they enable a
DLS user to choose a particular PPA. Hitgle1 provider assigns a PPA based on the
major/minor device the DLS user opened. One possible implementatictydé & driver
would reserve a major device for each PPA the data link driver would support. This would
allow the STREAMS:loneopen feature to be used for each PPA configured. This style
of provider is appropriate when few PPAs will be supported.

If the number of PPAs a DLS provider will support is largstyée2 provider implementa-

tion is more suitable. Thetyle2 provider requires a DLS user to explicitly identify the
desired PPA using a specatach service primitive. For atyle2 driver, theopen(2)

creates a stream between the DLS user and DLS provider, aaithttfe primitive then
associates a particular PPA with that stream. The format of the PPA identifier is specific to
the DLS provider, and should be described in the provider-specific addendum documenta-
tion.
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Data Link User Identification

A data link user's identity is established by associating it with a data link service access
point (DLSAP), which is the point through which the user will communicate with the data
link provider. A DLSAP is identified by a DLSAP address.

The DLSAP address identifies a particular data link service access point that is associated
with a stream (communication endpoint)bid service primitive enables a DLS user to
either choose a specific DLSAP by specifying its DLSAP address, or to determine the
DLSAP associated with a stream by retrieving the bound DLSAP address. This DLSAP
address can then be used by other DLS users to access a specific DLS user. The format of
the DLSAP address is specific to the DLS provider, and should be described in the pro-
vider-specific addendum documentation. However, DLPI provides a mechanism for
decomposing the DLSAP address into component piece DI H®NFO_ACKprimitive

returns the length of the SAP component of the DLSAP address, along with the total
length of the DLSAP address.

Certain DLS Providers require the capability of binding on multiple DLSAP addresses.
This can be achieved through subsequent binding of DLSAP addresses. DLPI supports
peerandhierarchical binding of DLSAPs. When the User requests peer addressing, the
DLSAP specified in a subsequent bind may be used in lieu of the DLSAP bound in the
DL_BIND_REQ This will allow for a choice to be made between a number of DLSAPS on

a stream when determining traffic based on DLSAP values. An example of this would be
to specify variougther_type values as DLSAPs. THeL_BIND_REQ for example,

could be issued witbther_type  value of IP, and a subsequent bind could be issued
with ether type value of ARP. The Provider may now multiplex off ofether_type

field and allow for either IP or ARP traffic to be sent up this stream.

When the DLS User requests hierarchical binding, the subsequent bind will specify a
DLSAP that will be used in addition to the DLSAP bound usiim aBIND REQ This

will allow additional information to be specified, that will be used in a header or used for
demultiplexing. An example of this would be to use hierarchical bind to specify the OUI
(Organizationally Unique Identifier) to be used by SNAP.

If a DLS Provider supports peer subsequent bind operations, the first SAP that is bound is
used as the source SAP when there is ambiguity.

DLPI supports the ability to associate several streams with a single DLSAP, where each
stream may be a unique data link connection endpoint. However, not all DLS providers
can support such configurations because some DLS providers may have no mechanism
beyond the DLSAP address for distinguishing multiple connections. In such cases, the
provider will restrict the DLS user to one stream per DLSAP.

The Connection Management Stream

The earlier description of the connection-mode service assumed that a DLS user bound a
DLSAP to the stream it would use to receive connect requests. In some instances, how-
ever, it is expected that a given service may be accessed through any one of several
DLSAPs. To handle this scenario, a separate stream would be required for each possible
destination DLSAP, regardless of whether any DLS user actually requested a connection
to that DLSAP. Obvious resource problems can result in this scenario.
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DLPI Services
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To obviate the need for tying up system resources for all possible destination DLSAPs, a
connectionmanagement stream utility is defined in DLPI. A connection management
stream is one that receives any connect requests that are not destined for currently bound
DLSAPs capable of receiving connect indications. With this mechanism, a special listener
can handle incoming connect requests intended for a set of DLSAPs by opening a connec-
tion management stream to the DLS provider that will retrieve all connect requests arriv-
ing through a particular PPA. In the model, then, there may be a connection management
stream per PPA.

The various features of the DLPI interface are defined in terms of the services provided by
the DLS provider, and the individual primitives that may flow between the DLS user and
DLS provider.

The data link provider interface supports three modes of service:

Connection The connection mode is circuit-oriented and enables data to be
transferred over an established connection in a sequenced manner.

Connectionless The connectionless mode is message-oriented and supports data
transfer in self-contained units with no logical relationship
required between units.

Acknowledged Connectionless
The acknowledgeaonnectionless mode is similar to connection-
less mode, however, messages are acknowledged and in-sequence
delivery is guaranteed for sender data.

The XID and TEST services that are supported by DLPI are listed in Table 11-1. The DLS
user can issue an XID or TEST request to the DLS Provider. The Provider will transmit an
XID or TEST frame to the peer DLS Provider. On receiving a response, the DLS Provider
sends a confirmation primitive to the DLS user. On receiving an XID or TEST frame from
the peer DLS Provider, the local DLS Provider sends up an XID or TEST indication prim-
itive to the DLS user. The user must respond with an XID or TEST response frame to the
Provider

The services are shown in Table 11-1 and described more fully in the remainder of this
section.



Table 11-1. DLS Services and Primitives

Data Link Provider Interface

Phase

Service

Primitives

Local Management

Connection
Establishment

Connection-mode
Data Transfer

Connection Release

Connectionless-
mode
Data Transfer

Information
Reporting

Attach

Bind

Other

Optional

Connection
Establishment

Data Transfer

Reset

Connection Release

Data Transfer

DL_INFO_REQ, DL_INFO_ACK,
DL_ERROR_ACK

DL_ATTACH_REQ,
DL_DETACH_REQ, DL_OK_ACK,
DL_ERROR_ACK

DL_BIND_REQ, DL_BIND_ACK,
DL_SUBS_BIND_REQ,
DL_SUBS_BIND_ACK,
DL_UNBIND_REQ,
DL_SUBS_UNBIND_REQ,
DL_OK_ACK, DL_ERROR_ACK

DL_ENABMULTI_REQ,
DL_DISABMULTI_REQ,
DL_OK_ACK, DL_ERROR_ACK

DL_GET_STATISTICS_ACK,
DL_GET_STATISTICS_REQ,
DL_PHYS_ADDR_ACK,
DL_PHYS_ADDR_REQ,
DL_SET_PHYS_ADDR_REQ

DL_CONNECT_REQ,
DL_CONNECT _IND,
DL_CONNECT_RES,
DL_CONNECT_CON,
DL_DISCONNECT REQ,
DL_DISCONNECT _IND,
DL_TOKEN_REQ,
DL_TOKEN_ACK, DL_OK_ACK,
DL_ERROR_ACK

DL_DATA_REQ, DL_DATA_IND

DL_RESET_REQ,
DL_RESET_IND,

DL_RESET RES,
DL_RESET_CON, DL_OK_ACK,
DL_ERROR_ACK

DL_DISCONNECT REQ,
DL_DISCONNECT _IND,
DL_OK_ACK, DL_ERROR_ACK

DL_UNITDATA_REQ,
DL_UNITDATA_IND
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Table 11-1. DLS Services and Primitives (Cont.)

Phase Service Primitives

QOS Management DL_UDQOS_REQ,
DL_OK_ACK,
DL_ERROR_ACK

Error Reporting DL_UDERROR_IND

XID and TEST XID DL_XID_REQ,

services DL_XID_IND,
DL_XID_RES,
DL_XID_CON

TEST DL_TEST_REQ,

DL_TEST_IND,
DL_TEST_RES,
DL_TEST_CON

Acknowledged Data Transfer DL_DATA ACK REQ,

Connectionless- DL_DATA ACK_IND,

mode DL_DATA_ACK_STATUS_IN,

Data Transfer DL_REPLY_REQ,
DL_REPLY_IND,

DL_REPLY_STATUS_IND,
DL_REPLY_UPDATE_REQ,
DL_REPLY_UPDATE_STATUS_IND

QOS Management DL_UDQOS_REQ,
DL_OK_ACK, DL_ERROR_ACK

Error Reporting DL_UDERROR_IND

Local Management Services

The local management services apply to both the connection and connectionless modes of
transmission. These services, which fall outside the scope of standards specifications,
define the method for initializing a stream that is connected to a DLS provider. DLS pro-
vider information reporting services are also supported by the local management facilities

Information Reporting
This service provides information about the DLPI stream to the DLS user. The message
DL_INFO_REQrequests the DLS provider to return operating information about the

stream. The DLS provider returns the information iBla INFO_ACKmessage.
Figure 11-10 shows the normal message sequence.
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DL_INFO
request

I

acknowledge

162030

Figure 11-10. Information Reporting

The attach service assigns a physical point of attachment (PPA) to a stream. This service is
required forstyle2 DLS providers to specify the physical medium over which communi-
cation will occur. The DLS provider indicates success wil.aOK_ACKand indicates
failure with aDL_ERROR_ACKThe normal message sequence is illustrated in
Figure 11-11.

DL_ATTACH

request \
DL_OK /

acknowledge

162040

Figure 11-11. Attaching a Stream to a Physical Line

A PPA may be disassociated with a stream usin@thé©ETACH_REQhe normal mes-
sage sequence is illustrated in Figure 11-12.
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Bind Service
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DL_DETACH
request

I

acknowledge

162050

Figure 11-12. Detaching a Stream to a Physical Line

The bind service associates a data link service access point (DLSAP) with a stream. The
DLSAP is identified by a DLSAP address. Each stream open to a DLS provider can have
at most one DLSAP associated with it.

DL_BIND_REQrequests that the DLS provider bind a DLSAP to a stream. It also notifies
the DLS provider to make the stream active with respect to the DLSAP for processing
connectionless data transfer and connection establishment requests. Protocol-specific
actions taken during activation should be described in DLS provider-specific addenda.

The DLS provider indicates success witBla BIND_ ACK and indicates failure with a
DL_ERROR_ACK

Certain DLS providers require the capability of binding on multiple DLSAP addresses.
DL_SUBS_BIND_RE®rovides that added capability. The DLS provider indicates suc-
cess with @DL_SUBS_BIND_ACKand indicates failure with@L_ERROR_ACK

The normal flow of messages is illustrated in Figure 11-13.
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DL_BIND
request

DL_BIND

N
S
e

DL_SUBS_BIND
request

DL_SUBS_BIND
acknowledge

162060

Figure 11-13. Binding a Stream to a DLSAP

DL_UNBIND_REQequests the DLS provider to unbind a DLSAP from a stream. The
DLS provider indicates success wittbd _OK_ACKand indicates failure with a
DL_ERROR_ACKrhe normal message sequence is shown in Figure 11-14.
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DL_UNBIND
request

DL_OK
acknowledge

DL_SUBS_UNBIND
request

N/

DL_OK
acknowledge

162070

Figure 11-14. Unbinding a Stream to a DLSAP

DL_ENABMULTI_REQequests that the DLS Provider enable specific multicast addresses
on a per stream basis. The Provider indicates success @ith@K_ ACKand indicates
failure with aDL_ERROR_ACHs shown in Figure 11-15.

DL_ENABMULTI
request

I

acknowledge

162080

Figure 11-15. Enabling a Specific Multicast Address on a Stream

DL_DISABMULTI_REQrequests that the DLS Provider disables specific multicast
addresses on a per Stream basis. The Provider indicates succesBlwidka ACKand
indicates failure with ®L_ ERROR_ACHKs shown in Figure 11-16.
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DL_DISABMULTI
request

N

acknowledge

162090

Figure 11-16. Disabling a Specific Multicast Address on a Stream

Connection-mode Services

The connection-mode services enable a DLS user to establish a data link connection,
transfer data over that connection, reset the link, and release the connection when the con-
versation has terminated.

Connection Establishment Service

The connection establishment service establishes a data link connection between a local
DLS user and a remote DLS user for the purpose of sending data. Only one data link con-
nection is allowed on each stream.

Normal Connection Establishment

In the connection establishment model, the calling DLS user initiates connection estab-
lishment, while the called DLS user waits for incoming requésits CONNECT_REQ
requests that the DLS provider establish a conneddbnCONNECT _INDnforms the
called DLS user of the request, which may be accepted BIin€ONNECT_RES
DL_CONNECT_COiNforms the calling DLS user that the connection has been estab-
lished.

The normal sequence of messages is illustrated in Figure 11-17.
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DL_CONNECT
request \
- DL__C.ONI.\IECT
\ indication
DL_CONNECT
/ response
| \
/ DL_OK
DL_CONNECT acknowledge
confirm

162120

Figure 11-17. Successful Connection Establishment

Once the connection is established, the DLS users may exchange user data using
DL_DATA_REGndDL_DATA_IND

The DLS user may accept an incoming connect request on either the stream where the
connect indication arrived or an alternate, responding stream. The responding stream is
indicated by a token in tHeL. CONNECT _REdhis token is a value associated with the
responding stream, and is obtained by issuibg aTOKEN_RE®@n that stream. The DLS
provider responds to this request by generating a token for the stream and returning it to
the DLS user in ®L_TOKEN_ACKThe normal sequence of messages for obtaining a
token is illustrated in Figure 11-18.

DL_TOKEN
request

DL_TOKEN /

acknowledge

162130

Figure 11-18. Token Retrieval
In the typical connection establishment scenario, the called DLS user processes one con-

nect indication at a time, accepting the connection on another stream. Once the user
responds to the current connect indication, the next connect indication (if any) can be pro-
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cessed. DLPI also enables the called DLS user to multi-thread incoming connect indica-
tions. The user can receive multiple connect indications before responding to any of them.
This enables the DLS user to establish priority schemes on incoming connect requests.

Connection Establishment Rejections

In certain situations, the connection establishment request cannot be completed. The fol-
lowing paragraphs describe the occasions under WbictDISCONNECT_RE@nd
DL_DISCONNECT _INDprimitives will flow during connection establishment, causing

the connect request to be aborted.

Figure 11-19 shows an example where the called DLS user chooses to reject the connect
request by issuinBL_DISCONNECT RE®stead oDL_CONNECT_RES

DL_CONNECT
request \

- DL._C_ONI.\IECT

\ indication

DL_DISCONNECT
/ request
| \

/ DL_OK

DL_DISCONNECT acknowledge
indication

162120

Figure 11-19. DLS User Rejection of Connection Establishment Attempt

Figure 11-20 shows an example where the DLS provider rejects a connect request for lack
of resources or other reason. The DLS provider s&ddDISCONNECT_INDn
response tdOL_CONNECT_REQ
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DL_CONNECT
request

DL_DISCONNECT /

indication

162150

Figure 11-20. DLS Provider Rejection of Connection Establishment Attempt

Figure 11-21 shows an example where the calling DLS user chooses to abort a previous
connection attempt. The DLS user issiés DISCONNECT _RE@ some point follow-

ing aDL_CONNECT_REQhe resulting sequence of primitives depends on the relative
timing of the primitives involved, as defined in the following time sequence diagrams.

DL_CONNECT
request

DL_DISCONNECT
request

N/ /

DL_OK
acknowledge
162160

Figure 11-21. Both Primitives Are Destroyed by Provider

Data Transfer Service
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The connection-mode data transfer service provides for the exchange of user data in either
direction or in both directions simultaneously between DLS users. Data is transmitted in
logical groups called data link service data units (DLSDUSs). The DLS provider preserves
both the sequence and boundaries of DLSDUs as they are transmitted.

Normal data transfer is neither acknowledged nor confirmed. It is up to the DLS users, if
they so choose, to implement a confirmation protocol.
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EachDL_DATA_REQrimitive conveys a DLSDU from the local DLS user to the DLS
provider. Similarly, eaclbL_DATA_IND primitive conveys a DLSDU from the DLS pro-
vider to the remote DLS user. The normal flow of messages is illustrated in Figure 11-22.

DL_DATA

request \
- \
DL_DATA

indication

162170

Figure 11-22. Normal Flow

Connection Release Service

The connection release service provides for the DLS users or the DLS provider to initiate
the connection release. Connection release is an abortive operation, and any data in transit
(has not been delivered to the DLS user) may be discarded.

DL_DISCONNECT_RE@quests that a connection be releaBed.DISCONNECT_IND
informs the DLS user that a connection has been released. Normally, one DLS user
requests disconnection and the DLS provider issues an indication of the ensuing release to
the other DLS user, as illustrated by the message flow in Figure 11-23.

11-31



STREAMS Modules and Drivers

DL_DISCONNECT

request \
- \

DL OK DL_I_DIS_CO!\INECT
indication

acknowledge
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Figure 11-23. DLS User-Invoked Connection Release

Figure 11-24 illustrates that when two DLS users independently invoke the connection
release service, neither receive3la DISCONNECT _IND

DL_DISCONNECT DL_DISCONNECT

request \ / request

DL_OK \

acknowledge DL_OK
acknowledge
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Figure 11-24. Simultaneous DLS User-Invoked Connection Release

Figure 11-25 shows that when a DLS provider initiates the connection release service,
each DLS user receiveddd. DISCONNECT_IND
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DL_DISCONNECT \

indication DL_DISCONNECT
indication
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Figure 11-25. DLS Provider Invoked Connection Release

Figure 11-26 illustrates that when the DLS provider and the local DLS user simulta-
neously invoke the connection release service, the remote DLS user receives a
DL_DISCONNECT_IND

DL_DISCONNECT

request \
DL_OK \

acknowledge DL_DISCONNECT
indication

162210

Figure 11-26. Simultaneous DLS User and Provider Connection Release

The reset service may be used by the DLS user to resynchronize the use of a data link con-
nection, or by the DLS provider to report detected loss of data unrecoverable within the
data link service.

Invocation of the reset service will unblock the flow of DLSDUs if the data link connec-
tion is congested. DLSDUs may be discarded by the DLS provider. The DLS user or users
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that did not invoke the reset will be notified that a reset has occurred. A reset may require
a recovery procedure to be performed by the DLS users.

The interaction between each DLS user and the DLS provider will be one of the following:

* aDL_RESET_REGQGrom the DLS user, followed by@L RESET_CON
from the DLS provider;

* a DL _RESET_IND from the DLS provider, followed by a
DL _RESET_RESrom the DLS user.

TheDL_RESET_REQcts as a synchronization mark in the stream of DLSDUs that are
transmitted by the issuing DLS user. Thle RESET_INDacts as a synchronization mark

in the stream of DLSDUs that are received by the peer DLS user. Similarly, the
DL _RESET_REScts as a synchronization mark in the stream of DLSDUSs that are trans-
mitted by the responding DLS user. The_RESET_COMcts as a synchronization mark

in the stream of DLSDUs that are received by the DLS user which originally issued the
reset.

The resynchronizing properties of the reset service are that:

* No DLSDU transmitted by the DLS user before the synchronization mark
in that transmitted stream will be delivered to the other DLS user after the
synchronization mark in that received stream.

* The DLS provider will discard all DLSDUs submitted before the issuing of
the DL_RESET_REQhat have not been delivered to the peer DLS user
when the DLS provider issues thé._RESET_IND

* The DLS provider will discard all DLSDUs and EDLSDUs submitted
before the issuing of theL. RESET_REShat have not been delivered to
the initiator of theDL_RESET_REQvhen the DLS provider issues the
DL_RESET_CON

* No DLSDU or EDLSDU transmitted by a DLS user after the synchroniza-
tion mark in that transmitted stream will be delivered to the other DLS user
before the synchronization mark in that received stream.

The complete message flow depends on the origin of the reset, which may be the DLS pro-
vider or either DLS user. Figure 11-27 illustrates the message flow for a reset invoked by
one DLS user.



DL_RESET
request
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DL_RESET /

confirm

Data Link Provider Interface

/
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Figure 11-27. DLS User-Invoked Connection Reset

DL_RESET
indication

DL_RESET
response

DL_OK
acknowledge
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Figure 11-28 illustrates the message flow for a reset invoked by both DLS users simulta-

neously.

DL_RESET

request \

DL_RESET /

confirm

e

N

DL_RESET
request

DL _RESET
confirm
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Figure 11-28. Simultaneous DLS User-Invoked Connection Reset

Figure 11-29 illustrates the message flow for a reset invoked by the DLS provider.
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DL _RESET
indication

DL_RESET / —~_

indication \
DL_RESET Drlé_sREnSsiT
response p

DL_OK DL_OK
acknowledge acknowledge

162240

Figure 11-29. DLS Provider-Invoked Connection Reset
Figure 11-30 illustrates the message flow for a reset invoked simultaneously by one DLS

user and the DLS provider.

DL_RESET

request
\/\/

DL _RESET
indication

DL_RESET
/ response
DL_RESET / DL_OK

confirm acknowledge
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Figure 11-30. Simultaneous DLS User/Provider-Invoked Connection Reset
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Connectionless-Mode Services

The connectionless-mode services enable a DLS user to transfer units of data to peer DLS
users without incurring the overhead of establishing and releasing a connection. The con-
nectionless service does not, however, guarantee reliable delivery of data units between
peer DLS users. For example, a lack of flow control may cause buffer resource shortages
that result in data being discarded.

Once a stream has been initialized via the local management services, it may be used to
send and receive connectionless data units.

Connectionless Data Transfer Service

The connectionless data transfer service provides for the exchange of user data (DLSDUS)
in either direction or in both directions simultaneously without having to establish a data
link connection. Data transfer is neither acknowledged nor confirmed, and there is no end-
to-end flow control provided. As such, the connectionless data transfer service cannot
guarantee reliable delivery of data. However, a specific DLS provider can provide assur-
ance that messages will not be lost, duplicated, or reordered.

DL_UNITDATA_REQonveys one DLSDU to the DLS provid&L_UNITDATA_IND
conveys one DLSDU to the DLS user. The normal flow of messages is illustrated in
Figure 11-31.

DL_UNITDATA

request \
- \

DL_UNITDATA
indication

162260

Figure 11-31. Connectionless Data Transfer

QOS Management Service

The QOS (Quality of Service) management service enables a DLS user to specify the
quality of service it can expect for each invocation of the connectionless data transfer ser-
vice. TheDL_UDQOS_RE€@irects the DLS provider to set the QOS parameters to the
specified values. The normal flow of messages is illustrated in Figure 11-32.
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DL_UDQOS

request \

DL_OK
acknowledge

162270

Figure 11-32. Connectionless Data Transfer (QOS)

Error Reporting Service

The connectionless-mode error reporting service may be used to notify a DLS user that a
previously sent data unit either produced an error or could not be delivered. This service
does not, however, guarantee that an error indication will be issued for every undeliverable
data unit.

XID and TEST Service

11-38

The XID and TEST service enables the DLS User to issue an XID or TEST request to the
DLS Provider. On receiving a response for the XID or TEST frame transmitted to the peer
DLS Provider, the DLS Provider sends up an XID or TEST confirmation primitive to the
DLS User. On receiving an XID or TEST frame from the peer DLS Provider, the local
DLS Provider sends up an XID or TEST indication respectively to the DLS User. The
DLS User must respond with an XID or TEST response primitive.

If the DLS User requested automatic handling of the XID or TEST response, at bind time,
the DLS Provider will send up an error acknowledgment on receiving an XID or TEST

request. Also, no indications will be generated to the DLS User on receiving XID or TEST
frames from the remote side.

The normal flow of messages for the XID service is illustrated in Figure 11-33.
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DL_XID DL_XID

request /indication
\ _
-
DL_XID / \ DL_XID

confirm response

162280

Figure 11-33. Message Flow: XID Service

The normal flow of messages for the TEST service is illustrated in Figure 11-34.

DL_TEST
DL_TEST
indication

request \
- \
—
DL_TEST /

confirm

162290

Figure 11-34. Message Flow: TEST Service

Acknowledged Connectionless-Mode Services

The acknowledged connectionless-mode services are designed for general use for the reli-
able transfer of information between peer DLS Users. These services are intended for
applications that require acknowledgment of cross-LAN data unit transfer, but need to
avoid the complexity that is viewed as being associated with the connection-mode ser-
vices. Although the exchange service is connectionless, in-sequence delivery is guaran-
teed for data sent by the initiating station.
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Acknowledged Connectionless-Mode Data Transfer Services

The acknowledged connectionless-mode data transfer services provide the means by
which the DLS Users can exchange DLSDUs which are acknowledged at the LLC sub-
layer, without the establishment of a Data Link connection. The services provide a means
by which a local DLS User can send a data unit to the peer DLS User, request a previously
prepared data unit, or exchange data units with the peer DLS User.

Figure 11-35 illustrates the acknowledged connectionless-mode data unit transmission

service.
DL _DATA_ACK
request \
I"~\\\\\\\\ﬁ.~\
DL_DATA_ACK
indication
»
DL_DATA_ACK_STATUS
indication

162300

Figure 11-35. Acknowledged Connectionless-Mode Transmission Service

Figure 11-36 illustrates the acknowledged connectionless-mode data unit exchange ser-
vice.

DL_REPLY
request \
H-’~\\\\\\\\\.~k
DL _REPLY
indication
»
DL _REPLY_STATUS
indication
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Figure 11-36. Acknowledged Connectionless-Mode Exchange Service

Figure 11-37 illustrates the Reply Data Unit Preparation service.
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DL_REPLY_UPDATE
request

DL_REPLY_UPDATE_STATUS
indication

162320

Figure 11-37. Reply Data Unit Preparation Service

Error Reporting Service

The acknowledged connectionless mode error reporting service is the same as the unac-
knowledged connectionless-mode error reporting service.

Connection-Mode Example

Figure 11-38 illustrates the primitives that flow during a complete, connection-mode
sequence between streapen and streanglose .
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Figure 11-38. Connection Mode Example

11-42

acknowledge

162330



Data Link Provider Interface
DLPI Primitives

The kernel-level interface to the data link layer defines a Streams-based message interface
between the provider of the data link service (DLS provider) and the consumer of the data
link service (DLS user). Streams provides the mechanism in which DLPI primitives may
be passed between the DLS user and DLS provider.

Before DLPI primitives can be passed between the DLS user and DLS provider, the DLS
user must establish a stream to the DLS provider usire;n(2) . The DLS provider

must therefore be configured as a STREAMS driver. When interactions between the DLS
user and DLS provider have completed, the stream may be closed.

The Streams messages used to transport data link service primitives across the interface
have one of the following formats:

* OneM_PROT@nessage block followed by zero or mdteDATAblocks.
TheM_PROT@nessage block contains the data link layer service primitive
type and all relevant parameters associated with the primitive. The
M_DATAblock(s) contain any DLS user data that might be associated with
the service primitive.

* OneM_PCPROT@essage block containing the data link layer service
primitive type and all relevant parameters associated with the service prim-
itive.

* One or moréM_DATAmessage blocks conveying user data.

The information contained in thd_PROT@r M_PCPROT@essage blocks must begin

on a byte boundary that is appropriate for structure alignment. STREAMS will allocate
buffers that begin on such a boundary. However, these message blocks may contain infor-
mation whose representation is described by a length and an offset within the block. An
example is the DLSAP addresdl (addr_length anddl_addr_offset ) in the
DL_BIND_ACKprimitive. The offset of such information within the message block is not
guaranteed to be properly aligned for casting the appropriate data type (sudft asoan
astructure.

The following sections describe the format of the primitives that support the services
described in the previous section. The primitives are grouped into four general categories:

¢ Local Management Service Primitives
* Connection-mode Service Primitives
* Connectionless-mode Service Primitives

¢ Acknowledged Connectionless-mode Service Primitives
Local Management Service Primitives

This section describes the local management service primitives that are common to both
the connection and connectionless service modes. These primitives support the Informa-
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tion Reporting, Attach, and Bind services described earlier. Once a stream has been
opened by a DLS user, these primitives initialize the stream, preparing it for use.

PPA Initialization / De-initialization

11-44

The PPA associated with each stream must be initialized before the DLS provider can
transfer data over the medium. The initialization and de-initialization of the PPA is a net-
work management issue, but DLPI must address the issue because of the impact such
actions will have on a DLS user. More specifically, DLPI requires the DLS provider to ini-
tialize the PPA associated with a stream at some point before it completes processing of
theDL_BIND_REQ Guidelines for initialization and de-initialization of a PPA by a DLS
provider are presented here.

A DLS provider may initialize a PPA using the following methods:

* Pre-initialized by some network management mechanism before the
DL_BIND_REQiIs received; or

* Automatic initialization on receipt of ®L_BIND_REQor
DL_ATTACH_REQ

A specific DLS provider may support either of these methods, or possibly some combina-
tion of the two, but the method implemented has no impact on the DLS user. From the
DLS user's viewpoint, the PPA is guaranteed to be initialized on receipt of a
DL _BIND_ACK For automatic initialization, this implies that tbé_BIND_ACKmay

not be issued until the initialization has completed.

If pre-initialization has not been performed and/or automatic initialization fails, the DLS
provider will fail theDL_BIND_REQ Two errorsDL_INITFAILED andDL_NOTINIT,

may be returned in theL. ERROR_ACKesponse to aL_BIND_REQ if PPA initialization

fails. DL_INITFAILED is returned when a DLS provider supports automatic PPA initial-
ization, but the initialization attempt faileBL_NOTINIT is returned when the DLS pro-
vider requires pre-initialization, but the PPA is not initialized befor®theBIND _REQis
received.

A DLS provider may handle PPA de-initialization using the following methods:

* automatic de-initialization on receipt of the fiiall. DETACH_REQor
style 2 providers) oDL_UNBIND_REQfor style 1 providers), or when
closing of the last stream associated with the PPA;

* automatic de-initialization after expiration of a timer following the last
DL_DETACH_REML_UNBIND_REQor close as appropriate; or

* no automatic de-initialization; administrative intervention is required to de-
initialize the PPA at some point after it is no longer being accessed.

A specific DLS provider may support any of these methods, or possibly some combination
of them, but the method implemented has no impact on the DLS user. From the DLS user's
viewpoint, the PPA is guaranteed to be initialized and available for transmission until it
closes or unbinds the stream associated with the PPA.

DLS provider-specific addendum documentation should describe the method chosen for
PPA initialization and de-initialization.
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Further details on the service primitives for local management can be found in the on-line
manual pages.

Connection-Mode Service Primitives

This section describes the service primitives that support the connection-mode service of
the data link layer. These primitives support the connection establishment, connection-
mode data transfer, and connection release services described earlier.

Connection Establishment

In the connection establishment model, the calling DLS user initiates a request for a con-
nection, and the called DLS user receives each request and either accepts or rejects it. In
the simplest form (single-threaded), the called DLS user is passed a connect indication
and the DLS provider holds any subsequent indications until a response for the current
outstanding indication is received. At most one connect indication is outstanding at any
time.

DLPI also enables a called DLS user to multi-thread connect indications and responses.
This capability is desirable, for example, when imposing a priority scheme on all DLS
users attempting to establish a connection. The DLS provider will pass all connect indica-
tions to the called DLS user (up to some pre-established limit as &8¢t IBIND REQ
andDL_BIND_ACK). The called DLS user may then respond to the requests in any order.

To support multi-threading, a correlation value is needed to associate responses with the
appropriate connect indication. A correlation value is contained in each
DL_CONNECT_INDPand the DLS user must use this value inDhe CONNECT_RE&r
DL_DISCONNECT_RE@rimitive used to accept or reject the connect request. The DLS
user can also receiveld. DISCONNECT _INDwith a correlation value when the calling

DLS user or the DLS provider abort a connect request.

Once a connection has been accepted or rejected, the correlation value has no meaning to
a DLS user. The DLS provider may reuse the correlation value in another
DL_CONNECT_INDThus, the lifetime of a correlation value is the duration of the con-
nection establishment phase, and as good programming practice it should not be used for
any other purpose by the DLS provider.

The DLS provider assigns the correlation value for each connect indication. Correlation
values must be unique among all outstanding connect indications on a given stream. The
values may, but need not, be unique across all streams to the DLS provider. The correla-
tion value must be a positive, non-zero value. There is no implied sequencing of connect
indications using the correlation value; the values do not have to increase sequentially for
each new connect indication.

Further details on the service primitives for connection-mode can be found in the on-line
manual pages.
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Connectionless-Mode Service Primitives

This section describes the primitives that support the connectionless-mode service of the
data link layer. These primitives support the connectionless data transfer service described
earlier.

Further details on the service primitives for connectionless-mode can be found in the on-
line manual pages.

XID and TEST Operations Primitives

This section describes the service primitives that support the XID and TEST operations.
The DLS User can issue these primitives to the DLS Provider requesting the provider to
send arKID or aTEST frame. On receipt of adID or TEST frame from the remote side,

the DLS Provider can send the appropriate indication to the User.

Further details on the service primitives for XID and TEST operations can be found in the
on-line manual pages.

Quality of Data Link Service

The quality of data link service is defined by the temmality of ServicQOS), and
describes certain characteristics of transmission between two DLS users. These character-
istics are attributable solely to the DLS provider, but are observable by the DLS users. The
visibility of QOS characteristics enables a DLS user to determine, and possibly negotiate,
the characteristics of transmission needed to communicate with the remote DLS user.
Quality of service characteristics apply to both the connection and connectionless modes
of service. The semantics for each mode are discussed below.

Connection-Mode Service
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Quality of Service (QOSEfers to certain characteristics of a data link connection as
observed between the connection endpoints. QOS describes the specific aspects of a data
link connection that are attributable to the DLS provider.

QOS is defined in terms of QOS parameters. The parameters give DLS users a means of
specifying their needs. These parameters are divided into two groups, based on how their
values are determined:

* QOS parameters that are negotiated on a per-connection basis during con-
nection establishment; and

* QOS parameters that are not negotiated during connection establishment.
The values are determined or known through other methods, usually
administrative.
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The QOS parameters that can be negotiated during connection establishment are: through-
put, transit delay, priority, and protection. The QOS parameters for throughput and transit
delay are negotiated end-to-end between the two DLS users and the DLS provider. The
QOS parameters for priority and protection are negotiated locally by each DLS user with
the DLS provider. The QOS parameters that cannot be negotiated are residual error rate
and resilience. “Procedures for QOS Negotiation and Selection”describes the rules for
QOS negotiation.

Once the connection is established, the agreed QOS values are not renegotiated at any
point. There is no guarantee by any DLS provider that the original QOS values will be
maintained, and the DLS users are not informed if QOS changes. The DLS provider also
need only record those QOS values selected at connection establishment for return in
response to thBL_INFO_REQprimitive.

QOS for Connectionless-Mode Services

The QOS for connectionless-mode and acknowledged connectionless-mode service refers
to characteristics of the data link layer between two DLSAPS, attributable to the DLS pro-
vider. The QOS applied to eai._UNITDATA_RE@L_DATA ACK_REQ@rimitive

may be independent of the QOS applied to preceding and following
DL_UNITDATA_REQ@L_DATA_ACK_REQ@rimitives. QOS cannot be negotiated
between two DLS users as in the connection-mode service.

EveryDL_UNITDATA_RE@L_DATA_ACK_REQ@rimitive may have certain QOS val-

ues associated with it. The supported range of QOS parameter values is made known to
the DLS user in response to the_INFO_REQprimitive. The DLS user may select spe-

cific QOS parameter values to be associated with subsequent data unit transmissions using
theDL_UDQOS_RE@rimitive. This selection is a strictly local management function. If
different QOS values are to be associated with each transmiBsiodDQOS_RE®@ay

be issued to alter those values before €cHJNITDATA RE@L_DATA ACK_ REG

issued.

QOS Parameter Definitions

This section describes the quality of service parameters supported by DLPI for both con-
nection-mode and connectionless-mode services. The following table summarizes the sup-
ported parameters. It indicates to which service mode (connection, connectionless, or
both) the parameter applies. For those parameters supported by the connection-mode ser-
vice, the table also indicates whether the parameter value is negotiated during connection
establishment. If so, the table further indicates whether the QOS values are negotiated
end-to-end among both DLS users and the DLS provider, or locally for each DLS user
independently with the DLS provider.
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Throughput

Parameter Format

11-48

Parameter Service Mode Negotiation
throughput connection end-to-end
transit delay both end-to-end
priority both local
protection both local
residual error rate both none
resilience connection none

Throughput is a connection-mode QOS parameter that has end-to-end significance. It is
defined as the total number of DLSDU bits successfully transferred by a
DL_DATA_REQ/DL_DATA_IND primitive sequence divided by the input/output time, in
seconds, for that sequence. Successful transfer of a DLSDU is defined to occur when the
DLSDU is delivered to the intended user without error, in proper sequence, and before
connection termination by the receiving DLS user.

The input/output time for BL_DATA_REQ/DL_DATA_INDprimitive sequence is the
greater of:

¢ the time between the first and &4t DATA REQn a sequence; and
* the time between the first and &4t DATA_INDin the sequence.
Throughput is only meaningful for a sequence of complete DLSDUs.

Throughput is specified and negotiated for the transmit and receive directions indepen-
dently at connection establishment. The throughput specification defines the target and
minimum acceptable values for a connection. Each specification is an average rate.

The DLS user can delay the receipt or sending of DLSDUSs. The delay caused by a DLS
user is not included in calculating the average throughput values.

typedef struct {
long dl_target value;
long dl_accept value;

} dl_through_t;
This typedef is used to negotiate the transmit and receive throughput values.

dl_target_value specifies the desired throughput value for the connection
in bits/second.

dl_accept_value specifies the minimum acceptable throughput value for the
connection in bits/second.
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Parameter Format

Priority

Data Link Provider Interface

Connection and connectionless modes can specify a transit delay, which indicates the
elapsed time betweenld. DATA REQ@rDL_UNITDATA_REQrimitive and the corre-
spondingDL_DATA_IND or DL_UNITDATA_IND primitive. The elapsed time is only
computed for DLSDUs successfully transferred, as described previously for throughput.

In connection mode, transit delay is negotiated on an end-to-end basis during connection
establishment. For each connection, transit delay is negotiated for the transmit and receive
directions separately by specifying the target value and maximum acceptable value. For
connectionless-mode service, a DLS user selects a particular value within the supported
range using th®L_UDQOS_REQrimitive, and the value may be changed for each
DLSDU submitted for connectionless transmission.

The transit delay for an individual DLSDU may be increased if the receiving DLS user
flow controls the interface. The average and maximum transit delay values exclude any
DLS user flow control of the interface. The values are specified in milliseconds, and
assume a DLSDU size of 128 octets.

typedef struct {
long dl_target value;
long dl_accept value;

} dl_transdelay t;
This typedef is used to negotiate the transmit and receive transit delay values.
dl_target value specifies the desired transit delay value.

dl_accept_value specifies the maximum acceptable transit delay value.

Priority is negotiated locally between each DLS user and the DLS provider in connection-
mode service, and can also be specified for connectionless-mode service. The specifica-
tion of priority is concerned with the relationship between connections or the relationship
between connectionless data transfer requests. The parameter specifies the relative impor-
tance of a connection with respect to:

¢ the order in which connections are to have their QOS degraded, if neces-
sary; and

¢ the order in which connections are to be released to recover resources, if
necessary;

For connectionless-mode service, the parameter specifies the relative importance of unit-
data objects with respect to gaining use of shared resources.

For connection-mode service, each DLS user negotiates a particular priority value with the
DLS provider during connection establishment. The value is specified by a minimum and
a maximum within a given range. For connectionless-mode service, a DLS user selects a
particular priority value within the supported range usingltheUDQOS_RE@rimitive,
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Parameter Format

Protection

Parameter Format

11-50

and the value may be changed for each DLSDU submitted for connectionless transmis-
sion.

This parameter only has meaning in the context of some management entity or structure
able to judge relative importance. The priority has local significance only, with a value of
zero being the highest priority ad@0 being the lowest priority.

typedef struct {
long dl_min;
long dl_max;
} dI_priority_t;
dl_min specifies the minimum acceptable priority.
dl_max specifies the maximum desired priority.

Protection is negotiated locally between each DLS user and the DLS provider in connec-
tion-mode service, and can also be specified for connectionless-mode service. Protection
is the extent to which a DLS provider attempts to prevent unauthorized monitoring or
manipulation of DLS user-originated information. Protection is specified by a minimum
and maximum protection option within the following range of possible protection options:

DL_NONE DLS provider will not protect any DLS user data
DL_MONITOR DLS provider will protect against passive monitoring
DL_MAXIMUM DLS provider will protect against modification, replay, addition,

or deletion of DLS user data

For connection-mode service, each DLS user negotiates a particular value with the DLS
provider during connection establishment. The value is specified by a minimum and a
maximum within a given range. For connectionless-mode service, a DLS user selects a
particular value within the supported range usingdDheUDQOS_RE@rimitive, and the

value may be changed for each DLSDU submitted for connectionless transmission. Pro-
tection has local significance only.

typedef struct {
long dl_min;
long dl_max;

} dI_protect_t;
dl_min specifies the minimum acceptable protection.

dl_max specifies the maximum desired protection.
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Resilience

Parameter Format
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Residual error rate is the ratio of total incorrect, lost and duplicate DLSDUs to the total
DLSDUs transferred between DLS users during a period of time. The relationship
between these quantities is defined below:

where

DLSDU,; = total DLSDUSs transferred, which is the totalfSDUy, DLS-
DU;, DLSDU,, and correctly received DLSDUSs.

DLSDU, = DLSDUs received 2 or more times.

DLSDY = incorrectly received DLSDUs.

DLSDY = DLSDUs sent, but not received.

long dl_residual_error;

The residual error value is scaled by a factor of 1,000,000, since the parameter is stored as
a long integer in the QOS data structures. Residual error rate is not a negotiated QOS
parameter. Its value is determined by procedures outside the definition of DLPI. It is
assumed to be set by an administrative mechanism, which is informed of the value by net-
work management.

Resilience is meaningful in connection mode only, and represents the probability of either
DLS provider-initiated disconnects or DLS provider-initiated resets during a time interval
of 10,000 seconds on a connection.

Resilience is not a negotiated QOS parameter. Its value is determined by procedures out-
side the definition of DLPI. It is assumed to be set by an administrative mechanism, which
is informed of the value by network management.

typedef struct {
long dl_disc_prob;
long dl_reset_prob;

} dl_resilience_t;

dl_disc_prob specifies the probability of receiving a provider-initiated discon-
nect, scaled by 10000.

dl_reset_prob specifies the probability of receiving a provider-initiated reset,
scaled by 10000.
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QOS Data Structures

To simplify the definition of the primitives containing QOS parameters and the discussion
of QOS negotiation, the QOS parameters are organized into four structures. This section
defines the structures and indicates which structures apply to which primitives.

Each structure is tagged with a type field contained in the first four bytes of the structure,
similar to the tagging of primitives. The type field has been defined because of the current
volatility of QOS parameter definition within the international standards bodies. If new
QOS parameter sets are defined in the future for the data link layer, the type field will
enable DLPI to accommodate these sets without breaking existing DLS user or provider
implementations. If a DLS provider receives a structure type that it does not understand in
a given primitive, the errddL_BADQOSTYPEhould be returned to the DLS user in a
DL_ERROR_ACHrimitive.

Currently the following QOS structure types are defined:

DL_QOS RANGE1 QOS range structure for connection-mode service for
Issue 1 of DLPI

DL_QOS _CO_SEL1 QOS selection structure for connection-mode service for
Issue 1 of DLPI

DL_QOS_CL_RANGE1 QOS range structure for connectionless-mode service for
Issue 1 of DLPI

DL QOS CL_SEL1 QOS selection structure for connectionless-mode service
for Issue 1 of DLPI

The syntax and semantics of each structure type is presented in the remainder of this sec-
tion.

Further details on the structures used for Quality of Service can be found in the on-line
manual pages.

Procedures for QOS Negotiation and Selection
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This section describes the methods used for negotiating and/or selecting QOS parameter
values. In the connection-mode service, some QOS parameter values may be negotiated
during connection establishment. For connectionless-mode service, parameter values may
be selected for subsequent data transmission.

Throughout this section, two special QOS values are referenced. These are defined for all
the parameters used in QOS negotiation and selection. The values are:

DL_UNKNOWN This value indicates that the DLS provider does not know
the value for the field or does not support that parameter.

DL _QOS DONT_CARE This value indicates that the DLS user does not care to
what value the QOS parameter is set.
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These values are used to distinguish between DLS providers that support and negotiate
QOS parameters and those that cannot. The following sections include the interpretation
of these values during QOS negotiation and selection.

Connection-Mode QOS Negotiation

The current connection-mode QOS parameters can be divided into three types as follows:

* Those that are negotiated end-to-end between peer DLS users and the DLS
provider during connection establishment (throughput and transit delay);

* those that are negotiated locally between each DLS user and the DLS pro-
vider during connection establishment (priority and protection); and

¢ those that cannot be negotiated (residual error rate and resilience).

The rules for processing these three types of parameters during connection establishment
are described in this section.

The current definition of most existing data link protocols does not describe a mechanism
for negotiating QOS parameters during connection establishment. As such, DLPI does not
require every DLS provider implementation to support QOS negotiation. If a given DLS
provider implementation cannot support QOS negotiation, two alternatives are available:

* The DLS provider may specify that any or all QOS parameters are
unknown. This is indicated to the DLS user in e INFO_ACK where
the values in the QOS range field (indicatedlbygos_range_length
anddl_qgos_range_offset ) and the current QOS field (indicated by
dl_gos_length anddl_gos_offset ) of this primitive are set to
DL_UNKNOWNThis value will also be indicated on the
DL_CONNECT_INandDL_CONNECT_COptimitives. If the DLS pro-
vider does not support any QOS parameters, the QOS length field may be
set to zero in each of these of these primitives.

* The DLS provider may interpret QOS parameters with strictly local signif-
icance, and their values in tBd_CONNECT_INDprimitive will be set to
DL_UNKNOWN

A DLS user need not select a specific value for each QOS parameter. The special QOS
parameter valud)L_QOS DONT_CARIE used if the DLS user does not care what qual-

ity of service is provided for a particular parameter. The negotiation procedures presented
below explain the exact semantics of this value during connection establishment.

If QOS parameters are supported by the DLS provider, the provider will define a set of
default QOS parameter values that are used whebdvepOS DONT_CARE specified

for a QOS parameter value. These default values can be defined for all DLS users or can
be defined on a per DLS user basis. The default parameter value set is returned in the QOS
field (indicated bydl_gos_length anddl_qgos_offset ) of theDL_INFO_ACK

before a DLS user negotiates QOS parameter values.

DLS provider addendum documentation must describe the known ranges of support for
the QOS parameters and the default values, and also specify whether they are used in a
local manner only.
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The following procedures are used to negotiate QOS parameter values during connection
establishment.

* TheDL_CONNECT_RES§pecifies the DLS user's desired range of QOS
values in thall_gos_co_rangel t structure. The target and least-
acceptable values are specified for throughput and transit delay, as
described in “Throughput,” and “Transit Delay.” The target value is the
value desired by the calling DLS user for the QOS parameters. The least-
acceptable value is the lowest value the calling user will accept. These val-
ues are specified separately for both the transmit and receive directions of
the connection.

If either value is set tL_QOS_DONT_CARiEe DLS provider will supply a
default value, subject to the following consistency constraints:

- If DL_QOS_DONT_CARE specified for the target value, the value
chosen by the DLS provider may not be less than the least-acceptable
value.

- If DL_QOS_DONT_CARE specified for the least-acceptable value,
the value set by the DLS provider cannot be greater than the target
value.

- If DL_QOS DONT_CARE specified for both the target and least-
acceptable value, the DLS provider is free to select any value, with-
out constraint, for the target and least-acceptable values.

For priority and protection, theL._ CONNECT_RE§pecifies a minimum and maximum
desired value as defined in “Priority,” and “Protection.” As with throughput and transit
delay, the DLS user may specify a valu®bf QOS_DONT_CAR#®r either the minimum

or maximum value. The DLS provider will interpret this value subject to the following
consistency constraints:

* |If DL_QOS_DONT_CARE specified for the maximum value, the value
chosen by the DLS provider may not be less than the minimum value.

* |f DL_QOS_DONT_CARE specified for the minimum value, the value set
by the DLS provider cannot be greater than the maximum value.

¢ |f DL_QOS DONT_CARE&specified for both the minimum and maximum
values, the DLS provider is free to select any value, without constraint, for
the maximum and minimum values.

The values of the residual error rate and resilience parametersh tiEONNECT_REQ
have no meaning and are ignored by the DLS provider.

If the value ofdl_qgos_length in theDL_CONNECT_REM® set to zero by the DLS
user, the DLS provider should treat all QOS parameter values as if they were set to
DL_QOS_DONT_CAREelecting any value in its supported range.

If the DLS provider cannot support throughput, transit delay, priority, and protection val-
ues within the ranges specified in the. CONNECT_REQ@DL_DISCONNECT_IND
should be sent to the calling DLS user.

If the requested ranges of values for throughput and transit delay in the
DL_CONNECT_RE&re acceptable to the DLS provider, the QOS parameters will be
adjusted to values the DLS provider will support. Only the target value may be adjusted,
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and it is set to a value the DLS provider is willing to provide (which may be of lower QOS
than the target value). The least-acceptable value cannot be modified. The updated QOS
range is then sent to the called DLS user irdthgos_co_rangel t structure of the
DL_CONNECT_INDwhere it is interpreted as the available range of service.

If the requested range of values for priority and protection ilDtheCONNECT _RERQ
acceptable to the DLS provider, an appropriate value within the range is selected and
saved for each parameter; these selected values will be returned to the DLS user in the cor-
respondinddL_ CONNECT_COptimitive. Because priority and protection are negotiated
locally, theDL_CONNECT_INDwill not contain values selected during negotiation with

the calling DLS user. Instead, the DLS provider will offer a range of values in the
DL_CONNECT_INDhat will be supported locally for the called DLS user.

The DLS provider will also include the supported values for residual error rate and resil-
ience in theDL_CONNECT _INDhat is passed to the called DLS user.

If the DLS provider does not support negotiation of throughput, transit delay, priority, or
protection, a value ddL_UNKNOW®Should be set in the least-acceptable, target, mini-
mum, and maximum value fields of tbe_CONNECT_INDAIso, if the DLS provider

does not support any particular QOS paramé&terUNKNOWshould be specified in all

value fields for that parameter. If the DLS provider does not support any QOS parameters,
the value ofll_gos_length may be set to zero in ti. CONNECT _IND

After receiving theDL_ CONNECT _INDthe called DLS user examines the QOS parame-
ter values and selects a specific value from the proffered range of the throughput, transit
delay, priority, and protection parameters. If the called DLS user does not agree on values
in the given range, the connection should be refused vilith BISCONNECT _RE@rim-

itive. Otherwise, the selected values are returned to the DLS provider in the
dl_gos_co_sell t structure of th®L CONNECT_REfimitive.

The values of residual error rate and resilience irbiheCONNECT_RE&re ignored by

the DLS provider. These parameters may not be negotiated by the called DLS user. The
selected values of throughput and transit delay are meaningful, however, and are adopted
for the connection by the DLS provider. Similarly, the selected priority and protection val-
ues are adopted with local significance for the called DLS user.

If the user specifieBL_QOS_DONT_CARG#r either throughput, transit delay, priority, or
protection on th®L_CONNECT_RE$he DLS provider will select a value from the range
specified for that parameter in tB&_CONNECT _INDprimitive. Also, a value of zero in
the dl_qgos_length field of the DL_CONNECT_RES$s equivalent to
DL_QOS_DONT_CAR®r all QOS parameters.

After completion of connection establishment, the values of throughput and transit delay
as selected by the called DLS user are returned to the calling DLS user in the
dl_gos_co_sell t structure of théL_CONNECT_COntimitive. The values of pri-

ority and protection that were selected by the DLS provider from the range indicated in the
DL_CONNECT_REWIll also be returned in theL_ CONNECT _CONhis primitive will

also contain the values of residual error rate and resilience associated with the newly
established connection. The DLS provider also saves the negotiated QOS parameter val-
ues for the connection, so that they may be returned in responBé ttNEO_REQprim-

itive.

As with DL_CONNECT_INDif the DLS provider does not support negotiation of through-
put, transit delay, priority, or protection, a valueDdf UNKNOWs$hould be returned in
the selected value fields. Furthermore, if the DLS provider does not support any particular
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QOS parameteDL_UNKNOWhould be specified in all value fields for that parameter, or
the value ofll_gos_length may be set to zero in tfid._ CONNECT_COdtimitive.

Connectionless-Mode QOS Selection

This section describes the procedures for selecting QOS parameter values that will be
associated with the transmission of connectionless data.

As with connection-mode protocols, the current definition of most existing connectionless
data link protocols does not define a quality of service concept. As such, DLPI does not
require every DLS provider implementation to support QOS parameter selection. The
DLS provider may specify that any or all QOS parameters are unsupported. This is indi-
cated to the DLS user in tid._INFO_ACK where the values in the supported range field
(indicated bydl_qos_range_length anddl_qgos_range_offset ) and the cur-

rent QOS field (indicated bgl_gos_length anddl_gos_offset ) of this primitive

are set tdL_UNKNOWNF the DLS provider supports no QOS parameters, the QOS
length fields in thé®L_INFO_ACKmay be set to zero.

If the DLS provider supports QOS parameter selectiorDthdNFO_ACKprimitive will
specify the supported range of parameter values for transit delay, priority, protection and
residual error rate. Default values are also returned iDithéNFO_ACK

For eachDL_UNITDATA_REQthe DLS provider should apply the currently selected
QOS parameter values to the transmission. If no values have been selected, the default val-
ues should be used.

At any point during data transfer, the DLS user may isddle 4/DQOS_RE@ximitive to

select new values for the transit delay, priority, and protection parameters. These values
are selected using tlit qos_cl_sell_t structure. The residual error rate parameter

is ignored by this primitive and cannot be set by a DLS user.

In theDL_UDQOS_REQ@he DLS user need not require a specific value for every QOS
parameterDL_QOS_ DONT_CARfay be specified if the DLS user does not care what
quality of service is provided for a particular parameter. When specified, the DLS provider
should retain the current (or default if no previous selection has occurred) value for that
parameter.

Allowable Sequence of DLPI Primitives
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This section presents the allowable sequence of DLPI primitives. The sequence is
described using a state transition table that defines possible states as viewed by the DLS
user. The state transition table describes transitions based on the current state of the inter-
face and a given DLPI event. Each transition consists of a state change and possibly an
interface action. The states, events, and related transition actions are described below, fol-
lowed by the state transition table itself. Table 11-2 describes the states associated with
DLPI. It presents the state name used in the state transition table, the corresponding DLPI
state name, a brief description of the state, and an indication of whether the state is valid
for connection-oriented data link servidel{ CODLS$, connectionless data link service
(DL_CLDLYS, acknowledged connectionless data link senitie ACLDLS, or all.
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. Service
State DLPI State Description
Type

0) UNATTACHED DL_UNATTACHED Stream opened but PPA not attached all

1) ATTACH PEND DL_ATTACH_PENDING TheDLs user is waiting for an acknowl!- | all
edgement of aL_ATTACH_REQ

2) DETACH PEND DL_DETACH_PENDING TheDLs user is waiting for an acknowl!- | all
edgement of aL_DETACH_REQ

3) UNBOUND DL_UNBOUND Stream is attached but not bound tm.aap | all

4) BIND PEND DL_BIND_PENDING TheDLs user is waiting for an acknowl- | all
edgement of aL_BIND_REQ

5) UNBIND PEND DL_UNBIND_PENDING ThebLs user is waiting for an acknowl- | all
edgement of aL_UNBIND_REQ

6) IDLE DL_IDLE The stream is bound and activated for ug all
connection establishment or connectionlg
data transfer may take place

7) UDQOS PEND DL_UDQOS_PENDING TheDLs user is waiting for an acknowl- | DL_CLDLS
edgement of @aL_uUDQOS_REQ

8) OUTCON PEND DL_OUTCON_PENDING An outgoing connection is pending - the | DL_CODLS
DLS user is waiting for @L_CONNECT_CON

9) INCON PEND DL_INCON_PENDING An incoming connection is pending - the | DL_CODLS
DLS provider is waiting for a
DL_CONNECT_RES

10) CONN_RES PEND DL_CONN_RES_PENDING ThebDLS user is Waiting for an acknowl- DL_CODLS
edgement of @L_CONNECT_RES

11) DATAXFER DL_DATAXFER Connection-mode data transfer may takg DL_CODLS
place

12) USER RESET PEND | DL_USER_RESET_PENDING | A user-initiated reset is pending - thies DL_CODLS
user is waiting for ®L_RESET_CON

13) PROV RESET PEND | DL_PROV_RESET_PENDING | A provider-initiated reset is pending - the| DL_CODLS
DLS provider is waiting for ®L_RESET_RES

14) RESET_RES PEND DL_RESET_RES_PENDING ThebDLS user is Waiting for an acknowl- DL_CODLS
edgement of @8L_RESET_RES

15) DISCON 8 PEND DL_DISCON8_PENDING ThebDLS user is Waiting for an acknowl- DL_CODLS
edgement of aL_DISCONNECT_REQissued
from theDL_OUTCON_PENDINGState

16) DISCON 9 PEND DL_DISCON9_PENDING ThebDLS user is Waiting for an acknowl- DL_CODLS
edgement of aL_DISCONNECT_REQissued
from theDL_INCON_PENDINGState
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Table 11-2. DLPI States (Cont.)

. Service
State DLPI State Description
Type
17) DISCON 11 PEND DL_DISCON11_PENDING ThebDLS user is Waiting for an acknowl- DL_CODLS
edgement of aL_DISCONNECT_REQissued
from theDL_DATAXFER state
18) DISCON 12 PEND DL_DISCON12_PENDING ThebDLS user is Waiting for an acknowl- DL_CODLS
edgement of aL_DISCONNECT_REQissued
from theDL_USER_RESET_PENDINGtate
19) DISCON 13 PEND DL_DISCON13_PENDING ThebDLS user is Waiting for an acknowl- DL_CODLS
edgement of aL_DISCONNECT_REQissued
from theDL_PROV_RESET_PENDINGstate
20) SUBS_BIND PEND DL_SUBS_BIND_REQ TheDLs user is waiting for an acknowl!- | all
edgement of aL_SUBS_BIND_REQ

Variables and Actions for State Transition Table
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Table 11-3 and Table 11-4 describe variables and actions used to describe the DLPI state
transitions.

The variables are used to distinguish various uses of the same DLPI primitive. For exam-
ple, aDL_CONNECT_REE&auses a different state transition depending on the current
number of outstanding connect indications. To distinguish these different connect
response events, a variable is used to track the number of outstanding connect indications.

Table 11-3. State Transition Table

Variable Description

token The token contained inRL_CONNECT_RE®at indicates on which
stream the connection will be established. A value of zero indicates
that the connection will be established on the stream where the
DL_CONNECT _IN@arrived. A non-zero value indicates the connec-
tion will be passed to another stream.

outcnt Number of outstanding connect indications - those to which the DLS
user has not responded. Actions in the state tables that manipulate this
value may be disregarded when providing connectionless service.
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The actions represent steps the DLS provider must take during certain state transitions to
maintain the interface state. When an action is indicated in the state transition table, the
DLS provider should change the state as indicated and perform the specified action.

Table 11-4. Variables

Action Description

1 outcnt = outent + 1,

2 outcnt = outent - 1;

3 Pass connection to the stream indicated by the token in the

DL_CONNECT_REfrimitive

DLPI User-Originated Events

Table 11-5 describes events initiated by the DLS user that correspond to the various
request and response primitives of DLPI. The table presents the event name used in the
state transition table, a brief description of the event (including the corresponding DLPI
primitive), and an indication of whether the event is valid for connection-oriented data link
service DL_CODLSY, connectionless data link servidel{ CLDLS, acknowledged con-
nectionless data link servicBl{ ACLDLS, or all.

Table 11-5. Events

FSM Event Description Service Type
ATTACH_REQ DL_ATTACH_REQrimitive all
DETACH_REQ DL_DETACH_REQrimitive all
BIND_REQ DL_BIND_REQprimitive all
SUBS_BIND_REQ DL_SUBS_BIND_REQrimitive all
UNBIND_REQ DL_UNBIND_REQrimitive all
UNITDATA_REQ DL_UNITDATA_ REQprimitive DL_CLDLS
UDQOS_REQ DL_UDQOS_REfximitive DL_CLDLS
CONNECT_REQ DL_CONNECT_REfimitive DL_CODLS
CONNECT_RES DL_CONNECT_REfimitive DL _CODLS
PASS_CONN Received a passed connection froma DL_CODLS
DL_CONNECT_REfimitive
DISCON_REQ DL_DISCONNECT_RE@rimitive DL _CODLS
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DLPI Provider-Originated Events
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Table 11-5. Events (Cont.)

FSM Event Description Service Type
DATA_REQ DL_DATA_REQrimitive DL_CODLS
RESET_REQ DL_RESET_REQ@rimitive DL_CODLS
RESET_RES DL_RESET_RESrimitive DL_CODLS

Table 11-6 describes the events initiated by the DLS provider that correspond to the vari-
ous indication, confirmation, and acknowledgment primitives of DLPI. The table presents
the event name used in the state transition table, a brief description of the event (including
the corresponding DLPI primitive), and an indication of whether the event is valid for con-
nection-oriented data link servic®lf CODLS, connectionless data link service
(DL_CLDLS acknowledged connectionless data link senitie ACLDLS, or all.

Table 11-6. DLPI Provider Events

FSM Event Description Service Type
BIND_ACK DL_BIND_ACKprimitive all
SUBS_BIND_ACK DL_SUBS_BIND_ACHKorimitive all
UNITDATA_IND DL_UNITDATA_IND primitive DL_CLDLS
UDERROR_IND DL_UDERROR_INDrimitive DL_CLDLS
CONNECT_IND DL_CONNECT_INDrimitive DL_CODLS
CONNECT_CON DL_CONNECT_COdimitive DL_CODLS
DISCON_IND1 DL_DISCONNECT_INDprimitive when  DL_CODLS
outcnt ==
DISCON_IND2 DL_DISCONNECT_INDprimitive when  DL_CODLS
outcnt ==
DISCON_IND3 DL_DISCONNECT_INDprimitive when  DL_CODLS
outcnt > 1
DATA_IND DL_DATA_IND primitive DL_CODLS
RESET_IND DL_RESET_INDprimitive DL_CODLS
RESET_CON DL_RESET_COlgrimitive DL_CODLS
OK_ACK1 DL_OK_ACHKprimitive when all
outcnt ==
OK_ACK2 DL_OK_ACHKprimitive when DL_CODLS
outcnt ==
andtoken ==
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Table 11-6. DLPI Provider Events (Cont.)

FSM Event Description Service Type

OK_ACK3 DL_OK_ACHKprimitive when DL_CODLS
outcnt == andtoken =0

OK_ACK4 DL_OK_ACHKprimitive when DL_CODLS
outcnt > 1 andtoken =0

ERROR_ACK DL_ERROR_ACK all

DLPI State Transition Table

Table 11-7 through Table 11-11 describe the DLPI state transitions. Each column repre-
sents a state of DLPI, as shown in Table 11-2, and each row represents a DLPI event, as
shown in Table 11-4 and Table 11-5. The intersecting transition cell defines the resulting
state transition, or next state, and associated actions, if any, that must be executed by the
DLS provider to maintain the interface state. Each cell may contain the following:

- This transition cannot occur.
n The current input results in a transition to staié “

n [a] The list of actions &’ should be executed following the specified
state transitionrf” (see table 4 for actions).

TheDL_INFO_REQ, DL_INFO_ACK, DL_TOKEN_REQ, andDL_TOKEN_ACHKrim-

itives are excluded from the state transition table because they can be issued from many
states and, when fully processed, do not cause a state transition to occur. However, the
DLS user may not issuelL_INFO_REQor DL_TOKEN_RE@ any local acknowledg-

ments are pending. In other words, these two primitives may not be issued until the DLS
user receives the acknowledgment for any previously issued primitive that is expecting
local positive acknowledgment. Thus, these primitives may not be issued from the
DL_ATTACH_PENDING, DL_DETACH_PENDING, DL_BIND_PENDING,
DL_SUBS_BIND_PENDING, DL_UNBIND_PENDING, DL_UDQOS_PENDING,
DL_CONN_RES_PENDING,DL_RESET_RES_PENDING,DL_DISCON8_PENDING,
DL_DISCON9_PENDING, DL_DISCON11_PENDING, DL_DISCON12_PENDINGr

DL _DISCON13_PENDINGstates. Failure to comply by this restriction may result in loss

of primitives at the stream head if the DLS user is a user process. OhcéNFO_REQ

or DL_TOKEN_REQ®as been issued, the DLS provider must respond with the appropriate
acknowledgment primitive.

The following rules apply to the maintenance of DLPI state:

* The DLS provider is responsible for keeping a record of the state of the
interface as viewed by the DLS user, to be returned iDthéNFO_ACK

* The DLS provider may never generate a primitive that places the interface
out of state.

11-61



STREAMS Modules and Drivers

11-62

NOTE

This would correspond to a minus) (cell entry in the state transi-
tion table.

If the DLS provider generates a STREAMS ERRORhessage upstream,
it should free any further primitives processed by it's write pide or
service procedure.

The close of a stream is considered an abortive action by the DLS user, and
may be executed from any state. The DLS provider must issue appropriate
indications to the remote DLS user when a close occurs. For example, if the
DLPI state iDL_DATAXFERaDL_DISCONNECT_INDshould be sent to

the remote DLS user. The DLS provider should free any resources associ-
ated with that stream and reset the stream to its unopened condition.

The following points clarify the state transition table.

If the DLS provider supports connection-mode service, the value of the
outcnt  state variable must be initialized to zero for each stream when that
stream is first opened.

The initial and final state for style2 DLS provider iDL_UNATTACHED
However, becausestyle1 DLS provider implicitly attaches a PPA to a
stream when it is opened, the initial and final DLPI state ftyle 1 pro-
vider isDL_UNBOUND he DLS user should not issié_ ATTACH_REQ
or DL_DETACH_RE@rimitives to astylel DLS provider.

A DLS provider may have multiple connect indications outstanding at one
time, which indicates that the DLS user has not responded to them. See
“Connection Establishment Service.” As the state transition table points
out, the stream on which those indications are outstanding will remain in
theDL_INCON_PENDINGtate until the DLS provider receives a response
for all indications.

The DLPI state associated with a given stream may be transferred to
another stream only when tbe._ CONNECT_REfrimitive indicates this
behavior. In this example, the responding stream (where the connection
will be established) must be in tBd._IDLE state. This state transition is
indicated by thé?ASS_CONNvent in Table 11-10.

The labeling of the stateBL_PROV_RESET_PENDIN@nd
DL_USER_RESET_PENDIN@dicate the party that started the local
interaction, and does not necessarily indicate the originator of the reset pro-
cedure.

A DL_DATA_REQrimitive received by the DLS provider in the state
DL_PROV_RESET_PENDINGor example, after ®L_RESET_INDhas

been passed to the DLS user, or the dbatelDLE, for example, after a

data link connection has been released, should be discarded by the DLS
provider.

A DL_DATA_IND primitive received by the DLS user after the user has
issued @DL_RESET_ REQhould be discarded.



Data Link Provider Interface

To ensure accurate processing of DLPI primitives, the DLS provider must adhere to the
following rules about the receipt and generation of STREAMELUSHmessages dur-
ing various state transitions.

The DLS provider must be ready to receMeFLUSHmessages from
upstream and flush it's queues as specified in the message.

The DLS provider must issue 8 FLUSHnessage upstream to flush both
the read and write queues after receiving a succeBEfUUNBIND_REQ
primitive but before issuing tHaeL_OK_ACK

If an incoming disconnect occurs when the interface is in the
DL_DATAXFER DL_USER_RESET_PENDING or
DL_PROV_RESET_PENDIN&ate, the DLS provider must send up an
M_FLUSHmessage to flush both the read and write queues before sending
up aDL_DISCONNECT_IND

If a DL_DISCONNECT_REGs issued in theDL_DATAXFER
DL_USER_RESET_PENDINGrDL_PROV_RESET_PENDIN&ates,

the DLS provider must issue &h FLUSHmessage upstream to flush both
the read and write queues after receiving the successful
DL_DISCONNECT_REQut before issuing theL._ OK_ACK

If a reset occurs when the interface is in thie. DATAXFERor
DL_USER_RESET_PENDIN&ate, the DLS provider must send up an
M_FLUSHmessage to flush both the read and write queues before sending
up aDL_RESET_INDorDL_RESET_CON

Common Local Management Phase

Table 11-7 presents the allowed sequence of DLPI primitives for the common local man-
agement phase of communication.

Table 11-7. Local Management Phase

STATES UNATTACHED | ATTACH | DETACH | UNBOUND | BIND | UNBIND IDLE SUBS_BIND
PEND PEND PEND PEND PEND
EVENTS 0 1 2 3 4 5 6 20
ATTACH_REQ 1 - - - - - -
DETACH_REQ - - 2 - - - -
BIND_REQ - - 4 -
BIND_ACK - - 6 -
SUBS_BIND_REQ - - 20 -
SUBS_BIND_ACK - - 6
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Table 11-7. Local Management Phase (Cont.)

STATES UNATTACHED | ATTACH | DETACH | UNBOUND | BIND | UNBIND IDLE | SUBS_BIND
PEND PEND PEND | PEND PEND
EVENTS 0 1 2 3 4 5 6 20
UNBIND_REQ - - - - - - 5 -
OK_ACK1 - 3 0 - ; 3 ] R
ERROR_ACK - 0 3 - 3 6 ] .

Table 11-8 presents the allowed sequence of DLPI primitives for the connectionless data
transfer phase.

Table 11-8. Connectionless-Mode Data Transfer Phase

STATES IDLE UDQOS
PEND
EVENTS 6 7
UDQOS_REQ 7 -
OK_ACK1 - 6
ERROR_ACK - 6
UNITDATA_REQ 6 .
UNITDATA_IND 6 -
UDERROR_IND 6 .
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Table 11-9. Acknowledged Connectionless-Mode Data Transfer Phase

STATES IDLE UDQOS
PEND

EVENTS

6 7
UDQOS_REQ 7 -
OK_ACK1 - 6
ERROR_ACK - 6
DATA_ACK_REQ 6 -
REPLY_REQ 6 -
REPLY_UPDATE_REQ 6 -
DATA_ACK_IND 6 -
REPLY_IND 6 -
DATA_ACK_STATUS_IND 6 -
REPLY_STATUS_IND 6 -
REPLY_UPDATE_STATUS_IND 6 -
ERROR_ACK 6 -

Table 11-10 presents the allowed sequence of DLPI primitives for the connection estab-
lishment phase of connection mode service.

Table 11-10. Connection Establishment Phase

STATES IDLE OUTCON INCON CONN_RES DATA- DISCON 8 DISCON 9
PEND PEND PEND XFER PEND PEND

EVENTS 6 8 9 10 11 15 16
CONNECT_RE 8 - - - - - -
Q
CONNECT_RES - - 10 - - - -
DISCON_REQ - 15 16 - - - -
PASS_CONN 1 - - - - - -
CONNECT_IND 9[1] - 9[1] - - - -
CONNECT_CO - 11 - - - - -
N
DISCON_IND1 - 6 - - 6 - -
(outcnt == 0)
DISCON_IND2 - - 6[2] - - - -
(outcnt == 1)

11-65



STREAMS Modules and Drivers

Table 11-10. Connection Establishment Phase (Cont.)

STATES

EVENTS

IDLE

OUTCON

PEND

8

INCON

PEND

9

CONN_RES
PEND

10

DATA-

XFER

11

DISCON 8

PEND

15

DISCON 9

PEND

16

DISCON_IND3
(outent > 1)

9[2]

OK_ACK1
(outcnt == 0)

OK_ACK2
(outent == 1,
token == 0)

11[2]

6[2]

OK_ACK3
(outent == 1,
token !=0)

6[2.3]

6[2]

OK_ACK4
(outent > 1,
token !=0)

9[2,3]

9[2]

ERROR_ACK

Table 11-11. Connection Mode Data Transfer Phase

Table 11-11 presents the allowed sequence of DLPI primitives for the connection mode

data transfer phase.

IDLE DATA- USER PROV
STATES RESET_RES DISCON 11 DISCON 12 | DISCON 13
XFER RESET RESET
PEND PEND PEND PEND
EVENTS PEND PEND “ . 16 1o
6 11 12 13

DISCON_REQ - 17 18 19 - - - R
DATA_REQ - 11 - - - - - -
RESET_REQ - 12 - - - - - -
RESET_RES - - - 14 - - - R
DISCON_IND1 - 6 6 6 - - - -
(outent == 0)
DATA_IND - 11 - - - - - -
RESET_IND - 13 - - - - - R
RESET_CON - - 11 - - - - -
OK_ACK1 - - - - 11 6 6 6
(outent == 0)
ERROR_ACK - - 11 - 13 11 12 13
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Precedence of DLPI Primitives

This section presents the precedence of DLPI primitives relative to one another. Two
gueues are used to describe DLPI precedence rules. One queue contains DLS user-origi-
nated primitives and corresponds to the STREAMS write queue of the DLS provider. The
other queue contains DLS provider-originated primitives and corresponds to the
STREAMS read queue of the DLS user. The DLS provider is responsible for determining
precedence on its write queue and the DLS user is responsible for determining precedence
on its read queue as indicated in the precedence tables below.

For each precedence table, the rows (labeled PRIM X) correspond to primitives that are on
the given queue and the columns (labeled PRIM Y) correspond to primitives that are about
to be placed on that queue. Each pair of primitives (PRIM X, PRIM Y) may be manipu-
lated resulting in:

¢ Change of order, where the order of a pair of primitives is reversed if, and
only if, the second primitive in the pair (PRIM Y) is of a type defined to be
able to advance ahead of the first primitive in the pair (PRIM X).

¢ Deletion, where a primitive (PRIM X) may be deleted if, and only if, the
primitive that follows it (PRIM Y) is defined to be destructive with respect
to that primitive. Destructive primitives may always be added to the queue.
Some primitives may cause both primitives in the pair to be destroyed.

The precedence rules define the allowed manipulations of a pair of DLPI primitives.
Whether these actions are performed is the choice of the DLS provider for user-originated
primitives and the choice of the DLS user for provider-originated primitives.

Write Queue Precedence

Figure 11-39 presents the precedence rules for DLS user-originated primitives on the DLS
provider's STREAMS write queue. It assumes that only non-local primitives (those that
generate protocol data units to a peer DLS user) are queued by the DLS provider.

For connection establishment primitives, this table represents the possible pairs of DLPI
primitives when connect indications/responses are single-threaded. For the multi-thread-
ing scenario, the following rules apply:

* A DL_CONNECT_RESrimitive has no precedence over either a
DL_CONNECT_RE6Sr aDL_DISCONNECT_REG@rimitive that is associ-
ated with another connection correlation numlaktrqorrelation ),
and should therefore be placed on the queue behind such primitives.

¢ Similarly, aDL_DISCONNECT_RE@rimitive has no precedence over
either aDL_CONNECT_RE& aDL_DISCONNECT _RE@rimitive that is
associated with another connection correlation number, and should there-
fore be placed on the queue behind such primitives. Notice, however, that a
DL_DISCONNECT_REGQoes have precedence ovddla CONNECT_RES
primitive that is associated with the same correlation number. This is indi-
cated in Figure 11-39.
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PRIMY| p1| P2 | P3| Pa|P5 | P6 |P7 | P8 | PO |P10|P11|P12|P13|P14 | P15
PRIMX (on queue)

PI DL_INFO_REQ

P2 DL_ATTACH_REQ

P3 DL_DETACH_REQ

P4 DL_BIND_REQ

P5 DL_UNBIND_REQ

P6 DL_UNITDATA_REQ 1

P7 DL_UDQOS_REQ

P8 DL_CONNECT_REQ 4

P9 DL_CONNECT_RES 3 1 1

P10 DL_TOKEN_REQ

P11 DL_DISCONNECT_REQ 1
P12 DL_DATA_REQ 5|13 ]3
P13 DL_RESET_REQ 3

P14 DL_RESET_RES 3|11

P15 DL_SUBS_BIND_REQ

162340

KEY:
CODE Interpretation

|:| Empty box indicates a scenario which cannot take place.

1 Y has no precedence over X and should be placed on queue behind X.

2 Y has precedence over X and may advance ahead of X.

3 Y has precedence over X and X must be removed.

4 Y has precedence over X and both X and Y must be removed.

5 Y may have precedence over X (DLS provider's choice), and if so then X must be removed.

Y may have precedence over X (DLS provider's choice), and if so then X must be removed.

Figure 11-39. Write Queue Precedence
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Read Queue Precedence

Figure 11-40 presents the precedence rules for DLS provider-originated primitives on the
DLS user's STREAMS read queue.

For connection establishment primitives, this table represents the possible pairs of DLPI
primitives when connect indications/responses are single-threaded. For the multi-thread-
ing scenario, the following rules apply:

* A DL_CONNECT_INDprimitive has no precedence over either a
DL_CONNECT_INDr aDL_DISCONNECT_INDprimitive that is associ-
ated with another connection correlation numlaiérdorrelation ),
and should therefore be placed on the queue behind such primitives.

¢ Similarly, aDL_DISCONNECT _INDprimitive has no precedence over
either aDL_CONNECT _INDr aDL_DISCONNECT _INDprimitive that is
associated with another connection correlation number, and should there-
fore be placed on the queue behind such primitives.

* A DL_DISCONNECT_INDdoes have precedence over a
DL_CONNECT _INDprimitive that is associated with the same correlation
number (this is indicated in Figure 11-40). Iba_DISCONNECT _INOs
about to be placed on the DLS user's read queue, the user should scan the
read queue for a possiiid. CONNECT _INDprimitive with a matching
correlation number. If a match is found, both Ele DISCONNECT _IND
and matchindpL_ CONNECT _INBhould be removed.

If the DLS user is a user-level process, it's read queue is the stream head read queue.
Because a user process has no control over the placement of DLS primitives on the stream
head read queue, a DLS user cannot straightforwardly initiate the actions specified in the
following precedence table. Except for the connection establishment scenario, the DLS
user can ignore the precedence rules defined in Figure 11-40. This is equivalent to saying
the DLS user's read queue contains at most one primitive.

The only exception to this rule is the processing of connect indication/response primitives.
A problem arises if a user issuesDd_ CONNECT_RE®rimitive when a
DL_DISCONNECT_INDs on the stream head read queue. The DLS provider will not be
expecting the connect response because it has forwarded the disconnect indication to the
DLS user and is in thBL_IDLE state. It will therefore generate an error on seeing the
DL_CONNECT_RESTo avoid this error, the DLS user should not respond to a
DL_CONNECT_INDrimitive if the stream head read queue is not empty. The assumption
here is a non-empty queue may be holding a disconnect indication that is associated with
the connect indication that is being processed.

When connect indications/responses are single-threaded, a non-empty read queue can only
contain aDL_DISCONNECT _INDwhich must be associated with the outstanding
DL_CONNECT_INDThisDL_DISCONNECT _INDprimitive indicates to the DLS user

that theDL_CONNECT _INDs to be removed. The DLS user should not issue a response

to theDL_CONNECT_INDf a DL_DISCONNECT _INDOs received.

The multi-threaded scenario is slightly more complex, because multiple
DL_CONNECT_INEandDL_DISCONNECT _INDprimitives may be interspersed on the
stream head read queue. In this scenario, the DLS user should retrieve all indications on
the queue before responding to a given connect indication. If a queued primitive is a
DL_CONNECT_INDit should be stored by the user process for eventual response. If a
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gueued primitive is ®L_DISCONNECT_INDit should be matched (using the correlation
number) against any stored connect indications. The matched connect indication should
then be removed, just as is done in the single-threaded scenario.

PRIMY| P1| P2 | P3| P4 |P5 | P6 | P7 | P8 | P9 |P10 |P11 |P12 |P13 |P14
PRIMX (on queue)
PI DL_INFO_ACK 1 1 1 1 1 1 1 1
P2 DL_BIND_ACK 1 1
P3 DL_UNITDATA_IND 2 1 2 2 2
P4 DL_UDERROR_IND 2 1 1 2 2
P5 DL_CONNECT_IND 2 2 4
P6 DL_CONNECT_CON 2 2 3 1 1
P7 DL_TOKEN_ACK 1 1 1 1 1 1
P8 DL_DISCONNECT_IND 2 1 2 2
P9 DL_DATA_IND 2 2 5 1 3 3 2
P10 DL_RESET_IND 2 213 2
P11 DL_RESET_CON 2 2 3 1 1 2
P12 DL_OK_ACK 1 1 1 1 1 1
P13 DL_ERROR_ACK 1 1 1 1 1 1 1
P14 DL_SUBS_BIND_ACK 1 1
162350
KEY:
CODE Interpretation

|:| Empty box indicates a scenario which cannot take place.

1 Y has no precedence over X and should be placed on queue behind X.

2 Y has precedence over X and may advance ahead of X.

3 Y has precedence over X and X must be removed.

4 Y has precedence over X and both X and Y must be removed.

5 Y may have precedence over X (DLS provider's choice), and if so then X must be removed.

Y may have precedence over X (DLS provider's choice), and if so then X must be removed.

Figure 11-40. Read Queue Precedence
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Guidelines for Protocol Independent DLS Users

DLPI enables a DLS user to be implemented in a protocol-independent manner such that
the DLS user can operate over many DLS providers without changing the DLS user soft-
ware. DLS user implementors must adhere to the following guidelines, however, to
achieve this independence.

* The protocol-specific service limits returned in e INFO_ACK primi-
tive dl_max_sdu must not be exceeded. The DLS user should access
these limits and adhere to them while interacting with the DLS provider.

* Protocol-specific DLSAP address and PPA identifier formats should be
hidden from DLS user software. Hard-coded addresses and identifiers must
be avoided. The DLS user should retrieve the necessary information from
some other entity (such as a management entity or a higher layer protocol
entity) and insert it without inspection into the appropriate primitives.

* The DLS user should not be written to a specific style of DLS provider, for
examplestylel vs.style2. TheDL_INFO_ACKTreturns sufficient informa-
tion to identify which style of provider has been accessed, and the DLS
user should perform (or not performpa_ATTACH_REQ@ccordingly.

* The names of devices should not be hard-coded into user-level programs
that access a DLS provider.

* The DLS user should access ttie service_mode field of the
DL_INFO_ACKprimitive to determine whether connection or connection-
less services are available on a given stream.

Guidelines for Using DLPI Under PowerMAX OS

All DLPI device drivers currently in PowerMAX OS, suchdes, egl , ie , andcnd are

style 1 connectionless-mode providers. As previously stated in this chapter, a connection-
less-mode data transfer service cannot guarantee reliable delivery of data. As such, appli-
cations must be written in such a way that they can recover from dropped messages.

A style 1 provider assigns a PPA (physical point of attachment) based on the major/minor
number device file combination that the application has opened. The information about
the driver’s style can be obtained by usingihe INFO_REQ DLPI primitive.
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In the current version of PowerMAX OS, the following DLPI primitives are not sup-

ported:

DL_ATTACH_REQ
DL_CONNECT_REQ
DL_DISCONNECT_REQ
DL_ENABMULTI_REQ
DL_PROMISCOFF_REQ

DL_TEST_RES

DL_REPLY_UPDATE_REQ

Some of the functionality provided by the above primitives can be obtained through the
commands. For example, to turn on promiscuous mode for packet
capture, one could use tBEIOCSPROMISGrimitive to toggle the promiscuous state to

s for the DLPI layer, see th2lioctl(3dIpi)

use of specifigoctl

on oroff . For details ornoctl

page.

Also note that some of the primitives listed above, suda®\TTACH_RE(are actually

DL_DETACH_REQ
DL_CONNECT_RES
DL_RESET_REQ
DL_DISABMULTI_REQ
DL_XID_REQ
DL_PHYS_ADDR_REQ
DL_GET_STATISTICS_REQ DL_DATA ACK_REQ

DL_XID_RES

only needed for style 2 connection-mode providers.

Under the current release of PowerMAX OS, the followimg!

DLPI layer:

Table 11-12. ioctls supported in DLPI Layer

DLPI Primitive Description
DLIOCSMIB Set MIB
DLIOCGMIB Get MIB
DLIOCSENADDR Set Ethernet address
DLIOCGENADDR Get Ethernet address
DLIOCSLPCFLG Set local packet copy flag
DLIOCGLPCFLG Get local packet copy flag

DLIOCSPROMISC

Toggle promiscuous state

DLIOCGPROMISC

Get promiscuous state

DLIOCADDMULTI Add multicast address
DLIOCDELMULTI Delete multicast address
DLIOCDISABLE Disable controller
DLIOCENABLE Enable controller

DL_UDQOS_REQ
DL_TOKEN_REQ
DL_RESET_RES
DL_PROMISCON_REQ

DL_SET_PHYS_ADDR_REQ
DL_REPLY_REQ

s are supported in
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Table 11-12. ioctls supported in DLPI Layer (Cont.)

DLPI Primitive Description
DLIOCRESET Reset controller
DLIOCCSMACDMODE | Toggle CSMA-CD mode
DLIOCGETMULTI Get multicast address list

For details on parameters for thectl s listed in Table 11-12 see the
DLioctls(3dlIpi) man page.

For style 1 connectionless-mode providersinal call (DL_BIND_REQ is used to estab-

lish a data link application’s identity, by associating that application with a data link ser-
vice access poinDLSAB, which is the point through which the application will commu-
nicate with the data link provider.

The application can determine tB&SAPby looking at the bind acknowledge data, or
alternatively, theDLSAPcan be specified by the application during bied call
(DL_BIND_REQ. FortheDL_BIND_REQcall, a application must provide information in
thedl_bind_req_t structure, including thel_sapfield which must be filled in to prop-
erly identify theDLSAP

Once thebind call has been successfully made, subsequent type fields of incoming
frames are compared to the bowtidsapvalue. If the values are equal, then the frame is
placed on the STREAMS read queue of that application.

To provide a corredll_sapfield, the application must know the address format. For driv-
ers in PowerMAX OS, thBLSAPis composed of two parts: a 6 byte physical (Ethernet
address), followed by a 1 or 2 byte SAP identifier. The size and information for decom-
posing theDLSAPaddress can be obtained from theinfo_ack t structure that is
returned on ®L_INFO_ACKcall.

A special SAP valuePROMISCUOUS_SAPRan be useful for packet capture types of
applications. This SAP value matches all SAP values. Therefore, using a
PROMISCUOQUS_SAPAP value results in a copy of all packets being received to also be
received on this SAP.

A privileged process may al&ind to a SAP already bound by another process. In cases
where a frame qualifies to be sent to more than one process, independent copies of the
frame will be made and placed on the STREAMS read queue of each process.

Under style 1 connectionless-mode providers, frames are senDUsikiNITDATA_ REQ
messages (viputmsg(2) calls) and frames are receivedids UNITDATA_IND mes-
sages (vigetmsg(2) calls).

When sending a message, the cordtdduf  structure of theputmsg(2) call should

point to a control buffer that contains a filleddh unitdata_req_t structure, fol-
lowed by the destination Ethernet/SAP address. Thestdiaf structure of the
putmsg(2) call should point to a buffer that contains the actual data to be sent to the
remote DLSAP application.

When receiving messages gatmsg(2) calls, the controstrbuf  structure of the
getmsg(2) call will return adl_unitdata_ind_t structure. Thall_primitive field
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will contain a value oDL_UNITDATA_IND, and thell_src_addr_offsefield of this struc-
ture will contain the offset in thgtrbuf  control buffer where the source (originating)
Ethernet/SAP address is located. The datauf  structure of thgetmsg() call will
point to the buffer that contains the actual received data.

Using STREAMS Networking Buffers in a DLPI Application

11-74

Concurrent Computer Systems provides the capability to setup the networking buffers for
a given STREAM stack such that the buffers are shared between the kernel and the user's
address space. This feature minimizes the copying of buffer data between user space and
the kernel, and also reduces the overhead of repeated kernel buffer allocations for the
STREAM stack.

Note that the STREAMS networking buffer feature currently makes use of shared
user/kernel space buffers on STREAMSte(2) andputmsg(2) calls; the data is

still copied between kernel and user spaceeamu(2) andgetmsg(2) calls even
when the target user space buffer is a STREAMS Networking Buffer.

For more information on STREAMS networking buffers, see Chapter 14 &fotver-
MAX OS Real-Time Guide

While use of cached local memory (tB&JFF_FIXED LOCAL_CACHEDuffer reuse
type) is not recommended for general application use, the
BUFF_FIXED_LOCAL_CACHEDuffer reuse type happens to be a potentially good
fit for DLPI applications. Unlike all of the other buffer reuse types
(BUFF_FIXED_GLOBAI.BUFF_FIXED_NOCACHBUFF_RELOAD_GLOBALthe
BUFF_FIXED_LOCAL_CACHEDBpe places some additional restrictions on the applica-
tion. Failure to follow these restrictions can result in incorrect data being sent or received.

The following restrictions for using local memory STREAMS Networking Buffers in a
DLPI application must be observed:

- The application must set its CPU bias for the process to one CPU board.
The NBUFF_ALLOCIioctl(2) call will return an error if this require-
ment is not followed.

- Any LWP in the process that issues a DLPI STREAWrite(2)
read(2) ,getmsg(2) orputmsg(2) call while using a cached local
memory STREAMS networking buffer as the target buffer must have a
CPU bias that is equal to the same CPU bias of the process.

Additionally, even when the target user-space buffer is not a local memory
cached networking buffer forread(2) orgetmsg(2) call, this same

CPU bias restriction also applies to any message received that originated
from a loopback (using the source Ethernet address as the destination
Ethernet address), multicast, or broadcast message from the same program
where a local memory cached networking buffer was used to send that
message.

- In addition to the above biasing requirement, the application must bias
itself to a SPECIFIC CPU board for the following DLPI devices:
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ie must set the CPU bias to the board where ISE Ethernet device
is located.
egl must set the CPU bias to the board where Eagle Ethernet inter-

rupts are handled; this will be the CPU board of the CPU that
handles VME level 5 interrupts. Eitherpadvise(2) or
intstat(1M) may be used to determine the CPU that han-
dles the VME level 5 interrupt.

NOTE

Setting the CPU bias to the correct specific CPU board is entirely
up to the application; thBUFF_ALLOGoctl(2) call will

not attempt to enforce the setting of the CPU bias to the CPU
board that is correct foge oregl DLPI STREAMS stacks.

A Sample DLPI /STREAMS Networking Buffer Program

The following sample program shown below makes use of cache local memory
STREAMS Networking Buffers in a DLPI STREAMS stack.

The following comments can be made about this sample program:

- The sample program shown below has been simplified for the sake of clar-
ity. For example, the routine that reads the messageddatamsg()
could handle dropped messages by using a timeout mechanism, and it
might also resend messages that appear to be lost or garbled. Also, the
application could be re-coded to handle user-specified destination Ether-
net/SAP addresses and DLPI device filenames, instead of using hard-coded
values.

- The device used in this program is the ISE Ethernet deldee/ie0
Since this device is located on the first CPU board, the application uses
cpu_bias(2)  to set its cpu bias to the first CPU in the system. Note that
by usingmpadvise(3C) , it would be possible to determine if more than
one CPU is present on the first CPU board, by using the
MPA_CPU_LMENMommand. Note that other DPI devices, such as
/dev/cnd00, /dev/egl , etc., could also have been used.

- This program assumes that a connectionless mode service, style 1 DLPI
interface is being provided, since this is the current interface mode and type
for Concurrent DLPI devices. ThBL_UNITDATA_REQand
DL_UNITDATA_IND messages are used to send and receive the data mes-
sages to/from a remote DLPI Ethernet device. The remote/target Ether-
net/SAP address is hardcoded into étieersap_destaddrfgrray and it is
used for the binddfL_BIND_REQ request.

- For theDL_UNITDATA_REQmessages, thél_unitdata req_t
structure is stored at the front of the control buffer, immediately followed
by the destination Ethernet/SAP address. The actual data for the message is
stored separately into the local memory buffer data portion of the
putmsg(2) call. Similarly, for the receive®L_UNITDATA IND mes-
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sages, thell_unitdata_ind_tstructure is returned at the beginning of the
control buffer, and thdl_src_addr_offsetield of thedl_unitdata_ind_t
structure contains the offset from the front of the control buffer to the start
of the Ethernet/SAP source address that is also returned within the control
buffer. The actual data portion of the message is returned in the local mem-
ory data buffer.

- This program sends messages to a corresponding remote DLPI application
that is assumed to be already opened, bound and ready to receive messages.
This remote application would be very similar to the code in this sample
program, except that the message loop just receives and sends back the
received messages to the originator. The sample program shown below
sends the messages and then reads them back from the remote application
and then checks the contents of the buffer to see that the correct data was
returned.

- Multiple (4) buffers are setup and used. Each buffer is used to write out a
message before the same buffers are used again to read the data back from
the remote DLPI application.

- Note that since a fixed buffer reuse type is being used\Bwé¢FF_ WAIT
ioctl(2) call is made before re-using the same buffer again.

/*

* cc -D_KMEMUSER example.c
*/

#include <sys/types.h>
#include <stropts.h>

#include <sys/ksynch.h>
#include <sys/fcntl.h>

#include <sys/stat.h>

#include <sys/stream.h>
#include <sys/dipi.h>

#include <sys/dlpi_ether.h>
#include <sys/dlpi_common.h>
#include <sys/procset.h>
#include <sys/bind.h>

#include <errno.h>

#include <stdio.h>

[* DLPI device file descriptor.
*/
int fd_ether;

[* Buffer size for reading and writing.

* Use a value that is less than the maximum DLPI
* transmission size, dl_max_sdu.

*/

#define BUFFER_SIZE1400

/* Control message info buffer.
*/

#define MAXDLBUF 1024
char ctibuff MAXDLBUF];
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/* Internal routines.

*/

int dlinforeq(void);

int dlinfoack(char *);

int dibindreqg(unsigned int);

int dibindack(char *);

int putcntimsg(char *, int);

int recvackmsg(int, const char *, char *);
void dlunitdatareq(caddr_t, caddr _t, int);
void open_and_bind(void);

void senddatamsg(int);

void readdatamsg(int);

void setupnbuff(void);

void nbuffwait(int);

int dl_addr_length;

/* Ethernet device name. May be modified to
* /dev/cnd00, /dev/egl, etc.

*/

char *device_name = "/dev/ieQ";

/* Hard-coded destination ethernet address and sap.
* The ethernet address is 0.0.¢3.01.65.11
* and the sap value is 0x600.
*/
unsigned char ethersap_destaddr[8] =

{ Ox0, 0x0, 0xc3, 0x2, Ox7e, 0x65, 0x6, 0x0};
unsigned int sap_value = 0x600;

/* STREAMS Networking Buffer info structure array.
* One entry per buffer.
*/
struct netbuffers {
struct str_netbuff_info nb_info;
int nb_data_sval;

3

/* Number of STREAMS Networking Buffers to use.
*/

#define NUM_BUFFERS4

struct netbuffers netbuff_array[NUM_BUFFERS];

/* Holds the current write buffer data value.

* Each word in the buffer holds an incremented value.

*/
int msg_data_value;

Data Link Provider Interface
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/* Send and receive this many messages in each buffer.

*/

#define NUM_MESSAGES200

main(argc, argv)

int argc;

char **argv;

{

/*

inti, j;

/* Open the device and bind using our sap value.
*/
open_and_bind();

/* Setup Streams Networking Buffers for the 1/O.
*/
setupnbuff();

/* Send and receive NUM_MESSAGES messages in each buffer.
*/
for (j = 0; j < NUM_MESSAGES; j++) {

/* Use all the buffers to first send out messages.
* Then read the messages back and check their contents.
*/
for (i=0; i < NUM_BUFFERS; i++)
senddatamsg(i);

for (i=0; i < NUM_BUFFERS; i++)
readdatamsg(i);

* Open the Data Link Provider Inteface device and bind to it.

*/
void

open_and_bind()

{
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unsigned int *intp;
dl_info_ack_t *infop;

/* Open the DLPI device.

*/

printf("device used is %s\n", device_name);

if ((fd_ether = open(device_name, O_RDWR)) < 0) {
perror("open");
exit(-1);
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/* Send an info request and then acknowledge it.
*/
if (dlinforeq() < 0) {
perror(“dlinforeq™);
exit(-1);
}
if (dlinfoack(ctlbuf) < 0) {
perror(“dlinfoack™);
exit(-1);
}

/* Check that the medium type is ethernet,

* and check that the provider style is style 1.

*/

infop = &((union DL_primitives *)ctlbuf)->info_ack;

if (infop->dl_mac_type !'= DL_ETHER) {
printf("NON ETHERNET medium type %d\n", infop->dl_mac_type);
exit(-1);

}

if (infop->dl_provider_style !=DL_STYLE1) {
printf("Unexpected provider style. %d\n",

infop->dl_provider_style);

exit(1);

}

/* Make a bind request with a specific SAP value

* and then acknowledge it.

*/

if (dIbindreq(sap_value) < 0) {
perror("dibindreq™);
exit(-1);

}

if (dIbindack(ctlbuf) < 0) {
perror(“dibindack™);
exit(-1);

}

/* Print out the local ethernet/sap address.

*/

intp = (unsigned int *)ethersap_destaddr;

printf("SOURCE ETHERNET/SAP ADDRESS: %x ", *intp);
intp++;

printf("%x\n", *intp);
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/* Allocate the STREAMS Networking Buffers.

* Use the local memory cached buffers.

* Bind the process to the first CPU, since we're using /dev/ie0,
* which is located on the first CPU board.

*/
void
setupnbuff()
{
int i, error;
struct str_netbuff_info *infop;
struct netbuffers *netbufp;
cpuset_t cpumask = 0x1; /* bind to first cpu */
/* Bind the process to the 1st CPU.
*/
error = cpu_bias(CPU_SETBIAS, P_PID, P_MYID, &cpumask);
if (error) {
printf("cpu_bias(2) returned %d\n", error);
exit(-1);
}
/* Allocate the local memory STREAMS Networking Buffers.
*/
for (i = 0, netbufp = &netbuff_array[0];
i < NUM_BUFFERS; i++, netbufp++)
{
infop = &netbufp->nb_info;
infop->length_requested = BUFFER_SIZE;
infop->req_type = NBUFF_ALLOC;
infop->buff_type = BUFF_FIXED_LOCAL_CACHED;
if (ioctl(fd_ether, I_NBUFF, infop) < 0) {
printf("I_NBUFF ioctl failed.\n");
perror(“ioctl");
exit(-1);
}
printf("buffer %d setup at 0x%x\n",i, (char *) infop->address);
/* Change request type field for nbuffwait() calls.
*/
infop->req_type = NBUFF_WAIT;
}
}

/* Acknowledge the prior info request.

*/
int
dlinfoack(char *bufp)
{
return(recvackmsg(DL_INFO_ACK_SIZE, "info", bufp));
}
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/* Acknowledge the bind request.

*/
int
dibindack(char *bufp)
{
return(recvackmsg(DL_BIND_ACK_SIZE, "bind", bufp));
}

/* Acknowledge a previous request and print the
* information returned by the acknowledge request.
*/
int
recvackmsg(int size, const char *what, char *bufp)
{
inti, flags;
union DL_primitives *dIp;
dl_info_ack_t *infop;
dl_bind_ack_t *bindp;
char *charp;
struct strbuf ctl;
char c;

ctl.maxlen = MAXDLBUF;
ctl.len=0;

ctl.buf = bufp;

flags = 0;

if (getmsg(fd_ether, &ctl,(struct strbuf*)NULL, &flags)< 0) {
printf(“recvackmsg: %s getmsg: %s \n");
return (-1);

}

dlp = (union DL_primitives *) ctl.buf;

switch (dIp->dl_primitive) {
case DL_BIND_ACK:
bindp = (dI_bind_ack_t *)ctl.buf;
printf("BIND ACKNOWLEDGE\n");
di_addr_length = bindp->d|_addr_length;
printf"ETHERNET/SAP Address: ");
for (i = 0, charp = ctl.buf + bindp->dI_addr_offset;
i < bindp->dl_addr_length; i++, charp++)

{
c = *charp;
printf("%x ", c);
}
printf("\n");
break;

case DL_INFO_ACK:
case DL_OK_ACK:
break;

case DL_ERROR_ACK:
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/* Acknowledgement error.
*/
switch (dIp->error_ack.dl_errno) {
case DL_BADPPA:
printf(“recvackmsg: %s bad ppa (device unit)\n",
what);
break;
case DL_SYSERR:
printf(“recvackmsg: %s\n", what);
break;
case DL_UNSUPPORTED:
printf(
"recvackmsg: %s: Service not supplied by provider\n,
what);
break;
case DL_NOTSUPPORTED:
printf(
"recvackmsg: %s: Primitive known but not supported by DLS provider\n®,
what);
break;
default:
printf(“recvackmsg (default): %s error 0x%x \n",
what, (unsigned int) dip->error_ack.dl_errno);

break;
}
return (-1);
default:
printf(“recvackmsg: %s unexpected primitive ack 0x%x\n",
what, (unsigned int)dip->dl_primitive);
return (-1);

}
if (ctl.len < size) {
printf(“recvackmsg: %s ack too small (%d < %d)\n",
what, ctl.len, size);
return (-1);

return (ctl.len);

/* Issue a bind request with the specified SAP value.

*/
int
dibindreq(unsigned int sap)
{
dl_bind_req_treq;
memset((char *)&req, 0, sizeof(req));
reg.dl_primitive = DL_BIND_REQ);
reg.dl_sap = sap;
return(putcntimsg((char *)&req, sizeof(req)));
}
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/* Send a DL_INFO_REQ primitive

*/
int
dlinforeq()
{
dl_info_req_treq;
memeset((char *)&req, 0, sizeof(req));
reg.dl_primitive = DL_INFO_REQ);
return(putcntimsg((char *)&req, sizeof(req)));
}

/* Send a putmsg() control message request.

*/
int
putcntimsg(char *ptr, int len)
{
struct strbuf ctl;
ctl.maxlen = 0;
ctl.len =len;
ctl.buf = ptr;
if (putmsg(fd_ether, &ctl, (struct strbuf *) NULL, 0) < 0) {
perror("putcntimsg *);
return (-1);
}
return (0);
}

/* Send a unit data request message to the target ethernet.

* The data in the buffer is different for each message.
*

* Parameter:

* index netbuff_array[] index of buffer to use.
*/
void
senddatamsg(int index)
{
inti;

unsigned int *intp;

dl_unitdata_req_t dlu;

char *charp;

vaddr_t bufaddr = netbuff_array[index].nb_info.address;

/* Setup a DL unitdata request structure.

*/

dlu.dl_primitive = DL_UNITDATA_REQ;
dlu.dl_dest_addr_length = dl_addr_length;
dlu.dl_dest_addr_offset = sizeof(dl_unitdata_req_t);

Data Link Provider Interface
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dlu.dl_priority.dl_min = 100;
dlu.dl_priority.dl_max = 0;

/* Put the dI_unitdata_req_t structure at the

* very front of the buffer.

*/

bcopy(&dlu, ctlbuf, sizeof(dl_unitdata_req_t));
charp = ctlbuf + sizeof(dl_unitdata_req_t);

/* Put the destination ethernet address and sap just after
* the dI_unitdata_req_t structure in the buffer.

*/

bcopy(ethersap_destaddr, charp, dl_addr_length);

/* Check the current data value being used.
* Save off the starting value into the netbuff_array entry.
*/
if (msg_data_value > OxOfffffff)

msg_data_value = 1;
netbuff_array[index].nb_data_sval = msg_data_value;

/* Write the data into the write buffer.
*/
for (i = 0, intp = (unsigned int *)bufaddr;
i < BUFFER_SIZE; i +=4 , msg_data_value++, intp++)

{
*intp = msg_data_value;
}
/* Send the mesage.
*/

dlunitdatareq(ctlbuf, (caddr_t)bufaddr, BUFFER_SIZE);

[* Write out data using the DL_UNITDATA_REQ primitive.
* The front of the ctlbuffer should aleady have
* - the dl_unitdata_req_t structure followed by
* - the destination ethernet address and SAP
*/
void
dlunitdatareq(caddr_t ctlbuffer, caddr_t databuffer, int len)
{
struct strbuf ctl;
struct strbuf dctl;

ctl.maxlen = 0;
ctl.len = sizeof(dl_unitdata_req_t) + dl_addr_length;
ctl.buf = ctlbuffer;

dctl.maxlen = 0;

dctl.len = len;
dctl.buf = databuffer;
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if (putmsg(fd_ether, &ctl, &dctl, 0) < 0) {
perror("dlunitdatareq™);
exit(-1);

[* Attempt to read back the message that we just sent.
* Validate the received message source address, length of data,
* and the buffer contents.
*
* Parameter:
* index netbuff_array[] index of buffer to use.
*/
void
readdatamsg(int index)
{
int i, value, bad_data, flags;
unsigned int *intp;
char *charp;
dl_unitdata_ind_t *unit_indp;
struct strbuf strdata;
struct strbuf strctl;
struct netbuffers *nbp = &netbuff_array[index];

/* Make sure that the message that was sent with this buffer
* has already be sent. If not, wait until the buffer is free

* for re-use.

*/

nbuffwait(index);

while (1) {
/* Now attempt to read back the message.
*/
strdata.maxlen = BUFFER_SIZE;
strdata.len = 0;
strdata.buf = (char *)nbp->nb_info.address;
strctl. maxlen = MAXDLBUF;
strctl.len = 0;
strctl.buf = ctlbuf;
flags = 0;

if (getmsg(fd_ether, &strctl, &strdata, &flags) < 0) {
perror(" ead_data_message:getmsg");
exit(-1);

}

[* We're expecting to get only unit data indication messages.
*/
unit_indp = (dl_unitdata_ind_t *)strctl.buf;
if (unit_indp->dI_primitive = DL_UNITDATA_IND) {
printf("NOT RECEIVED DL_UNITDATA_IND: %d received\n”,
unit_indp->dl_primitive);
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exit(-1);
}

/* The sender should match our target address.

* |gnore messages received from elsewhere.

*/

charp = strctl.buf;

charp +=unit_indp->dl_src_addr_offset;

if (strncmp(charp, ethersap_destaddr,
unit_indp->dI_src_addr_length))

{

}

continue;

/* The amount of data received should match the amount sent.
*/
if (BUFFER_SIZE = strdata.len)

continue;

[* Check that the data pattern is good.

*/

for (i = 0, intp = (unsigned int *)strdata.buf, bad_data = 0,
value = nbp->nb_data_sval;
i < BUFFER_SIZE; i += 4, value++, intp++)

{
if (*intp = value) {
if (\bad_data) {
bad data++;
break;
}
printf(
"Second data mismatch on same message.\n");
exit(-1);
}
}
/* If bad data, try to read the message again.
*/
if (bad_data)
continue;
break;

/* Called to wait until the buffer is free after a putmsg() operation.
*

* Parameter:

* indexnetbuff_array[] index of buffer to use.

*/

void

nbuffwait(int index)

{

struct str_netbuff_info*infop = &netbuff_array[index].nb_info;
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do {
if (ioctl(fd_ether, |_NBUFF, infop) < 0) {

printf("NBUFF_WAIT, ioctl failed.\n");

perror(“ioctl");
exit(-1);
}

} while (infop->ref_count |=0) ;

Data Link Provider Interface
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Glossary

The following is a list of terms used throughout this manual:

alignment
The position in memory of a unit of data, such as a word or half-word, on an integral
boundary. A data unit is properly aligned if its address is evenly divisible by the data unit's
size in bytes. For example, a word is correctly aligned if its address is divisible by four. A
half-word is aligned if its address is divisible by two.

ARP
Address Resolution Protocol

asm macro
The macro that defines system functions used to improve driver execution speed. They are
assembler language code sections (instead of C code).

asynchronous

An event occurring in an unpredictable fashion. A signal is an example of an asynchro-
nous event. A signal can occur when something in the system fails, but it is not known
when the failure will occur.

automatic calling unit (ACU)

A device that permits processors to dial calls automatically over the communications net-
work.

base level

The code that synchronously interacts with a user program. The driver's initialization and
switch table entry point routines constitute the base level. Cormpamaipt level

block and character interface

A collection of driver routines, kernel functions, and data structures that provide a stan-
dard interface for writing block and character drivers.

block data transfer

The method of transferring data in units (blocks) between a block device such as a mag-
netic tape drive or disk drive and a user program.

Glossary-1



STREAMS Modules and Dri vers

block device switch table

block device

block driver

block I/O

block

boot device

bootable object file

bootstrap

boot

buffer

Glossary-2

The table constructed during automatic configuration that contains the address of each
block driver entry point routine (for examplepen(D2) , close(D2) , strat-
egy(D2) ). This table is callebdevsw and its structure is definedéonf.h

A device, such as a magnetic tape drive or disk drive, that conveys data in blocks through
the buffer management code. Compararacter device

A device driver, such as for a magnetic tape device or disk drive, that conveys data in
blocks through the buffer management code (for examplduthestructure). One driver
is written for each major number employed by block devices.

A data transfer method used by drivers for block access devices. Block 1/0 uses the system
buffer cache as an intermediate data storage area between user memory and the device.

The basic unit of data for I/O access. A block is measured in bytes. The size of a block dif-
fers between computers, file system sizes, or devices.

The device that stores the self-configuration and system initialization code and necessary
file systems to start the operating system.

A file that is created and used to build a new version of the operating system.

The process of bringing up the operating system by its own action. The first few instruc-
tions load the rest of the operating system into the computer.

The process of starting the operating system. The boot process consists of self-configura-
tion and system initialization.

A staging area for input-output (1/O) processes where arbitrary-length transactions are col-
lected into convenient units for system operations. A buffer consists of two parts: a mem-
ory array that contains data from the disk and a buffer header that identifies the buffer.



cache

called DLS user

calling DLS user

canonical processing

character device

character driver

character 1/0

CLNS

clone driver

Glossary

A section of computer memory where the most recently used buffers, i-nodes, pages, and
so on are stored for quick access.

The DLS user in connection mode that processes requests for connections from other DLS
users.

The DLS user in connection mode that initiates the establishment of a data link connec-
tion.

Terminal character processing in which the erase character, delete, and other commands
are applied to the data received from a terminal before the data is sent to a receiving pro-
gram. Other terms used in this context are canonical queue, which is a buffer used to retain
information while it is being canonically processed, and canonical mode, which is the
state where canonical processing takes place. Compamode .

A device, such as a terminal or printer, that conveys data character by character. Compare
block device

The driver that conveys data character by character between the device and the user pro-
gram. Character drivers are usually written for use with terminals, printers, and network
devices, although block devices, such as tapes and disks, also support character access.

The process of reading and writing to/from a terminal.

Connectionless Network Service, the datagram version of the OSI network layer

A software driver used by STREAMS drivers to select an unused minor device number, so
that the user process does not need to specify it.

communication endpoint

The local communication channel between a DLS user and DLS provider.
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connection establishment

The phase in connection mode that enables two DLS users to create a data link connection
between them.

connection management stream

connection mode

connection release

connectionless mode

A special stream that will receive all incoming connect indications destined for Data Link
Service Access Point (DLSAP) addresses that are not bound to any other streams associ-
ated with a particular Physical Point of Attachment (PPA).

A circuit-oriented mode of transfer in which data is passed from one user to another over
an established connection in a sequenced manner.

The phase in connection mode that terminates a previously established data link connec-
tion.

A mode of transfer in which data is passed from one user to another in self-contained units
with no logical relationship required among the units.

control and status register (CSR)

controller

critical code

CSMA/CD

Memory locations providing communication between the device and the driver. The driver
sends control information to the CSR, and the device reports its current status to it.

The circuit board that connects a device, such as a terminal or disk drive, to a computer. A
controller converts software commands from a driver into hardware commands that the
device understands. For example, on a disk drive, the controller accepts a request to read a
file and converts the request into hardware commands to have the reading apparatus move
to the precise location and send the information until a delimiter is reached.

A section of code is critical if execution of arbitrary interrupt handlers could result in con-
sistency problems. The kernel raises the processor execution level to prevent interrupts
during a critical code section.

Carrier Sense Multiple Access/Collision Detection

cyclic redundancy check (CRC)

Glossary-4

A way to check the transfer of information over a channel. When the message is received,
the computer calculates the remainder and checks it against the transmitted remainder.
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The memory storage area that holds data types, such as integers and strings, or an array of
integers. The data structures associated with drivers are used as buffers for holding data
being moved between user data space and the device, as flags for indicating error device
status, as pointers to link buffers together, and so on.

data terminal ready (DTR)

data transfer

DDI/DKI

demand paging

device number

dev_t

diagnostic

DLIDU

DLPI

The signal that a terminal device sends to a host computer to indicate that a terminal is
ready to receive data.

The phase in connection and connectionless modes that supports the transfer of data
between two DLS users.

Device Driver Interface/Device Kernel Interface

A memory management system that allows unused portions of a program to be stored tem-
porarily on disk to make room for urgently needed information in main memory. With
demand paging, the virtual size of a process can exceed the amount of physical memory
available in a system.

The value used by the operating system to name a device. The device number contains the
major number and the minor number.

The C programming language data type declaration that is used to store the driver major
and the minor device numbers.

A software routine for testing, identifying, and isolating a hardware error. A message is
generated to notify the tester of the results.

Data Link Interface Data Unit. A grouping of DLS user data that is passed between a DLS
user and the DLS provider across the data link interface. In connection mode, a DLSDU
may consist of multiple DLIDUs.

Data Link Provider Interface
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DLS provider

The data link layer protocol that provides the services of the Data Link Provider Interface.

DLS user

The user-level application or user-level or kernel-level protocol that accesses the services
of the data link layer.

DLS

Data Link Service

DLSAP address

An identifier used to differentiate and locate specific DLS user access points to a DLS pro-

vider.
DLSAP
A point at which a DLS user attaches itself to a DLS provider to access data link services.
DLSDU
Data Link Service Data Unit. A grouping of DLS user data whose boundaries are pre-
served from one end of a data link connection to the other.
downstream

The direction of STREAMS messages flowing through a write queue from the user pro-
cess to the driver.

driver entry points

Driver routines that provide an interface between the kernel and the device driver.

driver routines

Seeroutines
driver
The set of routines and data structures installed in the kernel that provide an interface
between the kernel and a device.
DSAP
Destination Service Access Point
EDLIDU

Expedited Data Link Interface Data Unit
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error correction code (ECC)

expedited data transfer

FDDI

function

initialization entry points

interface

A generic term applied to coding schemes that allow for the correction of errors in one or
more bits of a word of data.

A DLPI service that transfers data subject to separate flow control than that applying to
normal data transfer. The service is intended to deliver the data ahead of any DLSDUs that
may be in transit.

Fiber Distributed Data Interface

A kernel utility used in a driver. The term function is used interchangeably with the term
kernel function. The use of functions in a driver is analogous to the use of system calls and
library routines in a user-level program.

Driver initialization routines that are executed during system initialization (for example,
init(D2) ,start(D2) ).

The set of data structures and functions supported by the UNIX kernel to be used by
device drivers.

interprocess communication (IPC)

interrupt level

A set of software-supported facilities that enable independent processes, running at the
same time, to share information through messages, semaphores, or shared memory.

Driver interrupt routines that are started when an interrupt is received from a hardware
device. The system accesses the interrupt vector table, determines the major number of the
device, and passes control to the appropriate interrupt routine.

interrupt priority level (IPL)

interrupt vector

The interrupt priority level at which the device requests that the CPU call an interrupt pro-
cess. This priority can be overridden in the driver's interrupt routine for critical sections of
code with thespl(D3)  function.

Interrupts from a device are sent to the device's interrupt vector, activating the interrupt
entry point for the device.
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ISO

kernel buffer cache

LLC

low water mark

MAC

memory management

message block

message

MIB

Glossary-8

Internet Protocol

International Organization for Standardization

A linked list of buffers used to minimize the number of times a block-type device must be
accessed.

Logical Link Control, a sub-layer of the data link layer for media independent data link
functions.

The point at which more data is requested from a terminal because the amount of data
being processed in the character lists has fallen creating room for more. It also applies to
STREAMS queues regarding flow control.

Media Access Control, a sub-layer of the data link layer for media specific data link func-
tions.

The memory management scheme of the UNIX operating system imposes certain restric-
tions on drivers that transfer data between devices.

A STREAMS message is made up of one or more message blocks. A message block is
referenced by a pointer tonablk_t structure, which in turn points to the data block
(dblk_t ) structure and the data buffer.

All information flowing in a stream, including transferred data, control information, queue
flushing, errors and signals. The information is referenced by a pointerik & struc-
ture.

Management Information Base



modem

module

panic

PDU

PPA identifier

PPA

prefix

priority message

quality of service (QOS)

queue

Glossary

A contraction of modulator-demodulator. A modulator converts digital signals from the
computer into tones that can be transmitted across phone lines. A demodulator converts
the tones received from the phone lines into digital signals so that the computer can pro-
cess the data.

A STREAMS module consists of two relatqdeue structures, one each for upstream

and downstream messages. One or more modules may be pushed onto a stream between
the stream head and the driver, usually to implement and isolate a line discipline or a com-
munication protocol. virtual to physical memory.

The state where an unrecoverable error has occurred. Usually, when a panic occurs, a mes-
sage is displayed on the console to indicate the cause of the problem.

Protocol Data Unit

An identifier of a particular physical medium over which communication transpires.

The point at which a system attaches itself to a physical communications medium.

A character name that uniquely identifies a driver's routines to the kernel. The prefix name
starts each routine in a driver. For example, a RAM disk might be givearttte prefix.

If it is a block driver, the routines aramdopen , ramdclose , ramdstrategy , and
ramdprint

STREAMS messages that must move through the stream quickly are classified as priority
messages. They are placed at the head of the queue for processingrisgf®e rou-
tine.

Characteristics of transmission quality between two DLS users.

A data structure, the central node of a collection of structures and routines, which makes
up half of a STREAMS module or driver. Each module or driver is made up of one queue
each for upstream and downstream messages. Locsttieain.h
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raw 1/O

raw mode

read queue

routines

SAP

Movement of data directly between user address spaces and the device. Raw I/O is used
primarily for administrative functions where the speed of a specific operation is more
important than overall system performance.

The method of transmitting data from a terminal to a user without processing. This mode
is defined in the line discipline modules.

The half of a STREAMS module or driver that passes messages upstream.

A set of instructions that perform a specific task for a program. Driver code consists of
entry-point routines and subordinate routines. Subordinate routines are called by driver
entry-point routines. The entry-point routines are accessed through system tables.

Service Access Point, conceptually the “point” at which a layer in the OSI model make its
services available to the layer above it.

SCSI driver interface (SDI)

SDU

semantic processing

A collection of machine-independent input/output controls, functions, and data structures,
that provide a standard interface for writing Small Computer System Interface (SCSI)
drivers.

Service Data Unit

Semantic processing entails input validation of the characters received from a character
device.

small computer system interface (SCSI)

SNMP

The American National Standards Institute (ANSI) approved interface for supporting spe-
cific peripheral devices.

Simple Network Management Protocol

Source Code Control System (SCCS)
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A utility for tracking, maintaining, and controlling access to source code files.
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special device file

The file that identifies the device's access type (block or character), the external major and
minor numbers of the device, the device nhame used by user-level programs, and security
control (owner, group, and access permissions) for the device.

SSAP

Source Service Access Point

stream end

The stream end is the component of a stream farthest from the user process, providing the
interface to the device. It contains pointers to driver (rather than module) routines.

stream head

Every stream has a stream head, which is inserted by the STREAMS subsystem. It is the
component of a stream closest to the user process. The stream head processes STREAMS-
related system calls and performs the transfer of data between user and kernel space.

STREAMS

A kernel subsystem used to build a stream, which is a modular, full-duplex data path
between a device and a user process.

stream

A linked list of kernel data structures providing a full-duplex data path between a user pro-
cess and a device or pseudo-device.

switch table entry points

Driver routines that are activated througtevsw orcdevsw tables.

switch table
The operating system that has two switch taltiésysw andbdevsw. These tables hold

the entry point routines for character and block drivers and are activated by 1/0 system
calls.

synchronous data link interface (SDLI)

A UN-type circuit board that works subordinately to the input/output accelerator (IOA).
The SDLI provides up to eight ports for full-duplex synchronous data communication.

system initialization

The routines from the driver code and the information from the master file that initialize
the system (including device drivers).
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TCP
Transmission Control Protocol, a connection oriented transport in the Internet suite
upstream
The direction of STREAMS messages flowing through a read queue from the driver to the
user process.
user space

The part of the operating system where programs that do not have direct access to the ker-
nel structures and services execute. The UNIX operating system is divided into two major
areas: the user program and the kernel. Drivers execute in the kernel, and the user pro-
grams that interact with drivers generally execute in the user program area. This space is
also referred to as user data area.

volume table of contents (VTOC)

Lists the beginning and ending points of the disk partitions by the system administrator for
a given disk.

write queue

The half of a STREAMS module or driver that passes messages downstream.
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asynchronous protocol Stream, example 4-3

back-enable of a queue 5-16
bidirectional transfer, example 6-18
blocking primitives 6-2

C

canput(D3X) function 3-9
CLONE driver 3-4, 3-5
clone(7) 3-5

cloneable device 3-5
CLONEOPEN 3-5
cloning (STREAMS) 8-14
close(D2X) routine 3-10

D

data block (STREAMS), linkage 5-2
dblk_t 3-3

Device driver 6-1

device numbers 8-3

Direct Memory Access (see DMA) 8-4
DMA 8-4

downstream, definition 1-5

driver, classification 8-1

driver, configuration 6-32

driver, device numbers 8-3

driver, entry points 8-2

driver, interface to STREAMS 6-28
driver, writing a driver 8-2
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Entry points 3-4, 6-2

Error handling 3-8

Expanded Fundamental Types 5-2
expedited data 5-1, 6-27

extended STREAMS buffers 5-38, 5-40
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FIFO (STREAMS), queue scheduling 4-2
Flow control 3-6

flow control 5-14, 5-18

flow control, definition 1-7

flow control, in driver 8-14

flow control, in line discipline module 7-9
flow control, in module 7-8

flow control, routines 5-16, 5-18
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flush handling, flags 5-52, 6-24

flush handling, in driver 8-10

flush handling, in line discipline 6-24
flush handling, priority band data 6-27
flush handling, priority band data example 6-28
flush handling, read-side example 6-26
flushq(D3X) function 3-7

freemsg(D3X) function 3-7
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ioctl(2), general processing 6-7
ioctl(2), |_ATMARK 5-11
ioctl(2), |_CANPUT 5-10
ioctl(2), |_GETBAND 5-10
ioctl(2), I_LINK 5-43, 9-6
ioctl(2), I_LIST 6-22

ioctl(2), I_PLINK 5-43, 9-27
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ioctl(2), |_PUNLINK 5-43, 9-27
ioctl(2), |_PUSH 2-8

ioctl(2), |_RECVFD 5-45
ioctl(2), |_SENDFD 5-45
ioctl(2), |_STR 2-12, 5-43
ioctl(2), |_STR processing 6-8
ioctl(2), |_UNLINK 5-43, 9-9
ioctl(2), transparent processing 6-10

LIFO, module add/remove 2-11
lower multiplexor 1-14
lower Stream 1-12
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M_BREAK 5-42

M_COPYIN 5-50

M_COPYIN, transparent ioctl example 6-12
M_COPYOUT 5-51

M_COPYOUT, transparent ioctl example 6-16
M_COPYOUT, with M_IOCTL 5-45
M_CTL 5-42

M_DATA 1-8, 5-42

M_DELAY 5-43

M_ERROR 3-8, 5-51

M_FLUSH 5-52

M_FLUSH, flags 5-52

M_FLUSH, in module example 7-6
M_HANGUP 5-53

M_IOCACK 5-53

M_IOCACK, with M_COPYOUT 5-51
M_IOCACK, with M_IOCTL 5-44
M_IOCDATA 5-53

M_IOCNAK 5-54

M_IOCNAK, with M_COPYOUT 5-51
M_IOCNAK, with M_IOCTL 5-44
M_IOCTL 5-43-5-45

M_IOCTL, transparent 5-44
M_IOCTL, with M_COPYOUT 5-51
M_PASSFP 5-45
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M_PCPROTO 1-8, 5-54

M_PCRSE 5-55

M_PCSIG 5-55

M_PROTO 1-8, 5-45-5-46

M_READ 5-55

M_RSE 5-46

M_SETOPTS 5-47-5-49

M_SETOPTS, SO_FLAG 5-47-5-49

M_SETOPTS, SO_READOPT options 5-7

M_SETOPTS, SO_WROFF value 5-7

M_SIG 5-50

M_START 5-56
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M_STOP 5-56

M_STOPI 5-56

major device number 8-3

mblk_t 3-3

message (STREAMS) 1-8

message (STREAMS), allocation 5-34

message (STREAMS), control information 1-8, 5-28

message (STREAMS), definition 1-5

message (STREAMS), freeing 5-34
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message (STREAMS), sending/receiving 5-4
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message block (STREAMS) 1-5

message block (STREAMS), linkage 5-2

message processing routines (STREAMS) 4-1

message processing routines (STREAMS), design
guidelines 6-34

message queue (STREAMS), priority 5-8, 5-11

message type indicators, definition 1-5

Messages 3-2, 3-3

Minor device number 3-5

minor device number 8-3

Modularity 3-2

module, configuration 6-32

module_info(D4X) structure 3-3

Modules 6-1

MORECTL 5-28

MOREDATA 5-28

multiplexor driver 9-16

multiplexor ID, in multiplexor building 9-6

multiplexor ID, in multiplexor dismantling 9-9
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multiplexor, persistent links 9-27, 9-31
multiplexor, upper 9-1

multiplexor, upper write put procedure 9-19-9-22
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O

O_NDELAY, close a Stream 2-9
O_NDELAY, with M_SETOPTS 5-48
O_NONBLOCK, close a Stream 2-9
O_NONBLOCK, with M_SETOPTS 5-48
open(D2X) routine 3-4

OPENFAIL 3-5
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Primitives 3-1

priority band data 5-1, 6-27
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service provider, receiving data 5-27

service provider, sending data 5-26
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